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ABSTRACT: Recent advances in molecular simulations have
allowed scientists to investigate slower biological processes
than ever before. Together with these advances came an
explosion of data that has transformed a traditionally
computing-bound into a data-bound problem. Here, we
present HTMD, a programmable, extensible platform written
in Python that aims to solve the data generation and analysis
problem as well as increase reproducibility by providing a
complete workspace for simulation-based discovery. So far,
HTMD includes system building for CHARMM and AMBER
force fields, projection methods, clustering, molecular simulation production, adaptive sampling, an Amazon cloud interface,
Markov state models, and visualization. As a result, a single, short HTMD script can lead from a PDB structure to useful
quantities such as relaxation time scales, equilibrium populations, metastable conformations, and kinetic rates. In this paper, we
focus on the adaptive sampling and Markov state modeling features.

1. INTRODUCTION

Protein folding, protein−ligand binding, and protein−protein
interactions are some of the most studied phenomena in
biophysics. If understood, these phenomena can lead to the
development of novel drugs as well as an improved under-
standing of cellular function.1−4 There are several methodologies
for investigating these problems including experimental, such as
NMR, fluorescence, and X-ray, but we believe that simulation-
based discovery is going to reach a prime spot in the long term
due to the exponential growth of information technologies.5

Molecular dynamics simulations (MD) can provide an atomic
level resolution of biological processes at very high temporal
resolution,1,2,6−8 but it comes with its own set of limitations with
the most pronounced being the accuracy of the force fields and
time sampling limitations. However, we believe that there are
further important problems: the data analysis and reproducibility
of experiments. In the past few years, specialized hardware,9 high-
throughput methods,10−12 and advanced sampling tech-
niques13−15 have been able to significantly improve molecular
dynamics, allowing them to reach aggregate simulation times of
multiple milliseconds. Force fields have also dramatically
improved.16−20 This increase of simulation accuracy and data
has led to the necessity of a more standardized methodology for
preparing, executing, and handling thousands of individual
trajectories.

Investigating biological processes using MD usually requires
the processing of large amounts of data and files using various
tools and adapting to peculiarities of many different software
packages developed over several decades. With all of these fragile
sets of tools, it is hard to follow the steps of a workflow that leads
from the original PDB to the results, even for the scientist who
wrote the workflow. Second, it is hard to extend the functionality
of the tools because of such diversity of languages and the
absence of a common programming environment in which to
introduce new extensions. In this paper, we illustrate our vision of
a unified platform: a programmable workspace for simulation-
based molecular discovery. We named it high-throughput
molecular dynamics (HTMD)21 to indicate the fact that it
allows for the handling of thousands of simulations and multiple
systems in a controlled manner.
HTMD (https://www.htmd.org) extends the Python pro-

gramming language with functions and classes to handle
molecular systems at different levels while abstracting
implementation details and best-practice knowledge. Python
is a scripting language that enjoys widespread usage in the
scientific community and thus provides an ideal platform on
which to develop and distribute HTMD.HTMD’s functionalities
span from molecular structure manipulation to visualization,
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preparing and executing molecular simulations on different
computing resources, and data analysis, including the use of
Markov state models (MSMs) to identify slow events, kinetic
rates, affinities, and pathways.
The need for better tools to deal with large amounts of

simulation data has led to the recent development of toolkits
covering various facets of the molecular simulation pipeline.
Multiple C++,22,23 Python libraries,24−26 and web-based
environments27 exist that support reading and writing of PDB
files and trajectories as well as various simulation projections
(RMSD, contacts, etc.). On a higher level, software packages like
Ensembler28 can combine various tools and libraries like
Rosetta29 and MSMBuilder30 to allow the building preparation
and simulation of whole protein superfamilies, including support
for the simulation of proteins of unknown structure through
homology modeling, protonation, solvation, and model refine-
ment. The Copernicus31 platform provides tools for running
and managing simulations in distributed environments. These
software solutions cover various lengths and phases of the
molecular simulation pipeline. To our knowledge, however,
HTMD is the first platform to integrate all of the functionalities
required for molecular discovery.

