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Abstract. The framework of mortar methods [3,4] provides a powerful tool to
analyze the coupling of different discretizations across subregion boundaries. We
present an alternative Lagrange multiplier space without loosing the optimality of
the a priori bounds [10]. By means of the biorthogonality between the nodal basis
functions of our new Lagrange multiplier space and the finite element trace space,
we derive a symmetric positive definite mortar formulation on the unconstrained
product space. This new variational problem is the starting point for the application
of our multigrid method. Level independent convergence rates for the W—cycle can
be established, provided that the number of smoothing steps is large enough.

1 Introduction

Mortar methods, introduced in [3,4], provide a powerful tool to analyze do-
main decomposition techniques based on the coupling of different discretiza-
tion schemes or of nonmatching triangulations across interior interfaces. The
pointwise continuity of the solution at the interior interfaces is replaced by
a weaker one. So far there have been two possibilities to realize these weak
continuity conditions. One includes the constraints in the definition of the
finite element space resulting in a positive definite formulation on the non-
conforming constrained space Vj. An equivalent approach is given in terms
of the Lagrange multiplier space My, and gives rise to a saddle point formu-
lation on the unconstrained space X x My. Efficient iterative solvers have
been introduced and analyzed in [1,5-9]; see also the literature cited therein.

Working with the alternative Lagrange multiplier space gives diagonal
mass matrices on the non—mortar sides. To find the Lagrange multiplier
in terms of the solution and the right hand side, we have to invert these
mass—matrices. Using the biorthogonality relation, we can locally eliminate
the Lagrange multiplier, and obtain a symmetric positive definite variational
problem on X}. We define our multigrid method in terms of level dependent
bilinear forms and a special class of smoothing operators. Then, level inde-
pendent convergence rates for the YW—cycle can be shown provided that the
number of smoothing steps is large enough.

The rest of this paper is organized as follows: In Section 2, we define
the dual basis functions for the Lagrange multiplier space, and present the
different equivalent mortar formulations for the scalar elliptic case and linear



elasticity problems. Section 3 concerns the introduction of the new positive
definite formulation on the unconstrained product space. In Section 4, we
specify the level dependent bilinear forms, and introduce a special class of
smoothers. Finally, in Section 5 we present numerical examples for the scalar
case as well as for a linear elasticity problem.

2 A dual basis as Lagrange multiplier space

In this section, the positive definite nonconforming system and the saddle
point, problem for a mortar formulation with an alternative Lagrange mul-
tiplier, defined by a dual basis, are given. The same qualitative a priori es-
timates as for the original mortar method can be established for this new
Lagrange multiplier space.

Let 2 be a bounded, polygonal domain in R>. We assume that 2 =
UK, £2;, is geometrically conforming decomposed into K non-overlapping
polyhedral subdomains (2;. Each subdomain (2}, is associated with a family
of shape regular simplicial triangulations 7y, , hy < hgo, where hy is the
meshsize parameter of 75,. We use piecewise linear conforming finite ele-
ments S1 ({2, Th,) on the individual subdomains, and enforce homogeneous
Dirichlet boundary conditions on 92 N 9£2;. A common edge between two
subdomains, 2; N 92y, is called interface and denoted by v,,, 1 <m < M.
Each interface ~,, is associated with a one dimensional triangulation, inher-
ited either from 7, or from 7j,. Then, the non-mortar side is the one from
which the Lagrange multiplier space inherits its triangulation. The opposite
side is called mortar side.

Let the unconstrained product space X be defined by

K

Xh = H (Sl(Qkaﬁk))d’

k=1

where d = 1 in the scalar case and d = 2 for an elasticity problem. We remark
that for an element v € X}, arbitrary jumps at the interfaces are allowed and
no constraints are imposed across the interfaces.

As in the standard mortar context, we define the global Lagrange multi-
plier space as a product space

(Mh(’ym))d )

=

Mh =

m=1

where M}, (v.,) is spanned by nodal basis functions ; associated with the
interior vertices p; of the non—mortar sides. We do not take the standard
hat functions for v; but shifted ones. The dual basis functions, v;, have the
same support as the standard hat functions, ¢;, and are locally given by
; := 3¢; — 1 if p; is not adjacent to an endpoint of ~,,. In the case that p; is



adjacent to one of the two endpoints of 7,,, we have to modify the definition
locally such that ) ,4; = 1 on 7, holds. We refer to [10] for details. It is
easy to see that the following biorthogonality relation holds:

/wmda:m/mda, 1<k < v, (1)
Ym Ym

where v,, is the number of interior vertices on ,,. As a consequence, the
mass—matrix on the non—mortar side is reduced to a diagonal one.

