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Abstrat. The framework of mortar methods [3,4℄ provides a powerful tool to

analyze the oupling of di�erent disretizations aross subregion boundaries. We

present an alternative Lagrange multiplier spae without loosing the optimality of

the a priori bounds [10℄. By means of the biorthogonality between the nodal basis

funtions of our new Lagrange multiplier spae and the �nite element trae spae,

we derive a symmetri positive de�nite mortar formulation on the unonstrained

produt spae. This new variational problem is the starting point for the appliation

of our multigrid method. Level independent onvergene rates for the W{yle an

be established, provided that the number of smoothing steps is large enough.

1 Introdution

Mortar methods, introdued in [3,4℄, provide a powerful tool to analyze do-

main deomposition tehniques based on the oupling of di�erent disretiza-

tion shemes or of nonmathing triangulations aross interior interfaes. The

pointwise ontinuity of the solution at the interior interfaes is replaed by

a weaker one. So far there have been two possibilities to realize these weak

ontinuity onditions. One inludes the onstraints in the de�nition of the

�nite element spae resulting in a positive de�nite formulation on the non-

onforming onstrained spae V

h

. An equivalent approah is given in terms

of the Lagrange multiplier spae M

h

, and gives rise to a saddle point formu-

lation on the unonstrained spae X

h

�M

h

. EÆient iterative solvers have

been introdued and analyzed in [1,5{9℄; see also the literature ited therein.

Working with the alternative Lagrange multiplier spae gives diagonal

mass matries on the non{mortar sides. To �nd the Lagrange multiplier

in terms of the solution and the right hand side, we have to invert these

mass{matries. Using the biorthogonality relation, we an loally eliminate

the Lagrange multiplier, and obtain a symmetri positive de�nite variational

problem on X

h

. We de�ne our multigrid method in terms of level dependent

bilinear forms and a speial lass of smoothing operators. Then, level inde-

pendent onvergene rates for the W{yle an be shown provided that the

number of smoothing steps is large enough.

The rest of this paper is organized as follows: In Setion 2, we de�ne

the dual basis funtions for the Lagrange multiplier spae, and present the

di�erent equivalent mortar formulations for the salar ellipti ase and linear



elastiity problems. Setion 3 onerns the introdution of the new positive

de�nite formulation on the unonstrained produt spae. In Setion 4, we

speify the level dependent bilinear forms, and introdue a speial lass of

smoothers. Finally, in Setion 5 we present numerial examples for the salar

ase as well as for a linear elastiity problem.

2 A dual basis as Lagrange multiplier spae

In this setion, the positive de�nite nononforming system and the saddle

point problem for a mortar formulation with an alternative Lagrange mul-

tiplier, de�ned by a dual basis, are given. The same qualitative a priori es-

timates as for the original mortar method an be established for this new

Lagrange multiplier spae.

Let 
 be a bounded, polygonal domain in IR

2

. We assume that 
 =

[

K

k=1




k

is geometrially onforming deomposed into K non{overlapping

polyhedral subdomains 


k

. Eah subdomain 


k

is assoiated with a family

of shape regular simpliial triangulations T

h

k

, h

k

� h

k;0

, where h

k

is the

meshsize parameter of T

h

k

. We use pieewise linear onforming �nite ele-

ments S

1

(


k

; T

h

k

) on the individual subdomains, and enfore homogeneous

Dirihlet boundary onditions on �
 \ �


k

. A ommon edge between two

subdomains, �


l

\�


k

, is alled interfae and denoted by 

m

; 1 � m �M .

Eah interfae 

m

is assoiated with a one dimensional triangulation, inher-

ited either from T

h

k

or from T

h

l

. Then, the non{mortar side is the one from

whih the Lagrange multiplier spae inherits its triangulation. The opposite

side is alled mortar side.

Let the unonstrained produt spae X

h

be de�ned by

X

h

:=

K

Y

k=1

�

S

1

(


k

; T

h

k

)

�

d

;

where d = 1 in the salar ase and d = 2 for an elastiity problem. We remark

that for an element v 2 X

h

, arbitrary jumps at the interfaes are allowed and

no onstraints are imposed aross the interfaes.