2. METHODS
2.1. Integrated Platform for Molecular Modeling.

HTMDprovides the user with an integrated platform for in silico
molecular simulation discovery. Its functionalities range
from molecular structure manipulation to system building,
docking, MD simulations, simulation management, clustering,
Markov models, and adaptive sampling. HTMD can be used
from any python interpreter in the form of self-executing scripts
as well as interactively using ipython or jupyter notebooks.
The jupyter notebooks allow a user to combine code, docu-
mentation, and figures in one document, thus integrating a whole
experiment, setup, and report in a single file, which can help
increase the reproducibility of experiments. Additionally, note-
books provide the possibility for full remote execution of HTMD
via a server (e.g., Amazon EC2) and a browser.
Structure Manipulation. Molecular structure information

is usually encoded in the form of atomic coordinates in PDB
files, which have to be manipulated to prepare simulations. The
format of PDB files does not present itself for easy manual
manipulation and operations on atoms can become exceedingly
complicated. HTMD provides a class for storing and manip-
ulating structural information. It can read, write, and combine
PDB files (e.g., Listing 1, lines 2,8) as well as simulation
trajectories. Modifications to atom information can be performed
(e.g., Listing 1, line 4) using the same powerful atom selection

language as the VMD software.32 Furthermore, HTMD allows
the user to do residue mutations and add or delete atoms (e.g.,
Listing 1, line 6) and provides functions for typical coordinate
manipulation like translations and rotations. The visualization of
the structures is directly built into HTMD using VMD to inspect
structures and modifications (e.g., Listing 1, line 10), although
this requires the separate installation of VMD. Furthermore, a
webGL embedded viewer33 is also available from jupyter
notebooks to allow for remote execution.

System Building. For system preparation, HTMD tries to
encode best practices as well as decouple the system preparation
from the respective force fields and simulation software, making
the code reusable and allowing the user to change force fields on
the fly. HTMD extends the structure manipulation functionality
previously described by providing solvation, ionization, and
capping as well as simple, interchangeable building of systems for
CHARMM and AMBER.

Molecular Simulation. Furthermore, simulation deployment
and management are integrated into HTMD. HTMD abstracts
these processes by providing a common interface for managing
simulations on various computational resources and software,
such as local CPU/GPU clusters or remote simulations on
Amazon Cloud,34 allowing the user to quickly switch between a
local test run and a production run sent to a remote cluster.
Configurations for common procedures such as system equil-
ibration and production runs are encoded in a set of protocols that
can be used directly or modified to the user’s needs. HTMD
provides a common software-independent interface for managing
simulations with different simulation software. Currently,
protocols and simulation interfaces are provided for ACEMD;
however, the set of supported applications is directly extensible by
users, andmore software will be supported in subsequent versions
of HTMD. Likewise, HTMD currently supports the XTC
trajectory file format used by ACEMD and GROMACS with
more file formats to be supported.

Adaptive Sampling. Adaptive sampling is a key component of
HTMD. Traditional MD sampling protocols are relatively
inefficient at exploring the conformational space as computation
is spent exploring oversampled regions of the conformational
space due to metastable minima. More intelligent “adaptive”
sampling protocols can better explore the conformational space
in an iterative stepwise manner.15 Adaptive sampling is intended
as the normal mode of sampling in HTMD and can therefore be
performed in a very simple and automated manner.

Projecting and Clustering. HTMD provides various classes,
as shown in Table 1, supporting the calculation of interatom
distances, RMSD, dihedral angles, and more. Further projection
classes can be written by implementing new classes sharing a
given interface. Using HTMD, MD simulations can easily be
clustered from a set of millions of protein conformations to a
well-defined set of clusters and cluster centers, representing the
diversity of conformations found in these simulations as well as
defining the boundaries for each conformational cluster.

