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Abstract We suggest hierarchical a posteriori error estimatorsifioetdiscretized

Allen-Cahn and Cahn-Hilliard equations with logarithmit@ntial and investigate
their robustness numerically. We observe that the assatéttectivity ratios seem
to saturate for decreasing mesh size and are almost indepesidthe temperature.

1 Introduction

Hierarchical a posteriori error estimators are based orexttension of the given
finite element spacé by an incremental space. After discretization of the ac-
tual defect problem with respect to the extended sp@ce S + V, hierarchical
preconditioning and subsequent localization give riseotal defect problems as-
sociated with low-dimensional subspaces/ofThe resulting local contributions to
the desired global error estimate are often used as erraraitods in an adaptive
refinement process. We refer to the pioneering work of Zienldz et al. [23] and
Deuflhard et al. [10] or to the monograph of Ainsworth and Ofdgn

Local lower bounds by hierarchical error estimators tyjpyoeome without un-
known constants, e.g., for linear self-adjoint problenmsthis sense, hierarchical
error estimators are properly scaled by construction. tty g@pers, upper bounds
are often derived from the so-called saturation assumptianthe extended space
Q provides a more accurate approximation ttfanit turned out later that local
equivalence to residual estimators provides upper bouptis data oscillation and,
conversely, that small data oscillation implies the satoneassumption [7, 12]. For
a direct proof based on lockf-projections we refer to [24].

Another attractive feature of hierarchical error estimaie their intriguing sim-
plicity, particularly as applied to nonlinear, non-smogttoblems [2, 17, 19, 20,
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21, 22, 24]. In this numerical study, we consider hierarah@ror estimators for
semi-linear elliptic problems as arising from the time diization of Allen-Cahn
and Cahn-Hilliard equations. While previous work concat®s on quartic shal-
low quench approximations [4, 13, 18] or on heuristic sgage for obstacle po-
tentials [5] we consider the logarithmic potential here.phrticular, we investi-
gate the robustness of the effectivity ratios as tempegasuapproaching the deep
guench limit. In our numerical experiments, we found thahljor Allen-Cahn- and
Cahn-Hilliard-type problems the associated effectivdtias seem to saturate with
decreasing mesh size and are hardly influenced by temperaoreover, the local
contributions to the global estimator were used succdgstuladaptive refinement.

2 Hierarchical Error Estimators

In this section, we derive hierarchical error estimatorarirabstract setting. Special
cases will be considered later on. For ease of presentat®massume that all occur-
ring problems and subproblems are uniquely solvableH.éénote a Hilbert space
with the norm|| - ||4. We consider the variational inequality

ueH: a(u,v—u)+ @(v) — @(u) > £(v—u) YWweH Q)

with a(-,-), ¢ : H — RU{+}, and¢ denoting a symmetric bilinear form, a con-
vex functional, and a bounded linear functionaltdnrespectively. The additional
conditions thaty(-,-) is H-elliptic and that is lower semi-continuous and proper
are sufficient but not necessary to ensure existence andemags [14]. Le§ de-
note a finite-dimensional subspace-bfind let the symmetric bilinear forag (-, )
and the functionalps : S — RU {+} be approximations o&(-,-) and¢ on S,
respectively, e.g., by numerical quadrature like mass lngyprhen the associated
Ritz-Galerkin discretization reads

Us €S as(us,v—Us)+@s(V) — @s(us) > L(v—us) WeS. (2)

We want to derive a posteriori estimates of the efjor us||y. To this end, we
consider thalefect problem

ecH: alev—e)+y(v)—yle)>r(v—e) YWweH 3)
involving the shifted nonlinearity and the residual, defined by
gV)=0Us+v),  r(v)=L£(v)—-alus,v), VeEH,

respectively. Obviously) = us + e. To approximate (3), we select an incremental
space) C H with the propertyy NS = {0} and consider the hierarchical extension

0=8aVY
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of S. The subspac@ C H is equipped with the discrete norjn || o which inten-
tionally is an equivalent approximation @f ||4. The associatediscretized defect
problemis given by

o €Q: ag(eg,v—eg)+Ygo(v)—Yo(eg) >r(v—eg) WeQ (4)

with ag(-,-) andyg : @ — RU{+w} denoting approximations af{-,-) andy. In
order to avoid the computational effort for the computatibey, we now modify
(4) in a way that allows for a decomposition into a number afeijpendent, low-
dimensional subproblems. This modification is based on #seraption that the
given nonlinearity is local in the sense that there is a dgpltting

