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Domain Deomposition methods on nonmathing grids and some applia-

tions to linear elastiity problems

Domain deomposition tehniques provide a powerful tool for the oupling of di�erent disretization methods or

nonmathing triangulations aross subregion boundaries. Here, we onsider mortar �nite elements methods for

linear elastiity and di�usion problems. These domain deomposition tehniques provide a more exible approah

than standard onforming formulations. The mortar solution is weakly ontinuous at subregion boundaries, and its

jump is orthogonal to a suitable Lagrange multiplier spae. Our approah is based on dual bases for the Lagrange

multiplier spae. It has the advantage of loally supported basis funtions for the onstrained spae. This is not

true for the standard mortar method [2℄. The biorthogonality relation guarantees that the Lagrange multiplier an be

loally eliminated, and that we obtain a symmetri positive semide�nite system on the unonstrained produt spae.

This system will be solved by multigrid tehniques. Numerial results illustrate the performane of the multigrid

method in 2D and 3D.

1. Introdution

The entral idea of domain deomposition tehniques is to deompose a global problem into subproblems of smaller

omplexity, and to \glue" the subproblems together in a suitable way. This is espeially helpful for problems given on

ompliated geometries or problems with jumps in the material oeÆients. Numerial examples for these situations

will be given in the last setion. As model problem let us onsider the following linear elastiity problem with

homogeneous Dirihlet boundary onditions
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. Eah subdomain is assoiated with an independent triangulations. Let us remark that the

triangulations do not have to math at the ommon interfae between two adjaent subdomains. The interfaes are

denoted by 

m

, 1 � m �M , and inherit their triangulation from one of the adjaent subdomains. This side is alled

non{mortar side and the opposite one mortar side. The hoie is arbitrary but �xed. We use standard pieewise

linear in 2D and pieewise trilinear in 3D onforming �nite elements on the subdomains and denote the produt

spae by X
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h

is de�ned by: V

h

:= fv 2 X

h

j b(v; �) = 0; � 2 M

h

g, where

the bilinear form b(�; �) is given as a duality pairing on the interfaes b(v; �) :=

P

M

m=1

h[v℄; �i



m

, v 2 X

h

, � 2 M

h

,
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), the bilinear form a(�; �) is uniformly ellipti on V
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), optimal a

priori bounds for the disretization error for the mortar �nite element solution are obtained in the energy norm and

the L

2

{norm, we refer to [2,5,7℄.

Dual bases for the Lagrange multiplier spae. Here, we onsider two di�erent types of dual bases in 2D

and 3D. The �rst one is spanned by pieewise linear funtions and the seond one by pieewise onstants. Figure 1

illustrates the shape of the dual basis funtions. In the left part, the 2D ase is depited whereas in the right part,

the isolines of a dual basis funtion at the two dimensional interfae in 3D are given. In 2D, the support of our dual



basis funtions is the union of exatly two adjaent edges, and in 3D it is in the interior of 

m

the union of four

faes sharing one vertex. We remark that the de�nition of the basis funtions assoiated with the vertex x
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k

has to

be modi�ed if x
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k

is lose to the boundary of 

m

, for details we refer the reader to [2,7℄. In both ases, it is easy to

-1

1

-1

1

 1

 1

 1

 1

−2 −2

−2

−2

 4

 1/4

 1/4

 1/4

 1/4

−3/4 −3/4

−3/4

−3/4

 9/4

Figure 1: Pieewise onstant and pieewise linear dual basis funtions in 2D (left) and 3D (right)

see that the biorthogonality relation
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funtions of W
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), respetively. We refer to [7℄, for an analysis of the disretization error and some

numerial results illustrating the inuene of di�erent Lagrange multiplier spaes. Of ruial importane is the so

alled mortar projetion whih is H
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{stable. Optimal a priori estimates in the energy norm and the L
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{norm an

be obtained.

2. Multigrid method on the produt spae

Let us assume that we have a nested sequene of global triangulations and let us denote the assoiated unonstrained

produt spaes by X

l

, 0 � l � L. The meshsize is given by h
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= 2h

l+1

. In ontrast to the onstrained spaes V
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where the nodal basis funtions �
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of W
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. Then, it

is easy to see that the kernel of P
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is exatly the onstrained spae V
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onvergene rates for our multigrid method, suitable approximation and smoothing properties have to be established.
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The seond assertion follows from the observation that C

l

is a saled mass matrix, the norm of whih is bounded

independently of l.

