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Abstract

We present a new solver for large-scale two-body contact problems in

nonlinear elasticity. It is based on an SQP-trust-region approach. This

guarantees global convergence to a first-order critical point of the energy

functional. The linearized contact conditions are discretized using mortar

elements. A special basis transformation known from linear contact prob-

lems allows to use a monotone multigrid solver for the inner quadratic

programs. They can thus be solved with multigrid complexity. Our al-

gorithm does not contain any regularization or penalization parameters,

and can be used for all hyperelastic material models.

1 Introduction

Contact problems are a frequently occurring phenomenon in computational me-
chanics. Many real-life problems can only be modelled taking into account the
possible contact between different objects. This usually comes at the price of
a highly increased mathematical complexity. While many problems in contin-
uum mechanics are smooth and, in simple cases, even linear, mechanical contact
introduces a discontinuity into the formalism. Consequently, the numerical so-
lution of such problems is considerably more difficult. This is especially the case
when the problems at hand are very large.

Because of the importance in applications, various techniques for contact
problems have been presented in the literature. When the deformations are
assumed to be small, the problem reduces to a linear one with linear inequality
constraints. Different approaches for those problems include active-set methods
[7] or domain decomposition techniques [15]. Wohlmuth and Krause [17] used
mortar methods to discretize the contact conditions. This guarantees optimal
discretization errors. They then solved the resulting systems using a monotone
multigrid solver.
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When large deformations are considered, many of those techniques cannot
be used anymore. The equations governing the behaviour of materials under-
going large deformations are nonlinear even in the absence of contact. Further-
more, the sets of admissible deformation become nonconvex. A standard way to
overcome these difficulties is to regularize the contact conditions and solve the
resulting equations with variants of Newton’s method. The reader may consult
the book by Laursen [12] for an in-depth discussion of those algorithms.

In this article we look at contact problems from an optimization perspective.
Nearly all elastic material models used today are hyperelastic models, which
means that there is an energy functional J whose critical points are solutions
of the elasticity problem. When finite deformations are to be modelled, this
functional is usually nonconvex, but smooth. The nonpenetration condition
adds nonconvex inequality constraints to the problem.

SQP-trust-region methods have emerged in the literature as a standard way
to handle such optimization problems [3]. However, their efficiency crucially
depends on the availability of a fast solver for the quadratic problems occurring
in each iteration of a trust-region solver. It is the aim of this article to show
how the special structure of a multi-body contact problem can be exploited
to make those inner quadratic problems (QPs) amenable to a multigrid solver.
This new approach allows us to get the best of both worlds. The SQP-trust-
region frameworks guarantees global convergence to an equilibrium state. This
is already more than can be said about many algorithms for finite strain two-
body contact that can be found in the literature. However, we also get the fast
convergence speed of a multigrid solver for each QP step. The associated speed-
up in comparison to nonhierarchic iterative QP solvers directly transfers to the
overall algorithm. Hardly any previous work on the combination of trust-region
and multigrid ideas exists. For unconstrained problems see Gratton et al. [6].

We will proceed as follows: In Section 2, we will formally pose the finite
deformation contact problem. Section 3 contains the presentation of our new
solver. After a brief introduction to SQP and trust-region methods we explain
how the contact conditions are linearized and discretized using mortar elements
(Sec. 3.1). Sections 3.2 and 3.3 then present monotone multigrid methods and
show what modifications are necessary in order to use them as the inner QP
solver in the trust-region algorithm. We close by giving numerical results show-
ing the applicability of our solver.

2 Two-Body Contact in Finite Deformation Elas-

ticity

This paper deals with contact problems between two elastic bodies undergoing
large deformations. A prototype setting is depicted in Fig. 1. We identify the
two bodies in their reference configurations with two compact sets Ω(1),Ω(2) ⊂
R

d, d ∈ {2, 3}. In the presence of body forces f and boundary forces h, as well as
displacement boundary conditions, the bodies deform into new configurations.
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Figure 1: Geometry of the finite deformation two-body contact problem

This deformation is denoted by functions ϕ(i) : Ω(i) → R
d. We set Ω = Ω(1) ∪

Ω(2) and ϕ : Ω → R
d such that ϕ|Ω(i) = ϕ(i).

