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Abstract

Agent-based models usually are very complex so that models of re-
duced complexity are needed, not only to see the wood for the trees but
also to allow the application of advanced analytic methods. We show how
to construct so-called Markov state models that approximate the origi-
nal Markov process by a Markov chain on a small finite state space and
represent well the longest time scales of the original model. More specif-
ically, a Markov state model is defined as a Markov chain whose state
space consists of sets of population states near which the sample paths of
the original Markov process reside for a long time and whose transition
rates between these macrostates are given by the aggregate statistics of
jumps between those sets of population states. An advantage of this ap-
proach in the context of complex models with large state spaces is that
the macrostates as well as transition probabilities can be estimated on the
basis of simulated short-term trajectory data.

1 Introduction

Agent-based models (ABMs) study systems of boundedly rational, interacting
economic agents by means of computer simulations. The basic idea is that the
microscopic behavior of the agents is specified via individual rules of behavior
and the dynamical evolution of the whole system as well as related macroscopic
quantities is iteratively determined by the computer. ABMs have many desired
features that traditional economic models are lacking. However, their high com-
plexity makes them difficult to understand and analyze. Up to now, there are
few approaches that go beyond traditional “look and see” analyses.

In this context, we present the Markov state modelling approach to the con-
struction of Markov models of reduced complexity. This approach originates
from the study of large bio-molecules [e.g., 1–3]. Bio-molecules undergo statis-
tically rare transitions between different conformations, where in a conforma-
tion the large-scale geometric structure of the bio-molecule is understood to be
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conserved while on smaller scales it may well change, e.g., rotate, oscillate or
fluctuate. A similar situation is given in economics where the system of interest
is often characterized by punctuated equilibrium dynamics [e.g., 4, 5], that is,
its sample paths exhibit long periods of stasis near one population state which
are infrequently interrupted by switching events after which the sample paths
stay close to a different population state, again for a long time. In the economic
context, the subsets of state space in which the sample paths of the dynamical
system reside for a long time might be interpreted as conventions or norms.

The basic idea of a Markov state model is to consider each conformation, con-
vention, or, more generally, each subset of state space in which the sample paths
reside for a long time, as a macrostate of a Markov chain which approximates
the original Markov process. The transition rates between the macrostates are
given by the aggregate statistics of jumps. An advantage of this approach for
complex models with large state spaces is that the macrostates and the tran-
sition probabilities between the macrostates can be estimated from simulated
short-term trajectory data. Moreover, it has been shown that such Markov state
models have good approximation properties if punctuated equilibrium dynamics
characterize the system of interest.

In what follows, we give an introductory overview of how to construct inter-
pretable Markov models from agent-based models either directly from the rules
of the game or simulated trajectory data (Sections 2 and 3). Subsequently,
we discuss the limitation that the approach relies on the original process to be
reversible and give an outlook for further research in this direction (Section 4).

2 Markov Representation of Agent-Based Mod-
els

Throughout what follows, let (Xk)k∈N be the irreducible discrete-time Markov
chain that represents an agent-based model of interest and that has been con-
structed either from simulation data or derived by analytical arguments. We
denote by Z = {1, · · · , l} a finite, but possibly large state space of the chain, by
P = (pxy)x,y∈Z its transition matrix and by µ its unique stationary distribution.
We assume that (Xk) is reversible, that is, it fulfills

µ(x)pxy = µ(y)pyx. (1)

For illustration, we consider the following stochastic evolutionary game as a
simple “toy” agent-based model that will serve as a paradigm throughout the
paper. Let us consider a population of n agents that are randomly matched to
play the 2× 2 pure coordination game with payoff matrix A given by
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1 2

1 a, a 0, 0

2 0, 0 b, b

where a, b > 0. This game allows an interpretation of the strategies in terms
of currencies, e.g., strategy 1 represents “silver” and strategy 2 “gold”. At
times t = kδ, where δ = 1/n, k ∈ N, exactly one agent is randomly drawn
(with equal probability for all players) to reconsider her strategy choice. We
assume statistical independence between successive draws. More specifically, we
assume that revising agents use the best response with mutations (BRM) revision
protocol at mutation rate ε > 0 [6] to update their strategy choice as follows:
with probability (1 − ε) he chooses a best response b ∈ B(x) to the current
population state, while with probability ε he chooses a strategy s ∈ S at random
(uniform distribution). The strategy updating process can be represented as a
birth-and-death chain on the state space Z = {0, 1/n, 2/n, · · · , 1} where x ∈ Z
represents the proportion of players in the population playing strategy 1 [for
details see 7]. Birth-and-death chains can easily be shown to be irreducible and
reversible. Figure 1 gives an impression of characteristic sample paths for a
resulting evolutionary process with parameters a = b = 1, n = 11, ε = .3.
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a = 1, b = 1, n = 11, ε = 0.3, x0 = 11

Figure 1: Typical sample path of the number of players holding strategy 1 in the
evolutionary game defined by the currency game and the BRM revision protocol
(a = b = 1, n = 11, ε = .3).

