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Domain De
omposition methods on nonmat
hing grids and some appli
a-

tions to linear elasti
ity problems

Domain de
omposition te
hniques provide a powerful tool for the 
oupling of di�erent dis
retization methods or

nonmat
hing triangulations a
ross subregion boundaries. Here, we 
onsider mortar �nite elements methods for

linear elasti
ity and di�usion problems. These domain de
omposition te
hniques provide a more 
exible approa
h

than standard 
onforming formulations. The mortar solution is weakly 
ontinuous at subregion boundaries, and its

jump is orthogonal to a suitable Lagrange multiplier spa
e. Our approa
h is based on dual bases for the Lagrange

multiplier spa
e. It has the advantage of lo
ally supported basis fun
tions for the 
onstrained spa
e. This is not

true for the standard mortar method [2℄. The biorthogonality relation guarantees that the Lagrange multiplier 
an be

lo
ally eliminated, and that we obtain a symmetri
 positive semide�nite system on the un
onstrained produ
t spa
e.

This system will be solved by multigrid te
hniques. Numeri
al results illustrate the performan
e of the multigrid

method in 2D and 3D.

1. Introdu
tion

The 
entral idea of domain de
omposition te
hniques is to de
ompose a global problem into subproblems of smaller


omplexity, and to \glue" the subproblems together in a suitable way. This is espe
ially helpful for problems given on


ompli
ated geometries or problems with jumps in the material 
oeÆ
ients. Numeri
al examples for these situations

will be given in the last se
tion. As model problem let us 
onsider the following linear elasti
ity problem with

homogeneous Diri
hlet boundary 
onditions
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Here, 
 is a bounded, polygonal domain in IR

d

, d = 2; 3 and Hooke's tensor E is assumed to be suÆ
iently smooth

and uniformly positive de�nite. The 
omponents of f 2 (L

2

(
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d

are denoted by f

i

, 1 � i � d.

We use a geometri
ally 
onforming de
omposition of 
 into K non{overlapping polyhedral subdomains 


k

,

i.e., 
 = [

K

k=1




k

. Ea
h subdomain is asso
iated with an independent triangulations. Let us remark that the

triangulations do not have to mat
h at the 
ommon interfa
e between two adja
ent subdomains. The interfa
es are

denoted by 


m

, 1 � m �M , and inherit their triangulation from one of the adja
ent subdomains. This side is 
alled

non{mortar side and the opposite one mortar side. The 
hoi
e is arbitrary but �xed. We use standard pie
ewise

linear in 2D and pie
ewise trilinear in 3D 
onforming �nite elements on the subdomains and denote the produ
t

spa
e by X

h

. Then, the 
onstrained mortar spa
e V

h

is de�ned by: V

h

:= fv 2 X

h

j b(v; �) = 0; � 2 M
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the bilinear form b(�; �) is given as a duality pairing on the interfa
es b(v; �) :=
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and [v℄ is the jump of v on 


m

. The 
onstrained spa
e V

h


onsist of all fun
tions in X

h

whi
h have a vanishing jump

at the interfa
e with respe
t to the Lagrange multiplier spa
e M

h

. Of 
ru
ial importan
e is the suitable 
hoi
e of
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in the de�nition of the 
onstrained spa
e V

h

. The spa
e M

h

(


m

) is de�ned by �

m

lo
ally

supported linear independent fun
tions  

m

l

. Here, �

m

:= dim W

0;h
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), and W
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) is the �nite element tra
e

spa
e on 


m

and W

0;h
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). Now, the non
onforming mortar solution is obtained by: Find
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. If P

0
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m

) �

M

h

(


m

), the bilinear form a(�; �) is uniformly ellipti
 on V

h

� V

h

. Under some assumption on M

h

(


m

), optimal a

priori bounds for the dis
retization error for the mortar �nite element solution are obtained in the energy norm and

the L

2

{norm, we refer to [2,5,7℄.