The displacements ϕ shall be taken from the space H
1(Ω) = (H1(Ω))d of

d-valued, first-order Sobolev functions on Ω. We will sometimes use H
1
D(Ω) to

denote the affine subspace of H
1(Ω) respecting the Dirichlet conditions.

In nonlinear mechanics it is important to bear in mind the distinction be-
tween material coordinates, defined on the reference configuration, and spatial
coordinates on the deformed configuration. We will use upper case latin letters
X,Y, ... for material coordinates and lower case ones x, y, ... for spatial ones.

The boundary of body Ω(i) is denoted by Γ(i). It is composed of three disjoint

parts Γ
(i)
D ,Γ

(i)
N ,Γ

(i)
C , such that Γ

(i)
D ∪ Γ

(i)
N ∪ Γ

(i)
C = Γ(i). We will apply Dirichlet

and Neumann boundary conditions on Γ
(i)
D and Γ

(i)
N , respectively. On Γ

(i)
C , we

expect contact to occur. We set γ(i) = ϕ(i)(Γ(i)) and γ
(i)
C = ϕ(i)(Γ

(i)
C ) for the

deformed boundaries.

2.1 Nonlinear Elasticity

The material models considered in this article are fully nonlinear elastic ones.
This means that the strain E is a quadratic function

E =
1

2
(∇u + ∇uT + ∇uT∇u)

of the displacements u : Ω → R
d defined by u(X) = ϕ(X) − X . Also the

relationship between the strains E and the stresses σ will be a nonlinear one.
In particular, we will look at general hyperelastic materials. That is, we assume
the existence of a stored energy function W : M

d
+ → R such that

σ(F ) =
∂W

∂F
(F ) for all F ∈ M

d
+,
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Figure 2: The nonlinear contact condition

where M
d
+ is the set of real square d × d matrices with positive determinant.

If the the volume forces f and the surface tractions h are dead loads, then
equilibrium states correspond to stationary points of the functional

J(ϕ) =

∫

Ω

W (∇ϕ) dx −

∫

Ω

fϕ dx−

∫

ΓN

hϕds,

see [2]. Thus, nonlinear elasticity problems can be written as optimization
problems.

For the purpose of finite element computations we consider the two bodies
Ω(1) and Ω(2) approximated by two conforming grids T 1 and T 2. The sets of
grid nodes are denoted by N 1 and N 2, respectively. We will use standard first
order Lagrangian finite element functions for discretization. The space of all

those functions on grid T (i) will be called S
(i)
h .

2.2 Contact Conditions

If frictionless contact is to be modelled, the appropriate nonpenetration condi-
tion is simply that ϕ be injective on the interior of Ω. Even though mathemat-
ically elegant, this formulation is not very useful in an optimization context,
where constraints on the solution are usually written in terms of equalities and
inequalities. We therefore write the nonpenetration condition in a different way,
taken from Laursen [12].

The first step is the parametrization of contact surface Γ
(2)
C over contact

surface Γ
(1)
C . For each point X on Γ

(1)
C define Φϕ(X) ∈ Γ

(2)
C by the closest-point

projection in the deformed configuration

Φϕ(X) = arg min
Y ∈Γ

(2)
C

‖ϕ(1)(X) − ϕ(2)(Y )‖.

Remark 2.1 There are situations where a point x ∈ γ
(1)
C has more than one

4



Φϕ(X)

ϕ(1)(X)

ν

γ
(1)
C

γ
(2)
C

Figure 3: g is negative if the two bodies overlap

closest neighbor on γ
(2)
C . In that case it is sufficient to pick an arbitrary one of

those for the definition of Φϕ.