V=& & Vn

of V into low-dimensional subspac#®ssuch that fow € V the representation
m
Po(v) = H(vi) ()
i; 1\Vi

holds with certain convex functional§ : Vi — RU {4} and the uniquely deter-
mined decomposition= 3 vj, v; € V. Then, in the first step, we replace the bilinear
forma(-,-) by the hierarchical preconditioner

m
b(VaW):aQ(V87WS)+ZaQ(ViaWi)7 VWE Q,
i=

based on the uniquely determined decompositionsef/s + vy, € Qintovg € S,

vy € V and ofvy, = S vi, wy = S w; into vi,w; € V. It can be shown under certain
conditions [19] that the solutioeg of the resulting preconditioned defect problem
provides an efficient and reliable error estimhtég,&)Y/2. However, the exact
evaluation ofep = &s + &), is still too costly: In contrast to linear situations, we
cannot expects = 0, becauses € S andé,, € V are still coupled with respect to
the nonlinearityo (V) = Yo (Vs +Vvy). As a remedy, we simplgssume that the
low-frequency parés of our error estimate can be neglected. In this way, we finally
obtain thelocalized defect problem

eveV:  bley,v—ey)+yPo(v)—yYoley) =r(v—ey) WweV. (6)

It has been shown for obstacle problems that reliabilityhhget lost by this local-
ization step but can be reestablished by a suitable higkier term [20]. Exploiting
assumption (5), the evaluation®f = 5 & amounts to the solution afiindependent
subproblems

ecVi: ag(e,v—a)+HWV)—WH(E)>r(v—g) VYve. (7)

The quantity
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m 1/2
n= (_ZHaHé) (8)

is our hierarchical error estimator. &l (-, ) is Q-elliptic and Q is equipped with
the energy nornfi - | o = ao (-,-)¥/2, then (8) takes the form = b(ey, e,)V/2.

3 Allen-Cahn Equations

Implicit time discretization of the Allen-Cahn equationtiviogarithmic potential
(see, e.g. [9, Section 7] for an overview) gives rise to gpatioblems of the form
(1) with H = H(Q) equipped with the energy norm induced by the bilinear form

a(V, W) = V(V, W)LZ(_Q) + T(DV, DW)LZ(_Q)a y= 1- TGC/Szv

the right hand sidé(v) = (uo, V) 2(q), and the convex, lower semi-continuous,
proper functionatp(v) = [, ®@?(v) dx with

(9)

770((14V)log(1+V) + (1-v)log(1-v)), if 6 >0
(De(v):{

X-11(V), if 6=0

Here,Q c R? denotes a polygonal domaia,> 0 is an interface parametet,> 0
and 6. > 0 stand for the temperature and the critical temperatuspetively,
X[-11 is the characteristic function df-1,1], up € L?(Q) is an approximation
from the preceding time step, and> 0 is the time step size. We assume- 0
or, equivalentlyr < £2/6 so thata(-, -) is H-elliptic. With these definitions, (1) can
be rewritten as a semi-linear elliptic problem for positigenperaturd > 0 and as
an elliptic obstacle problem fd = 0.

Let S = S}, denote the space of piecewise linear finite elements withers
to a regular triangulatior?;, with mesh sizeh and interior vertices\y,. Then,
as(',) = an(-,) is defined by replacingv, w), 2 o) with the lumped_2-scalar prod-
uct(v,w)s = [o In(vw) dx, wherel, : C(Q) — Sp denotes nodal interpolation. Sim-
ilarly, we set@s (V) = @ (V) = [o In(®°(v)) dx. Connecting the midpoints of the
edges of all trianglese 7, we obtain the uniformly refined triangulatidg,, with
interior vertices\V}, . The local incremental spac#s= spar{ 4} are spanned by
the piecewise linear edge bubble functions satisfyifigi) = 1 and vanishing on all
other verticep € Nh/z. This choice leads tQ = Sy . Itis motivated by the lack of
stability of piecewise quadratic approximations for obkgroblems [14, 20]. We
select the discret@-elliptic bilinear formag(-,-) = ap/2(-,-) with the associated
energy norm| - [[g = an/2(-, )Y/2_ Then the locality condition (5) is satisfied with
W(v) = @9 ((us +V)(pi)) [q ti dx, v € V. For obstacle problems, i.e. fr= 0, the
resulting error estimator (8) was proposed in [17] and laterlyzed in [20, 22, 24].
Here we concentrate dh> 0 and investigate robustness ¢ 0.
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In our numerical experiments, we consider the first spatiabiem of the semi-
discrete Allen-Cahn equation with parametees 2- 1072, 6. = 1.0, time step size
T =104, and the initial conditionup as depicted in the left picture of Figure 3.
We first compare the a posteriori error estimator with thea&txerror for a fixed
temperaturé = 0.1 and a sequence of triangulatidfys with decreasing mesh size
h;j. The triangulationdj = 7n, are obtained by =1,...,9 uniform refinements of
the initial triangulationZy which is a partition ofQ = (—1,1) x (—1,1) into two
congruent triangles. The 'exact’ errer = ||i— uj||,5 is obtained by approximating
H with H = Sy1, i.e., by an approximation 8f u based on two further uniform
refinement steps. The left picture in Figure 1 shaysindé€j over the number of
unknowns. We observe asymptotic first order convergenca guowd agreement of
n;j andé€j. More precisely, the effectivity ratiag; /& seem to saturate at aboud0
(Figure 1 right). In our next experiment, we fix the m&stand vary the temperature