Dual bases for the Lagrange multiplier spa
e. Here, we 
onsider two di�erent types of dual bases in 2D

and 3D. The �rst one is spanned by pie
ewise linear fun
tions and the se
ond one by pie
ewise 
onstants. Figure 1

illustrates the shape of the dual basis fun
tions. In the left part, the 2D 
ase is depi
ted whereas in the right part,

the isolines of a dual basis fun
tion at the two dimensional interfa
e in 3D are given. In 2D, the support of our dual



basis fun
tions is the union of exa
tly two adja
ent edges, and in 3D it is in the interior of 


m

the union of four

fa
es sharing one vertex. We remark that the de�nition of the basis fun
tions asso
iated with the vertex x

m

k

has to

be modi�ed if x

m

k

is 
lose to the boundary of 


m

, for details we refer the reader to [2,7℄. In both 
ases, it is easy to
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Figure 1: Pie
ewise 
onstant and pie
ewise linear dual basis fun
tions in 2D (left) and 3D (right)

see that the biorthogonality relation
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denote the nodal basis

fun
tions of W

0;h

(


m

) andM

h

(


m

), respe
tively. We refer to [7℄, for an analysis of the dis
retization error and some

numeri
al results illustrating the in
uen
e of di�erent Lagrange multiplier spa
es. Of 
ru
ial importan
e is the so


alled mortar proje
tion whi
h is H

1=2

00

{stable. Optimal a priori estimates in the energy norm and the L

2

{norm 
an

be obtained.

2. Multigrid method on the produ
t spa
e

Let us assume that we have a nested sequen
e of global triangulations and let us denote the asso
iated un
onstrained

produ
t spa
es by X

l

, 0 � l � L. The meshsize is given by h

l

= 2h

l+1

. In 
ontrast to the 
onstrained spa
es V

l

,

the produ
t spa
es X

l

are nested. We denote the standard prolongation operator by I

l

l�1

: X

l�1

�! X
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and the

restri
tion by I

l�1

l

: X

l

�! X

l�1

. Here, we use a symmetri
 positive semide�nite variational problem on the

un
onstrained produ
t spa
e X

l

whi
h is given in terms of a proje
tion P

l

. We start with the de�nition of the lo
ally

de�ned proje
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l
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where the nodal basis fun
tions �

m

l

of W

0;l

(


m

) are extended in a trivial way on the non{mortar side of 


m

. Then, it

is easy to see that the kernel of P

l

is exa
tly the 
onstrained spa
e V

l

. Let A

l

, B

l

, and C

l

be the matri
es asso
iated

with the bilinear forms a(�; �) on X

l

�X

l

, b(�; �) on X

l

�M

l

and the proje
tion P

l

, respe
tively, and f

l

the ve
tor

asso
iated with the right hand side.

Lemma 1. The following system is symmetri
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are symmetri
 and positive semide�nite. Furthermore, A
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is positive
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l

X

l
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, then by de�nition of C
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= 0 and u

l

solves (2).

Observing that C

l

is a proje
tion, the se
ond assertion follows immediately.

In the following, we 
all v

l

2 X

l

a solution of (3) only if it satis�es (3) and if v

l

2 V
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. To obtain level independent


onvergen
e rates for our multigrid method, suitable approximation and smoothing properties have to be established.

In a �rst step, we 
onsider level dependent grid transfer operators (I
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. Then, an appropriate approximation property 
an be found in [9℄. It is based on the assumption that

the iterate after the smoothing steps is in the 
onstrained spa
e V

l

. Starting with an arbitrary smoother for

~

A
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, we


onstru
t a modi�ed one satisfying this 
ondition. Let G

�1
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be a smoother for

~
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, e.g., a damped Ja
obi method.

Then, we de�ne our modi�ed smoother by
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orresponding iteration errors and the 
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The se
ond assertion follows from the observation that C

l

is a s
aled mass matrix, the norm of whi
h is bounded

independently of l.

Our multigrid method for the solution of (1) will be de�ned in terms of the equation (3), the given modi�ed transfer

operators, the smoother

~

G

�1

l

, the implementation of whi
h is realized in terms of G

�1

l

and one lo
al post{pro
essing

steps at the end of the smoothing iterations. Then, we obtain level independent 
onvergen
e rates for the W{
y
le

provided that the number of smoothing steps is large enough.