Using the contact parametrization Φϕ, we can define the gap function g :

Γ
(1)
C → R as

g(X) =
〈

νϕ(X), [ϕ(1)(X) − ϕ(2)(Φϕ(X))]
〉

, (1)

where we have used νϕ = ν ◦ ϕ(2) ◦ Φϕ to denote the outward unit normals to

γ2
C as a function on Γ

(1)
C . The condition of nonpenetration can now be stated as

0 ≤ g(X) ∀X ∈ Γ
(1)
C . (2)

Keep in mind that g implicitly depends on the current deformation ϕ. Con-
dition (2) is equivalent to injectivity of ϕ on Ω̊, if both ϕ(i) are injective on
the interiors of their respective domains. Evidently, g(X) is nonnegative if
ϕ(1)(X) /∈ Ω̊(2) (Fig. 2). If, on the other hand, ϕ(1)(X) ∈ Ω̊(2), then from
the definition of Φϕ it follows that the vector from ϕ(2)(Φϕ(X)) to ϕ(1)(X)
appearing in (1) is a positive multiple of the inside surface normal of γ2

C at
ϕ(2)(Φϕ(X)). Thus, its scalar product with ν yields a negative value (Fig. 3).

Remark 2.2 Note that in general the set

K = {ϕ ∈ H
1
D(Ω) | 0 ≤ g(X) for all X ∈ Γ

(1)
C }

of admissible displacements is not convex.

3 An SQP-Trust-Region Algorithm

SQP and trust-region algorithms are well-known in optimization theory [8].
They are designed to solve problems of the type

minimize J(x) subject to ci(x) ≤ 0, (3)

where the ci are a set of smooth scalar constraint functions. Most literature
presents SQP and trust-region methods in a finite-dimensional context. Since
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our problem will eventually be posed in a finite-element space, we will do the
same. In this section, x will designate a vector in the finite-dimensional space
R

n.
Common to both SQP and trust-region methods is the use of model functions

Jk to mimic the local behaviour of the functional J around iterates xk. The
model functions are usually quadratic,

Jk(x) = xTHkx+ bkx. (4)

A new iterate xk+1 is then produced by minimizing the quadratic functional (4).
The pure SQP approach takes the Hessian of the Lagrangian functional asso-
ciated with Problem (3) for Hk and the gradient of J at xk for bk. As the
Hessian of the Lagrangian contains second derivates of the constraint functions
c, which are difficult to obtain, we approximate Hk by the Hessian of J . This
still guarantees global convergence [3].

The SQP approach to minimizing J on a set K bounded by nonlinear equa-
tions

K = {x ∈ R
n | ci(x) ≤ 0, 0 ≤ i < m}, (5)

is to linearize the inequality constraints at each iteration step. Therefore, at the
current iteration xk, K is replaced by

Kk = {x ∈ R
n | (x− xk) · ∇ci(xk) ≤ −ci(xk), 0 ≤ i < m}.

This new set Kk is bounded by hyperplanes. In particular, this means that
Kk is convex. Minimizing a functional on Kk is thus considerably easier than
minimizing over K. Nevertheless, under suitable assumptons, we can expect xk

to approach a solution of (3) as k → ∞ [3].
The quadratic model functions Jk defined by (4) cannot generally be assumed

to be convex. This means that the quadratic problem

minimize Jk on Kk

may not have a solution, if Kk is not bounded. Trust-region methods therefore
constrain the problem further by additionally imposing

xk+1 ∈ Ktr
k = {x

∣

∣ ‖x− xk‖ ≤ ρ}

for a suitable radius ρ > 0. The setKtr
k is called the trust-region. The norm used

for its definition is arbitrary. In view of the use of a monotone multigrid method
we will use the infinity-norm. Various heuristics are available for controlling the
trust-region radius ρ. Acceptance of correction steps can be controlled, for
example, by a filter method [3].

A considerable amount of convergence theory has been published for SQP
and trust-region methods [3, 8]. Under quite general conditions it can be shown
that the algorithms converge globally to first-order critical points of J on K.
In fact, due to the close relationship with Newton methods, under suitable
assumptions the convergence speed is even locally quadratic.
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In FE problems, the assembly of the Hessians Hk and gradients bk can
be done efficiently, and the algorithm will spend most of its time solving the
quadratic programs. For large scale applications it is therefore of great impor-
tance to have a fast QP solver. In the following we will show how a special basis
of Sh can be chosen in which the Kk take the form of hypercubes. This will
allow the use of a monotone multigrid method, which, under certain conditions,
can solve the QPs with multigrid complexity.

