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Abstra
t. The framework of mortar methods [3,4℄ provides a powerful tool to

analyze the 
oupling of di�erent dis
retizations a
ross subregion boundaries. We

present an alternative Lagrange multiplier spa
e without loosing the optimality of

the a priori bounds [10℄. By means of the biorthogonality between the nodal basis

fun
tions of our new Lagrange multiplier spa
e and the �nite element tra
e spa
e,

we derive a symmetri
 positive de�nite mortar formulation on the un
onstrained

produ
t spa
e. This new variational problem is the starting point for the appli
ation

of our multigrid method. Level independent 
onvergen
e rates for the W{
y
le 
an

be established, provided that the number of smoothing steps is large enough.

1 Introdu
tion

Mortar methods, introdu
ed in [3,4℄, provide a powerful tool to analyze do-

main de
omposition te
hniques based on the 
oupling of di�erent dis
retiza-

tion s
hemes or of nonmat
hing triangulations a
ross interior interfa
es. The

pointwise 
ontinuity of the solution at the interior interfa
es is repla
ed by

a weaker one. So far there have been two possibilities to realize these weak


ontinuity 
onditions. One in
ludes the 
onstraints in the de�nition of the

�nite element spa
e resulting in a positive de�nite formulation on the non-


onforming 
onstrained spa
e V

h

. An equivalent approa
h is given in terms

of the Lagrange multiplier spa
e M

h

, and gives rise to a saddle point formu-

lation on the un
onstrained spa
e X

h

�M

h

. EÆ
ient iterative solvers have

been introdu
ed and analyzed in [1,5{9℄; see also the literature 
ited therein.

Working with the alternative Lagrange multiplier spa
e gives diagonal

mass matri
es on the non{mortar sides. To �nd the Lagrange multiplier

in terms of the solution and the right hand side, we have to invert these

mass{matri
es. Using the biorthogonality relation, we 
an lo
ally eliminate

the Lagrange multiplier, and obtain a symmetri
 positive de�nite variational

problem on X

h

. We de�ne our multigrid method in terms of level dependent

bilinear forms and a spe
ial 
lass of smoothing operators. Then, level inde-

pendent 
onvergen
e rates for the W{
y
le 
an be shown provided that the

number of smoothing steps is large enough.

The rest of this paper is organized as follows: In Se
tion 2, we de�ne

the dual basis fun
tions for the Lagrange multiplier spa
e, and present the

di�erent equivalent mortar formulations for the s
alar ellipti
 
ase and linear



elasti
ity problems. Se
tion 3 
on
erns the introdu
tion of the new positive

de�nite formulation on the un
onstrained produ
t spa
e. In Se
tion 4, we

spe
ify the level dependent bilinear forms, and introdu
e a spe
ial 
lass of

smoothers. Finally, in Se
tion 5 we present numeri
al examples for the s
alar


ase as well as for a linear elasti
ity problem.

2 A dual basis as Lagrange multiplier spa
e

In this se
tion, the positive de�nite non
onforming system and the saddle

point problem for a mortar formulation with an alternative Lagrange mul-

tiplier, de�ned by a dual basis, are given. The same qualitative a priori es-

timates as for the original mortar method 
an be established for this new

Lagrange multiplier spa
e.

Let 
 be a bounded, polygonal domain in IR

2

. We assume that 
 =

[

K

k=1




k

is geometri
ally 
onforming de
omposed into K non{overlapping

polyhedral subdomains 


k

. Ea
h subdomain 


k

is asso
iated with a family

of shape regular simpli
ial triangulations T

h

k

, h

k

� h

k;0

, where h

k

is the

meshsize parameter of T

h

k

. We use pie
ewise linear 
onforming �nite ele-

ments S

1

(


k

; T

h

k

) on the individual subdomains, and enfor
e homogeneous

Diri
hlet boundary 
onditions on �
 \ �


k

. A 
ommon edge between two

subdomains, �


l

\�


k

, is 
alled interfa
e and denoted by 


m

; 1 � m �M .

Ea
h interfa
e 


m

is asso
iated with a one dimensional triangulation, inher-

ited either from T

h

k

or from T

h

l

. Then, the non{mortar side is the one from

whi
h the Lagrange multiplier spa
e inherits its triangulation. The opposite

side is 
alled mortar side.

