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STEADY, SHALLOW ICE SHEETS AS OBSTACLE PROBLEMS:
WELL-POSEDNESS AND FINITE ELEMENT APPROXIMATION*

GUILLAUME JOUVET? AND ED BUELER?

Abstract. We formulate steady, shallow ice sheet flow as an obstacle problem, the unknown be-
ing the ice upper surface and the obstacle being the underlying bedrock topography. This generates a
free-boundary defining the ice sheet extent. The obstacle problem is written as a variational inequal-
ity subject to the positive-ice-thickness constraint. The corresponding PDE is a highly nonlinear
elliptic equation which generalizes the p-Laplacian equation. Our formulation also permits variable
ice softness, basal sliding, and elevation-dependent surface mass balance. Existence and uniqueness
are shown in restricted cases which we may reformulate as a convex minimization problem. In the
general case we show existence by applying a fixed point argument. Using continuity results from
that argument, we construct a numerical solution by solving a sequence of obstacle p-Laplacian-like
problems by finite element approximation. As a real application, we compute the steady-state shape
of the Greenland ice sheet in a steady present-day climate.
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1. Introduction. Obstacle problems [27] are free-boundary problems for partial
differential equations (PDEs), wherein an inequality constrains the solution to be on
one side of an identified function, the obstacle. Such problems may be formulated as
variational inequalities [21] and sometimes as constrained minimization of a functional.
This paper locates the standard continuum model for shallow ice sheets [13, 16] in
the class of obstacle problems which may be formulated as variational inequalities
but which generally do not correspond to a minimization. Time-dependent, two-
dimensional, isothermal ice sheets on flat beds already have a weak formulation [6],
but here we allow arbitrary bed topography, elevation-dependent accumulation, basal
sliding, and variable ice softness within a three-dimensional ice mass. These features
are essential for effective modeling.

The model here takes, as time-independent inputs, the bedrock topography under
the ice sheet and the climate, which determines the accumulation/ablation (surface
mass balance) function [13]. If ice flow is in balance with these inputs, then the
geometry of the ice sheet is steady. We characterize this steady geometry.

The simplest standard description of large ice sheets is the “shallow ice approx-
imation” (SIA) [13, 17], a free surface lubrication approximation in which viscous
shear stresses balance gravitational body forces. In the steady isothermal case it is
usually stated as PDE (2.6) below. It applies to polar ice sheets because they mostly
flow by shear deformation in vertical planes [16]. Fast sliding portions of such ice
sheets, typically smaller regions near margins and possibly in contact with the ocean,
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are modeled by a membrane-like flow regime not addressed here [29].

The ice surface elevation satisfies the SIA on the region with positive ice thickness,
a region which is generally unknown as a function of climatic conditions. We therefore
state our model on a larger domain as an obstacle problem, where the ice sheet surface
elevation must remain on or above the bedrock elevation. This constraint describes the
grounded margin in a systematic way, replacing ad hoc descriptions of ice sheet margin
boundary conditions in the numerical modeling literature [19, 25], and explaining why
both Dirichlet and Neumann boundary conditions apply at ablation margins in a well-
posed model [5, 28].

The obstacle problem is developed in section 2 into variational inequality form.
In section 3 we first choose suitable function spaces. Then we restrict the problem
to the case with no basal sliding, flat bedrock, and where both the mass balance
and the ice softness are elevation-independent. Because the variational inequality
is equivalent to minimization in this restricted case, we can show well-posedness.
However, these restrictions are too severe when modeling real ice sheets, but we are
able to show existence of solutions in the general case by a fixed point strategy. This
approach leaves open most questions of uniqueness. In subsection 3.5 we identify a
qualitative property of our variational inequality which distinguishes it from other
obstacle problems: in glaciological terms, where it snows perennially, even locally,
there will be an ice sheet or glacier. In section 4, we approximate by finite elements,
first in cases where the variational inequality is equivalent to a convex minimization
problem. An iterative technique addresses the general case. In the restricted case
we prove convergence and an a priori error estimate. In section 5 we first measure
the convergence rate for an exact solution which solves a nonflat bedrock case, and
then we illustrate the numerical method by computing the steady-state shape of the
Greenland ice sheet based on observed bedrock elevation and surface mass balance.

2. Model. Let © C R? be a bounded open region with Lipschitz boundary. In
this paper V denotes the gradient and V- the divergence in (horizontal) coordinates
x = (z,y) on Q. The bedrock elevation is a function z = b(x) in . The unknown
function is the elevation z = h(x) of the upper ice surface, and thus h > b on Q; see
Figure 2.1. The ice thickness H = h — b is nonnegative in (2.

In addition to the bed elevation, the inputs to the model include a source function
a called the surface mass balance, which is the yearly-averaged accumulation (abla-
tion) rate of deposition (removal) of ice by snowfall (by melting with runoff). We

Mass balance a

il

Mass balance a

Free margins

F1c. 2.1. Vertical section of an ice sheet with notation.
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assume that this function depends on horizontal location and surface elevation, so
a = a(x,z) for x € Q and z € R. Also, the base of the ice may slide at a horizontal
velocity Uy = Uy(x), or the base of the ice may be frozen so that U, = 0.

2.1. The shallow ice approximation (SIA). Ice sheets and glaciers are in-
compressible, non-Newtonian, gravity-driven slow flows [13, 16]. The nonlinear viscos-
ity (shear-thinning) property of ice may be described by Glen’s power law (equation
(4.16) in [16]) with coefficient A(x, z) and exponent p > 2,

(2.1) D;; = A(x,z)rp_znj,

where D;; is the strain rate tensor and 7;; is the deviatoric strain rate tensor. Glaciol-
ogists write the power using n > 1, where p = n + 1. Laboratory experiments [15]
suggest that 1.8 <n < 4.

The ice softness A(x, z) generally depends on temperature. Allowing functional
form A = A(x, z) here is motivated by the prospect of coupling with a conservation-of-
energy model. Such a model would determine a temperature or enthalpy field [16] and
thus softness A through standard parameterizations [17]. While we do not consider
conservation of energy here, fixed point iterations with such a model could determine
the thermo-mechanically coupled steady state of the ice sheet.

Momentum conservation yields a nonlinear Stokes problem incorporating (2.1).
Its lubrication approximation, the STA considered here, is obtained by expanding the
problem in powers of € = d/L, where d is a typical thickness and L is a typical
horizontal extent, and then dropping terms of order €? and higher [13, Chapter 18].
The horizontal velocity U is then computable from the surface elevation h and its
gradient [16, equation (5.84)],

(22)  U(x,2) = —2(pg)*~ [/b A(s)(h — s)P~ds| [VhIP>Vh + Uy,

Here p is the density of ice and g is the acceleration of gravity.