Our multigrid method for the solution of (1) will be de�ned in terms of the equation (3), the given modi�ed transfer

operators, the smoother

~

G

�1
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, the implementation of whih is realized in terms of G

�1
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and one loal post{proessing

steps at the end of the smoothing iterations. Then, we obtain level independent onvergene rates for the W{yle

provided that the number of smoothing steps is large enough.

3. Numerial results

Here, we onsider some numerial results illustrating the performane of our multigrid method in 2D and 3D. Our

multigrid method has been implemented for salar problems and systems of equations for 2D and 3D in the �nite

element toolbox UG, see [1℄. We apply nested iteration and use a tolerane of 5 � 10

�8

for the norm of the residuum

as stopping riterion for the iteration. Our �rst example is a 2D plane strain example with disontinuous oeÆients,

disretized by linear �nite elements on triangles. The omputational domain is depited in the left piture in Figure

2, and onsists of a nut and a wrenh. Dirihlet boundary onditions are applied at the handle of the wrenh, i.e.,

u

1

(x; y) = 1=3�km�(x; y)

T

k�sin(�); u

2

(x; y) = 1=3�km�(x; y)

T

k�(1�os(�)), and homogenous Dirihlet onditions

at the interior boundary of the nut. Here, m denotes the midpoint of the nut and we set � = �=30. The interfae is

loated at the ontat area between the nut and the wrenh. We use a W(3; 3){yle with a symmetri Gau�{Seidel

smoother aelerated by a stabilized bionjugate gradient method (bigstab). Table 1 shows the required number

of iterations on eah level and the number of unknowns. As it an be seen, the number of iterations is independent

of the level. The distorted grid saled by a fator of 10 is shown in the seond piture from the left in Figure 2. An

adaptive re�nement strategy has been used, ontrolled by a residual based error estimator for mortar �nite elements.

Figure 2: Initial and �nal triangulation in 2D (left) and initial triangulation and isolines in 3D (right)

As 3D example, we onsider a "Sandwih"{like domain build up of two di�erent materials. The domain 
 is

deomposed into three hexahedrons 
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:= 1; z
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:= 1:2; z

4

:= 2:2. In the right

part of Figure 2, the nonmathing initial triangulation is shown. The non{mortar sides are de�ned on the middle

hexahedron. We onsider two di�erent ellipti problems on this domain: a salar model problem and a full linear

elastiity problem, both with disontinuous oeÆients. For both problems, we use the same initial triangulation,

see Figure 2. We refer to the right piture in Figure 2 for the isolines of the solution at the interfae in the salar

ase.

Let us �rst onsider the salar problem �div aru = 1, on 
 := (0; 1)
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� (0; 2:2) where the oeÆient a is pieewise

onstant, aj
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:= 1. Dirihlet boundary onditions are applied on the upper and lower

part of the domain, u(x; y; z) = 1000
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)) if z = z
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,

and homogeneous Neumann boundary onditions are taken on the remaining part of the boundary. In Figure 3, the



asymptoti onvergene rates for the Jaobi and the Gau�{Seidel smoother are depited. The numerial results show

that the asymptoti onvergenes rates do not depend on the re�nement level. Even for the V(1; 1){yle, a onstant

asymptoti onvergene rate is obtained. For the full linear elastiity example, we took as material parameters for

Level # dof # iter

0 108 1

1 232 3

2 904 4

3 1,622 4

4 2,350 4

5 3,478 5

6 5,380 5

7 8,272 5

8 12,844 5

9 20,130 5

10 30,878 5

Level # dof # iter

0 378 1

1 1,839 2

2 10,989 2

3 74,865 2

4 550,233 2

Table 1: Numerial results for the 2D example (left), the distorted grid (middle) and the 3D results (right)

the Lam�e onstants �j




i

= 8517 and �j




i

= 108280 for i = 1; 3 and �j




i

= 2008 and �j




i

= 3567 for i = 2. Here, we

apply an inomplete LU{deomposition as smoother and use the V(3; 3){yle as preonditioner for the bgstab{

method. Dirihlet onditions are applied on the top and bottom of the "Sandwih", Neumann boundary onditions

on the remaining part of the boundary. The right table in Table 1 shows the performane of our method in 3D.

Although the number of unknowns inreases by a fator of 10 in every re�nement step, the number of iterations to

ahieve the required tolerane is onstant. We remark, that uniform re�nement has been used for this example. The

displaement of the solution saled by a fator of 10 is shown in the middle of Table 1.
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Figure 3: Asymptoti onv. rates for Jaobi and symmetri Gau�{Seidel smoother (3D salar example)
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