3



For a discussion on formal representations of ABM as Markov chains see,
e.g., Tesfatsion [8]. In the case the transition probabilities may be not be ex-
plicitly available, in which case the transition matrix can be estimated from
simulation data, e.g. using maximum likelihood estimation or Bayesian infer-
ence [e.g., 9], taking into account the reversibility constraint (1).

3 Towards Markov State Models

The basic idea of a Markov state models is to approximate the original Markov
process by a Markov chain on a small finite state space. Thus, more formally, our
goal is to construct a Markov chain (X̂k)k∈N on the state space Ẑ = {1, · · · ,m}
with m considerably smaller than l such that (X̂k) captures the essential dy-
namics of the original Markov chain (Xk). In general, each of the macrostates
i ∈ Ẑ corresponds to a subset of states Ci ⊂ Z, where we assume that the Ci’s
are pairwise disjoint. The Ci’s are called core sets. Roughly speaking, the idea
is to cluster the state space into core sets that may or may not partition the
state space, but that represent the punctuated equilibrium dynamics in that

(i) the core sets carry most of the total statistical weight of the invariant
distribution µ of the original Markov chain and

(ii) the process resides inside each core set for a long time (relative to the
typical time scale of the original chain).

In the context of molecular dynamics, for example, these core sets represent
the possible conformations of a bio-molecule; in an economic context, we might
think of core sets as possible conventions or norms.

In Section 3.1, we first consider the special case in which the core sets
C1, · · · , Cm partition the state space Z, that is,

Ci ∩ Cj = ∅ for i 6= j and

m⋃
j=1

Cj = Z. (2)

Using this special case, we demonstrate formally the basic idea of the Markov
state modeling approach. Subsequently, in Section 3.2, we explain how to gen-
eralize the special case, and how to identify suitable core sets representing the
represent the essential equilibria of the system.

3.1 Full Partition Markov State Models

In the special case in which the core sets partition the state space Z, each
macrostate i directly represents the subset Ci and we can define the reduced
chain (X̂k) with transition matrix P̂ = (p̂ij) by

p̂ij = P[X̃1 = j | X̃0 = i], (3)

where (X̃k)k∈N is the discrete-time process on Ẑ that describes the dynamics of
(Xk) between the sets C1, · · · , Cm, i.e.,

X̃k = i⇔ Xk ∈ Ci. (4)
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Note that we have to differentiate between (X̂k) and (X̃k) because (X̃k) is
in general not Markovian [10]. However, we still want to approximate (Xk) by
a Markov chain which is why we consider (X̂k).

Example. We consider the introductory example from Section 2 again, the
Markov chain representation of the 2× 2 coordination game on the state space
Z = {0, 1/n, 2/n, · · · , 1}, with states x ∈ Z respresenting the fraction of agents
adopting strategy 1. The sample path shown in Figure 1 shows the characteris-
tic punctuated equilibrium behavior, i.e., the sample path usually stays either
near the population state x = 0 or x = 1 for a long time while it switches infre-
quently to the other population state. In the specific case of the currency game
under BRM dynamics with parameters a = b = 1, n = 11, ε = .3, a reasonable
partition of the set of population states into subsets such that there are only rare
switches between them (see Figure 1) is A = {0, · · · , 5/11}, B = {6/11, · · · , 1}.
The resulting matrix P̂ is given by (rounded to four digits)

P̂ =

(
.9989 .0011
.0011 .9989

)
. (5)

Best-approximation property of the full partition model In order to
appreciate the approximation of the orgiginal model by the coarse-grained chain
(X̂k) it is helpful to analyse the relation between the transition probabilities
pxy and p̂ij . To this end, suppose that the original chain starts in equilibrium,
X0 ∼ µ. Now, the transition probability p̂ij in (3) can be recast as

p̂ij =

∑
x,j pxyχCi(y)χCj (x)µ(x)∑

x χCi(x)µ(x)
, (6)

where χC : Z → {0, 1} denotes the indicator function of a set C ⊂ Z, and the
notation Pµ indicates that X0 is distributed according to µ.