Though we allow a given basal sliding velocity Uy(x) in (2.2), we do not consider
any relation between the glaciological driving stress —pg(h —b)Vh [16] and the sliding
velocity; there is no SIA-type sliding law [20]. Instead, similar to the ice softness field
above, inclusion of a sliding velocity is motivated by the prospect of coupling with a
more physical sliding model, such as one which uses the shallow shelf approximation
as its sliding law [4]. Such coupling is of greatest interest in ice stream zones where
SIA-type sliding laws cannot account for fast basal sliding. Of course, the simple
nonsliding case Uy = 0 is representative of the majority of ice sheets by area, and our
theory loses nothing important when restricted to that case.

An important part of this Stokes problem, in determining the shape of ice sheets,
is the free surface equation (“kinematic boundary condition”; equation (5.21) in [16]).
This equation relates the movement of the ice surface to the ice velocity and the
mass balance data a(x, z). Equivalently for this incompressible flow, in steady state
a continuity equation applies to the flow (the “Saint-Venant equation” [20]),

(2.3) V-q=a,

where

h
(2.4) q::/b U(z)dz
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defines the total horizontal ice flux. Inclusion of (2.2) and (2.4) into (2.3) gives an
equation for the surface elevation h:

h
(2.5) -V (2(;}9)”—1 /b A(s)(h — s)Pds

|Vh|P~2Vh — (h — b)Ub> =a.

If A(x,z) = Ap is constant (e.g., the isothermal case), then (2.5) reduces to a PDE,
(2.6) —V - (A(h = b)PTHVR[P2Vh — (h — b)U,) = a,

where A > 0 is constant. One may also rewrite (2.5) in terms of ice thickness H = h—b:
(2.7)

H
—V-(Z(pg)p_l /O A(s + b)(H — s)Pds

|V(H +b)|P~2(V(H + b)) — HUb> =a.

Equations (2.5), (2.6), and (2.7) hold only on the domain where there is ice, that
is, on an unknown subregion of €2. Determining that subregion is part of any complete
formulation of the ice sheet problem.

2.2. Reformulation as an obstacle problem. The obvious fact that the sur-
face elevation of the ice sheet equals or exceeds that of the bed underneath it is now
given the interpretation that the bed is an “obstacle” [27] to the surface position of
the ice. The solutions h, H to (2.5), (2.7), respectively, are in fact constrained by the
equivalent inequalities

(2.8) h>b = H > 0.

In regions with no ice we set h = b and H =0, so h and H are defined on all of .
Constraint (2.8) generally implies the existence of a free boundary [18]. Let

Qp ={h>b}={H >0}

be the subregion of © where ice is present, the (open) support of the ice sheet. A
nonempty free boundary I' = QN 9 is said to be a free (grounded) ice sheet margin.
Locating the free margin I' is an important part of any ice sheet problem in which
ice sheet extent is a function of climate. Only a weak formulation of the problem,
in which constraint (2.8) is incorporated from the beginning correctly describes the
dependence of I and 24 on the problem data.

For a steady ice sheet with Q. # 0, the source function a must be positive
(accumulation) in some part of Q. If there is a nonempty free margin and a is
continuous, however, ¢ must be negative (ablation) outside Q4, i.e., on Q_ = Q\
(Q4 UT). Ice flows outward from areas with accumulation into areas with ablation,
and the ice sheet thins to zero thickness at the margin.

The weak formulation of problem (2.7) on the whole domain € requires us to
suppose that the following boundary conditions hold on I':

(2.9) H =0, q-n=0,

where n is the outward unit normal vector along I'. The value of q on I should be
understood as its limit from the interior of 2. As expected in an obstacle problem,
extra conditions at the free boundary are needed to to determine its location. In fact,
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on 2_ we extend the flux by zero, q = 0. Let v be a test function satisfying v > b
everywhere. Now apply the Gauss theorem:

~favo-n= <v-q><v—h>+/m(v-q>(v—h>—/F[w—h)q-n]*,

where [ ] denotes the difference across I'. Note that q = 0 and @ < 0 on _, so that
V-q>aon Q_. Also using (2.3) on 24 and q-n =0 on I', we obtain

(2.10) —/Qq~V(v—h) E/Qa(v—h).

The boundary I' is no longer explicit in this reformulation. Expanding q as in (2.5),
we have this variational inequality generalization of the STA:

ey [ <2<pg>p1

h
/ A(s)(h — s)Pds
b

|Vh|P~2Vh — (h — b)Ub> V(v —h)

Z/QOL(U—h).

Note that boundary conditions (2.9) apply at grounded free margins of steady ice
sheets (i.e., at ablation-zone margins [5]) but not at the grounding lines of marine ice
sheets where ice shelves may be attached [16]. At such grounding lines thickness H
may be relatively small but the flux q is significant, and so mathematical formulations
are quite different (see, for example, [30]).

Weak form (2.11) is a degenerate extension of the p-Laplacian obstacle problem
because thickness H = h—b goes to zero at the free boundary (margin) I". This is the
reason why the solution of (2.11) (or (2.5)) is well known to exhibit infinite gradients
at the marginI" [5, 16]. A further reformulation, (2.19), that recovers nondegenerate p-
Laplacian form is proposed in the next subsection, but, while this formulation involves
only a flat obstacle, it acquires a “tilt” which destroys monotonicity of the variational
form. In subsection 3.5 we identify a qualitative property which is common to model
(2.11) and its apparently different, though actually equivalent, version (2.19).

2.3. Ellipticity and transformed ice thickness. For clarity, consider the
simplest SIA, (2.6). If we were to remove the power of thickness (“(h — b)P*1”) from
the coefficient, then the problem would be uniformly elliptic as a p-Laplace problem.
The corresponding obstacle problem would not generate a singular gradient at the
free margin [7].

A transformation of thickness, following [6, 26], restores such uniform ellipticity
to (2.11), though it significantly modifies the p-Laplace form when the bedrock is not
flat. We apply the following change of variables:

(2.12) H = u(P~/(p)
Equation (2.7) becomes

(2.13) —V - (p(x,u)|[Vu — @(x,u) P72 (Vu — &(x,u)) — U(x,u) = a(x, u),
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where

(2.14) wix,u) =2 <%p_1)>1’1 /01 A(x, b+ suP=D/CP)Y (1 — g)Pds,
(2.15) D(x,u) = — (%) u Pt/ P gp(x),

(2.16) W(x,u) := uP~V/CP) Uy (x),

(2.17) a(x,u) = a(x, b+ uP~H/ ),

Constraint (2.8) becomes

(2.18) u>0 on

that is, the ice thickness is nonnegative. Assuming ice softness A(x,z) satisfies rea-
sonable bounds (below), (2.13) has the form of an elliptic p-Laplace equation with a
“tilt” @, that is, a tilt determined by the bedrock gradient Vb.

We now apply transformation (2.12) to rewrite (2.11) as a variational inequality
for u. Of course, (2.13) is the interior condition where v > 0. The solution v > 0
satisfies

(2.19) /Q (13, 1) [V — B, 0) P2 (Vi — B(x, ) — U, ) - V(v — u)

> / a(x,u) (v - u)

for all v > 0 on .

We identify six nonlinearities in problem (2.19), making the mathematical theory

nontrivial:

(i) A p-Laplace-type nonlinearity induced by Glen’s flow law. Though it is not
a case considered in this paper, this nonlinearity is removed when p = 2 so
that |Vu — ®(x,u)[P~2 = 1.