Markov State Models. Markov state models35,36 in HTMD
are used for simulation analysis as well as adaptive sampling. For
simulation analysis, they provide a powerful method for detecting
metastable states and calculating kinetics and free energies by
integrating any number of simulations into a single statistical
model.11,37−39 For adaptive sampling, Markov state models allow
for more advanced sampling methodologies based on metastable
states and kinetics. MSM estimation in HTMD is performed
using some functionality (TICA,40,41 PCCA,42 transition matrix
estimation, etc.) fromPyEMMA26 and Scikit-learn43 for clustering.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00049
J. Chem. Theory Comput. 2016, 12, 1845−1852

1846

http://dx.doi.org/10.1021/acs.jctc.6b00049
http://pubsdc3.acs.org/action/showImage?doi=10.1021/acs.jctc.6b00049&iName=master.img-001.jpg&w=222&h=157


We plan to collaborate with the PyEMMA developers on low-level
tools while retaining the application-centric vision of HTMD.
In particular, from HTMD it is possible to access lower-level
PyEMMA functionalities so as to provide a simple, user-friendly
interface for the construction of Markov state models but also
directly use PyEMMAwhen extraMSM functionalities are desired.
2.2. Adaptive Sampling in HTMD. Adaptive sampling is an

intelligent sampling protocol designed to sample the conforma-
tional space more efficiently than traditional high-throughput
MD protocols. By incrementally obtaining knowledge from past
simulations, it is able to identify conformational subspaces that
are under-sampled and start new simulations from those regions
to improve their sampling.
The adaptive protocol used in HTMD is outlined in Figure 1.

The protocol begins by running an initial set of nmax simulations
in what we call the first epoch. It then keeps periodically polling for
completed simulations and checking if enough simulations have
been completed (i.e., if the number of currently running
simulations nrun is lower than a threshold nmin). If enough
(i.e., nmax−nmin) simulations have been completed, the next
epoch will start. Simulations of previous epochs will keep running
and will be used once completed. The two nmax and nmin
thresholds are used to make efficient use of asynchronous and
asymmetrical computational resources, such as clusters or
volunteer computing grids, where some simulations can be
delayed for longer periods of time. In the new epoch, an analysis is
performed from all previously completed simulations, and the new
respawning conformations are selected from the analysis. Then,
new simulations are sent out to once again reach nmax
concurrently running simulations, and the process repeats until
nepochs number of epochs have completed. All of these steps
are completely automated in HTMD and transparent to the user.
In HTMD, the default analysis method used for selecting new

respawning conformations utilizes Markov state models. Markov
state models prove especially useful in an adaptive sampling
scenario as they are able to join short, independent simulations
into a single statistical model. The default strategy is different
from the adaptive sampling scheme used in ref 15, yet it repro-
duces the same performance on a more sound mathematical
base. By default, the MSM adaptive analysis implemented in
HTMD selects the respawning conformations inversely propor-
tional to the amount of sampling of the macrostates of the
Markov model in what we call the

M
1

c
method.

The motivation for this choice is the following. Consider that
we have found n −1 states and the possibility that there is a

representative nth state that has not yet been discovered. For a
given state i, the outgoing transition probabilities pi,1 to pi,n are
distributed according to the Dirichlet distribution
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where B is the Beta distribution and C = [cij] are posterior
transition counts. The probability of finding a hypothetical nth
state from state i is given by

∫= − p p p p p p( ) ( , ..., , ) di n p i i n i n i n i, ,1 , 1 , ,
i (2)

Using a uniform prior, this evaluates to

=
+

≈ p
z n z

[ ]
1 1

i n
i i

, (3)

Figure 1. Adaptive protocol flowchart. After an initial set of simulations
are sent, completed simulations are polled. Once enough simulations
have been completed, an analysis (MSM) is performed to calculate the
starting poses of the simulations of the next epoch. Finally, the
simulations of the new epoch are sent and the loop repeats. The dotted
line is used to indicate that the MSM analysis can readily be replaced by
other adaptive sampling algorithms while keeping the backbone of the
algorithm fixed.