Let the un
onstrained produ
t spa
e X

h

be de�ned by

X

h

:=

K

Y

k=1

�

S

1

(


k

; T

h

k

)

�

d

;

where d = 1 in the s
alar 
ase and d = 2 for an elasti
ity problem. We remark

that for an element v 2 X

h

, arbitrary jumps at the interfa
es are allowed and

no 
onstraints are imposed a
ross the interfa
es.

As in the standard mortar 
ontext, we de�ne the global Lagrange multi-

plier spa
e as a produ
t spa
e

M

h

:=

M

Y

m=1

�

M

h

(


m

)

�

d

;

where M

h

(


m

) is spanned by nodal basis fun
tions  

i

asso
iated with the

interior verti
es p

i

of the non{mortar sides. We do not take the standard

hat fun
tions for  

i

but shifted ones. The dual basis fun
tions,  

i

, have the

same support as the standard hat fun
tions, �

i

, and are lo
ally given by

 

i

:= 3�

i

� 1 if p

i

is not adja
ent to an endpoint of 


m

. In the 
ase that p

i

is



adja
ent to one of the two endpoints of 


m

, we have to modify the de�nition

lo
ally su
h that

P

i

 

i

= 1 on 


m

holds. We refer to [10℄ for details. It is

easy to see that the following biorthogonality relation holds:

Z




m

 

l

�

k

d� = Æ

lk

Z




m

�

k

d�; 1 � l; k � �

m

; (1)

where �

m

is the number of interior verti
es on 


m

. As a 
onsequen
e, the

mass{matrix on the non{mortar side is redu
ed to a diagonal one.

In a next step, we de�ne the 
onstrained global �nite element spa
e V

h

in

terms of X

h

, M

h

and the bilinear form b(�; �)

b(v; �) :=

M

X

m=1

h[v℄; �i




m

; v 2

K

Y

k=1

�

H

1

(


k

)

�

d

; � 2

M

Y

m=1

�

�

H

1

2

(


m

)

�

d

�

0

;

where [�℄ stands for the jump a
ross the interfa
e and h�; �i denotes the duality

pairing. We 
an now de�ne our 
onstrained spa
e V

h

similar to the standard

mortar approa
h by V

h

:= fv 2 X

h

j b(v; �) = 0; � 2 M

h

g. We remark

that this is a non
onforming approa
h and the �nite element spa
es V

2h

and

V

h

are not nested. The non
onforming mortar formulation 
an be written as:

Find u

h

2 V

h

su
h that

a(u

h

; v) = (f; v)

0

; v 2 V

h

; (2)

where the bilinear form is a(�; �) is in the s
alar 
ase given by a(u; v) :=

P

K

k=1

R




k

arvrw dx for u; v 2

Q

K

k=1

H

1

(


k

) and in the 
ase of linear elas-

ti
ity by

a(u; v) :=

K

P

k=1

2

P

i;j;l;m=1

R




k

E

ijlm

�u

l

�x

m

�v

i

�v

j

dx; u; v 2

Q

K

k=1

(H

1

(


k

))

2

:

Here, the 
oeÆ
ient fun
tion a and Hooke's tensor E are assumed to be

suÆ
iently smooth, and f 2 (L

2

(
))

d

.

Introdu
ing the Lagrange multiplier as an additional unknown, we obtain

an equivalent saddle point problem [3℄. The weak 
ontinuity is not enfor
ed

by 
onstru
tion on the spa
e but guaranteed by the se
ond equation of the

saddle point problem: Find (u

h

; �

h

) 2 X

h

�M

h

a(u; v) + b(v; �) = (f; v)

0

; v 2 X

h

;

b(u; �) = 0; � 2M

h

:

(3)

Optimal a priori estimates for the dis
retization errors in the energy norm,

the L

2

{norm and a suitable norm for the Lagrange multiplier spa
e have been

established in [10℄ for this new Lagrange multiplier spa
e. In parti
ular, it has

been shown that the dual Lagrange multiplier spa
e yields the same order of


onvergen
e as the standard multiplier spa
e. Under the assumption of full

H

2

{regularity, we obtain an order h

2

a priori estimate for the dis
retization

error, see [10℄.



3 Positive de�nite formulation

In this se
tion, we introdu
e the symmetri
 positive de�nite variational for-

mulation on the un
onstrained produ
t spa
e X

h

. The 
orresponding level

dependent bilinear forms are de�ned, and the algebrai
 formulation of the

positive de�nite problem is given.