(ii) A solution-dependent diffusion coefficient p(x,u) generated by the ice soft-
ness properties. This nonlinearity vanishes if A(x,z) = A(x) is elevation-
independent, in which case u(x,u) = o is constant.

(iii) A nonlinearity in ®(x,u) due to bedrock gradient Vb. If the bed is flat, then
O(x,u) = 0.

(iv) A nonlinearity in ¥(x,u) due to basal sliding. If U = 0, then ¥(x,u) = 0.

(v) A nonlinearity driven by elevation-dependent mass balance a(x,w). This
nonlinearity vanishes if a = a(x) is elevation-independent.

(vi) Obstacle problems are inherently nonlinear. Even if the above nonlinearities
are removed, the solution space is not affine.

In the next section, we address the function spaces, and the mathematical framework,
in which to study the well-posedness of (2.19).

3. Existence, uniqueness, and regularity. In subsection 3.1 we choose func-
tion spaces and state assumptions on data that make (2.19) precise. Subsection 3.2
treats well-posedness of (2.19) by using convex analysis, but only in a restricted case
with fewer nonlinearities. Existence in the general case follows by using a fixed point
argument (subsection 3.3). Then in later parts we address regularity, a novel quali-
tative property of the solutions, and boundedness. From now on we suppress explicit
dependence on x, but we always show dependence on the solution u when present.
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3.1. Mathematical setting. Let X = W,”(Q), and define the convex admis-
sible subset

(3.1) K:={ue X u>0}.

For g € LP(Q) and f € WP(Q) we have norms

1/p 1/p 1/p
gl = (/Q |g|p) I lwee = (/Q Iflp) +</Q IVflp) |

Since 2 C R? is bounded, the Poincaré inequality [11] applies: there is C; > 0 so that

(3.2) / o < cl/ VolP Vo e X,
Q Q

It follows that norms || - ||y, and [|[V()[|zr are equivalent on X. Recall that
WP(Q) < C(Q) is continuous and compact when p > 2 [8, p. 114]. Thus for each
p > 2 there is a constant C5 > 0 so that

(3.3) o]l < Caollvllwrs Vo€ X.

We will use the following technical inequalities [3, Lemma 2.1].
LeEMMA 3.1. For all p > 1, there exist My, Ms > 0 such that

(3-4) 172 — [nlP~>nl < My (€] + [n)P~2|¢ = nl,
(3-5) (IelP=2& — [nlP~2n) - (& — n) = Ma(€] + [n))P2|¢ — nl?

for all (¢,m) € R? x R2.

Let ¢ = p/(p — 1) € (1,2) be the exponent conjugate to p. In order to define
the notion of weak solution for the variational inequality corresponding to (2.13), we
make the following hypotheses on the data:

(H1) A(x,z) is a positive measurable function, and there exist A;, A2 > 0 so that
for all (x,2) € Q x R,

(3.6) 0< A <A(x,2) < As.

(H2) b e WhP(Q).

(H3) U, € [L9(Q))%

(H4) a : 2 x R — R is measurable in the first argument and continuous in the
second argument, and there exists M > 0 such that

(3.7) la(x,2)| < M V(x,2) € Q2 x R.

Regarding (H1), while ice temperature is observed to vary continuously within glaciers,
there is no mathematical or physical need to assume that the ice softness A is con-
tinuous, though certainly A is observed to be bounded. Assumptions (H2) and (H3)
imply that bedrock elevation and sliding velocity have the minimal regularity needed
to pose the problem in W1, In practice ||b|y1.» may be large because subglacial to-
pography can be mountainous. Hypothesis (H4) requires choosing an artificial bound
M on the maximum amount of accumulation (ablation) independent of geometric
factors like the surface elevation solution. Such a bound is not provided by existing
information about climate, but observation-based simulations with prescribed surface
mass balance, as foreseen here, always allow such a bound.
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It follows from (H1) and (2.14) that there exists p;, i = 1,2, such that
(3.8) 0<p <plxu)<ps VxeQ, Vuek.

Moreover, one can check that p is continuous with respect to argument u. Owing to
(H2) and (H3), we have
(3.9)

2p /2 —-1)/(2
@z < (E) [ P L P N1 P [ /LA

for all v € KC, where ® and ¥ are defined by (2.15) and (2.16). It follows that
(3.10) o(-,v) € [LP(Q)),  ¥(,v) € [LYQ)?

for all v € K. Note also that (H4) implies a(-,v) € L*(Q) for all v € K. Furthermore,
functions p, ®, and ¥ are each measurable in their first arguments and continuous in
their second arguments.

By the above hypotheses on data we can define constrained (u > 0) weak solutions
to problem (2.13), as follows.

DEFINITION 3.2. A function u € IC solves the (transformed) steady shallow ice
sheet problem if u satisfies (2.19) for allv € K. The ice thickness solution is given by
H = (P~ 1/@p)

By property (3.8) we say that variational inequality (2.19) is a uniformly elliptic
nonlinear p-Laplacian obstacle problem with additional modification Vu +— Vu —
®(x,u), which we call a “tilt” of the p-Laplacian form.

As noted, problem (2.19) possesses several explicit nonlinearities. Well-posedness
is not obvious. In the restricted cases where we may rewrite (2.19) as equivalent to
a minimization, we can show existence and uniqueness using convex analysis tools.
However, only a constant tilt of the p-Laplace form can be addressed that way. Also
for most of the other nonlinearities, (2.13) cannot be rewritten as the critical point
equations of a minimization. (If that were the case, differentiation of (2.13) with
respect to a direction w, i.e., a proposed second variation of the functional, would
lead to a symmetric bilinear form for variables v and w. Formal computations show
that this is not so.) This motivates the fixed point approach in section 3.3.

3.2. Minimization and monotone operator. Consider u € I satisfying
(3.11) / (k|Vu—Z[P~*(Vu—1Z7)) - V(v —u) > / flo—u) Yvek,
Q Q

where k € L>(Q), k(x) > k >0, Z € [LP(Q)]2, and f € L>(Q). These simplifications
of (2.19) remove several nonlinearities. Nonetheless variational inequality (3.11) with
tilt Vu — Vu—Z, and with the p-Laplace operator, is not to our knowledge addressed
in the literature. Therefore we sketch how the classical existence and uniqueness proof
for the p-Laplace problem [8] applies to (3.11).

Inequality (3.11) has an equivalent minimization problem. Define the functional

1

(3.12) J(v) = —/ kEIVv —Z|P — fv Yv e K.
pJa

One may show that J(v) is Gateaux differentiable,

(3.13) (J'(v),w) = /Qk|Vv —ZIP73(Vv - Z)-Vw — fw Yw € K.