Let us assume that the indicator functions χC1 , . . . , χCm form a partition
of unity, i.e.,

∑
i χCi

(x) = 1, which is the case if the C1, . . . , Cm partition our
state space Z. The last equation can then be interpreted as the orthogonal
projection onto the span of the functions χC1

, . . . , χCm
with respect to the µ-

weighted scalar product

〈v, w〉µ =
∑
x∈Z

v(x)w(x)µ(x) (7)

on Rl. A compact way to write (6) thus is

p̂ij =
〈PχCi , χCj 〉µ
〈χCi

, χCi
〉µ

, (8)

which shows that the corresponding transition matrix P̂ = (p̂ij)i,j∈Ẑ is in fact

the orthogonal projection of P = (pxy)x,y∈Z onto span{χC1 , . . . , χCm}, under-
stood as a linear subspace of Rl endowed with the weighted scalar product µ.
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By being an orthogonal projection, P̂ is the best approximation of P onto
the space spanned by the indicator functions on the core sets C1, . . . , Cm in the
sense of least squares where the weighting with the invariant measure µ arises
naturally as a consequence of the fact that the Markov chain is initialized in its
stationary distribution so as to make the macroscopic transition probabilities
time-independent. The projected transition matrix P̂ is a stochastic matrix and
inherits many important properties of the original transition matrix P :

1. If P is irreducible and aperiodic, then so is P̂ .
2. P̂ has a unique invariant distribution µ̂:

µ̂(i) = µ(Ci) , i ∈ Ẑ. (9)

3. If P is reversible with respect to µ, then P̂ is reversible with respect to µ̂.
A further advantage of (8) is that it tells us that, given a long realization of

the original Markov chain (Xt) of length T , the expression

p̂
(T )
ij =

∑T
t=1 χCi

(Xt)χCj
(Xt+1)∑T

t=1(χCi
(Xt))2

(10)

is an unbiased estimator of the macroscopic transition probabilities p̂ij . By the
assumption that µ is unique and Z is finite, the law of large numbers implies that

p̂
(T )
ij converges almost surely to p̂ij as T →∞ for every initial value X0 = x0.

3.2 Core Set Markov State Models

The case of a full partition of state space demonstrates the basic idea of Markov
state models as a coarse-grained Markov chain that can be obtained by pro-
jection onto suitable ansatz functions. In the general case, however, the sets
C1, · · · , Cm do not necessarily partition the state space Z; thus, the approach
has to be modified since already the definition of the process X̃ in Eq. (4) is not
well defined anymore.

In order to construct a reduced Markov chain that best approximates our
original Markov chain in this case, the idea is to replace the set of indictator
functions by a clever “mollification”, forming a partition of unity and having
support outside the sets C1, . . . , Cm. One such choice is the set of probabilistic
ansatz functions {q1, . . . , qm}, so-called committor functions, defined by

qi(x) = Pδx(τ0Ci
< τ0C\Ci

), (11)

where C = ∪iCi, δx is the point mass on x, and τkA = inf{k′ ≥ k|Xk′ ∈ A}
denotes the k-th hitting time for k ≥ 0. In words, the committor function
qi : Z → [0, 1] is the function that gives for a state x ∈ Z the probability
that the Markov chain (Xk) will visit the set Ci first rather than C \ Ci. By
construction, each qi is equal to one on Ci, equal to zero on the other sets
Cj , j 6= i, and interpolates between these values outside the sets C1, . . . , Cm.
Moreover, since (Xt) is irreducible and positive recurrent (by Z being finite),
the process terminates after finite time with probability one by hitting one of
the sets Ci, independently of the initial condition X0 = x, and as a consequence
the qi sum up to one and form a partition of unity.
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Best-approximation property of the core set model The analysis that
is carried out in Sarich [10] shows that the reduced Markov chain on Ẑ can
be defined in terms of the quasi -transition matrix P̂W−1, where the matrices
P̂ = (p̂ij)i,j∈Ẑ and W = (wij)i,j∈Ẑ are given by

p̂jk =
〈Pqj , qk〉µ
µ̂(j)

, wij =
〈qi, qj〉µ
µ̂(i)

, (12)

where µ̂(j) =
∑
i∈Z µ(i)qj(i).

In this general case, each macrostate i ∈ Ẑ is associated with the respec-
tive committor function qi on the core set Ci and can thus be interpreted as
representing the affiliation with set Ci. Note that while the definition of the
quasi-transition matrix of our Markov state model by P̂W−1 might not seem
intuitively obvious, it reduces to the matrix P̂ defined in Eq. (3) in the case of
a full partition of state space.