3.1 Linearized Contact Conditions

The following section is a central part of this work. We show how the sub-
problems of an SQP-trust-region solver for the finite strain two-body contact
problem can be interpreted as small strain contact problems. For that it is nec-
essary to linearize the contact condition (2) around the current iteration ϕk. We
then show how to discretize this linear condition using mortar elements. The
resulting discrete subproblem has a very special structure that will be exploited
in Section 3.3 to allow for the use of a monotone multigrid method to solve the
constrained QPs.

We denote the configuration at the k-th SQP step as ϕk, and the contact
parameterization Φϕ with respect to ϕk as Φϕk

. Taylor expansion of the gap
function g around ϕk gives

gk(ϕk + v) = g(ϕk) +
(

(Dg)(ϕk)
)

(v). (6)

In general Dg can be obtained as the Gâteaux derivative

[

(Dg)(ϕk)
]

(v) = lim
t→0

g(ϕk + tv) − g(ϕk)

t

= lim
t→0

1

t

[〈

νϕk+tv, (ϕ
(1)
k + tv(1)) − (ϕ

(2)
k + tv(2)) ◦ Φϕk+tv

〉

−
〈

νϕk
, ϕ

(1)
k − ϕ

(2)
k ◦ Φϕk

〉]

. (7)

To evaluate this term note that νϕ can be interpreted as mapping a valid defor-

mations ϕ of Ω to a normal vector field on Γ
(1)
C . Assuming sufficient smoothness,

we can develop νϕ in a Taylor series around ϕk and obtain

νϕk+tv = νϕk
+ t

[

(Dν)(ϕk)
]

(v) +
1

2
t2

(

(D2ν)(ϕk)
)

(v, v) + . . .

When this expression is inserted into (7), all terms involving second or higher
order terms in t vanish in the limit. We are left with

(

(Dg)(ϕk)
)

(v)

= lim
t→0

1

t

[〈

νϕk
, (ϕ

(1)
k + tv(1)) − (ϕ

(2)
k + tv(2)) ◦ Φϕk+tv

〉

+ t
〈

(

(Dν)(ϕk)
)

(v), ϕ
(1)
k − ϕ

(2)
k ◦ Φϕk+tv

〉

−
〈

νϕk
, ϕ

(1)
k − ϕ

(2)
k ◦ Φϕk

〉]

.

7



If Φϕ is continuous in ϕ, that is limt→0 Φϕk+tv = Φϕk
, this reduces to

(Dg)(ϕk)(v) =
〈

νϕk
, v(1) − v(2) ◦Φϕk

〉

+
〈

(Dν)(ϕk)(v), ϕ
(1)
k −ϕ

(2)
k ◦Φϕk

〉

.

Plugging this expression into (6), our linearized contact condition reads

0 ≤ g(ϕk) +
〈

νϕk
, v(1) − v(2) ◦Φϕk

〉

+
〈

(Dν)(ϕk)(v), ϕ
(1)
k −ϕ

(2)
k ◦Φϕk

〉

. (8)

For simplicity’s sake, in the following we will assume the last term of (8) to be
small enough to drop it. What remains is

〈

− νϕk
, v(1) − v(2) ◦ Φϕk

〉

≤ g(ϕk),

and is well-known from two-body contact problems in linear elastomechanics.
It is therefore appropriate to use a discretization from this field. Wohlmuth
and Krause [17] used a special mortar formulation which we will adopt here. It
guarantees optimal a priori error estimates. Let ϕh,k be a function from the
space of first-order Lagrangian finite elements Sh. We call vh a weakly linearly

admissible correction with respect to ϕh,k if

∫

γ
(1)
k

〈−νϕh,k
, v

(1)
h − v

(2)
h ◦ Φϕh,k

〉ψ ds ≤

∫

γ
(1)
k

g(ϕh,k)ψ ds

for all test functions ψ from a suitable space Mh defined on γ
(1)
k . Mh is called

a mortar space. In [17] it is shown that a suitable choice for Mh is the space of
dual basis mortar functions. It enjoys the property that there is a basis Ψ such
that for any ψp ∈ Ψ and any nodal basis function θq of Sh|γ(1)

k

∫

γ
(1)
k

ψpθq ds = δpq

∫

γ
(1)
k

θq ds (9)

holds. Let u(1) and u(2) be the vectors of normal displacement on γ
(1)
k and γ

(2)
k ,

respectively, and set g = (gp), with gp =
∫

γ
(1)
k

g(ϕk)ψp ds for all p ∈ N ∩ γ
(1)
k .