1300 GUILLAUME JOUVET AND ED BUELER

Variational inequality (3.11) can be stated “(J'(u),v —u) > 0 for all v € K,” which
says that the directional derivative of J at w in the direction v — w is nonnegative,
including when « is on the boundary of K. One can show that u € K solves (3.11) if
and only if it solves the minimization problem

14 =mi .
(3.14) J(u) min J(v)

We may therefore prove well-posedness of (3.11) by showing it for problem (3.14).

On the one hand, J is continuous, is strictly convex, and satisfies the coercivity
property that there exist Cy,Cs > 0 so that

(3.15) J(v) > cl/ Vo—ZF—Cy  Voed.
Q

On the other hand, weak lower semicontinuity of J follows from the lower boundedness
of J and the convexity of function s — p~t|s—Z|P — fv [11, section 8.2.2, Theorem 1].
We have all the ingredients to prove the following theorem [8, 11], and also a corollary
which applies to (2.19) in restricted cases.

THEOREM 3.3. There exists a unique solution u € K to problem (3.14).

COROLLARY 3.4. Assume that ice softness is elevation-independent (A = A(x)),
the bed is flat (b constant), there is no basal sliding (U, = 0), and the mass balance
is elevation-independent (a = a(x)). There exists a unique solution u € K to (2.19),
and thus a unique ice sheet thickness H = u®—1)/(2p)

The major application of Theorem 3.3 in this paper is not the above corollary,
however, but instead in the fixed point argument in the next subsection, where Z # 0.
Before that argument, let us mention an alternative way to prove Theorem 3.3 by using
the theory of monotone operators. If we define the operator M = J’ : WP — (W1P)/
by (3.13), then we can show, using [3, Lemma 2.1] and Holder’s inequality, that there
exist C1,Cy > 0 such that for all u,v,w € K

(3.16) |(Mu — M) (w)| < Cr([lullwre + [0lwre + 12l gre )2 lu = vllwre [[w]wre,
(3.17) (Mu — Mv)(u—v) > Collu — v||€v1,p.

Property (3.16) states the Lipschitz continuity, for bounded arguments, of M in its
first argument, and the continuity of M in its second argument. Property (3.17)
shows that M is a strictly monotone operator. Owing to Corollary IT1.1.8 in [21], this
implies existence and uniqueness of u € K solving (3.11).

A monotone approach is slightly more general than our minimization approach.
Specifically, if we make the glaciologically unrealistic assumption that a depends on ice
thickness in a nonincreasing manner, then monotonicity property (3.17) is still satis-
fied with the corresponding nonincreasing function f(u), and existence and uniqueness
follow.

3.3. Fixed points: Existence. In order to apply Schaefer’s fixed point theorem
[11, section 9.2.2, Theorem 4] to prove the existence of a solution to (2.19), we first
establish a preliminary lemma, a continuity result. Define the set

B={peL>Q), m < pux) < ps}.
Define the map

(3.18) T : B x [LP(Q)]? x [LY(Q))* x LY(Q) — K,
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which takes the tuple (u, @, ¥, ) to the unique u € K solving the variational inequality

(3.19) /Q (1|Vu—@P2(Vu—®) —0) - V(v —u) > /Qoz(v—u) Yv e K.

Theorem 3.3 ensures that 7 is well defined. The next lemma gives an estimate of the
difference between two solutions of (3.19) deriving from different data, from which
continuity of T follows.

LeEMMA 3.5. Let fi,i € B, ®,® € LP(Q), ¥V, ¥ € [LY(Q)]?, a,a € LI(Q), and
4,7 € K such that T(ji,®, ¥ a) =4 and T(,u,CD W, @) = u. Then there exists a
constant D1 > 0 that depends on 1, po, but is independent of fi, ®, U, a, T, ®, U,
and @, such that

(320)  Dilla—alfy., <IIVE— (5 - Allre + 16 —allpa+ | = T 1

+ [V - 9|77 @ — @l e + | - 7,
Moreover, if ® =9 and [ = [, then there exists a constant Do > 0 independent of
VU, a, ¥, and & such that

(3.21) Dylla—alf., < A(d—a)(ﬂ—ﬂ)%—/(ﬁl—\ll)-V(a—ﬂ).

Q

oof. Applying (3.19) for T(fi,®, ¥, &) = @ with v = T € K and (3.19) for
T, @) =

=u with v = u € K, we obtain, respectively,

Proo

T (@, @,
(3.22) / (mva PP (va - ) — \1/) V(@ — @) > / a(T — @),

Q Q
(3.23) / (Ve — P *(Vu— @) - ) - V(a —7) > / a(t — 7).

Q Q
For the sake of convenience, we call X = Vi — ® and X = Vi — ® and define
(3.24) VI = [ (T + e

for any Y € [LP(Q)]?. Using inequality (3.5), we obtain

1%~ X < 22 / (] + | X)) 2% - X2
Q

op—2 ~ ~ — — -
(3.25) < (|X|p‘2X - |X|p‘2X) (X -X)=E\ + B,
My Jq
where
op—2 - - _ _
. p—2vy _ p—2 . ~
B = Sp /Q(|X| X - [X] X) V(i — 1),
op—2 - . — _ - —
Ey = — XPP2X — | X|P72X) - (® — D).
2= / (11 XPX) - (@ - F)

Since i € [u1, p2] (see (3.8)), we have

(3.26) By <

o (ﬂIXIHX ~ BXP2X) - V(i - ).
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From (3.22) and (3.23), we obtain
(3.27)

/Q(mf(w*f(—mmﬂf) V(@ — 1) g/Q(o?—a)(ﬂ—ﬂﬁ—/ﬂ(\l/—\l/)-V(ﬂ—ﬂ).

From (3.26) and (3.27), we have

op—2 _ — — —
By < aXP2X — gl X P ?X) - V(i -7
1< g (] GIRPR - iR - -
(3.28) +/(a—a)(a—u)+/(\if—§)-V(ﬂ—u)>.
Q Q
From Hélder’s inequality, it follows that
w72 o S o
(3:29) By < —— (X5 17 = fll e + 16 = @lzo + 1€ = Tlza ) = Towro
241

Using inequality (3.4), we have

2P—=2 71 — - - — e
o< 2[R+ )X - X8 -5
2 Q
22(p=2) pr _ . L
< T [ (R 1% - X% - X - 3
M, Q

By using the inequality (see Lemma 2.2 in [22])
(a+7r)P2%rs < ela+7r)P72r? 4 e La + 5)P 252 Ya,r,s >0, Ye € (0,1],

with a = |X|, r = |X — X|, s = |® — ®|, we obtain, for all € € [0, 1],

22(p—2) \r. o _ - .
By < 2 (X=Xl et [ (K418 - B8 -3
Mo Q
Setting € = %, and using Holder’s inequality, there exists C7 > 0 such that
1 . . .
(330) B < lIX =X+ (X529 - B3 + 18 - TIE,)

From (3.25), (3.29), and (3.30), we have

p—2

1. & = 2
=X = X||]| £
511X - Xl < 10—

+C1 (IR 18 - T2, + 18 - FIL ).