As in the standard mortar ontext, we de�ne the global Lagrange multi-

plier spae as a produt spae

M

h

:=

M

Y

m=1

�

M

h

(

m

)

�

d

;

where M

h

(

m

) is spanned by nodal basis funtions  

i

assoiated with the

interior verties p

i

of the non{mortar sides. We do not take the standard

hat funtions for  

i

but shifted ones. The dual basis funtions,  

i

, have the

same support as the standard hat funtions, �

i

, and are loally given by

 

i

:= 3�

i

� 1 if p

i

is not adjaent to an endpoint of 

m

. In the ase that p

i

is



adjaent to one of the two endpoints of 

m

, we have to modify the de�nition

loally suh that

P

i

 

i

= 1 on 

m

holds. We refer to [10℄ for details. It is

easy to see that the following biorthogonality relation holds:

Z



m

 

l

�

k

d� = Æ

lk

Z



m

�

k

d�; 1 � l; k � �

m

; (1)

where �

m

is the number of interior verties on 

m

. As a onsequene, the

mass{matrix on the non{mortar side is redued to a diagonal one.

In a next step, we de�ne the onstrained global �nite element spae V

h

in

terms of X

h

, M

h

and the bilinear form b(�; �)

b(v; �) :=

M

X

m=1

h[v℄; �i



m

; v 2

K

Y

k=1

�

H

1

(


k

)

�

d

; � 2

M

Y

m=1

�

�

H

1

2

(

m

)

�

d

�

0

;

where [�℄ stands for the jump aross the interfae and h�; �i denotes the duality

pairing. We an now de�ne our onstrained spae V

h

similar to the standard

mortar approah by V

h

:= fv 2 X

h

j b(v; �) = 0; � 2 M

h

g. We remark

that this is a nononforming approah and the �nite element spaes V

2h

and

V

h

are not nested. The nononforming mortar formulation an be written as:

Find u

h

2 V

h

suh that

a(u

h

; v) = (f; v)

0

; v 2 V

h

; (2)

where the bilinear form is a(�; �) is in the salar ase given by a(u; v) :=

P

K

k=1

R




k

arvrw dx for u; v 2

Q

K

k=1

H

1

(


k

) and in the ase of linear elas-

tiity by

a(u; v) :=

K

P

k=1

2

P

i;j;l;m=1

R




k

E

ijlm

�u

l

�x

m

�v

i

�v

j

dx; u; v 2

Q

K

k=1

(H

1

(


k

))

2

:

Here, the oeÆient funtion a and Hooke's tensor E are assumed to be

suÆiently smooth, and f 2 (L

2

(
))

d

.

Introduing the Lagrange multiplier as an additional unknown, we obtain

an equivalent saddle point problem [3℄. The weak ontinuity is not enfored

by onstrution on the spae but guaranteed by the seond equation of the

saddle point problem: Find (u

h

; �

h

) 2 X

h

�M

h

a(u; v) + b(v; �) = (f; v)

0

; v 2 X

h

;

b(u; �) = 0; � 2M

h

:

(3)

Optimal a priori estimates for the disretization errors in the energy norm,

the L

2

{norm and a suitable norm for the Lagrange multiplier spae have been

established in [10℄ for this new Lagrange multiplier spae. In partiular, it has

been shown that the dual Lagrange multiplier spae yields the same order of

onvergene as the standard multiplier spae. Under the assumption of full

H

2

{regularity, we obtain an order h

2

a priori estimate for the disretization

error, see [10℄.



3 Positive de�nite formulation

In this setion, we introdue the symmetri positive de�nite variational for-

mulation on the unonstrained produt spae X

h

. The orresponding level

dependent bilinear forms are de�ned, and the algebrai formulation of the

positive de�nite problem is given.

