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Abstract

We use a concrete simulation scenario to study the effect

of hexahedral mesh size and mesh quality on the accuracy

of the solution of a finite element analysis (FEA). Our test

cases stem from biomedical research. We investigate a

composite two-material model of a piece of bone from the

human mandible on which we simulate a bite. In partic-

ular, we are interested whether material properties (soft

vs. hard and isotropic vs. anisotropic) have a significant

impact on the accuracy which can be achieved for the dif-

ferent kind of meshes.

We constructed hexahedral meshes of varying size, with

an increasing number of elements in the neighborhood of

the external force of our load case. For the hexahedral

mesh generation, we used the iterative cycle elimination

method of the first author together with squared condition

number based optimized smoothing.

In this paper, we focus on the deformation as the post-

processing variable. In our experiments, it seems that the

solution of the FEA converges relatively fast with an in-

creasing number of elements.

Our methodology to investigate the influence of the

mesh quality on several post-processing variables is a sys-

tematic variation of the mesh quality by means of a con-

trolled perturbation of an optimized mesh with a fixed

mesh topology. The influence of mesh quality on the anal-

ysis results turns out to be relatively small. Even the mesh

of poorest quality is within a range of not more than four
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percent from the results of our best quality mesh.

Concerning the analysis of a possible interdependence

between numerical behavior and material law, we ob-

served that the fully anisotropic (and so the most realistic)

case shows also the best numerical behavior.

Keywords: hexahedral mesh generation, mesh qual-

ity, optimized mesh smoothing, FEM simulation, human

mandible

1 Introduction

Over the years the finite element analysis (FEA) has be-

come an increasingly important and generally accepted

means in engineering for a wide variety of application ar-

eas. As Tautges [Tau01] has pointed out recently, the mesh

generation research community has matured and special-

ized in the last years, but also moved away from the FEA

side, and therefore, closer links between the mesh gen-

eration community and analysis communities must be re-

established.

This paper is an initial attempt in this direction for a

concrete application scenario with a two-material work-

piece in the field of biomechanics. We consider three basic

questions for all-hexahedral meshes:

1. How many hexahedral mesh elements are required to

get meaningful results?

2. How important is mesh quality for the accuracy of

the simulation?

3. Can we observe a different behavior of the conver-

gence with respect to the degree of anisotropy?

The motivation for the first question is the hope that

it might be feasible to work with meshes which can be

handled on current PC’s and which allow to realize short

analysis times on such machines. Hence, we want to



Figure 1: The bone structure of the human mandible (from

[PP94, VO00]).

give experimental support or to falsify that relatively small

meshes can give qualitatively accurate results (in the sense

that the solution and post-processing variables are in the

correct order of magnitude).

There has been recent and quite remarkable progress

with optimized mesh smoothing [Knu00], but these

advanced routines are computationally expensive. As

finding all-hexahedral meshes for complex domains is

still a challenge, and as it is often hard — even with

optimized smoothing — to find good-quality meshes we

are interested in the second question.

Application background: Composite materials. The

technological progress with composite materials, for ex-

ample with fiber reinforced or layered media, offers a lot

of new possibilities. Increasing demands in the analysis

of more complex materials, for instance in lightweight

construction, require increasingly sophisticated simula-

tion techniques. Therefore FEA techniques have to keep

up with these developments. To this end, a systematic

evaluation of simulation capacities of inhomogeneous and

anisotropic material behavior is required.

A very modern application is the FEA in the field of

biomechanics. Simulations of the human femur or the

tibia do have already some kind of “tradition”, but newer

research tends to more complex bony organs like the hu-

man mandible or even to soft tissue simulation.