~p—1)— ~ ~ — T T ~ _
(I 7 = fllzoe + 16 = @z + % = Tllza) 13— T

Clearly, there exists Cy > 0 such that
<C(IX X5, + 12 -2, < Co(l[|1X = Xl + |1 - D|7,),

I =l
and therefore, we have

Colla =y, < (I 17 = fllzee + 16 = @lgo + 18 = Tz ) 13— Towrs
(3.31) + X218 — Bl + 19— @I,
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for a constant C5 > 0. It is then easy to check that (3.31) implies (3.20) in each of
the cases ||t — T|y1p < ||® — D||zr and ||® — B|zr < ||@ — Tllpwrv.

If ® = @ and ji = 77, then Ey = 0, and it follows from (3.25) and (3.28) that there
exist Cy, C5 > 0 such that

I =@y, < Calll X =X < Cs (/Q(@—a)(ﬂ—ﬂ)+/Q(‘I’—T)-V(ﬁ—ﬂ)),

proving (3.21). O

Now we apply the fixed point argument.

THEOREM 3.6. There exists at least one solution to (2.19). Moreover, there
exists C > 0 depending only on p > 2, pa, p2, M, ||Up|lre, and ||b|lwrr such that
any solution u of (2.19) satisfies ||ullw1» < C.

Proof. Define the map A : C(Q) — C(Q), which takes the function w to the
unique u solving
(3.32)

/Q (1(w)|Vu — @(w)|P~2(Vu — ®(w)) — U(w)) - V(v —u) > / a(w)(v—u) YveK,

Q

the problem addressed by Theorem 3.3. The map can be decomposed as A =ioT oR,
where 7 is compact. That is,

B < (1) |
A wec@ % W) ¢ [LIO)]2 Tiuex Suec@).
a(w) € L1(Q)

The first and the last components of R are continuous, since both y and « are point-
wise continuous and bounded (by ps and M, respectively). From definitions (2.15)
and (2.16) and assumptions (H2) and (H3) there exists C' > 0 such that

2
(3.33) 18(v) - ®(w)]lor < C (Tp) o — ol ZE/E) ] s,
(3.34) 19 (v) = ¥(w)|re < Cllo—w|E P U |14

for all v,w € IC. The continuity of the second and the third factors of R results from

(3.33) and (3.34). Continuity of 7 is stated in Lemma 3.5. Since p > 2, the last

embedding is compact [8, p. 114]. As a consequence, A is continuous and compact.
We now show that

S={we ), w=M(w) for some 0 <\ < 1}

is bounded. By using Lemma 3.5 with i = p(w), d=d(w), ¥="Uw), a=aw),
t=Alw), 7=1,02=0,¥¥=0,a=0,u=0, (3.7), and (3.9), we obtain

Dl A(w)[fyis < la(w)llze + 112 ()]s + | @ (w)lIE,"

1 =l 2p M
(3.35) < MIQJ + [ U]l (p )nbnwlpwnm ,

for any w € C(Q). Using (3.3), for w € S we have

(3.36) [wllzee < JA(w)|[ = < Col| A(w)llwr.r-
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Since 0 < % < % < p—1, it follows from (3.35) and (3.36) that there exists
C > 0 so that |Jw|| g < C. Thus S is bounded and, by Schaefer’s theorem [11, section
9.2.2, Theorem 4], u € C(Q) exists so that u = A(u) and u solves (2.19).

It remains to show the a priori bound for any solution u of (2.19). By using (3.35)
with w = u € C(Q), A(u) = u, and (3.3), we obtain

*1)(P+1)

2p
Dl < MIQPE + Co[ Upllzallul 5, + (p )02|b|wlp||u||wl

Again using 0 < % < %}gpﬂ) < p — 1, we conclude that C' > 0 exists. d

Uniqueness in Theorem 3.6 remains open in any cases significantly beyond those
covered by Corollary 3.4. However, Lemma 3.5 provides a second proof of uniqueness
in the cases which can be addressed by monotone operator methods. Assumptions
can be slightly relaxed. Indeed, assume p = u(x), ® = 0, ¥ = 0, and that o = a(x, u)
is a nonincreasing function of u (i.e., @ = a(x, k) is a nonincreasing function of h). If
both uy € K and ug € K solve (2.19), then setting @ = u1, @ = ua, & = a(uy), and
@ = a(uz) in Lemma 3.5, we obtain from (3.21)

(3.37) Dolur — ualjy1, < /Q(a(ul) — a(uz))(u1 —uz2) <0,

and then u; = ug. Also using Lemma 3.5, uniqueness could be shown in the sliding
case if the sliding basal velocity field U, satisfies

(3.38) /Q(\I!(u) W) (Vu—w) <0 Vo,weK,

recalling that ¥(u) = u(P=1/(2P) Uy, Unfortunately, nonincreasing functions u
a(x,u) and sliding fields U, satisfying condition (3.38) represent cases not commonly
seen in glaciological applications. In contrast, the case of an increasing function «
was addressed, for a flat bed only, in [20]. It appears that monotonicity arguments
cannot be used to significantly extend the well-posedness result in Corollary 3.4.

3.4. Interior condition and regularity. Suppose that u € K solves (2.19).
Define an open set O = {x € €, u(x) > 0}, and suppose ¢ € C>(0O). Since u and ¢
are both continuous, there exists ¢ > 0 such that v = u + ep € K for all € € [0, ).
Because (2.19) applies for both positive and negative €, a PDE weak form holds:

339 [ u) (Vu= @@ 2(Tu = 00) = ¥(w) - Ve = [ afu)e

for any ¢ € C°(0). If the solution u is also sufficiently differentiable, and if u, ®, ¥,
and « are sufficiently differentiable, then it follows by integration-by-parts that the
strong form

(3.40) V- (p(w)|Vu — @(u) [P~ (Vu — @(u)) — U(u)) = alu)

applies at points in O. In glaciological terms, therefore, the ice thickness H =
u(P=1/P) solves the SIA, PDE (2.7), where it is positive.

This brings us to the regularity of solutions to (2.19). For the classical obstacle
problem, namely p =2, y =1, ® = 0, and ¥ = 0 in (2.19), the solution is in W?2>°(Q)
[21]. This result does not apply to all p-Laplacian problems when p > 2, however.
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Indeed, for the unobstructed p-Laplacian problem in dimension one, Glowinski and
Marroco [14] show that u ¢ W?2P(Q) if p > (3 +/5)/2 ~ 2.6, though u € W2P(Q)
for smaller p.

Other authors [7, 24] show that if u solves the obstacle problem (2.19) with p = 1,
® =0, and ¥ = 0, then there is 0 < € < 1 so that u € C1¢(Q). That is, u at least
has a Hélder-continuous first derivative in the better-understood restricted cases.

3.5. On a property special to the ice sheet problem. An obvious property
of a steady ice sheet is that if the steady surface mass balance a is positive at some
point (a(x) > 0 for x € Q), and if a is continuous, then h(x) > b(x) at that point.
That is, if, in a steady climate, it snows at some location more than it melts, then
there will be an ice sheet there. We may write {a > 0} C Q4 , where Qy = {h > b}
is defined in section 2. Though this is intuitive for an ice sheet in a steady climate,
this property is outstanding among obstacle problems, as we now explain.