We call P̂W−1 a quasi-transition matrix since P̂W−1 is not always a stochas-
tic matrix (even though P and W are). We only know that its rows sum up to
one since this is the case for both P̂ and W , and thus also for W−1 as well as
P̂W−1. In the example given here as well as in the examples studied in Hallier
[7] the entries of P̂W−1 are also non-negative, but in general the entries can be
negative as has been pointed out in Sarich [10].

It is possible to show, however, that µ̂ is the unique ergodic stationary
distribution of (X̂k). Unlike in the case of a full state space partition, the
matrix P̂W−1 does not trivially inherit all properties of the original chain,
such as irreducibility, aperiodicity and reversibility; but (X̂k) is reversible with
respect to µ̂ if P̂ and W−1 commute.

Despite the apparent lack of structure preservation, the sparse core set ap-
proximation shows excellent spectral approximation properties, in that the dom-
inant eigenvalues of the original chain are generally well approximated. The
latter implies that the projected transition matrix can be used to accurately
estimate transition rates between the core sets as well as mean residence times,
and hence residence times and rates for the punctuated equilibria.

Example. We consider again the currency game under BRM dynamics. Let
C1 = {0} and C2 = {1}. The resulting Markov state model is thus a Markov
chain on the state space Ẑ = 1, 2 where state i ∈ Ẑ refers to the committor
function qi, i = 1, 2. The matrices P̂ and W are given by

P̂ =

(
.9327 .0673
.0673 .9327

)
, (13)

W =

(
.9333 .0667
.0667 .9333

)
. (14)

We can thus calculate

P̂W−1 =

(
.9993 .0007
.0007 .9993

)
, (15)

W−1P̂ =

(
.9993 .0007
.0007 .9993

)
. (16)
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Thus, P̂W−1 is a stochastic matrix and P̂W−1 = W−1P̂ . The Markov chain
(X̂t)t∈T representing the core set Markov state model is thus reversible with
stationary distribution µ̂ = (.5, .5).

Estimation of the core set model parameters In order to arrive at an
estimator for p̂ij as well as wij notice that it can be shown that

p̂ij = P(τk+1
Cj

< τk+1
C\Cj

| X̃k = i), (17)

wij = P(τkCj
< τkC\Cj

| X̃k = i), (18)

where (X̃k) is the milestoning process defined by

X̃k = i⇔ Xσ(k) = i, where σ(k) = max{t ≤ k | Xt ∈ C}. (19)

Equation (19) means that the milestoning process remains in state i as long as
the original Markov chain (Xk) last visited core set i (see Figure 2). Thus, in
words, W (i, j) for j 6= i gives the probability that the Markov chain next hits
Cj while being in a state in Z \ C at some time k and last came from core set

Ci, where C = ∪mj=1Cj . Similarly, P̂ (i, j) gives the probability that the next
core set hit is Cj conditional on having hit the core set Ci last at some time k.

Figure 2: Illustration of the milestoning process for two core sets C1 and C2.

Consequently, both matrices W and P̂ can be estimated from trajectory
data in the following way: given a realization (x0, · · · , xK) of (Xk) of length K,
we can estimate

w∗,Kij =

{
RK

ij

rKi
if j 6= i,

1−
∑
j 6=i w

∗,K
ij otherwise,

(20)

p̂∗,Kij =
R+,K
ij

rKi
, (21)

where RKij denotes the number of times where the chain came from core set Ci,

is in a state in Z \ C and hits Cj next, rKi is the total number of time steps
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the trajectory was in i; that is, X̃k = i, and R+,K
ij denotes the number of times

where the chain came from core set Ci and hit Cj next.

Identification of core sets While we outlined above how to construct Markov
state models given core sets C1, · · · , Cm, the question remains of how to actually
identify suitable core sets. One approach is to use the results on the relationship
between the approximation quality and the projection error. For full partition
models, the projection error is as small as possible if the dominant right eigen-
vectors of the transfer matrix P are as constant as possible on the sets of the
partition. This relationship has been exploited by approaches that partition
state space by clustering algorithms [as has, for example, been done in the
molecular dynamics context by 11]. Similarly, in terms of core set Markov state
models, finding core sets C1, · · · , Cm so that the projection error is as small as
possible can be interpreted as a fuzzy clustering problem [10, 12].