Let us �rst 
onsider the linear fun
tional g : X

h

�! X

h

by g(v) :=

P

M

m=1

P

�

m

l=1

P

d

k=1

�

k;`

�

k;`

, where the 
oeÆ
ients �

k;`

are given by �

k;`

:=

b(v;  

k;`

)=

R




m

�

k;`

d�. Then, it 
an be easily veri�ed that g(v) = 0, v 2 X

h

if

and only if v 2 V

h

. Moreover, g(�) is a proje
tion and we have g(g(v)) = g(v).

The following lemma 
an be found in [11℄ and de�nes a new equivalent

mortar formulation on the un
onstrained produ
t spa
e X

h

in terms of the

proje
tion g(�).

Lemma 1. Let u

h

2 V

h

be the unique solution of (2), then u

h

is the unique

solution of the positive de�nite symmetri
 variational problem

â

h

(u

h

; v) := a(u

h

�g(u

h

); v�g(v))+a(g(u

h

); g(v)) = (f; v�g(v))

0

; v 2 X

h

:

(4)

The proof is based on a suitable de
omposition of v 2 X

h

; v = (v � g(v)) +

g(v). We remark that this de
omposition is not uniformly stable in the bro-

ken H

1

{norm. Thus, the new bilinear form â

h

(�; �) is not uniformly 
ontinu-

ous with respe
t to the broken H

1

{norm. However, its 
ondition number is

bounded by 
=h

2

. For the details, we refer to [11℄.

The algebrai
 formulation of (4) 
an be obtained by de
omposing the so-

lution u

h

into two 
omponents u

T

= (u

T

I

; u

T

N

). The �rst one, u

I

, is asso
iated

with the interior nodes of the subdomains, all nodes on the mortar sides and

the nodes at the endpoints of the non{mortar sides, and the se
ond one, u

N

,

with the interior nodes on the non{mortar sides. Then, the biorthogonal-

ity relation (1) yields that the matrix B asso
iated with the bilinear form

b(�; �) has the following stru
ture B

T

= (M

T

; D

T

), where D is a diagonal

matrix and M is sparse 
ontaining blo
k mass{matri
es and its band width

depends on the lo
al ratio of the meshsizes on mortar and adja
ent non{

mortar sides. Introdu
ing W

T

:= (0; D

�1

), using the expli
it representation

�

h

=W

T

(f +A(WB

T

� Id)u

h

)), and setting � =W

T

A(WB

T

� Id)v in the

saddle point variational problem (3), we �nd A

S

u

h

= f

S

:= (Id � BW

T

)f ,

where

A

S

:= (Id; (BW

T

� Id)AW )

�

A B

B

T

0

��

Id

W

T

A(WB

T

� Id)

�

: (5)

The following lemma has been established in [11℄.

Lemma 2. The algebrai
 form of the variational problem (4) is given by (5).



4 Multigrid 
onvergen
e

The proof of the multigrid method will be based on suitable approximation

and smoothing properties. A general approximation property for the saddle

point formulation 
an be established in the 
ase of the standard Lagrange

multiplier spa
es whi
h are nested. This is not the 
ase of our new mortar dis-


retization,M

2h

6�M

h

. For this spe
ialM

h

a weaker approximation property

has been shown in [9℄, where the following lemma 
an be found.

Lemma 3. A suitable approximation property holds if the standard restri
-

tion is repla
ed a modi�ed one, (I

mod

)

2h

h

, and the smoother satis�es W

T

h

d

h

=

0, where d

h

is the residuum after m � 1 smoothing steps.

The de�nition of (I

mod

)

2h

h

is motivated by the following observation: Applying

the standard restri
tion I

2h

h

:X

h

�! X

2h

on d

h

does not, in general, yields

W

T

2h

I

2h

h

d

h

= 0, even if W

T

h

d

h

= 0. We now de�ne

(I

mod

)

2h

h

:= (Id�B

2h

W

T

2h

) I

2h

h

; (6)

and �nd by 
onstru
tion W

T

2h

(I

mod

)

2h

h

d

h

= 0.

To satisfy W

T

h

d

h

= 0, we 
onsider a spe
ial 
lass of smoothing operators.