Consider a uniformly elliptic p-Laplacian variational inequality with 1 < p < oo,
namely, an inequality of the form

(3.41) /Qk|Vu|p_2Vu-V(v—u)Z/Qf(v—u)

for k € L>(Q), f € L), and ¢ = p/(p — 1), where k > k a.e. for some k > 0.
The associated obstacle problem [7] seeks u € A so that (3.41) holds for all v € A,
where A = {v > 1} € WyP(Q) is the (convex) admissible set and ¢ € W'2(Q) with
Yo < 0 is the obstacle.

These obstacle problems generally allow upward force to be applied to the mem-
brane (i.e., f > 0 in an open subset of ) even at locations where the membrane
is in contact with the obstacle (i.e., u = 1 where f > 0). If the obstacle is flat,
¥ = 0, however, and under the apparently technical assumption that u € W2 (),
if u solves (3.41), then a “blistering” property holds: f € C(Q2) and f(x) > 0 implies
u(x) > 0. We demonstrate this as follows. Suppose f(x) > 0 and u(x) = 0. We
first show that u = 0 in a ball around x. Because f is continuous, there is do > 0 for
which f > g on a ball B.(x) with € > 0. Consider test functions v = v+ ¢ in (3.41),
with ¢ € W, (B.(x)) nonnegative and extended by zero so that ¢ € Wy*(Q) (e.g.,
section 5.4 of [11]). By the technical assumption we can integrate (3.41) by parts,
which consists now of integrals on B¢(x) only. We deduce

~V - (k|VulP™2Vu) > f >0  ae. in B.(x).

The strong maximum principle for the p-Laplace operator [31, Theorem 5] now says
that u cannot reach its minimum in Be(x) unless u is constant in this ball. Since
u(x) = 0 and u > ¢ = 0, we have u = 0 on B.(x). Now let U € W, () such that
U=0o0nQ\ Bx) and U > 0 on B(x). By setting v =u+U € A in (3.41), we
obtain

0:/k|Vu|p‘2Vu-VU2/fU>O,
Q Q

a contradiction. The function U > 0 which arises above could be called a “blister.”
Generic, nonflat obstacles may have a shape so that the solution u is against the
obstacle even in areas where f > 0, however. Specifically, for each uniformly elliptic
p-Laplacian variational inequality (3.41) there is an obstacle ¥ so that the blistering
property fails for that obstacle problem. To prove this, consider constant upward force
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f =200 > 0 on all of Q. Solve (3.41) (in the unconstrained case), yielding solution
@ € WyP(Q). Note i(x) > 0 for every x € Q by the strong maximum principle. Now
let v = 4. Then u = % is the solution of (3.41) with obstacle ¥ and f = §y > 0.
The blistering property does not apply. In conclusion, the qualitative property of
“blistering” is not generic across this large class of variational inequality obstacle
problems, though it applies when the obstacle is flat.

The blistering property is essential to any realistic mathematical model of steady-
state ice sheets because ice sheets exist even in highly localized areas of perennial
snowfall. In form (2.19) this property is now not surprising because the obstacle is
flat. In form (2.11) this property still holds because (2.11) is equivalent to (2.19), but
it is much less obvious. Inequality (2.11) is not uniformly elliptic because of the extra
nonlinearity in the coefficient (as pointed out at the start of subsection 2.3). Making
(2.11) uniformly elliptic by a regularization (h —b)?** — (h — b+ ¢)P*! would destroy
the blistering property.

3.6. Fixed points: Bounded iteration. The proof of Theorem 3.6 suggests
that we should be able to construct a solution of (2.19) as the limit of a sequence
of solutions of problem (3.11). More precisely, given ug € K, let {u;} C K be the
sequence constructed iteratively by finding u; 1 € K such that

(3.42) /Q (i) [ Vuisr = @) [P (Vuipr — D(wi)) = U(w;)) - V(0 = i)

> /Q (i) (v — uis)

for all v € K and 7 € N. Indeed, each problem (3.42) is of type (3.11) with k& = p(u;),
Z = ®(u;), and f = a(u;) — V- ¥(u;). The convergence of {u;} to a solution of (2.19)
for a sufficiently close first iterate would follow from Banach’s theorem if the map A
defined in the proof of Theorem 3.6 were a contraction mapping. Although we cannot
prove that property, at least the sequence is bounded.

THEOREM 3.7. Given ug € K, let {u;} C K be defined by (3.42). Then there
exists C > 0 depending only on p, w1, p2, M, ||Up|Le, [|b]lwre, and ||uo|lwie such
that

(343) ||Ui|‘W1,p <C Vi € N.

Proof. In the notation of Lemma 3.5, note that w = T (i, ®, ¥, @) = 0 if @ = 1,
®=0,¥V=0 anda = 0. LetﬁzT(/Z,é,@,&L where o = p(u;), ® =

U = U(u;), and & = a(u;), so that @ = u;1. From estimates (3.3), (3.7), (3.9), and
Lemma 3.5 we obtain

-1 —1
Dyfluisallyprs < lla(ui)llze + 1% (i)l za + |2 (u)lI7,

1 gt p—1 %;PH)
< MIQ[s + ea||[Us | palluslly o + callbllys lwill o

for some c¢1,co > 0. Taking the p = 1/(p — 1) € (0,1] power, and noting (a + b)? <
a® + b? for a,b > 0, we obtain

1 pt1l
lwitallwrr < ez 4 callullfa, + eslluillyis

for ¢; depending on the identified quantities. Therefore we may choose C' > 0 so that

¢ 3 £
sl < 5 (14 Tl + i, ).
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Let m = (p+1)/(2p). If lui|lwr» < 1, then |luj1]lwrr < C, while if [Jug]lwrr > 1,
then [|uig1|lwrr < Cllugl|j1,, because m > 1/(2p). We have

[wigallwre < Cmax(L, [|uil[fi).

Now we assume, without loss of generality, that C > 1. By induction,

= i i+l
wirallwre < CH™F ™ max(1, [Juo | fr.p )-

Noting m < 1sol+m+---+m’ <1/(1 —m) and ||U0||"V?/L1+; < max(1, |Juol|lwir),

the result follows. 0

4. Finite element approximation. The nonlinear problem (2.19) cannot be
directly approximated by finite element techniques. Indeed, if we replace the func-
tional spaces in the variational formation by conforming approximation spaces, the
nonlinearities that are not representable by minimization cannot be solved using stan-
dard techniques. For this reason, we approximate the nonlinear problem (2.19) by
combining the iteration scheme defined by (3.42) and a finite element method [8] to
solve each individual problem of form (3.11). The current section is devoted to the
numerical approximation of the subproblems of type (3.11).