3. Numeri
al results

Here, we 
onsider some numeri
al results illustrating the performan
e of our multigrid method in 2D and 3D. Our

multigrid method has been implemented for s
alar problems and systems of equations for 2D and 3D in the �nite

element toolbox UG, see [1℄. We apply nested iteration and use a toleran
e of 5 � 10

�8

for the norm of the residuum

as stopping 
riterion for the iteration. Our �rst example is a 2D plane strain example with dis
ontinuous 
oeÆ
ients,

dis
retized by linear �nite elements on triangles. The 
omputational domain is depi
ted in the left pi
ture in Figure

2, and 
onsists of a nut and a wren
h. Diri
hlet boundary 
onditions are applied at the handle of the wren
h, i.e.,

u

1

(x; y) = 1=3�km�(x; y)

T

k�sin(�); u

2

(x; y) = 1=3�km�(x; y)

T

k�(1�
os(�)), and homogenous Diri
hlet 
onditions

at the interior boundary of the nut. Here, m denotes the midpoint of the nut and we set � = �=30. The interfa
e is

lo
ated at the 
onta
t area between the nut and the wren
h. We use a W(3; 3){
y
le with a symmetri
 Gau�{Seidel

smoother a

elerated by a stabilized bi
onjugate gradient method (bi
gstab). Table 1 shows the required number

of iterations on ea
h level and the number of unknowns. As it 
an be seen, the number of iterations is independent

of the level. The distorted grid s
aled by a fa
tor of 10 is shown in the se
ond pi
ture from the left in Figure 2. An

adaptive re�nement strategy has been used, 
ontrolled by a residual based error estimator for mortar �nite elements.

Figure 2: Initial and �nal triangulation in 2D (left) and initial triangulation and isolines in 3D (right)

As 3D example, we 
onsider a "Sandwi
h"{like domain build up of two di�erent materials. The domain 
 is

de
omposed into three hexahedrons 


i

:= f[0; 1℄

2

� [z

i

; z

i+1

℄g where z

1

:= 0; z

2

:= 1; z

3

:= 1:2; z

4

:= 2:2. In the right

part of Figure 2, the nonmat
hing initial triangulation is shown. The non{mortar sides are de�ned on the middle

hexahedron. We 
onsider two di�erent ellipti
 problems on this domain: a s
alar model problem and a full linear

elasti
ity problem, both with dis
ontinuous 
oeÆ
ients. For both problems, we use the same initial triangulation,

see Figure 2. We refer to the right pi
ture in Figure 2 for the isolines of the solution at the interfa
e in the s
alar


ase.

Let us �rst 
onsider the s
alar problem �div aru = 1, on 
 := (0; 1)

2

� (0; 2:2) where the 
oeÆ
ient a is pie
ewise


onstant, aj




i

:= 100, i = 1; 3 and aj




2

:= 1. Diri
hlet boundary 
onditions are applied on the upper and lower

part of the domain, u(x; y; z) = 1000

p

(x � 1=2)

2

+ (y � 1=2)

2

� (1:0� y=3) exp(�10(x

2

+ y

2

)) if z = z

1

or z = z

4

,

and homogeneous Neumann boundary 
onditions are taken on the remaining part of the boundary. In Figure 3, the



asymptoti
 
onvergen
e rates for the Ja
obi and the Gau�{Seidel smoother are depi
ted. The numeri
al results show

that the asymptoti
 
onvergen
es rates do not depend on the re�nement level. Even for the V(1; 1){
y
le, a 
onstant

asymptoti
 
onvergen
e rate is obtained. For the full linear elasti
ity example, we took as material parameters for

Level # dof # iter

0 108 1

1 232 3

2 904 4

3 1,622 4

4 2,350 4

5 3,478 5

6 5,380 5

7 8,272 5

8 12,844 5

9 20,130 5

10 30,878 5

Level # dof # iter

0 378 1

1 1,839 2

2 10,989 2

3 74,865 2

4 550,233 2

Table 1: Numeri
al results for the 2D example (left), the distorted grid (middle) and the 3D results (right)

the Lam�e 
onstants �j




i

= 8517 and �j




i

= 108280 for i = 1; 3 and �j




i

= 2008 and �j




i

= 3567 for i = 2. Here, we

apply an in
omplete LU{de
omposition as smoother and use the V(3; 3){
y
le as pre
onditioner for the b
gstab{

method. Diri
hlet 
onditions are applied on the top and bottom of the "Sandwi
h", Neumann boundary 
onditions

on the remaining part of the boundary. The right table in Table 1 shows the performan
e of our method in 3D.

Although the number of unknowns in
reases by a fa
tor of 10 in every re�nement step, the number of iterations to

a
hieve the required toleran
e is 
onstant. We remark, that uniform re�nement has been used for this example. The

displa
ement of the solution s
aled by a fa
tor of 10 is shown in the middle of Table 1.
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Figure 3: Asymptoti
 
onv. rates for Ja
obi and symmetri
 Gau�{Seidel smoother (3D s
alar example)
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