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Domain Decomposition methods on nonmatching grids and some applica-
tions to linear elasticity problems

Domain decomposition techniques provide a powerful tool for the coupling of different discretization methods or
nonmatching triangulations across subregion boundaries. Here, we consider mortar finite elements methods for
linear elasticity and diffusion problems. These domain decomposition techniques provide a more flexible approach
than standard conforming formulations. The mortar solution is weakly continuous at subregion boundaries, and its
jump is orthogonal to a suitable Lagrange multiplier space. Qur approach is based on dual bases for the Lagrange
multiplier space. It has the advantage of locally supported basis functions for the constrained space. This is not
true for the standard mortar method [2]. The biorthogonality relation guarantees that the Lagrange multiplier can be
locally eliminated, and that we obtain a symmetric positive semidefinite system on the unconstrained product space.
This system will be solved by multigrid techniques. Numerical results illustrate the performance of the multigrid
method in 2D and 3D.

1. Introduction
The central idea of domain decomposition techniques is to decompose a global problem into subproblems of smaller
complexity, and to “glue” the subproblems together in a suitable way. This is especially helpful for problems given on
complicated geometries or problems with jumps in the material coefficients. Numerical examples for these situations
will be given in the last section. As model problem let us consider the following linear elasticity problem with
homogeneous Dirichlet boundary conditions
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Here, 2 is a bounded, polygonal domain in IR?, d = 2,3 and Hooke’s tensor E is assumed to be sufficiently smooth
and uniformly positive definite. The components of f € (L2(Q2))? are denoted by f;, 1 <i < d.

We use a geometrically conforming decomposition of € into K non—overlapping polyhedral subdomains {2,
ie, O = UK Q4. Each subdomain is associated with an independent triangulations. Let us remark that the
triangulations do not have to match at the common interface between two adjacent subdomains. The interfaces are
denoted by ¥,,, 1 < m < M, and inherit their triangulation from one of the adjacent subdomains. This side is called
non—mortar side and the opposite one mortar side. The choice is arbitrary but fixed. We use standard piecewise
linear in 2D and piecewise trilinear in 3D conforming finite elements on the subdomains and denote the product
space by X;,. Then, the constrained mortar space V}, is defined by: V, := {v € X}, | b(v,u) =0, p € My}, where
the bilinear form b(-,-) is given as a duality pairing on the interfaces b(v,u) := Zrﬂle([v],u)ym, v € Xp, p € My,
and [v] is the jump of v on 7,,,. The constrained space V}, consist of all functions in X} which have a vanishing jump
at the interface with respect to the Lagrange multiplier space M. Of crucial importance is the suitable choice of
My, == H%Zl(Mh (7m))? in the definition of the constrained space Vj,. The space Mp(7,,) is defined by v, locally
supported linear independent functions ;. Here, v, := dim Wo,n(Vm), and Wy (¥m) is the finite element trace
space on Yy, and Wo.n(Ym) := Wh(vm) N H} (ym). Now, the nonconforming mortar solution is obtained by: Find
up € V, such that

a(uhav) = (fav)oa vE Vh . (1)
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Here, the bilinear form a(-,-) is given as a(u,v) = 32, D25 ;) oy ka Eijim E‘?ﬁ; g;’; dz, u,v € Xp. If Po(ym) C
My, (vm), the bilinear form a(-,-) is uniformly elliptic on V}, x V3. Under some assumption on Mj(7,,), optimal a
priori bounds for the discretization error for the mortar finite element solution are obtained in the energy norm and

the L?-norm, we refer to [2,5,7].

Dual bases for the Lagrange multiplier space. Here, we consider two different types of dual bases in 2D
and 3D. The first one is spanned by piecewise linear functions and the second one by piecewise constants. Figure 1
illustrates the shape of the dual basis functions. In the left part, the 2D case is depicted whereas in the right part,
the isolines of a dual basis function at the two dimensional interface in 3D are given. In 2D, the support of our dual



basis functions is the union of exactly two adjacent edges, and in 3D it is in the interior of -y, the union of four
faces sharing one vertex. We remark that the definition of the basis functions associated with the vertex z’ has to
be modified if 2} is close to the boundary of 7, , for details we refer the reader to [2,7]. In both cases, it is easy to
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Figure 1: Piecewise constant and piecewise linear dual basis functions in 2D (left) and 3D (right)
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see that the biorthogonality relation fw oY do = i fw ¢;" do holds, where ¢;" and ;" denote the nodal basis
functions of Wo.n(vm) and My (vm ), respectively. We refer to [7], for an analysis of the discretization error and some
numerical results illustrating the influence of different Lagrange multiplier spaces. Of crucial importance is the so

called mortar projection which is H&é ?_stable. Optimal a priori estimates in the energy norm and the L?-norm can
be obtained.