The discrete version of the set Kk can then be written algebraically as

Kh,k = {u ∈ R
n | Mu(2) − Du(1) ≤ g} (10)

with

M = (mpq) =

∫

γ
(1)
k

(θ(2)q ◦ Φϕk
)ψp ds

and

D = (dpq) =

∫

γ
(1)
k

θ(1)q ψp ds,

where θ
(1)
i and θ

(2)
i denote the restrictions of the nodal basis functions of the

transformed FE space Sh(ϕk(Ω)) on γ
(1)
k and γ

(2)
k , respectively. Note that due

to the orthogonality property (9), D is a diagonal matrix, whereas M is not.
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3.2 Monotone Multigrid Methods

Monotone multigrid methods were presented by Kornhuber [9]. They solve
convex minimization problems without the need for any regularization, and
converge globally and with asymptotic multigrid convergence rates. Kornhuber
and Krause [11] applied them to single-body contact problems.

It is customary to introduce monotone multigrid methods as a subspace
correction technique. Given the problem

minimize J on K (11)

with
K = {v ∈ Sh | v(p) ∈ [ap, bp] ∀p ∈ N}, (12)

where −∞ ≤ ap ≤ bp ≤ ∞, the idea is to span Sh by a set of search directions
from the set Λ = Λ0 ∪ Λc. The Λ0 are the standard nodal basis functions,
sufficient by themselves to span Sh, whereas the coarse grid corrections from
the set Λc are used to accelerate convergence. Then loop over all directions λi

in Λ and solve the problem

minimize J(s) = J(wi−1 + sλi) on K

where the wi =
∑

k≤i skλk are the previous iterates.
If J is a quadratic functional, the algorithm can be interpreted in terms of

linear multigrid theory. The loop over Λ0 is equivalent to a projected Gauß-
Seidel iteration. This kind of iterative method is only convergent if the set
K has tensor-product structure [5], and the same requirement carries over to
monotone multigrid methods. The coarse grid corrections Λc can be chosen
to be the standard coarse grid nodal basis functions. To minimize in their
directions then means a coarse grid Gauß-Seidel iteration which projects onto a
suitable coarsification of K. Details on how to construct the coarse sets Kj can
be found in [9].

If Problem (11) is convex, it was shown in [9] that the monotone multigrid
algorithm converges globally to the unique minimizer. In other cases, however, it
is easy to see that the algorithm may get stuck at first-order critical points of J .
Numerical evidence suggests that this does not impair the overall convergence
of the SQP-trust-region algorithm with a monotone multigrid method used to
solve the QPs. Also, modifications of the standard SQP idea exist which are
proven to be globally convergent even if the inner QP is only solved up to a
first-order critical point [13].

3.3 Transforming the Ansatz Space

This section presents a special basis transformation of the finite element spaces

S
(i)
h . In the new basis, the set Kk, originally affinely bounded, turns into a set of

box constraints. The reason for this transformation is that monotone multigrid
methods need the admissible set Kk to be bounded by box constraints for global
convergence. In our case Kk is the intersection between the trust-region Ktr

k
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and the set of linearly admissible deformations Kh,k (10). Since we defined the
trust-region using the ∞-norm, it is bounded by box constraints. However, it
is easy to see that Kh,k is not. Indeed, taking into account Def. (10), since the
matrix M is not diagonal it couples the obstacles for several variables.