Let us �rst onsider the linear funtional g : X

h

�! X

h

by g(v) :=

P

M

m=1

P

�

m

l=1

P

d

k=1

�

k;`

�

k;`

, where the oeÆients �

k;`

are given by �

k;`

:=

b(v;  

k;`

)=

R



m

�

k;`

d�. Then, it an be easily veri�ed that g(v) = 0, v 2 X

h

if

and only if v 2 V

h

. Moreover, g(�) is a projetion and we have g(g(v)) = g(v).

The following lemma an be found in [11℄ and de�nes a new equivalent

mortar formulation on the unonstrained produt spae X

h

in terms of the

projetion g(�).

Lemma 1. Let u

h

2 V

h

be the unique solution of (2), then u

h

is the unique

solution of the positive de�nite symmetri variational problem

â

h

(u

h

; v) := a(u

h

�g(u

h

); v�g(v))+a(g(u

h

); g(v)) = (f; v�g(v))

0

; v 2 X

h

:

(4)

The proof is based on a suitable deomposition of v 2 X

h

; v = (v � g(v)) +

g(v). We remark that this deomposition is not uniformly stable in the bro-

ken H

1

{norm. Thus, the new bilinear form â

h

(�; �) is not uniformly ontinu-

ous with respet to the broken H

1

{norm. However, its ondition number is

bounded by =h

2

. For the details, we refer to [11℄.

The algebrai formulation of (4) an be obtained by deomposing the so-

lution u

h

into two omponents u

T

= (u

T

I

; u

T

N

). The �rst one, u

I

, is assoiated

with the interior nodes of the subdomains, all nodes on the mortar sides and

the nodes at the endpoints of the non{mortar sides, and the seond one, u

N

,

with the interior nodes on the non{mortar sides. Then, the biorthogonal-

ity relation (1) yields that the matrix B assoiated with the bilinear form

b(�; �) has the following struture B

T

= (M

T

; D

T

), where D is a diagonal

matrix and M is sparse ontaining blok mass{matries and its band width

depends on the loal ratio of the meshsizes on mortar and adjaent non{

mortar sides. Introduing W

T

:= (0; D

�1

), using the expliit representation

�

h

=W

T

(f +A(WB

T

� Id)u

h

)), and setting � =W

T

A(WB

T

� Id)v in the

saddle point variational problem (3), we �nd A

S

u

h

= f

S

:= (Id � BW

T

)f ,

where

A

S

:= (Id; (BW

T

� Id)AW )

�

A B

B

T

0

��

Id

W

T

A(WB

T

� Id)

�

: (5)

The following lemma has been established in [11℄.

Lemma 2. The algebrai form of the variational problem (4) is given by (5).



4 Multigrid onvergene

The proof of the multigrid method will be based on suitable approximation

and smoothing properties. A general approximation property for the saddle

point formulation an be established in the ase of the standard Lagrange

multiplier spaes whih are nested. This is not the ase of our new mortar dis-

retization,M

2h

6�M

h

. For this speialM

h

a weaker approximation property

has been shown in [9℄, where the following lemma an be found.

Lemma 3. A suitable approximation property holds if the standard restri-

tion is replaed a modi�ed one, (I

mod

)

2h

h

, and the smoother satis�es W

T

h

d

h

=

0, where d

h

is the residuum after m � 1 smoothing steps.

The de�nition of (I

mod

)

2h

h

is motivated by the following observation: Applying

the standard restrition I

2h

h

:X

h

�! X

2h

on d

h

does not, in general, yields

W

T

2h

I

2h

h

d

h

= 0, even if W

T

h

d

h

= 0. We now de�ne

(I

mod

)

2h

h

:= (Id�B

2h

W

T

2h

) I

2h

h

; (6)

and �nd by onstrution W

T

2h

(I

mod

)

2h

h

d

h

= 0.

To satisfy W

T

h

d

h

= 0, we onsider a speial lass of smoothing operators.