Table 1. Projection Classes

metric description

MetricDistance distances or contacts between two sets
of atoms

MetricSelfDistance distances or contacts between all atoms
in a single set

MetricRmsd RMSD of a set of atoms from a given
reference structure

MetricSecondaryStructure secondary structure of the protein

MetricDihedral dihedral angles (phi/psi) of the protein

MetricDeviation deviations of atoms from reference
positions

MetricShell atom densities in concentric shells
centered around another set of
atoms44

MetricCoodrinate coordinates of a set of atoms

TICA time-based independent component
analysis
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where zi is the number of observed counts in microstate i. On the
basis of this simple idea, we sample macrostates proportional
to zi

−1. The reason to use macrostates rather than microstates is
simple but important as it allows for minimizing the statistical
error present in microstates due to poor clustering. For further
details on the adaptive equations, see Supporting Information
section I. As demonstrated here and in ref 45, count-based
adaptive sampling allows for the discovery of new states with
orders of magnitude less simulation time than conventional
sampling.
The optimal criteria for the selection of the respawning

conformations, however, is still an open question in adaptive
sampling. Different criteria can be defined for adaptive sampling,
such as reducing the sampling error in a Markov model,46 faster
sampling of binding events,15 sampling along the slowest
pathways, and many more.15,31,45−49 Therefore, the adaptive
protocol in HTMD is written with modularity in mind, and the
analysis method can be easily replaced by any other analysis that
the user wants to perform on the simulations (not limited to
Markov models), allowing for the development of further
adaptive protocols and easy experimentation.

3. RESULTS

To demonstrate the capabilities of HTMD, we provide three
examples: first, a protein folding analysis on a large data set of
folding and unfolding simulations of the villin headpiece; second,
the sampling of the same system using the adaptive sampling
functionalities of HTMD compared with the large data set, and
third, the adaptive sampling of a free ligand binding example for
Thrombin and a small ligand. Short HTMD code listings are
provided for all examples.
3.1. Protein Folding Analysis.

Here, we demonstrate the HTMD Markov state model analysis
of the protein villin using the same setup as Piana et al.50 Villin is a
tissue-specific protein that binds to actin. In this setup, we use the

double norleucine K65Nle/K70Nle mutant of the 35 amino acid
C-terminal headpiece of villin. The data set consists of 1614
simulations of 120 ns each with an aggregate simulation time of
193.6 μs simulated using ACEMD51 on the GPUGRID.net
distributed computing infrastructure.10

First, all simulation folders that will be used in the analysis are
added to a list using the simlist function (Listing 2, line 2).
Individual trajectories are assumed to be located in separate
folders, and whose names are used as identifiers for the tra-
jectories. Multiple trajectory files stored in a single folder will be
assumed to be continuous pieces of the same trajectory and will
be appended internally. The simlist function also links
trajectory folders to their corresponding structure files, thus
providing all of the atom information needed by HTMD to
calculate the various projections.
Clustering methods can be used to define states for a Markov

model given simulation trajectories. However, as the molecular
system coordinates are very high-dimensional, using them as
feature vectors complicates clustering.52 Additionally, because in
the model we are interested in conformational clusters, feature
vectors of coordinates are highly unsuitable as they are not a
rotation and translation invariant representation, which is
typically desired when comparing different protein confor-
mations or protein−ligand interactions. Therefore, it is preferred
to project the simulations on a lower dimensional representa-
tion before clustering using the projection classes described
in Table 1.
In this example, protein contact maps were calculated from the

simulation coordinates using the MetricSelfDistance
class (Listing 2, line 5). In detail, contact maps were constructed
by calculating the distances between all carbon-alpha atoms of
the protein and setting them to 1 if the distance is smaller than
8 Å and 0 otherwise. Different projection methods could be used
in this case to represent protein conformations, such as backbone
dihedral angles or protein secondary structure; however, protein
contact maps tend to represent the various conformations
in a protein well, giving good results. The contact maps were
further projected using time-lagged independent component
analysis (TICA) onto the 10 slowest varying subspaces (Listing 2,
lines 8 and 9) to aid the clusteringmethod in placing the clusters on
the transition regions between metastable states, which improves
the model quality.35