In general, simulation in structural mechanics requires

a representation of the specimen’s geometry, the load case,

and an appropriate material description. In contrast to

the advanced stage of individual geometry reconstruction

based on computed tomography data (CT data), the pos-

sibilities of a satisfying - individual - material description

are still rudimentary. In this context, the inherent material

Figure 2: A hexahedral mesh for an individual shape of a

human mandible from [KMH01].

is bone tissue, which is one of the strongest and stiffest

tissues of the body. Bone itself is a highly complex com-

posite material. Its mechanical properties are anisotropic,

heterogenous and visco-elastic. The CT data give a den-

sity representation, however, the three-dimensional infor-

mation about the anisotropic material law is lost. Most

previous simulations in the field of biomechanics base on

an isotropic and homogenous material law.

At a macroscopic scale, two different kinds of bone can

be distinguished. Cortical or compact bone is present in

the outer part of bones, while trabecular, cancellous or

spongious bone is situated at the inner, see Figure 1. In

case of long bones, trabecular bone is only present at the

joints in the epiphyseal region, while for short and flat

bone, it is encountered in the entire inner volume. The

latter is also applicable for the human mandible and the

maxilla, see for instance [MBS98, VO00].

From the point of simulation, not only the demand of a

more or less acceptable material resp. geometry descrip-

tion is actual, but mainly its interplay and its combined

influence on the significance of the simulation results.

The scope of this work is an analysis of the impact of

our mesh generation techniques in combination with dif-

ferent material settings.

In order to concentrate on this purpose, we tried to elim-

inate any influence of individual shape, see Figure 2, and,



Figure 3: A piece of bone extracted from a toothless

mandibular corpus.

therefore, restricted ourselves to an “artificial” piece of

bone, done by parametric CAD. Concerning the shape,

we oriented on a toothless mandibular corpus (Figure 3).

For it is impossible to capture really the shape of biolog-

ical tissue by parameterization, we tried to build it in the

sense of an “envelope” of the original shape. In return,

we can vary the “individual” material properties from the

totally isotropic simplification as used in most of the sim-

ulations, to a fully anisotropic and inhomogeneous mate-

rial description. We can additionally vary the shape. By

that, also special investigations of the influence of the age-

related corticalis’ thickness become possible.

This research is part of a detailed simulation project

concerning the human mandible. In previous publications

[KST+00, KBZ+00], descriptions of the simulation con-

cept have been given.

Overview. The rest of the paper is organized as follows.

In Section 2 we give a brief description of the meshing

techniques used to generate pure hexahedral meshes with

different local mesh density. Then, in Section 3 we explain

the underlying mathematical model of our simulation test

cases. Section 4 studies the effect of the number of hex-

ahedral elements to the solution accuracy with respect to

the varying degrees of anisotropy across ten different test

cases. Furthermore, we describe and evaluate an experi-

ment which considers the impact of mesh quality on the

accuracy of the solution obtained in the simulation. Fi-

nally, in Section 5, we summarize the main features of our

approach and give directions for future work.

2 Hexahedral Mesh Generation

Techniques for a Composite

Model

Input model. The shape of our workpiece is represented

by parameterized external and internal surface patches

(macro elements). As mentioned in the Introduction, we

"biting point area"

Figure 4: Surface mesh of the pice of bone.

want a comparison between meshes of different size with

a local refinement in the neighborhood of the biting point.

Such a comparison is only meaningful if we can guarantee

to have exactly the same load case. The latter implies

that we had to fix the load case regions for all meshes

used in our experiments. This has been achieved by

an appropriate addition and modification of the original

macro elements.

Surface meshing. To guarantee conformal meshes for a

more–than–one–component model, we first fix the quadri-

lateral surface mesh before we start the hexahedral mesh-

ing. The macro element mesh of a composite model pos-

sesses branchings, i.e. edges to which more than two ele-

ments belong. Conformal quadrilateral mesh refinement

can be achieved in a robust way by first solving a cer-

tain system of linear equations and applying network flow

techniques afterwards [MM00]. This method allows a

tight local mesh density control which we used system-

atically to vary the mesh density in several ways. In par-

ticular, we changed the mesh density

1. locally in a neighborhood of the biting point area,

2. in the relatively thin surrounding component (the cor-

ticalis part),

3. with respect to the curvature (higher curvature re-

quires finer meshes), and



4. along the longitudinal axis.