Observing that the ondition W

T

h

d

h

= 0 is equivalent to z

h

2 V

h

, where

z

h

is the iterate in the mth{smoothing step, it is easy to onstrut suit-

able smoothers. The implementation is not based on A

S

but on A

num

, where

A

num

is obtained from A

S

by multiplying the seond blok line with A

�1

NN

,

and the observation that u

h

satis�es A

num

u

h

= f

S

. A loser look at this

line yields that (u

h

)

N

= �D

�1

M

T

(u

h

)

I

. Thus a suitable smoother has to

satisfy the seond blok line of the system exatly. Sine the blok diagonal

matrix is the identity, this an be easily ahieved. In partiular, a Gau�Seidel

smoother where the unknowns are ordered blokwise like (u

T

I

; u

T

N

)

T

guar-

antees W

T

h

d

h

= 0, and thus satis�es the assumptions of the approximation

lemma. We remark that other smoothing operators, e.g., ILU{type smoother,

an also be used, if they are modi�ed by one postproessing step. Addition-

ally, one has to solve a salar equation for eah unknown on the interior of

the non{mortar sides. Our multigrid method will be now de�ned in terms of

A

num

, the modi�ed restrition (I

mod

)

2h

h

, the speial smoother and the stan-

dard prolongation I

h

2h

. A symmetrized version an be obtained by replaing

I

h

2h

by (Id�W

h

B

T

h

)I

h

2h

, and using a symmetri smoother.

The following theorem is based on the smoothing and approximation prop-

erties and an be found in [9℄. We remark that the implementation of A

num

is based on stati ondensation, whih an be arried out loally, and the

saddle point problem.

Theorem 4. The onvergene rates for the W{yle are independent of the

number of re�nement levels provided that the number of smoothing steps is

large enough.



5 Numerial examples

The method desribed above has been implemented in the framework of the

�nite element toolbox UG [2℄. In partiular, the subroutines for omputing

A

num

and the modi�ed defet restrition have been implemented. We present

numerial results for the salar ase as well as for linear elastiity on a L{

shaped domain. In both examples, linear elements on triangles and bilinear

elements on quadrilaterals are used. The oarse grid used for both omputa-

tions is shown in the left of Figure 1. Standard uniform re�nement tehniques

are used. For our numerial experiments, we used a symmetri Gau�Seidel

smoother.

Let us �rst onsider the linear elasti ase. The domain is given by


 = [0; 1℄�[0; 1℄n[0:5; 1℄�[0:5; 1℄. Hooke's tensor is resulting from plane strain

assumption and the material parameters are � = 121154 and � = 161538.

Dirihlet onditions are imposed on the upper u = (0;�0:01) and right

u = (�0:01; 0) part of the boundary as well as on the lower left part of

the boundary. Here, we have u

1

= 0 for x = 0; y � 0:5 and u

2

= 0 for

x � 0:5; y = 0:0. The resulting deformed grid saled by a fator of ten is

shown in the left part of Figure 1. The asymptoti onvergene rates for the

Fig. 1. Distorted grid (elastiity) (left), oarse grid (middle) and isolines (salar)

(right)

W{yle are depited in Figure 3 and on�rm our theoretial �ndings as they

get onstant for small h. Here, for the V{yle we used a di�erent oarse grid

onsisting of nonmathing quadrilaterals. The results are shown on the left of

Figure 3. The V{yle does not behave as well as the W{yle. However, for

small h the onvergene rates might be independent of the re�nement level.

As seond and salar ellipti example we onsider the problem ��u � 1
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Fig. 2. Convergene rates for a Gau�{Seidel smoother (salar ellipti)

and homogeneous boundary onditions on the same L{shaped domain as de-

sribed above. Again, the theoretial results for the W{yle are on�rmed



by the numerial ones. Furthermore, we obtain level independent onvergene

rates for the V(3; 3){yle and the onvergene rates of the V(1; 1){yle seem

to get independent of the level for small h. For further salar ellipti exam-

ples showing the robustness of the method for problems with disontinuous

oeÆients or domains involving rosspoint, we refer to [11℄. In addition, even

the V{yle for a problem involving a domain with a slit is shown to onverge

independent of the re�nement level.
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Fig. 3. Convergene rates for a Gau�{Seidel smoother (linear elastiity)
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