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Abstract We describe an abstract interface for the geometric cogifrfinite el-
ement grids. The scope of the interface encompasses a wide of domain de-
composition techniques in use today, including nonconfogngrids and grids of
different dimensions. The couplings are described as $aentote intersections,
which encapsulate the relationships between pairs of elton the coupling in-
terface.

The abstract interface is realized in a moddiee- gr i d- gl ue for the soft-
ware framework DNE. Several implementations of this interface exist, inahgdi
one for general nonconforming couplings and a special efftamplementation for
conforming interfaces. We present two numerical exammleshow the flexibility
of the approach.

1 Introduction

Domain decomposition methods are a standard tool for a vaitlger of multiphysics
problems. Whenever the application involves subdomaitis eifferent equations,
discretizations, or grid types, coupling conditions anchdin decomposition algo-
rithms need to be employed. We referltb [7] for a general thicdion.

Even though domain decomposition methods have found widadpuse, the
software support available is generally not satisfactbmplementing domain de-
composition methods can be tedious and error prone, edigaslzen nonmatch-
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ing grids are involved. A central problem is finding the getnoecorrespondences
between the grids. Today, there still exist mainly ad hoatswhs geared towards
specific purposes, with little chance of code reuse.

In this article, we propose a general implementation asqiahte DUNE frame-
work [1]. DUNE is a set of C++ libraries providing support for various aspex
grid-based PDE solution methods such as grids, linear edgeb shape functions.
DUNE's main goal is flexibility, achieved by defining abstracteiriaces to such
things as grids and shape functions, and allowing the usszlext the appropriate
implementation according to his or her needsINg also promotes code reuse by
a modular architecture and by allowing legacy implemeatetito be used with the
interface.

For our domain decomposition infrastructure we have treetbtlow the same
philosophy:

e We propose abstract interfaces to general grid couplingnam@sms, allowing to
implement most existing domain decomposition algorithms.

e We allow and encourage the use of existing coupling impldateEms as legacy
backends.

e We strive to make the code efficient, using generic progrargmihere appro-
priate.

Adhering to the modular structure ofUNE, our code is available as auME
module, termedune- gri d- gl ue.

2 General Grid Coupling

Q
o G, %, G

Fig. 1 Left: two domainsQ; and Q, that meet at a common interfae Center: the restrictions
of the two grids o™ . Right: together they form the set of remote intersectigps

We begin by describing the concept of the abstract grid ¢oghterface. For
simplicity we focus on the case of nonoverlapping coupl®gnsider two domains
Q1, Q, that meet at a common interfafe(Fig.[). Both domains are assumed to be
discretized by grids, not necessarily simplicial. Theniegbns of the grids to the
coupling boundary, denoted K, and%r,, are not related to each other in any way.
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Overlaying these two boundary grids results in a set of getetions of the el-
ements ofd, and¥r,, which we call%y. Together with the embeddings int,
and¥r,, the intersections constitute the information necessaimnplement most
nonoverlapping domain decomposition algorithms.

As an example, consider the mortar method. There, the caujdi effected
through a mass matrix

MeR™M M Z/I_W/-’jds (1)

where thep, (j, 0<i < n, 0< j <m, are finite element basis functions @ and
“r,, respectively. The matrix can be computed by splitting tiiegral in [1) into a
sum of integrals over individual elements&;. By construction, to each element
e € %u correspond unique elementséf and¥r,, and associated shape functions
there. If a quadrature rule is available &then, ¢ ; dscan be computed directly.
Otherwiseg needs to be triangulated atfida ; dscomputed for each triangle.

The approach covers more than just mortar methods. If theytids onQ; and
Q, match, the se¥ degenerates and we ha¥f = 9, = 9. In this case, the
set of intersections together with their embeddings into the element&pfand
%, allows to identify the grid vertices, or, more generallygedand face degrees
of freedom. Overlapping couplings can be handled by letifighave the same
dimension as the computational gridls and%,. Finally, consider a-dimensional
grid attached in parallel to the boundary ofla 1-dimensional one (cf. SC.5.2).
The grids may or may not be conforming 6n This time coupling is between the
surface grid4r, and the grid% itself. As the dimensions are the same, a set of
intersections just as in Figl 1 is obtained.

3 Implementation: Remote I nter sections

The intersections described in the previous section beaecksemblance to the in-
tersections that are part of theyRE grid interfacel[2, Sec. 4]. Within a single grid,
DUNE intersections describe the coupling between neighbotargents. An inter-
section between two elemergsande; is the (set-theoretic) intersection between
8, andbe,, wheref,, and6,, are the subsets of the world space occupiee;tand

e, respectively. The nt er sect i on class of the NE grid interface provides
information about these set intersections, e.g. their ggignin the world space, the
geometry in coordinates ef ande,, normal vectors, and whether an intersection is
conforming.

