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Abstract We suggest hierarchical a posteriori error estimators for time-discretized
Allen-Cahn and Cahn-Hilliard equations with logarithmic potential and investigate
their robustness numerically. We observe that the associated effectivity ratios seem
to saturate for decreasing mesh size and are almost independent of the temperature.

1 Introduction

Hierarchical a posteriori error estimators are based on theextension of the given
finite element spaceS by an incremental spaceV . After discretization of the ac-
tual defect problem with respect to the extended spaceQ = S + V , hierarchical
preconditioning and subsequent localization give rise to local defect problems as-
sociated with low-dimensional subspaces ofV . The resulting local contributions to
the desired global error estimate are often used as error indicators in an adaptive
refinement process. We refer to the pioneering work of Zienkiewicz et al. [23] and
Deuflhard et al. [10] or to the monograph of Ainsworth and Oden[1].

Local lower bounds by hierarchical error estimators typically come without un-
known constants, e.g., for linear self-adjoint problems. In this sense, hierarchical
error estimators are properly scaled by construction. In early papers, upper bounds
are often derived from the so-called saturation assumptionthat the extended space
Q provides a more accurate approximation thanS. It turned out later that local
equivalence to residual estimators provides upper bounds up to data oscillation and,
conversely, that small data oscillation implies the saturation assumption [7, 12]. For
a direct proof based on localL2-projections we refer to [24].

Another attractive feature of hierarchical error estimators is their intriguing sim-
plicity, particularly as applied to nonlinear, non-smoothproblems [2, 17, 19, 20,
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21, 22, 24]. In this numerical study, we consider hierarchical error estimators for
semi-linear elliptic problems as arising from the time discretization of Allen-Cahn
and Cahn-Hilliard equations. While previous work concentrates on quartic shal-
low quench approximations [4, 13, 18] or on heuristic strategies for obstacle po-
tentials [5] we consider the logarithmic potential here. Inparticular, we investi-
gate the robustness of the effectivity ratios as temperature is approaching the deep
quench limit. In our numerical experiments, we found that both for Allen-Cahn- and
Cahn-Hilliard-type problems the associated effectivity ratios seem to saturate with
decreasing mesh size and are hardly influenced by temperature. Moreover, the local
contributions to the global estimator were used successfully for adaptive refinement.

2 Hierarchical Error Estimators

In this section, we derive hierarchical error estimators inan abstract setting. Special
cases will be considered later on. For ease of presentation,we assume that all occur-
ring problems and subproblems are uniquely solvable. LetH denote a Hilbert space
with the norm‖ · ‖H. We consider the variational inequality

u ∈ H : a(u,v−u)+ φ(v)−φ(u)≥ ℓ(v−u) ∀v ∈ H (1)

with a(·, ·), φ : H → R∪{+∞}, andℓ denoting a symmetric bilinear form, a con-
vex functional, and a bounded linear functional onH, respectively. The additional
conditions thata(·, ·) is H-elliptic and thatφ is lower semi-continuous and proper
are sufficient but not necessary to ensure existence and uniqueness [14]. LetS de-
note a finite-dimensional subspace ofH and let the symmetric bilinear formaS(·, ·)
and the functionalφS : S → R∪ {+∞} be approximations ofa(·, ·) andφ on S,
respectively, e.g., by numerical quadrature like mass lumping. Then the associated
Ritz-Galerkin discretization reads

uS ∈ S : aS(uS ,v−uS)+ φS(v)−φS(uS) ≥ ℓ(v−uS) ∀v ∈ S. (2)

We want to derive a posteriori estimates of the error‖u− uS‖H . To this end, we
consider thedefect problem

e ∈ H : a(e,v− e)+ ψ(v)−ψ(e)≥ r(v− e) ∀v ∈ H (3)

involving the shifted nonlinearityψ and the residualr, defined by

ψ(v) = φ(uS + v), r(v) = ℓ(v)−a(uS,v), v ∈ H,

respectively. Obviously,u = uS + e. To approximate (3), we select an incremental
spaceV ⊂ H with the propertyV ∩S = {0} and consider the hierarchical extension

