Hardering, H. (2013) Numerical approximation of capillary surfaces in a negative gravitational field. Interfaces and Free Boundaries, 15 (3). pp. 263-280. ISSN 1463-9971
|
PDF
249kB |
Official URL: http://dx.doi.org/10.4171/IFB/303
Abstract
A capillary surface in a negative gravitational field describes the shape of the surface of a hanging drop in a capillary tube with wetting material on the bottom. Mathematical modeling leads to the volume- and obstacle-constrained minimization of a nonconvex nonlinear energy functional of mean curvature type which is unbounded from below. In 1984 Huisken proved the existence and regularity of local minimizers of this energy under the condition on gravitation being sufficiently weak. We prove convergence of a first order finite element approximation of these minimizers. Numerical results demonstrating the theoretic convergence order are given.
Item Type: | Article |
---|---|
Subjects: | Mathematical and Computer Sciences > Mathematics > Numerical Analysis |
Divisions: | Department of Mathematics and Computer Science > Institute of Mathematics |
ID Code: | 1898 |
Deposited By: | Ekaterina Engel |
Deposited On: | 13 Apr 2016 09:00 |
Last Modified: | 03 Mar 2017 14:42 |
Repository Staff Only: item control page