Observing that the 
ondition W

T

h

d

h

= 0 is equivalent to z

h

2 V

h

, where

z

h

is the iterate in the mth{smoothing step, it is easy to 
onstru
t suit-

able smoothers. The implementation is not based on A

S

but on A

num

, where

A

num

is obtained from A

S

by multiplying the se
ond blo
k line with A

�1

NN

,

and the observation that u

h

satis�es A

num

u

h

= f

S

. A 
loser look at this

line yields that (u

h

)

N

= �D

�1

M

T

(u

h

)

I

. Thus a suitable smoother has to

satisfy the se
ond blo
k line of the system exa
tly. Sin
e the blo
k diagonal

matrix is the identity, this 
an be easily a
hieved. In parti
ular, a Gau�Seidel

smoother where the unknowns are ordered blo
kwise like (u

T

I

; u

T

N

)

T

guar-

antees W

T

h

d

h

= 0, and thus satis�es the assumptions of the approximation

lemma. We remark that other smoothing operators, e.g., ILU{type smoother,


an also be used, if they are modi�ed by one postpro
essing step. Addition-

ally, one has to solve a s
alar equation for ea
h unknown on the interior of

the non{mortar sides. Our multigrid method will be now de�ned in terms of

A

num

, the modi�ed restri
tion (I

mod

)

2h

h

, the spe
ial smoother and the stan-

dard prolongation I

h

2h

. A symmetrized version 
an be obtained by repla
ing

I

h

2h

by (Id�W

h

B

T

h

)I

h

2h

, and using a symmetri
 smoother.

The following theorem is based on the smoothing and approximation prop-

erties and 
an be found in [9℄. We remark that the implementation of A

num

is based on stati
 
ondensation, whi
h 
an be 
arried out lo
ally, and the

saddle point problem.

Theorem 4. The 
onvergen
e rates for the W{
y
le are independent of the

number of re�nement levels provided that the number of smoothing steps is

large enough.



5 Numeri
al examples

The method des
ribed above has been implemented in the framework of the

�nite element toolbox UG [2℄. In parti
ular, the subroutines for 
omputing

A

num

and the modi�ed defe
t restri
tion have been implemented. We present

numeri
al results for the s
alar 
ase as well as for linear elasti
ity on a L{

shaped domain. In both examples, linear elements on triangles and bilinear

elements on quadrilaterals are used. The 
oarse grid used for both 
omputa-

tions is shown in the left of Figure 1. Standard uniform re�nement te
hniques

are used. For our numeri
al experiments, we used a symmetri
 Gau�Seidel

smoother.

Let us �rst 
onsider the linear elasti
 
ase. The domain is given by


 = [0; 1℄�[0; 1℄n[0:5; 1℄�[0:5; 1℄. Hooke's tensor is resulting from plane strain

assumption and the material parameters are � = 121154 and � = 161538.

Diri
hlet 
onditions are imposed on the upper u = (0;�0:01) and right

u = (�0:01; 0) part of the boundary as well as on the lower left part of

the boundary. Here, we have u

1

= 0 for x = 0; y � 0:5 and u

2

= 0 for

x � 0:5; y = 0:0. The resulting deformed grid s
aled by a fa
tor of ten is

shown in the left part of Figure 1. The asymptoti
 
onvergen
e rates for the

Fig. 1. Distorted grid (elasti
ity) (left), 
oarse grid (middle) and isolines (s
alar)

(right)

W{
y
le are depi
ted in Figure 3 and 
on�rm our theoreti
al �ndings as they

get 
onstant for small h. Here, for the V{
y
le we used a di�erent 
oarse grid


onsisting of nonmat
hing quadrilaterals. The results are shown on the left of

Figure 3. The V{
y
le does not behave as well as the W{
y
le. However, for

small h the 
onvergen
e rates might be independent of the re�nement level.

As se
ond and s
alar ellipti
 example we 
onsider the problem ��u � 1
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Fig. 2. Convergen
e rates for a Gau�{Seidel smoother (s
alar ellipti
)

and homogeneous boundary 
onditions on the same L{shaped domain as de-

s
ribed above. Again, the theoreti
al results for the W{
y
le are 
on�rmed



by the numeri
al ones. Furthermore, we obtain level independent 
onvergen
e

rates for the V(3; 3){
y
le and the 
onvergen
e rates of the V(1; 1){
y
le seem

to get independent of the level for small h. For further s
alar ellipti
 exam-

ples showing the robustness of the method for problems with dis
ontinuous


oeÆ
ients or domains involving 
rosspoint, we refer to [11℄. In addition, even

the V{
y
le for a problem involving a domain with a slit is shown to 
onverge

independent of the re�nement level.
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Fig. 3. Convergen
e rates for a Gau�{Seidel smoother (linear elasti
ity)
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