The TICA coordinates were then clustered using the
MiniBatchKMeans class of Scikit-learn43 into 1000 clusters
(Listing 2, line 11). The selection of the clustering method and
number of clusters is left up to the user as different clustering
methods can perform better on different simulation sets. In some
cases, it might be necessary for the user to try out various
configurations to obtain the best results. A higher number of
clusters produces smaller clusters, which increase the accuracy
and spatial resolution of the Markov model. Small geometric
clusters tend to also produce more kinetically homogeneous
clusters by eliminating energetic barriers within states. However,
a very large amount of small geometric clusters can lead to poor
statistics causing a less precise model.36 Therefore, a
compromise has to be made when choosing the number of
clusters.
Discrete-time Markov models, as in our case, model a system

as a jump process between a set of states with a discrete jump
time called the lag time τ. The most widely used heuristic for
choosing a lag time for the Markov model is by inspecting the
convergence of the implied time-scales of the model over
increasing lag times. Given the convergence of the implied time
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scales in Figure 2b, a lag time of 30 ns = 300 frames was chosen,
and the clusters were lumped into four metastable macrostates
using PCCA+42 (Listing 2, line 15).
From the Markov model transition probability matrix, it is

possible to obtain the equilibrium populations of each macro-
state as well as the rates, mean first passage times, and standard
free energies of the macrostates. These observables are of great
importance to biologists and chemists as they can be measured
experimentally such that MSMs provide a predictive and
informative methodology.

The folding free energyΔG is calculated asΔ = − ⎜ ⎟
⎛
⎝

⎞
⎠G k T log

p

pB
F

U

where kB is the Boltzmann constant, T is the temperature in
Kelvin, pF is the equilibrium probability of the protein being
folded, and pU is the equilibrium probability of the unfolded
state. The folding time is calculated by the mean first passage
time from the unfolded to folded state. The free energy and
folding time of the protein were calculated (Listing 2, line 22)
as 1.5(±0.2) kcal/mol and 2.6(±0.4) μs, respectively. These
compare reasonably well with the values obtained by Piana
et al.50 (−0.6 kcal/mol and 3.2 μs).
3.2. Adaptive Sampling Protein Folding.

Below, we describe the adaptive sampling methodology applied
on sampling the protein folding process of villin. The simulation
setup is the same one used for the analysis above with the
exception of the trajectory lengths, which are made shorter
(50 ns) to better suit the adaptive protocol.
We start off with a set of one or more simulation input folders

provided by the user or constructed using the HTMD build
system. Code Listing 3 then shows the adaptive configuration
script for HTMD. Lines 1−10 define the parameters for the
adaptive run and line 11 starts the execution of the adaptive
protocol. The adaptive protocol starts by reading the initial
“generator” simulation input files from a default path, which can
be modified, and spawns the first set of nmax simulations
(specified in line 4). Lines 3 and 4 define the maximum and
minimum number of simulations that should be running at any
moment in the adaptive run. Once the number of running
simulations nrun falls under nmin (e.g., nmax − nmin
simulations have completed since the last epoch), a Markov state
model will be built using all available simulations. Inside the
AdaptiveRun.run() method, a projection class calculates
the contact map (Listing 3, line 8) between all carbon alpha
atoms of the protein (Listing 3, line 7) for all trajectories. These
contact maps are further projected onto the 10 slowest
dimensions using TICA (Listing 3, line 9). The TICA projected
data is then clustered using MiniBatchKMeans; an MSM is
built from the projected simulations, and the respawning
conformations are calculated using the

M
1

c
method (Listing 3,

line 10). The new simulations are then run using ACEMD51 on
local GPUs as defined in Listing 3, line 6.
Figure 3 demonstrates the progress of the folding and

unfolding time estimates over 60 epochs of adaptive sampling
(36.6 μs), comparing it to the progress using nonadaptive
sampling of equivalent aggregate simulation time and longer
trajectories. The adaptive sampling method shows a much faster