In the case of domain decomposition methods, the elenerasde, are el-
ements of different grid¢/; and%,. However, the relevant information remains
largely the same. We will call such intersectigamote intersectiongo distinguish
them from the intersections of theUNE grid interface. Remote intersections may
be set-theoretic intersections4f and% meet at a common interfa¢e In case of
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contact problems, where there may be a positive distaneeeket/, and%r,, the
remote intersections can be defined via a contact mappingr, — %, (cf. [9]).

Due to the conceptual similarity between remote intersastiand grid inter-
sections it is natural to make the implementation of remotersections resemble
DUNE intersections as well. Theéune- gri d- gl ue module provides the class
Renot el nt er sect i on, which again has methods for the geometry of the inter-
section in world space, geometries in local coordinatess ahde,, normal vectors,
etc. The main differences concern methods that deal withaglcoordinates. Since
8, and8, may actually be disjoint (e.g., in a contact problem), treetwo em-
beddings of the remote intersection in the world space. f®isame reason, there
are two methods for the normal vectors. Please see the dassntation provided
with the module for details.

Access to the remote intersections is provided via threesyyf DUNE-style
iterators. TheRenot el nt er secti onl t er at or iterates over the entire set of
remote intersections and can be used to, e.g., assemblarm@ss matrices. The
Donmai nl ntersectionlteratorsandTargetlntersectionlterators
iterate over all remote intersections of a given eleme@air %, respectively. This
can be useful to assemble element-wise contributions in Roas.

4 Constructing Couplings

The construction of sets of remote intersections proceeted steps. First, the grid
interface boundaries or coupling parts are extracted amdfiormed to an interme-
diate representation. Then, two such extracted grids anbiceed to yield the set of
remote intersections.

4.1 Extractors

Extract or classes select the subsets of grid entities that are im¥dtvehe
coupling. They are classified according to the codimensiith(respect to the
grids) of the objects they extract. The most common @uali nilExt r act or,
extracts boundary faces, and will be used for nonoverlappiuplings. The faces
are marked using predicate classes provided by the use€CddienDEXxt r act or
extracts actual elements. Such extractors will be neededrfamverlapping cou-
pling. A Codi nRExt r act or has not been implemented yet, but may be useful to
couple, e.g., 1d partial differential equations to seqesitf edges in a 3d mesh.
The extracted grid entities can be manipulated with a gedereansformation
u:R™M — R ny; <nyp. This may be a deformation or an embedding into a higher-
dimensional space. There are various uses for such a fekturexample, you may
want to consider coupled problems on deformed meshes, suttfedinite-strain
contact problem described ir [8]. Also, when coupling a 1id gy the boundary of
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a 2d grid, then most likely the 1d grid implementation willdiin a 1d world. A
transformation can then be used to place the 1d grid in thedttihwand deform it,
if necessary (see Sdc.b.2 for an example).

4.2 Computing Remote | ntersections

With the two interacting grid parts extracted, they can balgimed to obtain the set
of remote intersections. How this should be implementeféédifconsiderably de-
pending on the actual scenario. A general implementatiompeting remote inter-
sections would have to handle nonmatching grids and ge@sggyrids of arbitrary
dimensions and element types. Besides being very diffioulrite and debug, such
a program would be inefficient in more regular situationshsas when the grids
match.

To resolve this dilemma we follow the NE philosophy. We prescribe an ab-
stract interface that algorithms computing remote intgisas should conform to.
We then provide different implementations of the interféaredifferent cases such
as contact problems, conforming meshes, or overlappims ghilso in accordance
with the DUNE philosophy, legacy implementations can be used througimtee
face.

The current default implementation uses theJRSACE library. This library was
originally written to manage boundary parametrizatioris #d extended to also
handle mappings for contact problemss [9]. It manages piseeaffine mappings
between simplicial hypersurfaces in 2d and 3d. The surfacesdentified by a
normal projectior® : 1 — I,. PSURFACE is free software and can be downloaded
fromhttp://nuneri K. m.fu-berlin.de/ dune/psurtacel

Also, a special efficient implementati@onf or m ngMer ge for conforming
couplings is available.

5 Numerical Examples

In this last chapter we demonstrate some of the possikilitidune- gri d- gl ue
with two example applications. The first one, a two-body aohproblem, has al-
ready appeared inl[1], where the coupling was implementadyjU33URFACE di-
rectly.