Q = S ⊕V
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of S. The subspaceQ ⊂ H is equipped with the discrete norm‖ · ‖Q which inten-
tionally is an equivalent approximation of‖ · ‖H . The associateddiscretized defect
problem is given by

eQ ∈ Q : aQ(eQ,v− eQ)+ ψQ(v)−ψQ(eQ) ≥ r(v− eQ) ∀v ∈ Q (4)

with aQ(·, ·) andψQ : Q→ R∪{+∞} denoting approximations ofa(·, ·) andψ . In
order to avoid the computational effort for the computationof eQ, we now modify
(4) in a way that allows for a decomposition into a number of independent, low-
dimensional subproblems. This modification is based on the assumption that the
given nonlinearity is local in the sense that there is a direct splitting

V = V1⊕·· ·⊕Vm

of V into low-dimensional subspacesVi such that forv ∈ V the representation

ψQ(v) =
m

∑
i=1

Ψi(vi) (5)

holds with certain convex functionalsΨi : Vi → R∪{+∞} and the uniquely deter-
mined decompositionv = ∑vi, vi ∈Vi. Then, in the first step, we replace the bilinear
form a(·, ·) by the hierarchical preconditioner

b(v,w) = aQ(vS ,wS)+
m

∑
i=1

aQ(vi,wi), v,w ∈ Q,

based on the uniquely determined decompositions ofv = vS + vV ∈ Q into vS ∈ S,
vV ∈ V and ofvV = ∑vi, wV = ∑wi into vi,wi ∈ Vi. It can be shown under certain
conditions [19] that the solution ˜eQ of the resulting preconditioned defect problem
provides an efficient and reliable error estimateb(ẽQ, ẽQ)1/2. However, the exact
evaluation of ˜eQ = ẽS + ẽV is still too costly: In contrast to linear situations, we
cannot expect ˜eS = 0, because ˜eS ∈ S andẽV ∈ V are still coupled with respect to
the nonlinearityψQ(v) = ψQ(vS + vV). As a remedy, we simplyassume that the
low-frequency part ˜eS of our error estimate can be neglected. In this way, we finally
obtain thelocalized defect problem

eV ∈ V : b(eV ,v− eV)+ ψQ(v)−ψQ(eV ) ≥ r(v− eV) ∀v ∈ V . (6)

It has been shown for obstacle problems that reliability might get lost by this local-
ization step but can be reestablished by a suitable higher order term [20]. Exploiting
assumption (5), the evaluation ofeV = ∑ei amounts to the solution ofm independent
subproblems

ei ∈ Vi : aQ(ei,v− ei)+Ψi(v)−Ψi(ei) ≥ r(v− ei) ∀v ∈ Vi. (7)

The quantity
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η =

(

m

∑
i=1

‖ei‖
2
Q

)1/2

(8)

is our hierarchical error estimator. IfaQ(·, ·) is Q-elliptic andQ is equipped with
the energy norm‖ · ‖Q = aQ(·, ·)1/2, then (8) takes the formη = b(eV ,eV )1/2.

3 Allen-Cahn Equations

Implicit time discretization of the Allen-Cahn equation with logarithmic potential
(see, e.g. [9, Section 7] for an overview) gives rise to spatial problems of the form
(1) with H = H1(Ω) equipped with the energy norm induced by the bilinear form

a(v,w) = γ(v,w)L2(Ω) + τ(∇v,∇w)L2(Ω), γ = 1− τθc/ε2,

the right hand sideℓ(v) = (u0,v)L2(Ω), and the convex, lower semi-continuous,

proper functionalφ(v) =
∫

Ω Φθ (v) dx with

Φθ (v) =

{ τ
2ε2 θ

(

(1+ v) log(1+ v)+ (1− v) log(1− v)
)

, if θ > 0

χ[−1,1](v), if θ = 0
. (9)

Here,Ω ⊂ R
2 denotes a polygonal domain,ε > 0 is an interface parameter,θ ≥ 0

and θc > 0 stand for the temperature and the critical temperature, respectively,
χ[−1,1] is the characteristic function of[−1,1], u0 ∈ L2(Ω) is an approximation
from the preceding time step, andτ > 0 is the time step size. We assumeγ > 0
or, equivalently,τ < ε2/θc so thata(·, ·) is H-elliptic. With these definitions, (1) can
be rewritten as a semi-linear elliptic problem for positivetemperatureθ > 0 and as
an elliptic obstacle problem forθ = 0.