Suppose  is polygonal and that we have a family of triangulations 7, which
exactly cover ). Let h, be the largest edge length of a triangle 7, and let p, be the
diameter of an inscribed circle in 7. Each triangulation 7y is assumed to be regular
in the sense that the ratio h;/p, is uniformly bounded above, so that triangles do
not become arbitrarily flat. Let h = max,c7;, by, and suppose the family 7y includes
the h — 0 limit of uniform refinement. Let A, € X be space of the continuous
functions which are linear on each triangle of 7, (“P; finite elements” [8]) and have
boundary values zero. Let m, : C(Q) — &, denote the interpolation operator such
that for all v € C(Q), v = m(v) at each node of T,. We recall the following standard
approximation result [8, Theorem 3.1.6]: There exists C' > 0 such that for m = 0,1,
all p € [p, +00], and all v € WP we have

(4.1) lo = (0) lwmw < CR2 QI P =V o1y,

(Actually, [8, Theorem 3.1.6] gives the local version of (4.1) on each element, but
since the triangulations 7, exactly cover €2 we obtain the global approximation result
by summing the local estimates over all elements.)

Let Ky = X, N K be the restriction of A} to positive functions. Since K is a
closed convex set of I, the existence and uniqueness result proved in the continuous
case is still valid with IC replaced by Ky. Let uy € Ky be the unique solution of

(42) /Qk|Vuh - Z|p72(Vuh - Z) . V(Uh - Uh) 2 ‘/Qf(Uh - Uh) V’Uh S /Ch,

for k € L>=(Q), Z € [LP(Q)]?, and f € L9(2). Equivalently,
(4.3) T(us) < J(n)  Vom € K,

where .J is defined by (3.12). Applying Lemma 3.5 with i =k, @ =Z, ¥ =0, & = f,
t=uy,, g=1,®=0,¥=0,a=0,u=0, and K in place of IC, there exists C > 0
that depends continuously on data || f||Le, ||Z]|L» such that

(4.4) [[unllwrr < C.

Thus we have a bound independent of h on norms of solutions to (4.2).
The convergence of the finite element solution to the continuous solution can be
established by adapting the proof of Theorem 5.3.2 in [8].



1308 GUILLAUME JOUVET AND ED BUELER

THEOREM 4.1. For the solutions u € K and up € Ky to (3.11) and (4.2),
respectively, we have uy — u in WHP(Q) as h — 0. That is, the finite element
approzimation converges in W1P(Q2) and thus in L> ().

The result is abstract in the sense that we do not have a bound on the error ||u—
uy || for a given h > 0. We now prove an a priori error estimate by following the quasi
norm technique used by Barrett and Liu [3, 23]. Error estimates for linear variational
inequalities were first established in [12]; see also [8]. A priori error estimates for
a p-Laplace problem were obtained in [3]. The p-Laplacian obstacle problem was
considered in [23].

The next lemma is a generalization of Cea’s lemma [8]. For its proof, define the
solution-dependent functional

(4.5) v [[[o]ll ::/k(|vu—Z|+|W|)P*2|vU|2.
Q

We can show [3] that ||| -|||. is a quasi norm; i.e., it satisfies all properties of the norm
except homogeneity. Moreover, using Holder’s inequality, we can show that there
exist D1, Dy > 0 such that, for all v € W1P(Q), we have

-2

p
(4.6) Diflollg, < lllollle < D2 {IIVU —Zlr +IV0lle | ol

LEMMA 4.2. Let u be the solution of (3.11) and un be the solution of (4.2).
Moreover, assume V - (k|Vu — Z|P~Y(Vu — Z)) + f € LY. Then there exists D > 0
such that, for all vy, € Ky,

(4.7) Dllu = unl|fyrp < (Ve = Zl| o + [V (w = vn) [ £o]P 72 = va[fy1.0
+ |V - (k|Vu — ZIP~H(Vu — Z)) + fl|La|lu — vnl| o
Proof. By definition (4.5), we have

(4.8) [llu — wlll = /Q B(Vu — 2]+ [V (0 — un))P 2V (e — )2

(4.9) < 21)*2/ E(|Vu — Z| + |[Vuy — Z))P2|(Vu — Z) — (Vuy — Z)))?.
Q
Owing to inequality (3.5), we have
[u — un|l]u
P2
<37 / E(|Vu — ZP~3(Vu — Z) — |Vuy — Z|P"*(Vun — Z)) - V(u — up)
2 JQ
2 B+ E
- M2 ( 1 + 2)7

where (adding and subtracting vy )
By = / k(Y — ZP-2(Vu — Z) — Vs — ZP~2(Vun — Z)) - V(- va),
Q
By — / k(Y — ZIP~2(Vu — Z) — [Vin — ZIP~2 (Vs — Z)) - V(0n — ).
Q

For the sake of simplicity, F7 and E5 are handled separately. Owing to inequality
(3.4), we have

Er < Ml/ k(Y — Z] + [Vun — Z)7 2| (u — )|V (1 — v3)]
Q

< 2p_2M1/ E(|Vu — Z| + |[Vu — Vun|)P 72|V (u — un) ||V (u — ).
Q
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By using the inequality (see Lemma 2.2 in [22])

(a+7)P"2rs <e(a+r)P"2r? + e ta+s)P2s? Va,r,s >0, Ve € (0,1],
with a = |Vu — Z|, r = [Vu — Vuy|, s = |[Vu — V|, we obtain, for all € € [0, 1],
(4.10) By < 227 Ma(el|lu — wnlllu + € HlJu = valllu).

On the other hand, F5 may be rewritten as

By = /Q KV — ZP=2(Vu — Z) - V(on — ) + /Q KV — ZP~2(Vu — Z) - V(1 — un)
_ /Q 5| Viun — ZJP~2(Vin — Z) - V(0n — un).

Using (3.11) with v = uy and (4.2), we obtain

B < /kau L ZPA(Vu—Z) - V(n — ) — /Q Flon — ).
After integrating by parts, and applying Holder’s inequality, we obtain
(4.11) By < |V - (k[Vu — ZIP~2(Vu — 2)) + fllollu — vall o
Fixing € small enough, we obtain from (4.10) and (4.11)
(4.12) [Ju— ||l < C{llu—wnlllu + IV - (k|Vu—ZIP"*(Vu—2Z)) + f||Lallu—val L},

where C' > 0 is a constant independent of u, uy, and v,. Inequality (4.7) follows from
(4.6) and (4.12). O

The lemma above, when combined with the standard approximation result (4.1),
the a priori bound (4.4), and the continuity of m,, gives the following convergence
theorem.

THEOREM 4.3. Let u be the solution of (3.11) and un be the solution of (4.2).
Moreover, assume u € WP and V - (k|Vu — Z|P~2(Vu — Z)) + f € LY. There exists
D > 0 that depends on u but not on h such that

(4.13) |t — un|lwrr < D 0P,

Convergence gets worse with increasing p. Also, Theorem 4.3 requires W?2? regu-
larity that we cannot ensure; see section 3.4. However, if we have lower regularity, we
can still give a weaker error estimate following [3, section 4]. Specifically, if u € W2
for s € [1,2], then the same conclusion (4.13) holds but with power “h*/?” in the
bound.