In a next step, we define the constrained global finite element space V}, in
terms of X}, M}, and the bilinear form b(-, -)

M K P M . N
b, ) = S (o], v TT (2 e TT ((EEm)")
m=1 k=1 m=1

where [-] stands for the jump across the interface and (-, -) denotes the duality
pairing. We can now define our constrained space V}, similar to the standard
mortar approach by Vi, := {v € X5, | b(v,u) = 0, p € Mp}. We remark
that this is a nonconforming approach and the finite element spaces V55, and
V}, are not nested. The nonconforming mortar formulation can be written as:
Find uy € Vj, such that

a(up,v) = (f,v)0, vEVy, (2)

where the bilinear form is a(-,-) is in the scalar case given by a(u,v) :=
Zle ka aVv Vwdz for u,v € Hle H(§2;) and in the case of linear elas-
ticity by

K 2
a(u,v) =% > [ Eijim 539;:, g;’] drv, wu,v€ Hszl(Hl(Qk))2.

k=1 i,j,l,m=1

Here, the coefficient function a and Hooke’s tensor E are assumed to be
sufficiently smooth, and f € (L%(12))%.

Introducing the Lagrange multiplier as an additional unknown, we obtain
an equivalent saddle point problem [3]. The weak continuity is not enforced
by construction on the space but guaranteed by the second equation of the
saddle point problem: Find (up, Ap) € Xp X M),

a(u,v) +b(v,\) = (f,v)o, v€ Xy, 3)
b(u, 1) =0,  peMy.

Optimal a priori estimates for the discretization errors in the energy norm,
the L?-norm and a suitable norm for the Lagrange multiplier space have been
established in [10] for this new Lagrange multiplier space. In particular, it has
been shown that the dual Lagrange multiplier space yields the same order of
convergence as the standard multiplier space. Under the assumption of full
H?2-regularity, we obtain an order h? a priori estimate for the discretization
error, see [10].



3 Positive definite formulation

In this section, we introduce the symmetric positive definite variational for-
mulation on the unconstrained product space Xj. The corresponding level
dependent bilinear forms are defined, and the algebraic formulation of the
positive definite problem is given.

Let us first consider the linear functional g : X, — X} by g(v) :=
2%21 oy 22:1 Qg0 Prie, where the coefficients ag,p are given by ag, =
b(v, Yr:e)/ fvm ®k;e do. Then, it can be easily verified that g(v) =0, v € X}, if
and only if v € V},. Moreover, g(+) is a projection and we have g(g(v)) = g(v).

The following lemma can be found in [11] and defines a new equivalent
mortar formulation on the unconstrained product space X}, in terms of the
projection g(-).

Lemma 1. Let up € Vj, be the unique solution of (2), then uy, is the unique
solution of the positive definite symmetric variational problem

an(un, v) := a(un —g(un),v—g(v)) +alg(un),g(v)) = (f,v=g(v))o, v € )((Z)

The proof is based on a suitable decomposition of v € Xj; v = (v — g(v)) +
g(v). We remark that this decomposition is not uniformly stable in the bro-
ken H!'-norm. Thus, the new bilinear form ay(,-) is not uniformly continu-
ous with respect to the broken H'-norm. However, its condition number is
bounded by ¢/h?. For the details, we refer to [11].

The algebraic formulation of (4) can be obtained by decomposing the so-
lution uy, into two components u?” = (u¥,u%;). The first one, uy, is associated
with the interior nodes of the subdomains, all nodes on the mortar sides and
the nodes at the endpoints of the non—mortar sides, and the second one, up,
with the interior nodes on the non—mortar sides. Then, the biorthogonal-
ity relation (1) yields that the matrix B associated with the bilinear form
b(-,-) has the following structure BT = (M7, DT), where D is a diagonal
matrix and M is sparse containing block mass—-matrices and its band width
depends on the local ratio of the meshsizes on mortar and adjacent non—
mortar sides. Introducing W7 := (0, D™'), using the explicit representation
M =WT(f + AWBT —1d)uy)), and setting p = WTA(W BT —1d)v in the
saddle point variational problem (3), we find Asuj, = fs := (Id — BWT)f,
where

Ag == (Id, (BWT — Id)AW) <BAT g) <WTA(I/I§C]}3’T B Id)> . (5)

The following lemma has been established in [11].

Lemma 2. The algebraic form of the variational problem (4) is given by (5).



4 Multigrid convergence

The proof of the multigrid method will be based on suitable approximation
and smoothing properties. A general approximation property for the saddle
point formulation can be established in the case of the standard Lagrange
multiplier spaces which are nested. This is not the case of our new mortar dis-
cretization, My, ¢ Mj,. For this special M}, a weaker approximation property
has been shown in [9], where the following lemma can be found.

Lemma 3. A suitable approximation property holds if the standard restric-
tion is replaced a modified one, (Imod)ih, and the smoother satisfies W;fdh =
0, where dy, is the residuum after m > 1 smoothing steps.