Let S = Sh denote the space of piecewise linear finite elements with respect
to a regular triangulationTh with mesh sizeh and interior verticesNh. Then,
aS(·, ·) = ah(·, ·) is defined by replacing(v,w)L2(Ω) with the lumpedL2-scalar prod-

uct〈v,w〉S =
∫

Ω Ih(vw) dx, whereIh : C(Ω)→Sh denotes nodal interpolation. Sim-
ilarly, we setφS(v) = φh(v) =

∫

Ω Ih(Φθ (v)) dx. Connecting the midpointspi of the
edges of all trianglest ∈ Th, we obtain the uniformly refined triangulationTh/2 with
interior verticesNh/2. The local incremental spacesVi = span{µi} are spanned by
the piecewise linear edge bubble functions satisfyingµi(pi) = 1 and vanishing on all
other verticesp ∈Nh/2. This choice leads toQ= Sh/2. It is motivated by the lack of
stability of piecewise quadratic approximations for obstacle problems [14, 20]. We
select the discreteQ-elliptic bilinear formaQ(·, ·) = ah/2(·, ·) with the associated

energy norm‖ · ‖Q = ah/2(·, ·)
1/2. Then the locality condition (5) is satisfied with

Ψi(v) = Φθ ((uS +v)(pi))
∫

Ω µi dx, v ∈ Vi. For obstacle problems, i.e. forθ = 0, the
resulting error estimator (8) was proposed in [17] and lateranalyzed in [20, 22, 24].
Here we concentrate onθ > 0 and investigate robustness forθ → 0.
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In our numerical experiments, we consider the first spatial problem of the semi-
discrete Allen-Cahn equation with parametersε = 2 ·10−2, θc = 1.0, time step size
τ = 10−4, and the initial conditionu0 as depicted in the left picture of Figure 3.
We first compare the a posteriori error estimator with the ’exact’ error for a fixed
temperatureθ = 0.1 and a sequence of triangulationsTh j with decreasing mesh size
h j. The triangulationsT j = Th j are obtained byj = 1, . . . ,9 uniform refinements of
the initial triangulationT0 which is a partition ofΩ = (−1,1)× (−1,1) into two
congruent triangles. The ’exact’ error ˜e j = ‖ũ−u j‖H̃ is obtained by approximating
H with H̃ = S11, i.e., by an approximation ˜u of u based on two further uniform
refinement steps. The left picture in Figure 1 showsη j and ẽ j over the number of
unknowns. We observe asymptotic first order convergence anda good agreement of
η j andẽ j. More precisely, the effectivity ratiosη j/ẽ j seem to saturate at about 0.9
(Figure 1 right). In our next experiment, we fix the meshT9 and vary the temperature
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Fig. 1 Estimated and ’exact’ error (left) and effectivity ratio (right) over number of unknowns.

θ . The left picture in Figure 2 shows that the effectivity ratios are hardly affected by
the transition from a shallow to a deep quench and even seem toconverge in the deep
quench limit. In the last experiment, we use the edge-oriented local error indicators
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Fig. 2 Effectivity ratios over inverse temperature (left) and detail of adaptively refined mesh (right)

‖ei‖Q occurring in the global estimate (8) and a classical markingstrategy [11]
for adaptive mesh refinement. Figure 3 illustrates that refinement nicely follows the
diffuse interface. Moreover, the zoom in Figure 2 shows thatrefinement concentrates
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Fig. 3 Initial condition and approximations at time 20τ , 100τ

on the strong variation of the solution at the boundary of thediffuse interface and
not on the interior where steep gradients are resolved sufficiently well. Finally, note
that optimal order of convergence is preserved by adaptivity.

4 Cahn-Hilliard equations

Semi-implicit time discretization [6, 16] of the Cahn-Hilliard equation with logarith-
mic potential leads to spatial problems of the form (1) withH = H1(Ω)×H1(Ω)
equipped with norm

‖(v1,v2)‖
2
H = ε2

(

‖∇v1‖
2
L2(Ω) +(v1,1)2

L2(Ω)

)

+ τ
(

‖∇v2‖
2
L2(Ω) +‖v2‖

2
L2(Ω)

)

,

the indefinite bilinear form

a(v,w) = ε2
(

(∇v1,∇w1)L2(Ω) +(v1,1)L2(Ω)(w1,1)L2(Ω)

)

− (v2,w1)L2(Ω)