5.1 Contact Between a Structured and an Unstructured Grid

In this first example we compute mechanical contact betweémiraan femur
bone and an elastic foundation. Consider two disjoint dos@i, Q, in R3. The
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Fig. 2 Two-body contact problem. Left: schematic view. Centearse grids. Right: close-up view
of the deformed solution.

boundaryl; = 0Q;, i = 1,2, of each domain is decomposed in three disjoint parts
i = lipUMNUTc. With fi € (L2(Qi)) two body force density fields we look for
functionsu; € (H1(Q))® which fulfill

—divo(u) =fi,

and suitable boundary conditions. The stress tepsir defined asy = %(eJr
o trel), ande(u) = 3(Ou+ Ou') is the linear strain tensor. For the contact
condition, assume that the areas where contact occurs wikubsets of ;¢
and lc. These two contact boundaries are identified using a homaitison

@ :c — e, and this identification is used to define an initial distafe®c-
tiong: Mc — R, g(x) = ||®(x) —Xx||. The contact condition then states that the
relative normal displacement of any two poirtsP(x), x € I ¢, should not exceed
this normal distance, in formulas

Utfrc N+ (Uz20 @)l N2 < 9, 2)

wheren;, i = 1,2, is the unit outward normal df c. Condition [2) can be derived
as a linearization of the actual nonpenetration conditimahia reasonable to use in
the context of linear elasticityi[4].

For the discretization of the problem we use first-order bhagian elements for
the interior and dual mortar elements for the contact camlifThat is, [R) is dis-
cretized in a weak form requiring

/r [u1|r1,c-n1+(uzo¢)|r2,c-n2]6ds§/ gods 3)
1c

Nnec

for all 8 from a cone of dual mortar test functions defined g [L0]. The resulting
discrete obstacle problem is solved with a truncated non#imdewton multigrid
method as described by Graser etlal. [5].

As the femur geometry we choose the distal part of the Vidihienan femur
data set. As grid implementations we udéG i d for the femur and the struc-
tured hexahedré8Gr i d for the foundation. Material parameters &e- 17 GPa,
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v = 0.3 for the bone and softdt = 250 MPa,v = 0.3 for the obstacle. The latter

is clamped at its base, whereas a uniform displacement of 8lowmward is pre-
scribed on the top section of the bone (see[ig. 2). The baxesas the nonmortar
domain. The computation dfl(3) involves a mortar mass mafrilar to [1). Two

Codi mLExt r act or s are used to mark the contact boundaries and the remote in-
tersections are computed using theURSACE backend. The result can be seen in

Fig.[d, right.

5.2 Coupling a 2d Richards Equation and a 1d Shallow-Water
Equation

shallow-water eq., r
OneDGid —

Richards eq., — N
usGid — 0

Fig. 3 Coupling the Richards equation to the shallow-water equoati

In the second example we show hdwne- gr i d- gl ue can be used to couple
two domains of differing dimensioflsConsider a domaik2 as in Fig[®. It is sup-
posed to represent a vertical section of ground. We assussturated subsurface
flow modeled by the Richards equation

B(p) +divv(p) =0,  v(p)=—Kkr(8(p))d(p—pg2),

for the water pressurpin Q. We denote the upper horizontal boundargbby I
and assume surface water there modeled by the shallow veptatiens

h+divg = F 4)
qt + div(g?/h+0.5gh?) = —ghf,

for the surface water heightand the horizontal water flux.
The two equations are coupled by assuming that the pregsafdéhe ground
water onl” equals the hydrostatic pressure induced by the surface wate

p=pgh,

and that the flow - n acrosg™ enters the surface water balance as an additive term

in @).

1 The authors would like to thank C. Grimme and H. BerningetHeir help with this example.
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The coupled problem is solved with a Dirichlet-Neumanretgplver. At each
iterationi, a Richards problem is solved @ with Dirichlet boundary conditions
pi = pgh; on " using a multigrid solver as described In [3]. Then 1000 st&fps
the shallow-water equation are computed using a Lax—Hcdesischeme. The flow
vi - n of subsurface water acrobsis interpolated in time and used as the source term
in @).

The Richards equation is discretized on a uniform triangtkgsing theUGG i d
grid manager. For the shallow water equatio®eDG i d is used. From the
UGG i d, the interfacd™ is extracted using &odi mLExt r act or and the entire
neDG i d is extracted with &odi mMOEXt r act or . A transformatiorr : R — R?
is given to theCodi nDExt r act or that places the 1d grid on the coupling bound-
ary " such that the grids match. Ti@anf or m ngMer ge backend is used to gen-
erate the remote intersections. [Fig. 3 shows several stefieeievolution of the
problem.
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