-v-estimated error
10° o.. -0-exact error
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Fig. 1 Estimated and 'exact’ error (left) and effectivity ratidgnt) over number of unknowns.

6. The left picture in Figure 2 shows that the effectivity oatare hardly affected by
the transition from a shallow to a deep quench and even seeomt@rge in the deep
quench limit. In the last experiment, we use the edge-agibluical error indicators
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Fig. 2 Effectivity ratios over inverse temperature (left) andadletf adaptively refined mesh (right)

lleil|o occurring in the global estimate (8) and a classical marlsingtegy [11]
for adaptive mesh refinement. Figure 3 illustrates that eefient nicely follows the
diffuse interface. Moreover, the zoom in Figure 2 showsitefittement concentrates
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]

Fig. 3 Initial condition and approximations at time 20L.00r

on the strong variation of the solution at the boundary ofdtfieise interface and
not on the interior where steep gradients are resolved miftlg well. Finally, note
that optimal order of convergence is preserved by adagptivit

4 Cahn-Hilliard equations

Semi-implicit time discretization [6, 16] of the Cahn-H#ltd equation with logarith-
mic potential leads to spatial problems of the form (1) with= H1(Q) x H1(Q)
equipped with norm

(v, v2)[[F = € (”DVl”EZ(Q) + (Vlal)EZ(Q)) +T (HDVZHEZ(Q) + HVZHEZ(Q)) )
the indefinite bilinear form

a(v, W) = g? ((DV;L7 DWl)L2<Q) + (Vl, 1)|_2(Q) (Wl, 1)L2(Q)) - (V2,W1)|_2(Q)
= (V1,W2) 2() — T(Ov2, OW2) 29,

the right hand sid€(v) = (Uo,v1 — V2),2(0) + ez(uo,l)Lz(Q)(vl,l)Lz(m and the
convex functionalp(v) = [, ®@%(v1) dx with @ defined in (9) for temperature
6 > 0. Here,¢ is an interface parameter,is the time step size ang is an ap-
proximation from the preceding time step. Utilizing the at@in of Section 3, the
approximation (2) is based ofi = S, x Sp, and onas(-,-) and @s as obtained
by mass lumping. Existence, uniqueness, and convergenalisrdiave been es-
tablished in [6] for the double obstacle ca@e= 0 and in [3, 8] for@ > 0. Fast
solvers for the resulting algebraic problems are describ¢th]. The components
u; andu, of the solutionu = (up, uy) are often called order parameter and chem-
ical potential, respectively. Similar to Section 3, we sellie incremental spaces
Vi = spar{(1i,0),(0, i)} providing Q = Sp/2 x Sp/2. Again (5) is satisfied with
W(v) = @%((us1+Vv1)(pi)) [o i dx, v € Vi. In this setting the localized defect
problem (6) admits a unique solution. The discrete nprify is obtained by (spec-
trally equivalent) mass lumping of the zero order term§ ifin.
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Fig. 4 Estimated and 'exact’ error (left) and effectivity ratiogeo number of unknowns.

We consider the first spatial problem of the semi-discretencidilliard equation
with parameters, time step size, and initial condition giireSection 3. In our nu-
merical experiments, we proceed in complete analogy to teeiqus section. We
begin with a comparison of the error estimatggsvith an 'exact’ errorej for fixed
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Fig. 5 Effectivity ratios over inverse temperature.

temperaturéd = 0.1 and decreasing mesh sizg Figure 4 shows optimal order of
convergence and asymptotic saturation of the effectidtiosn; /& at about 09.
For fixed mesl¥y effectivity is hardly affected by strongly varying temptnae 6 as

Fig. 6 Initial condition and approximations at time 20.00t

depicted in Figure 5. Adaptive mesh refinement based on tia éror indicators
llei]| o nicely captures strong variation of the order parameteliestriated by Fig-
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ure 6. Strong variation of the chemical potential as ocoggre.g., after topological
changes, is also reflected by adaptive refinement. Finatlyrned out that optimal
order of convergence is preserved by adaptivity.
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