−(v1,w2)L2(Ω)− τ(∇v2,∇w2)L2(Ω),

the right hand sideℓ(v) = (u0,v1 − v2)L2(Ω) + ε2(u0,1)L2(Ω)(v1,1)L2(Ω) and the

convex functionalφ(v) =
∫

Ω Φθ (v1) dx with Φθ defined in (9) for temperature
θ ≥ 0. Here,ε is an interface parameter,τ is the time step size andu0 is an ap-
proximation from the preceding time step. Utilizing the notation of Section 3, the
approximation (2) is based onS = Sh ×Sh, and onaS(·, ·) and φS as obtained
by mass lumping. Existence, uniqueness, and convergence results have been es-
tablished in [6] for the double obstacle caseθ = 0 and in [3, 8] forθ > 0. Fast
solvers for the resulting algebraic problems are describedin [15]. The components
u1 andu2 of the solutionu = (u1,u2) are often called order parameter and chem-
ical potential, respectively. Similar to Section 3, we select the incremental spaces
Vi = span{(µi,0),(0,µi)} providingQ = Sh/2 ×Sh/2. Again (5) is satisfied with
Ψi(v) = Φθ ((uS,1 + v1)(pi))

∫

Ω µi dx, v ∈ Vi. In this setting the localized defect
problem (6) admits a unique solution. The discrete norm‖ ·‖Q is obtained by (spec-
trally equivalent) mass lumping of the zero order terms in‖ · ‖H.
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Fig. 4 Estimated and ’exact’ error (left) and effectivity ratios over number of unknowns.

We consider the first spatial problem of the semi-discrete Cahn-Hilliard equation
with parameters, time step size, and initial condition given in Section 3. In our nu-
merical experiments, we proceed in complete analogy to the previous section. We
begin with a comparison of the error estimatorsη j with an ’exact’ error ˜e j for fixed
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Fig. 5 Effectivity ratios over inverse temperature.

temperatureθ = 0.1 and decreasing mesh sizeh j. Figure 4 shows optimal order of
convergence and asymptotic saturation of the effectivity ratiosη j/ẽ j at about 0.9.
For fixed meshT9 effectivity is hardly affected by strongly varying temperatureθ as

Fig. 6 Initial condition and approximations at time 20τ , 100τ

depicted in Figure 5. Adaptive mesh refinement based on the local error indicators
‖ei‖Q nicely captures strong variation of the order parameter as illustrated by Fig-
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ure 6. Strong variation of the chemical potential as occurring, e.g., after topological
changes, is also reflected by adaptive refinement. Finally, it turned out that optimal
order of convergence is preserved by adaptivity.
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5. L. Baňas and R. Nürnberg. A posteriori estimates for theCahn-Hilliard equation with obstacle

free energy.Math. Model. Numer. Anal., 43:1003–1026, 2009.
6. J.F. Blowey and C.M. Elliott. The Cahn-Hilliard gradienttheory for phase separation with

non–smooth free energy II: Numerical analysis.Euro. J. Appl. Math., 3:147–179, 1992.
7. F.A. Bornemann, B. Erdmann, and R. Kornhuber. A posteriori error estimates for elliptic

problems in two and three space dimensions.SIAM J. Numer. Anal., 33:1188–1204, 1996.
8. M.I.M. Copetti and C.M. Elliott. Numerical analysis of the Cahn-Hilliard equation with a

logarithmic free energy.Numer. Math., pages 39–65, 1992.
9. K. Deckelnick, G. Dziuk, and C.M. Elliott. Computation ofgeometric partial differential

equations and mean curvature flow.Acta Numer., 14:139–232, 2005.
10. P. Deuflhard, P. Leinen, and H. Yserentant. Concepts of anadaptive hierarchical finite element

code.IMPACT Comput. Sci. Engrg., 1:3–35, 1989.
11. W. Dörfler. A convergent adaptive algorithm for Poisson’s equation.SIAM J. Numer. Anal.,

33:1106–1124, 1996.
12. W. Dörfler and R.H. Nochetto. Small data oscillation implies the saturation assumption.Nu-

mer. Math., 91:1–12, 2002.
13. X. Feng and H. Wu. A posteriori error estimates for finite element approximations of the

Cahn-Hilliard equation and the Hele-Shaw flow.J. Comput. Math., 26:767–796, 2008.
14. R. Glowinski.Numerical Methods for Nonlinear Variational Problems. Springer, 1984.
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