The definition of (Imeq)2" is motivated by the following observation: Applying
the standard restriction I,%h: Xp — Xy, on dp, does not, in general, yields
Wi I?hdy, = 0, even if WI'd, = 0. We now define

(Imoa) " := (Id — Bop, Wb ) TP, (6)

and find by construction W (Inoa)?"ds = 0.

To satisfy WhT dp, = 0, we consider a special class of smoothing operators.
Observing that the condition W}T dp, = 0 is equivalent to z, € V}, where
zp, is the iterate in the mth—smoothing step, it is easy to construct suit-
able smoothers. The implementation is not based on Ag but on A,um, where
Apum is obtained from Ag by multiplying the second block line with A]_Vﬁv,
and the observation that wu, satisfies Apumun = fs. A closer look at this
line yields that (up)y = —D~'MT (uy);. Thus a suitable smoother has to
satisfy the second block line of the system exactly. Since the block diagonal
matrix is the identity, this can be easily achieved. In particular, a Gauf3Seidel
smoother where the unknowns are ordered blockwise like (uf,u%)? guar-
antees W,f dp, = 0, and thus satisfies the assumptions of the approximation
lemma. We remark that other smoothing operators, e.g., ILU-type smoother,
can also be used, if they are modified by one postprocessing step. Addition-
ally, one has to solve a scalar equation for each unknown on the interior of
the non—mortar sides. Our multigrid method will be now defined in terms of
Apum, the modified restriction (Imod)ih, the special smoother and the stan-
dard prolongation Ié’h. A symmetrized version can be obtained by replacing
I by (Id — Wy BI') I}, | and using a symmetric smoother.

The following theorem is based on the smoothing and approximation prop-
erties and can be found in [9]. We remark that the implementation of Anym
is based on static condensation, which can be carried out locally, and the
saddle point problem.

Theorem 4. The convergence rates for the W—cycle are independent of the
number of refinement levels provided that the number of smoothing steps is
large enough.



5 Numerical examples

The method described above has been implemented in the framework of the
finite element toolbox UG [2]. In particular, the subroutines for computing
Apum and the modified defect restriction have been implemented. We present
numerical results for the scalar case as well as for linear elasticity on a L.—
shaped domain. In both examples, linear elements on triangles and bilinear
elements on quadrilaterals are used. The coarse grid used for both computa-
tions is shown in the left of Figure 1. Standard uniform refinement techniques
are used. For our numerical experiments, we used a symmetric Gauf3Seidel

smoother.

Let us first consider the linear elastic case. The domain is given by
2 =10,1]x[0,1]\[0.5, 1] x[0.5, 1]. Hooke’s tensor is resulting from plane strain
assumption and the material parameters are A = 121154 and p = 161538.
Dirichlet conditions are imposed on the upper u = (0,—0.01) and right
u = (—0.01,0) part of the boundary as well as on the lower left part of
the boundary Here, we have u;y = 0 for z = 0, y < 0.5 and uy = 0 for
z < 0.5, y=0.0. The resulting deformed grid scaled by a factor of ten is
shown in the left part of Figure 1. The asymptotic convergence rates for the

Fig. 1. Distorted grid (elasticity) (left), coarse grid (middle) and isolines (scalar)
(right)
W-—cycle are depicted in Figure 3 and confirm our theoretical findings as they
get constant for small h. Here, for the V—cycle we used a different coarse grid
consisting of nonmatching quadrilaterals. The results are shown on the left of
Figure 3. The V—cycle does not behave as well as the W—-cycle. However, for
small h the convergence rates might be independent of the refinement level.
As second and scalar elliptic example we consider the problem —Au =1

convergence rate
convergence rate
convergence rate
convergence rate
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Number of elements Number of elements Number of elements Number of elements
V(1,1)-cycle V(3,3)—cycle W(1,1)-cycle W(3,3)-cycle
Fig. 2. Convergence rates for a Gau—Seidel smoother (scalar elliptic)

and homogeneous boundary conditions on the same L—shaped domain as de-
scribed above. Again, the theoretical results for the YW—cycle are confirmed



by the numerical ones. Furthermore, we obtain level independent convergence
rates for the V(3, 3)—cycle and the convergence rates of the V(1, 1)-cycle seem
to get independent of the level for small h. For further scalar elliptic exam-
ples showing the robustness of the method for problems with discontinuous
coefficients or domains involving crosspoint, we refer to [11]. In addition, even
the V—cycle for a problem involving a domain with a slit is shown to converge
independent of the refinement level.
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V(1,1)-cycle V(3,3)—cycle W(1,1)-cycle W(3,3)-cycle

Fig. 3. Convergence rates for a Gaufi—Seidel smoother (linear elasticity)
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