Figure 2. Results of the MSM analysis of the simulations of villin showing (a) the MSM detecting the folded state of villin as macrostate 1 (teal stripes)
overlaid on the crystal folded structure in the colored cartoon (for the rest of the macrostates, see Figure S2), (b) an implied time scales plot showing the
convergence of the slowest process of the MSM for lag times between 30 and 40ns, (c) the standard free energy of each macrostate, and (d) the mean
first passage time from the unfolded macrostate to each macrostate. Macrostate 1 corresponds to the protein folding time. Macrostate 0 corresponds to
the unfolded state. Error bars were calculated by bootstrapping the simulations and recalculating the MSM.
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convergence in folding and unfolding time compared to naive
sampling as expected from previous studies.15,45

3.3. Adaptive Sampling Ligand Binding.

In the following example, we demonstrate the adaptive
sampling methodology applied on sampling the binding process
of the ligand piperidine-1-carboxamidine to the protein thrombin
taken from PDB ID 3D49. The procedure followed here is
similar to the one used for villin. The main differences are the
following: Fewer simulations are performed per epoch due to the
faster nature of ligand binding, meaning that we do not need to
sample each epoch as thoroughly as in the case of villin. A
different metric is used, in this case, the contacts between the
ligand heavy atoms and the carbon-alpha atoms of the protein, to
allow the Markov model to detect protein−ligand interactions.
Fewer TICA dimensions are also used, as we know from previous
analyses of similar systems (benzamidine-trypsin) that 3 TICA
dimensions are enough to resolve the binding of the ligand.
Figure 4 demonstrates the progress of the slowest implied

time scale as well as the progress of the standard free energy
of binding over 60 epochs of adaptive sampling. Our results of
−5.97(±0.50) kcal/mol of binding free energy in epoch 60
compare favorably to the results published by Ruhmann et al.53

(−5.41(±0.22) kcal/mol) using isothermal titration calorimetry
for the binding of the ligand. The implied time scale plot
demonstrates how the Markov model detects slower processes
over increasing epochs. Each epoch is visualized as a vertical
histogram showing the distribution of the values of the top time
scale calculated for that epoch using bootstrapping. Two large
jumps can be seen at epochs 7 and 43 attributed to the discovery
of a metastable prebound and bound state with corresponding
time scales on the order of 102 and 103 ns. Between epochs 43
and 54, the distributions appear bimodal because of the lack of
statistics and bootstrapping of the data; the various calculated
Markov models are not all able to consistently identify the newly
discovered slowest process of 103 ns. After epoch 54, we have
acquired enough statistics to converge to the correct time scale of
103 ns, which in turn leads to a more converged free energy
estimate in the free energy plot.

4. CONCLUSIONS
With HTMD, we intend to integrate the whole workflow of
molecular simulation-based discovery in a single environment
while abstracting unnecessary technical details. This reduces
preventable errors in the workflow, increases reproducibility of
molecular dynamics experiments, allows for the manipulation of
large amounts of simulation data, and opens the way for
biologists and medicinal chemists to utilize simulations while
focusing on the real biological problems they are trying to solve.
In this paper, we described the capabilities of HTMD on
analyzing MD simulations using Markov models and demon-
strated its application on improving conformational space
exploration through adaptive sampling. Additionally, it is our

Figure 3. Plots show progression of the estimation of (a) folding and
(b) unfolding times for villin over 60 adaptive epochs (red) compared
to equal amounts of simulation data produced by naive sampling
(blue).

Figure 4. (a) The distributions of the estimated implied time scales
(in ns) of the slowest process detected in the simulations calculated over
various epochs. Blue to orange coloring shows increasing amounts
of bootstrapped models estimating the given time scale value. (b) The
estimated binding free energy of piperidine-1-carboxamidine to
thrombin calculated over various epochs. The light blue outline is the
standard deviation.
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goal to allow for easy development of new protocols and
methods by the community, which can be included in future
releases of HTMD by providing access to the code repository.
The HTMD software, documentation, tutorials, and examples
are available at https://www.htmd.org, where it can be
downloaded for free by academic users.
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