If the original model has a noise parameter that determines the punctuated
equilibrium behavior, we might also use the information given by its stationary
distribution to identify possible core sets. More specifically, if the system under
investigation depends on a noise parameter ε > 0 in such a way that for smaller ε
the punctuated equilibrium behavior increases, that is, for smaller ε the sample
paths of the process stay even longer in certain subsets of the population state
space and the switches between such subsets get more rare – just as in our
example – we can identify the set C = ∪mi=1Ci by comparing the stationary
distribution µ∗ of the system with noise level ε∗ with its propagated distribution
µ∗P θ under a decreased noise level ε < ε∗ for a chosen timescale θ > 0. Note
that the distributions µ∗P θ of µ∗ converge to the stationary distribution µ
associated with the stochastic evolutionary game at the lower noise level ε.
Moreover, both stationary distributions µ and µ∗ have the same form in the
sense of local minima and maxima, but the stationary distribution µ∗ with
increased noise intensity is less peaked. Now, the basic idea of the identification
strategy is that a population state x belongs to the core set region C if it gets
more attractive in the model with the decreased noise parameter ε, i.e., if

µ∗(x) <
(
µ∗P θ

)
(x). (22)

Example. In our example with parameters a = 1, b = 1, ε∗ = .3, ε = .15,
n = 11, this identification approach leads to the set C = {0, 1/11, 10/11, 1} for
all θ ∈ T, which suggests the core sets C1 = {0, 1/11} and C2 = {10/11, 1}, see
also Figure 3. The analysis of the approximation error in Hallier [7] shows that
these core sets lead to the Markov state model with the best approximation
quality.

As in this example, the clustering of C into core sets is usually straight-
forward as the core sets are dynamically well separated. An advantage of the
just sketched approach is that the necessary quantities can be estimated from
trajectory data as well. Thus, it allows for a simulation-based approach to the
construction of Markov state models. For more details, see Hallier [7].
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Figure 3: Weights of the stationary distribution µ∗ for the stochastic evolutionary
game of our running example with parameters a = 1, b = 1, ε∗ = .3, n = 11
and its propagation µ∗P θ under the stochastic evolutionary game with parameters
a = 1, b = 1, ε = .15, n = 11, t = 10/11.

4 Discussion and Outlook

We presented the Markov state modeling approach to extract the aggregated
long term dynamics of reversible Markov chains. The approach is especially
interesting for large, complex models in order to see the wood for the trees.
In essence, Markov state models approximate the original Markov chain on a
reduced state space. The macrostates as well as transition probabilities between
them can be estimated on the basis of short-term trajectory data. Apparent
advantages of a reduced state space are that it is easier to compute eigenvalues
and eigenvectors as well as other properties such as waiting times.

One limitation is, however, that the approach and its analysis depends on
the original Markov chain that represents, e.g., an agent-based model of interest,
to be reversible. This is the case for simple example we presented. In general,
it will be difficult to say whether it is reasonable to assume that an agent-based
model results in a reversible Markov chain. One reason for this difficulty is that,
if we estimate the transition matrix from simulated trajectory data, it does not
need to fulfill the detailed balance equation, even if the underlying Markov
chain is reversible [13, 14]. In the context of molecular dynamics, however, it
was possible to derive approximative models that can be proven to be reversible
although the original model is not. An example is the diffusion model, which
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represents an approximation to the Langevin model in the limit of high friction
[see, e.g., 3, Chapter 2 and references therein]. As a future research question, it
seems worthwhile to explore whether similar results can be obtained for agent-
based models; that is, whether there are approximations of certain agent-based
models that can be shown to be reversible.

Beyond that, we would like an approach that applies also to non-reversible
Markov dynamics. Notice that it is not difficult to derive a construction of a
matrix representation of the core set Markov state models for given core sets in
the case of non-reversible Markov chains [see, e.g., 12, 15]. However, we neither
have results with respect to their approximation quality nor an approach to the
identification of core sets for non-reversible Markov chains. One fundamental
problem is that the eigenvalues and eigenvectors of the transfer matrices corre-
sponding to non-reversible Markov chains need not be real anymore. In this case,
the interpretation of the spectral information is unclear. Up to now, there are
few approaches that apply also to non-reversible Markov chains [16]. A graph-
theoretical framework for constructing reversible surrogates of non-reversible
dynamics, based on a cycle decomposition of the underlying Markov chain, has
been suggested in Banisch [17], however the applicability to agent-based models
is yet open.

The construction of Markov state models for general agent-based models is
therefore an open problem and will be a topic of future research.
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[14] Frank Noé. Probability distributions of molecular observables computed
from Markov models. The Journal of Chemical Physics, 128:244103, 2008.

[15] Natasa Djurdjevac, Marco Sarich, and Ch. Schütte. On Markov state mod-
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