Hexahedral meshing techniques. For a recent survey on

hexahedral mesh generation techniques for assembly ge-

ometries see [Tau01].

Given our surface meshes, the interior component

(spongiosa part of the bone) is fairly easy meshable with

sweeping techniques.

The local refinement near the biting point, however,

yields a non-sweepable component. To mesh this com-

ponent, we used the iterative cycle elimination method of

the first author [MH99, MH01]. Recent advances with

the cycle elimination scheme and the construction process

to cope with local refinements (the insertion of internal

sheets), as described in [KMH01], were crucial for the

success of this method.

Afterwards, the mesh components are untangled and

smoothed with optimization methods as suggested by

Knupp and Freitag & Knupp [Knu00, FK99]. More pre-

cisely, we optimized with respect to the sum of the squared

condition numbers as the objective function (as explained

in detail in [KMH01]).

Figure 5 gives several views on details of a hex mesh

with 30516 hexahedra for the piece of bone. Furthermore,

in Figure 6 we show hexahedral meshes of different re-

finement levels.

3 Mathematical Model of the Simu-

lation

Up to a strain limit of 0.3%, the material behavior of bone

can be described by linear elasticity. In most physiological

standard situations, this value is not exceeded.

Therefore, in the governing equation of structural me-

chanics div(�) = 0, we apply for the stress tensor � and

the strain tensor � a generalized Hooke’s law which can be

written in compressed notation as

�

i

= C

ij

�

j

;

where both i and j assume the values 1–6 and j is under-

stood to be summed over these values. By symmetry re-

lations, the 36 coefficients C
ij

simplify to 21 independent

values which are known as the elastic constants. In most

materials, this number is further reduced. In isotropic

materials, which behave the same in every direction e.g.

steel, there are only two independent elastic constants. For

highly anisotropic materials like bone, the number of elas-

tic constants is between 2 and 21. Most anisotropic ma-

terials do exhibit some symmetry to their internal struc-

ture. Two common types of limited anisotropy happen to

Figure 7: Principal directions of the elastic tensor.

be found in bone, wood and other biological tissue: The

mechanical properties of orthotropic materials are differ-

ent in three perpendicular directions, e.g. in axial, radial

and circumferential direction, see Fig. 7. Their matrix of

elasticity has nine independent values and the following

form:
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In the preceding paragraph, attention was directed to

the use of the matrix C of the elastic constants, which

is more amenable to analysis. Traditionally, material

response has been characterized by “engineering” or

“technical” constants. According to custom, the Young

modulus E is used to describe the ability of a material to

transfer a pure extensional strain into a pure extensional

stress. The Poisson ratio, �, is used to indicate the extent

to which the lateral dimensions of a body decrease (or

increase) in response to a pure extensional (or compres-

sional) strain. The shear modulus G is used to describe

the ability of a material to transfer pure shear strain into

pure shear stress [Daw76]. In the anisotropic case, all

these constants become direction dependent, so we have

E

1

; E

2

; E

3

instead of E, �
ij

; G

ij

; 1 � i; j � 3 instead of

� and G.



Figure 5: Different views on our hexahedral mesh with 30516 hexahedra.

Figure 6: A “cut” through the hexahedral meshes of the piece of bone with different element size.



Average Technical Constants for the Human Mandible [AB87]

E

1

E

2

E

3

G

12

G

13

G

23

�

12

�

21

�

13

�

31

�

23

�

32

10.8 13.3 19.4 3.81 4.12 4.63 0.309 0.381 0.249 0.445 0.224 0.328

GPa GPa GPa GPa GPa GPa

The 1-direction is radial, the 2-direction is circumferential, and the 3-direction is axial.

Table 1: Elastic coefficients of the human mandible.

Figure 8: Deformation of the piece of bone (100 times

exaggerated).

The test scenario. In our simulations, we refer to or-

thotropic symmetry. Based on elastomechanical coef-

ficients coming from experiments in [AB87], see Ta-

ble 1, we introduce an index of anisotropy � varying from

isotropic material with a low Young modulus over fully

anisotropic behavior again to isotropic material but with a

high Young modulus, see Table 2.