2. Multigrid method on the product space
Let us assume that we have a nested sequence of global triangulations and let us denote the associated unconstrained
product spaces by X;, 0 <1 < L. The meshsize is given by h; = 2h;41. In contrast to the constrained spaces V7,
the product spaces X; are nested. We denote the standard prolongation operator by Ill_1 : X;_1 — X; and the
restriction by Ill_1 : X; — X;_1. Here, we use a symmetric positive semidefinite variational problem on the
unconstrained product space X; which is given in terms of a projection P;. We start with the definition of the locally
defined projection operator P, : X; — X

where the nodal basis functions ¢} of Wo,;(vm) are extended in a trivial way on the non-mortar side of v,,. Then, it
is easy to see that the kernel of P is exactly the constrained space V;. Let 4;, By, and C; be the matrices associated
with the bilinear forms a(-,-) on X; x Xj, b(,-) on X; x M, and the projection Pj, respectively, and f; the vector
associated with the right hand side.

Lemma 1. The following system is symmetric and positive definite. Its solution u; € X satisfies uy € V; and (1)
Ay == ((Id = ¢H) A(1d = C)) + CF A CHwy = (Id = CF) fi. (2)
Furthermore, the solution u; can be obtained by w; = (Id — C))v; from any solution v; € X; of
Ay == (Id — DA /(Id — C))vy = (Id = CT) f. (3)

Proof. It is easy to see that A; and A, are symmetric and positive semidefinite. Furthermore, A; is positive
definite on V; and P, X;. Then, the triangle inequality yields that A is positive definite. Now, let u; € V; be the
solution of (1), i.e., (Id — Cl) Ay = (Id — CF) f;, then by definition of C; we find Ciu; = 0 and w; solves (2).
Observing that Cj is a projection, the second assertion follows immediately.

In the following, we call v; € X; a solution of (3) only if it satisfies (3) and if v; € V;. To obtain level independent
convergence rates for our multigrid method, suitable approximation and smoothing properties have to be established.
In a first step, we consider level dependent grid transfer operators (Imod)f1 and (Imod)ﬁ_1 defined by

(Imod);i1 = (Id - Cli’:l)[llil: ([mod)ffl = (Id - C’l)[llfl'

It is easy to see that these transfer operators guarantee Cgl(fmod)i_lwl =0, w; € X;, and Cl(Imod)f,lwlq =0,
wi—1 € X;—1. Then, an appropriate approximation property can be found in [9]. It is based on the assumption that
the iterate after the smoothing steps is in the constrained space V;. Starting with an arbitrary smoother for A, we
construct a modified one satisfying this condition. Let Gfl be a smoother for A;, e.g., a damped Jacobi method.
Then, we define our modified smoother by G, := (Id — C;)G; ' (Id — C), and denote the iterates by yi and 7,
respectively. The following lemma shows the relation between the two different iterates.



Lemma 2. Under the assumption g = (Id — C})y}, the iterates gjl’ can be obtained from yli by a local post—processing
step } '
gi = (Id = Chy; > 1

Furthermore, the smoothing and stability properties of é;l are inherited from G;l, 1.€.,
1Al = 1Aeell,  NlEfll < Cllefll,
where éf and ef are the corresponding iteration errors and the constant C' < 0o does not depend on the level [.
Proof. Observing the special structure of the right hand side d; and A, we obtain by induction
gt =g+ (1d = C)G(1d = CF)(di — Argf) = (1d = C)(y; + G (di = Awyp)) = (1d = Gy

The second assertion follows from the observation that Cj is a scaled mass matrix, the norm of which is bounded
independently of I.

Our multigrid method for the solution of (1) will be defined in terms of the equation (3), the given modified transfer
operators, the smoother é;l, the implementation of which is realized in terms of Gfl and one local post—processing
steps at the end of the smoothing iterations. Then, we obtain level independent convergence rates for the WW—cycle
provided that the number of smoothing steps is large enough.