Wohlmuth and Krause [17] used the following trick to overcome this problem.
Let Θ be the standard nodal basis of Sh(ϕ(Ω)), split up as

Θ = {θ(1), θ
(1)
C , θ(2), θ

(2)
C }T ,

where θ
(1)
C , θ

(2)
C are the hat functions of grid nodes on the contact boundaries

γ
(1)
k and γ

(2)
k , and θ(1), θ(2) are the hat functions in the interiors of Ω(1) and

Ω(2), respectively. Now introduce the transformed basis

Θ̂k =









I 0 0 0
0 I 0 0
0 0 I 0
0 (D−1

k Mk)T 0 I



















θ(1)

θ
(1)
C

θ(2)

θ
(2)
C











. (13)

The matrices D−1
k and Mk have a subscript k because they depend on the

iteration k. Set up ∈ R
d the displacement at a vertex p ∈ N . In the basis Θ̂,

the set Kh,k of admissible displacements reads

K̂h,k = {u = (up)p∈N | 〈ν, up〉 ≤ gp ∀p ∈ γ
(1)
k },

and the obstacles decouple into small d-dimensional problems.
When implementing a multigrid method in this basis, the coarse grid correc-

tion spaces and the corresponding coarse admissible sets have to be transformed
as well. Details can be found in [17], as well as [10] and [14].

In a full SQP scheme, estimates for the Lagrange multiplyers are necessary
to compute the Hessian matrix of the Lagrangian functional at each iteration k.
The multiplyers of the solution of the previous quadratic program can serve that
purpose [3]. Since the basis of the ansatz space is transformed at each iteration
step, the Lagrange multiplyers have to be transformed as well. Let Bk denote
the matrix from Equation (13) and let µk be the vector of Lagrange multiplyers
of iteration k in the basis Θ̂k. Then µk+1 = Bk+1B

−1
k µk is the same vector in

the basis Θ̂k+1. This expression can be evaluated efficiently by noting that

B−1
k =









I 0 0 0
0 I 0 0
0 0 I 0
0 −(D−1

k Mk)T 0 I









.

4 Numerical Results

In this last section we show numerical results obtained with our new algorithm.
In order to demonstrate its advantages, we will use a standard benchmark prob-
lem, which has been used by other groups in the past (see e.g. [4] for a 2d
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Figure 4: Coarse grid for the 3d
example

Figure 5: Solution after three
refinement steps

Figure 6: Cut through the von-
Mises stress field at different scales
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variant).The example consists of an elastic ring being pressed onto an equally
elastic foundation (Fig. 4). The material is Neo-Hookean with material param-
eters E = 103, ν = 0.3 for the ring and E = 108, ν = 0.3 for the block. The
latter is clamped on its vertical sides, and a downward displacement is applied
to the top ends of the ring. In order to show that the solver works on arbitrary
grids, we have chosen an unstructed tetrahedral grid, containing 1409 vertices.

The Neo-Hookean energy functional is not defined for deformations that
induce inverted elements. Therefore, when large displacement boundary condi-
tions are prescribed, it is sometimes necessary to apply them in several loading
steps. Generally,the number of steps needed depends on the size of the elements
and on the convergence properties of the solver. Since our solver is globally con-
vergent (cf. Sec. 3), we can choose the load increments arbitrarily large, as long
as no element gets inverted. Loading was performed in eight steps for the ex-
ample in Fig. 4. Since the coarse grid by itself is already quite large, we use
the inner-point solver IPOpt [16] to solve the coarse grid problems. Inner-point
methods are fast on problems of the size of the coarse grid, but scale badly for
larger problems.

After having applied the full displacement, we refine and iterate on each level.
We measure multigrid convergence in the energy norm of the associated linear
elasticity problem, and trust-region convergence in the infinity-norm. Fig. 5
shows the solution on a grid that has been refined once uniformly and then
another two times locally around the areas of actual contact. Fig. 6 shows a
cut through the von-Mises stress field of the same solution. The final solution,
containing 400578 degrees of freedom was obtained after about three and a half
hours on a 1.7Ghz single-processor machine.

Fig. 7 shows the number of multigrid steps necessary for each trust-region
iteration. Several things can be inferred from this chart. First of all, the trust-
region solver converges quickly. After nine steps necessary to solve the problem
on the second grid level, it only needs four resp. three on the subsequent levels.
Secondly, the multigrid convergence rates are grid level independent. This was to
be expected from multigrid methods, and shows the usefulness of the algorithm
for large-scale problems. The peak in the second-level curve is due to the fact
that the corresponding trust-region iteration had to be redone twice until a
suitable trust-region radius ρ was found.

All results in this chapter have been obtained using the Dune [1] numerics
system.
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