5. Numerical applications. We first investigate the convergence of the finite
element approximation, relative to the prediction of Theorem 4.3, using an exact
solution to the k = 1 and Z = 0 case of problem (3.11). Specifically, define the radial
function (r) on the square = [—1,1]?, where r = |x|, R = 0.75, s = r/R, by the
formula

_ p—1 - - p
1 —1_ p/(p=1) _ (1 _gyp/(p=1) 41 _ [ £
(5.1) a(r) b2 <8 (1-y9) + p— s
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if < R, and as zero if » > R [16, subsection 5.6.3]. This defines u(x) = @(r), which
is not in W22(Q) but is in W2*(Q) for any A < ;%' The right-hand side f of (3.11)
is chosen to make the PDE (interior condition) true on r < R, and it is extended by
the value f(R); thus f is continuous on .

We build a coarse regular triangulation of Q = [—1,1]? with a cell size of h =
0.25, and then refine uniformly five times by h’ = h/2. For each mesh, a numerical
solution uy of (4.2) is computed using a projected nonlinear Gaufi—Seidel method [9].
The estimate of Theorem 4.3, namely O(h%/?) convergence, is tested by computing
|lw — un||yy1.» for these meshes. Figure 5.1 displays errors in cases p = 3, p = 4, and
p = 6. The observed convergence is stronger than anticipated from Theorem 4.3,
which is therefore not optimal, but the rate of convergence appears to decrease with
increasing p, as expected.

0.5 ———
0.2 o
_:: »,.". -7 A,-"”/,,
R (N S 1
< r I ]
3
005 F -
B - o . p=3(h0979)
_ i A p=4(h0'748)
0.02 L o p=6(h0512)
0.01 e —
0.01 0.02 005 01 02 0.5
h

Fic. 5.1. Convergence of the finite element method for an exact solution.

5.1. Radial case with nonflat bedrock. Now we solve the ice sheet problem
(2.19) in the case of smooth but nonflat bedrock. This illustrates the convergence of
fixed point iteration (3.42). The projected nonlinear Gaui—Seidel method [9] is again
used for the generalized p-Laplace obstacle problem (3.11) at each step. For simplicity
in this and the next subsection, we assume that no basal sliding occurs, that the mass
balance is elevation-independent, and that the ice softness A is constant. We use the
follogving values from [19]: p =4, p =910 kg m ™3, g = 9.81 m s72, and A = 10716
Pa? a~l

To define a radial ice sheet, let u(r) = ng/(p_l)ﬂ(r) and b(r) = —bg cos(zomr/R),
where a(r) is defined by (5.1) and where Hy = 3 km, R = 750 km, by = 500 m, and
zo = 1.2. These functions are defined on Q = [—L, L]? with L = 1000 km. The
right-hand side of (2.19), namely the function « (i.e., the mass balance a), is found
using symbolic computation so that the interior condition is satisfied. Thus u exactly
solves (2.19).

Let ug = 0 be the initial iterate, and run scheme (3.42). The left column of
Figure 5.2 shows iterates uy, ug, us resulting from scheme (3.42), along with the exact
solution u. Figure 5.3 displays the L? relative error in v and in the surface elevation
h=b+H =b+u® /@) The convergence rate in surface elevation is worse than
in variable u, due to the singular surface gradient near the ice sheet margin. Closer
inspection shows large L error just inside the circle of radius R; compare [5] in the
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Fic. 5.2. The four first iterates of the fixed point algorithm. Left: case of smooth, radial
bedrock; exact solution at bottom. Right: Greenland case with bedrock and mass balance data;
observed surface elevation at bottom.
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flat bedrock case. The steady solution is observed to be insensitive to the choice of
initial iterate (not shown), which suggests the uniqueness of the solution of (2.19)
under these conditions with a smooth bedrock; compare [20] for flat bedrock.

---- 1

0.1

0.01

L2 Relative error

—
[\)
[=p}

3 4 )

Iterations

FiG. 5.3. L? relative numerical error for transformed thickness (u = H(2p)/(p*1)) and surface
elevation (h =b+ H), in the case of a radial ice sheet.

5.2. Greenland. The Greenland ice sheet is almost 2400 km long in a north-
south direction, and its greatest width is 1100 km. Gridded data for the bedrock
topography b [2] and the mass balance a [10] are available at 5 km resolution. These
were used in the computation, which was otherwise the same as in subsection 5.1.
Figure 5.2 (right column) shows the first iterates from the fixed point algorithm (3.42).
The steady state shape is similar to the observed surface elevation [2].

6. Conclusion. The numerical modeling of shallow ice sheets and glaciers has,
until now, proceeded via computation of time-dependent geometry changes, even when
the simulation goal is steady geometry [19, 25]. Excepting references [6, 20], which
apply only to flat bedrock, all such simulations have used ad hoc treatment of the
grounded margin shape as a boundary condition. The current paper describes, in
contrast, a mathematical formulation of the steady state of shallow ice sheets on
nontrivial bedrock topography. This weak formulation says that particular boundary
conditions (zero thickness and zero normal flux) apply at margins, because these mar-
gins are the free boundaries in a problem which is globally an obstacle problem. We
also include variable ice softness, basal sliding, and elevation-dependent surface mass
balance within the same formulation. We make progress toward the well-posedness of
this formulation by showing that solutions exist. Fundamental issues of uniqueness,
regularity, and stability remain.

We conceive of bedrock topography as an obstacle to the surface elevation of the
ice sheet. Equivalently, ice sheet thickness must be nonnegative. Bedrock topography
is also a barrier to mathematical progress, however, because the p-Laplacian form is
“tilted” by the change Vu — Vu — Z, with Z proportional to the bedrock gradient,
in the weak form of the problem. This apparently defeats certain mathematical tools,
including the monotone operator theory. It has blocked mathematical progress in
other models also [1]. This barrier is partially overcome here, as we find sufficient
continuity to apply a fixed point argument.

Our steady results can be applied to the time-dependent case by taking implicit
time-steps, and, with small modifications, the methods of this paper show existence
for each step in a time semidiscretized problem. As another extension of this work,
one could couple the ice sheet flow model used here to a model for the temperature of
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ice through fixed point iterations involving the ice softness. Similarly one could couple
it to a membrane stress balance which determines the sliding velocity [4]. We believe
that a similar fixed point approach could be applied, provided that the existence and
the uniqueness of each single model is established, and together with a continuity
result with respect to data similar to Lemma 3.5.

We also demonstrate convergence of, and an a priori error bound for, a finite
element approximation of each subproblem in a fixed point iteration to solve the
complete model. The realistic Greenland ice sheet calculation in section 5 is, to
our knowledge, the first computation of ice sheet geometry on nontrivial bedrock, in
balance with climate, which avoids computing a time-dependent sequence of physical
states. A few iterations in our scheme avoids thousands of model years of stability-
limited explicit time-steps as is done in existing ice sheet models.

Acknowledgments. The authors are grateful to Prof. Ralf Kornhuber for sup-
port, and to Dr. Carsten Graser for computational assistance. Constructive comments
by an anonymous referee improved the presentation substantially.
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