We evaluated the cases with � = 0:0; 0:25; 0.5, 0.75,

1.,1.25, 1.5, 1.75, 2.0, numbered from 1 to 9. Because of

the numerical effects by at the same time a high elastic-

ity modulus and a high Poisson-ratio, we performed addi-

tionally an isotropic simulation with E = E

3

and � = �

s

(case 10). Furthermore, we respect in every case the inho-

mogeneous situation given by the different material struc-

ture of cortical and cancellous bone. In [WTP], the Young

modulus of spongy bone is posted as 1.29 GPa. Because

we did want to keep our specimen totally anisotropic, we

multiplied the Young and shear moduli of the corticalis by

the factor 1.29 GPa/E
2

.

For the load case, we choose a “bite like situation”

where the both ends of our test specimen are elevated

by masticatory forces which we realize by applied

displacements of 2:0 � 10�5m (inhomogeneous Dirichlet

boundary conditions), whereas at the so-called “biting

point” we applied a constant force of 500 N, see Figure 8.

The simulation requires the input of a force density, so

we consider the quotient of this force value and the area

of the biting point as applied forces (inhomogeneous

Neumann or Cauchy boundary conditions). The rest

of the specimen is force free, so we assume no further

applied forces or displacements (homogeneous Neumann

boundary conditions).

The numerical approach. In order to put all emphasis

on the mesh generation especially to allow higher num-

bers of elements, we kept the numerics as spare as pos-

sible. Therefore, we used linear finite elements (standard

shape functions with full integration, i.e., 2 � 2 � 2 inte-

gration points) and refrained from higher order or hybrid

approaches.

The realization of anisotropic material behavior is still

a challenge in FEA. We consider orthotropic symmetry

in some kind of rotated coordinate system aligned to the

measurements’ coordinate system in [AB87]. In order to

perform the numerical calculations, we had to transform

the orthotropic elasticity matrices with nine independent

coefficients from its local coordinate system to the speci-

men’s global coordinate system. By this, all the 21 inde-

pendent entries of the elasticity matrix C are to be taken

into account.

Because of its general flexibility, we decided to use in

our simulations the research package FeliCs developed at

the Chair of Applied Mathematics, Technical University

of Munich [EG97].



Index of Anisotropy
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Table 2: Elastic coefficients depending on the index of anisotropy. For E
1

; E

2

; ::: see Table 1.

4 Experimental Results

4.1 Experimental Set-Up

Experiment 1: The effect of the mesh size on the solu-

tion quality. To study the dependence of the solution ac-

curacy from the number of hexahedral elements, we varied

the mesh size in the range from 5076 to 30515 hexahedra.

For each mesh, we performed simulations for the ten dif-

ferent material scenarios.

Our mesh generation algorithms scaled well with the

increasing mesh size and we could have handled much

larger meshes. However, we limited the maximum size to

30515 hexahedra to keep the main memory requirements

and computation times for the FEA of the whole test suite

at an acceptable level.

Experiment 2: The importance of mesh quality for

the solution accuracy. In our second experiment, we

want to study the impact of mesh quality on the accuracy

of the solution obtained in the simulation. To this end,

we design an experiment which artificially degrades the

mesh quality as follows. (Of course, in Experiment 1 we

always take the best quality mesh for the simulation.)

In a similar spirit, Freitag and Ollivier-Gooch [FOG00]

have analysed the tradeoffs associated with the cost of

mesh improvement in terms of solution efficiency for

tetrahedral elements.

Mesh quality. There are many quality measures for hexa-

hedral meshes, see for example [Knu00]. Here we restrict

our discussion to scaled Jacobian, condition number, and

the Oddy metric.