3. Numerical results
Here, we consider some numerical results illustrating the performance of our multigrid method in 2D and 3D. Our
multigrid method has been implemented for scalar problems and systems of equations for 2D and 3D in the finite
element toolbox UG, see [1]. We apply nested iteration and use a tolerance of 5-10~® for the norm of the residuum
as stopping criterion for the iteration. Our first example is a 2D plane strain example with discontinuous coefficients,
discretized by linear finite elements on triangles. The computational domain is depicted in the left picture in Figure
2, and consists of a nut and a wrench. Dirichlet boundary conditions are applied at the handle of the wrench, i.e.,
ui(z,y) = 1/3-||m—(z,y)T||-sin(a), ua(z,y) = 1/3:||m—(z,y)T||- (1 —cos(a)), and homogenous Dirichlet conditions
at the interior boundary of the nut. Here, m denotes the midpoint of the nut and we set @ = w/30. The interface is
located at the contact area between the nut and the wrench. We use a W(3, 3)—cycle with a symmetric Gaufi—Seidel
smoother accelerated by a stabilized biconjugate gradient method (bicgstab). Table 1 shows the required number
of iterations on each level and the number of unknowns. As it can be seen, the number of iterations is independent
of the level. The distorted grid scaled by a factor of 10 is shown in the second picture from the left in Figure 2. An
adaptive refinement strategy has been used, controlled by a residual based error estimator for mortar finite elements.
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Figure 2: Initial and final triangulation in 2D (left) and initial triangulation and isolines in 3D (right)

As 3D example, we consider a ”Sandwich”-like domain build up of two different materials. The domain Q is
decomposed into three hexahedrons Q; := {[0,1]® x [2;, z;41]} where 21 := 0,25 := 1, 23 := 1.2, 24 := 2.2. In the right
part of Figure 2, the nonmatching initial triangulation is shown. The non—mortar sides are defined on the middle
hexahedron. We consider two different elliptic problems on this domain: a scalar model problem and a full linear
elasticity problem, both with discontinuous coefficients. For both problems, we use the same initial triangulation,
see Figure 2. We refer to the right picture in Figure 2 for the isolines of the solution at the interface in the scalar
case.

Let us first consider the scalar problem —divaVu =1, on Q := (0,1)2 x (0,2.2) where the coefficient a is piecewise
constant, a|g, := 100, ¢ = 1,3 and a|q, := 1. Dirichlet boundary conditions are applied on the upper and lower
part of the domain, u(z,y,z) = 1000 \/(z — 1/2)2 + (y — 1/2)2 - (1.0 — y/3) exp(—10(z? + y?)) if 2 = 21 or z = 24,
and homogeneous Neumann boundary conditions are taken on the remaining part of the boundary. In Figure 3, the




asymptotic convergence rates for the Jacobi and the Gaufi—Seidel smoother are depicted. The numerical results show
that the asymptotic convergences rates do not depend on the refinement level. Even for the V(1, 1)—cycle, a constant
asymptotic convergence rate is obtained. For the full linear elasticity example, we took as material parameters for

Level | # dof | # iter Level # dof | # iter
0 108 1 0 378 1
1 232 3 1 1,839 2
2 904 4 2| 10,989 2
3| 1,622 4 3| 74,865 2
4| 2,350 4 4 | 550,233 2
5| 3,478 5
6| 5,380 5
7| 8272 5
8 | 12,844 5
9| 20,130 5

10 | 30,878 5

Table 1: Numerical results for the 2D example (left), the distorted grid (middle) and the 3D results (right)

the Lamé constants p|q, = 8517 and A|g, = 108280 for ¢ = 1,3 and p|q, = 2008 and A|q, = 3567 for ¢ = 2. Here, we
apply an incomplete LU-decomposition as smoother and use the V(3,3)-cycle as preconditioner for the begstab—
method. Dirichlet conditions are applied on the top and bottom of the ”Sandwich”, Neumann boundary conditions
on the remaining part of the boundary. The right table in Table 1 shows the performance of our method in 3D.
Although the number of unknowns increases by a factor of 10 in every refinement step, the number of iterations to
achieve the required tolerance is constant. We remark, that uniform refinement has been used for this example. The
displacement of the solution scaled by a factor of 10 is shown in the middle of Table 1.
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Figure 3: Asymptotic conv. rates for Jacobi and symmetric Gaufl—Seidel smoother (3D scalar example)
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