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Abstract. We present a heterogeneous domain decomposition app#uh Richards equation coupled with surface water
flow. Assuming piecewise constant soil parameters in thet@tative equations for saturation and relative permégbive
present a novel domain decomposition approch to the Risterdation involving on fast and robust subdomain solveedbas
on optimization techniques. The coupling of ground andaa@fwvater is resolved by a Dirichlet-Neumann-type itematio
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A SOLVER-FRIENDLY DISCRETIZATION OF RICHARDS EQUATION IN
HOMOGENEOUS SOIL

The Richards equation [1, 2, 3]

n(p)+diw(p) =0,  v(p)=—Kkr(6(p))d(p—2) (1)

is a well-accepted mathematical model of the saturateagturated groundwater flow in homogeneous soil. Hgiis,
the unknown capillary pressure énx (0, T) for a timeT > 0 and a domaif® C R? inhibited by the porous medium,
nis the porosity an& stands for the hydraulic conductivity. The coordinate imdirection of gravity is denoted gy
The saturatio, the relative permeabilitgr andp are related by state equations suggested, e.g., by van enyd]
or Brooks and Corey [5]. To fix the ideas, we consider on theoBseCorey functions given by

—A 3+2
o(p)— | Emt(Bn—Bm () © forp<pn kr<9>(e?4__eé") Yoecimen. @
Om for p>py m

where the minimal and maximal saturatiég, 6u € [0,1], A, and the bubbling pressupg are soil parameters. Note
that 1 degenerates to an elliptic problem o pp,, becaus@(p) = 6y is constant in this case. This excludes explicit
time stepping. It is a long-standing problem in unsaturg@us media flow simulations that “most discretization
approaches for Richards’ equation lead to nonlinear systbat are large and difficult to solve” [6] and that “poor
iterative solver performance ... [is] often reported” [Xpart from the degeneracy resulting frda{(8) — 0 this is due
to the fact that the parameter functions degenerate to stegtions for extreme soil parameters. On this background
we suggest a discretization of (1) that allows to use argusrfemm convex optimization instead of linearization in the
iterative finite element solution of the spatial problems.

The starting point is the reformulation

M (u); —div(Du—kr(M(u))ez) =0 3)
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of (1) in terms of a generalized pressuwrebtained by Kirchhoff transformation
p
K:p—u ::/ kr(6(q))dq
0

and a generalized saturatidh(u) = 6(k~%(u)). Here we seh = K = 1, for simplicity. This transformation leads to

a separation of ill-conditioning (now located in the inveksirchhoff transformatiorp = k~1(u)) and the numerical
solution process of the remaining semilinear problem (3akformulation and subsequent time-discretization by a
lumped implicit Euler scheme of the second order terms apticitxupwinding of the first order terms together with

a finite element discretization of the resulting spatiabpems leads to discrete problems of the form

Up € S /Qth(M(uh)v)der/QTDuhDvdx:E(V) Ve 4)

to be solved in each time step. Here; 0 is the time step sizer}, denotes the space of piecewise linear finite elements
with respect to a triangulatiof, with mesh sizén, nodal interpolation, : C(Q) — .%,, and the functional involves

the approximation from the previous time step and boundatg.dVe emphasize that (4) can be reformulated as a
strictly convex minimization problem of the form

Uh € Zh: Z(Un)+@(un) < _Z(V)+@(v) YWe A

with quadratic energy# (v) = 3 (t0v,Ov) — £(v) and the convex, lower semicontinuous, proper functignal) =
Jol.# (®(v))dx generated by a nonlinear convex functidrsatisfyingd® = M. We emphasize that this formulation
even extends to step functiofi$p) andkr(0) and therefore is robust with respect to the soil parameltéoseover,
multigrid solvers are available that are robust with respe¢he smoothness @b and thus with respect to the soil
parameters and provide similar efficiency as in the linelirazfoint case [8, 9].

As we are certainly interested in approximations of the patpressurg we conclude the approximation process
by discrete inverse Kirchhoff transformation

Ph =l K (Un) - ()

We also introduce the approximatiép(pn) := 1.4, M(up) of the saturatiord.