Next we give a formal definition of these metrics. Con-

sider a vertex v of a hexahedron. Assume that x 2 R

3 is

the position of this vertex and x

i

2 R

3 for i = 1; 2; 3 are

the positions of its three neighbor vertices in some fixed

order. Using edge vectors e
i

= x

i

� x with i = 1; 2; 3 the

Jacobian matrix is then A = [e

1

; e

2

; e

3

℄. The determinant

of the Jacobian matrix is usually called Jacobian. If the

edge vectors are scaled to unit length, we get the scaled Ja-

cobian with values in the range -1.0 to 1.0. An element is

said to be inverted if one of its Jacobians is less or equal to

zero. In the following expressions, we use the Frobenius

matrix norm, defined as jAj = (tr(A

T

A))

1=2. The condi-



Figure 9: View on a moderately perturbed mesh.

tion number �(A) of A is the quantity �(A) = jAjjA

�1

j.

For the evaluation of the mesh quality, we also use an-

other hexahedral shape measure, the so-called Oddy met-

ric [OGMB88], which can be written in matrix form as

f(A) = det(A)

�4=3

(jA

T

Aj

2

�

1

3

jAj

4

):

Construction of meshes with different mesh quality.

Our construction technique to derive meshes with differ-

ent levels of mesh quality is a controlled perturbation of an

optimized mesh which lowers the mesh quality gradually.

Of course, we took care not to change the geometry

within the perturbation process and therefore fixed the po-

sition of all nodes on the external and internal surfaces.

We used an iterative procedure to move all other, non-

fixed mesh nodes around. For each move, we have cho-

sen a tentative random direction and step length. A move

has been accepted if and only if it did not produce any in-

verted element (and so keeps the feasibility of the mesh as

an invariant).

Different classes of mesh quality resulted from an in-

creasing number of iterations over all nodes. See Figure 9

to get an impression on the degree of perturbation.

See Table 3 for the mesh quality statistics of the five

different quality types used in our experiment (we display

mean, standard deviation (st. dev.), and the extreme

values) with 16784 hexahedra. For the interpretation,

recall that the scaled Jacobian is to be maximized with

an upper limit of 1.0, whereas condition number (with

minimum 3.0), and the Oddy metric measure are to be

minimized. Note that even the best mesh contains very

poorly shaped elements. However, these extremely bad

elements are only rare exceptions.

4.2 Evaluation of the experiments

In this analysis, we focus on an evaluation of the three

components u; v; w of the deformation, where u and v

stand for the x– resp. y–component and,w for the distance

(in z–direction) of the specimen’s elevated left and right-

hand side ends, see Figure 8. In FEA, very often maximal

values are used as indicators for practical interpretation. In

our test scenario, the maxima of u; v; w are centralized on

the – rather small – biting point area and so quite precisely

localized. Therefore, in order to avoid tedious and maybe

even falsifying interpolation procedures, we decided to

compare directly the maximal values of u; v; w, see Fig-

ures 10 and 11. As, in our setting, exact solutions are not

available, we consider the relative error with respect to the

calculation with the finest mesh resp. the mesh with the

best quality. For clarity, our plots just show the simulation

results of four out of our ten cases.

Concerning the sensitivity analysis of the mesh qual-

ity, see Figure 11. In all cases, the absolute and relative

dependence on the mesh quality in the considered range

is relatively small. More precisely, the relative deviation

from the best quality mesh is always less than four percent.

The influence of mesh size resp. number of hex ele-

ments on the solution accuracy, see Figure 10, is quite

more significant. Though at a level of about 15% in the

case of u or v for small meshes, the relative deviation from

the largest mesh decreases steeply towards acceptable val-

ues.

One scope of this work was an analysis of the interde-

pendence between mesh generation and inherent material

law, especially in the case of anisotropy. In Figures 10 and

11, we compare two isotropic cases (case 9 and 10) with

high elasticity modulus, one isotropic case with low elas-

ticity modulus (case 1) and two anisotropic cases (case 3

and 5).

In the FEA of structural mechanics, one observes for

a Poisson-ratio near 0.5 an effect called “locking”, see

[Bra97]. In this case, the stiffness matrix becomes ill-

conditioned and, the calculated deformations may be

much smaller than in reality. Though our highest Poisson-

ratio is 0.445, see Table 1, far from locking, the related

cases 1 and 10 show mostly higher relative errors than the

other cases.