Our solver-friendly discretization thus consists of thdldwing three steps: 1) Kirchhoff transformation into
generalized pressure 2) Finite element discretization with algebraic (mulifjrsolution providesay,. 3) Discrete
inverse Kirchhoff transformation afi, into physical pressurg@,. We now explain how this discretization can be
obtained directly in terms gb,. To this end, we use the mean-value theorem on a refereacglito findxy, yr on
the boundary of each trianglesuch that the discrete chain rule

Oun = krr (pn) Oph k”(p“><kr(e(p8(XT>>) kr(G(p?l(yT)))>

holds true. Henceqy, can be equivalently obtained from the standard finite elemisaretization

Ph € Fh: /Q |9, (6h(Pn)Vv) dx+T /Q Krn(pn)OpnOvdx=£(v) Ve %

with numerical integratiokry(pn)| = krr (pn) forall T € .
We close this section with some convergence results, whengilvmake use of the non-degeneracy condition

kr(-)>¢>0. (6)
It can be achieved by suitable regularization of the cowedpg Brooks—Corey function.

Theorem 1. Assume that the boundary data are sufficiently smooth anidhitedamily of triangulations7;, with
h — 0 is shape regular. Thap, — uin H3(Q) and@, — 6 in L?(Q) Moreover, if the non-degeneracy condition (6)
holds, therM (uy) — M(u) in H(Q) andp, — pin L?(Q).

For a proof, we refer to Berninger et al. [9]. Numerical expents also carried out in this paper even suggest
optimal order of convergence. Theoretical justificatiothis subject of future research.



A MULTIDOMAIN DISCRETIZATION OF RICHARDS EQUATION IN
HETEROGENEOUS SOIL

In the case of space—dependent soil parameters Richard8aytakes the form
n(x,p) +divw(p) =0,  v(p)=—Kkr(x,6(x,p))(0p—2). (7

Assume that the soil parametési, 6, € [0,1], A;, and the bubbling pressupg; are constant on subdomaifs of
Q (7) can be rewritten as

m 6 (pi) — div(Kikni(6(p))0(p ~2)) =0 on Qi x (0.T) ®)

with p; = p|Q; and interface conditions imposing the continuity mfind of the fluxK;kr;(6 (p;i)) across interior
boundaries. After Kirchhoff transformation in each of thbkwdomains, we obtain the following multidomain version
of (3)

n Mi(ui h— diV(Ki (Dui — kri (M (ui))ez)) =0 onQx (O,T) (9)

with nonlinear interface conditions
K= KM (10)
Ki (Oui —kri(Mi(ui))ez) -mij - = Kj(Ouj —krj(M;(uj))e) - nij. (11)

on the subdomain boundarieg = Q; N Q;. Here,
P
Kiipie U= | kri(6(q))dq

is the Kirchhoff transformation anal = «;(p;) denotes the generalized pressure in each subdomain. fiatien in
time and space along the line of the previous section leadistoete interface problems for approximatiang of

the generalized pressure. Note that these problems canveel £y nonlinear versions of well-known substructuring
techniques with the fast and robust multigrid methods noaetil in the preceding section as subdomain solvers.
We refer to Berninger [10] for further information. Disceeinverse Kirchhoff transformation provides the desired
approximations of the physical pressure.

COUPLING WITH SURFACE WATER

Let us first assume that the surface water is non-moving waittzbintal water table, uniquely determined by the height
h = h(x,t) of water over the surfacgover the soil. The hydrostatic pressyne= hpg provides a Dirichlet boundary
condition for the Richards equation. For given geometrthe height determines the mass(t) of surface water in
the reservoir and vice versa. Denoting the outward normghipn, mass conservation

%m(t) = p/yv(x,t) -ndo(x). (12)

relatesm(t) to the fluxv(x,t). Near the water table of the lake one can observe seepagefdaeee water can flow out
(and the water pressure vanishes), whereas further awaysrally has noflow conditions (with a nonpositive water
pressure). This complementarity condition is often caBéaghorini-type or outflow condition [11, 12]. It reads

p<0, vin>10, p-(v.n)=0 onyt). (13)

A priori, it is unknown where we have outflow and where noflowwrs. Apart from the Dirichlet boundary conditions
given by the hydrostatic pressure of surface water and thed&ni-type boundary conditions one usually has
Neumann boundary conditiorsn = fy(t) for some functiorfy(t) on the rest 0BQ.

After explicit time discretization of (12), the masst! can be computed from the flu¥. Then the new flux
vkl is obtained from the Richards eqution with Signorini bourydzondition. All considerations of the preceding
sections apply to this case provided tlpahtersects the boundary of nor more than one subdo®aitmplicit time
discretization gives rise to a heterogeneous iterationintet—Neumann-type.

Moving surface water can be described by the shallow wataatémns. As hydrostatic pressure is part of the
modelling assumptions, we can use the same interface aamdiith a similar heterogeneous domain decomposition
strategie.
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