But, looking at the Figures 11 and 10, the most re-

markable fact is, that the absolute winner of our accuracy

tests, is the fully anisotropic case 5 tightly followed by the

weakened anisotropic case 3. With respect to our index of

anisotropy, see Table 2, we can state, that the case closest

to real bone shows also the best numerical behavior. One

may conjecture that the situation closest to nature has also

the most balanced stress and strain pattern, and is so best



quality measure scaled Jacobian condition number Oddy metric

min mean st. dev. mean st. dev. max mean st. dev. max

best mesh 0.06 0.96 0.08 5.63 1.76 26.38 18.1 29.46 893.9

slightly perturbed 0.06 0.92 0.08 5.84 1.84 36.60 19.5 31.32 1119.7

moderately perturbed 0.06 0.89 0.09 6.06 1.95 86.21 21.2 34.76 2113.5

strongly perturbed 0.06 0.83 0.10 6.78 2.41 149.21 26.6 44.15 4492.4

very strongly perturbed 0.06 0.76 0.11 7.94 3.29 208.80 36.9 66.55 10267.8

Table 3: Quality statistics for five test meshes with different degree of perturbation.

suited for the numerical calculation. An additional reason

may be the “bite like” load case which fits quite well to the

principal directions of our elasticity tensor, see Figure 7.

But this load case is most similar to the physiological sit-

uation and, by this, in our setting the most important one.

We started with the question how we can “help”

anisotropic numerics by appropriate meshes and end up

with the insight that we have rather to adapt our meshes

in the case of isotropic material law. Of course, the situa-

tion may be different if we change our load case resp. the

principal directions of the elasticity tensor.

5 Conclusions

We have presented a case study on the impact of hexahe-

dral mesh size and mesh quality on the results of a simu-

lation in a two-material scenario with different degrees of

anisotropy. Through all our experiments, the simulation

results are consistent and we observed small relative errors

and nice convergence properties for our meshes. Average

mesh quality showed a positive, but smaller than expected

impact on the solution accuracy. However, we want to

stress that this does not mean that there is little need to

smooth: without optimization-based mesh smoothing our

meshes would have been invalid.

Given the inevitable sources of imprecision concerning

the assumptions and simplifications of the material proper-

ties and the geometry, we conclude that it is well-justified

to work with meshes with only a few thousand hexahedral

elements in order to yield qualitatively meaningful results.

These meshes are small enough to perform such an anal-

ysis with limited hardware resources (we used a standard

PC under the linux operating system).

Our “piece of bone” turned out to be a reliable test plat-

form which can be used for further maybe more material

oriented evaluations.

Future work. Subsequent work should address a couple

of further issues.

1. This paper has focused on accuracy and convergence

with respect to the mesh size and to the mesh quality.

A natural extension would be to study the costs or

benefits on solution efficiency.

2. In this analysis, we restricted ourselves to a relatively

simple numerical approach. Can we draw similar

conclusions if we use more advanced numerical con-

cepts? For example, one could use 20-node brick ele-

ments with reduced integration to get rid of the lock-

ing phenomena.

3. We concentrated our analysis on the maximum de-

formation as indicator for the solution accuracy. Do

we get the same picture if we consider other post-

processing variables like von Mises equivalent stress,

volumetric strain, and principal shear strain?

4. Would other load cases produce other results con-

cerning the interdependence of required mesh size

and quality and the material law?

5. Finally, one would like to perform a rigorous com-

parison between hex and tet meshing.

Acknowledgments. The authors want to thank K.–H.

Hoffmann, caesar foundation Bonn, for the possibility to

use the FEM–package FeliCs, and also N.D. Botkin for

his help concerning its compilation.

The second author wants to thank I.G. Götz for his
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Figure 10: Evaluation of the deformation versus number of hex elements.
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Figure 11: Evaluation of the deformation versus hex mesh quality for test meshes with 16784 elements.
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