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Abstra
t. We 
onsider the fast solution of a 
lass of large, pie
ewise smooth

minimization problems. For la
k of smoothness, usual Newton multigrid meth-

ods 
annot be applied. We propose a new approa
h based on a 
ombination

of 
onvex minization with 
onstrained Newton linearization. No regularization

is involved. We show global 
onvergen
e of the resulting monotone multigrid

methods and give polylogarithmi
 upper bounds for the asymptoti
 
onver-

gen
e rates. EÆ
ien
y is illustrated by numeri
al experiments.

1. Introdu
tion

Let 
 be a bounded, polyhedral domain in the Eu
lidean spa
e R

d

. We 
onsider

the minimization problem

u 2 H : J (u) + �(u) � J (v) + �(v) 8v 2 H(1.1)

on a 
losed subspa
e H � H

1

(
). For simpli
ity, we 
on
entrate on H = H

1

0

(
)

and d = 2. The quadrati
 fun
tional J ,

J (v) =

1

2

a(v; v) � `(v);(1.2)

is indu
ed by a 
ontinuous, symmetri
 and H{ellipti
 bilinear form a(�; �) and by a

linear fun
tional ` 2 H

0

. H is equipped with the energy norm k � k = a(�; �)

1=2

. The

fun
tional �,

�(v) =

Z




�(v(x)) dx;(1.3)

is generated by a 
onvex fun
tion � : R ! R [ f+1g with the properties

�(z) =1 8z < 0; �(z) <1 8z � 0

j�(z)� �(z

0

)j � G(jzj+ jz

0

j)jz � z

0

j 8z; z

0

� 0

(1.4)

where G is some s
alar, aÆne fun
tion and

� 2 C

2

(0;1); �

00

is uniformly Lips
hitz on 
ompa
t subsets of (0;1):(1.5)

As a 
onsequen
e of (1.4), � is 
onvex, lower semi{
ontinuous and proper. Hen
e,

(1.1) admits a unique solution u 2 H (
f. [12℄, pp. 28). This property and all

results to be presented 
an be generalized to fun
tions � with a �nite number of

singularities.
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Let T

j

be a partition of 
 in triangles t 2 T

j

with minimal diameter of order 2

�j

.

The set of interior nodes is 
alled N

j

. Dis
retizing (1.1) by 
ontinuous, pie
ewise

linear �nite elements S

j

� H , we obtain the �nite dimensional problem

u

j

2 S

j

: J (u

j

) + �

j

(u

j

) � J (v) + �

j

(v) 8v 2 S

j

:(1.6)

Observe that the fun
tional � is approximated by S

j

{interpolation of �(v), giving

�

j

(v) =

X

p2N

j

�(v(p))h

p

; h

p

=

Z




�

(j)

p

(x) dx(1.7)

where �

(j)

p

, p 2 N

j

, denote the nodal basis fun
tions of S

j

. The dis
rete minimiza-

tion problem (1.6) is uniquely solvable and 
an be reformulated as the variational

inequality

u

j

2 S

j

: a(u

j

; v � u

j

) + �

j

(v)� �

j

(u

j

) � `(v � u

j

) 8v 2 S

j

(1.8)

or as the variational in
lusion

u

j

2 S

j

: `(v)� a(u

j

; v) 2 ��

j

(u

j

)(v) 8v 2 S

j

(1.9)

where ��

j

is the set{valued subdi�erential of �

j

. Problems of the form (1.1) and

related dis
retizations arise in a wide range of appli
ations and have been studied for

quite a while. For further information we refer e.g. to [6, 7, 12℄ and the bibliography


ited therein.

Here, we shall 
on
entrate on the fast solution of the dis
rete minimization prob-

lem (1.6). It is 
lear that Newton{multigrid methods [1, 4℄ 
annot be applied,

be
ause the fun
tional �

j

is not di�erentiable. Nonlinear multigrid te
hniques [8℄

as well as nonlinear subspa
e 
orre
tions in the spirit of [5, 17℄ also rely on the

smoothness of the nonlinearity. A 
ommon remedy is to use su
h methods after

some suitable regularization of �. Unfortunately, reasonable 
onvergen
e speed

may then have to be paid by una

eptable dis
retization errors and vi
e versa.

Similar problems arise in 
ase of stati
 pie
ewise quadrati
 approximation of � as

applied in [12℄, pp. 138.

In this paper, we extend monotone multigrid methods [10, 11, 12℄ from pie
ewise

quadrati
 fun
tions � to the pie
ewise smooth 
ase (1.5). To this end, monotone

multigrid methods are regarded as two-stage iterations 
onsisting of a globally 
on-

vergent �ne grid smoother M

j

and a 
oarse grid 
orre
tion C

j

preserving global


onvergen
e by preserving monotoni
ally de
reasing energy.

Gau�{Seidel type relaxation is used for �ne grid smoothing. As exa
t solu-

tions of the o

urring s
alar problems might be unavailable, we present an inexa
t

variant in
luding a stopping 
riterion for simple bise
tion. The basi
 idea for 
on-

stru
ting C

j

is to 
onstrain 
oarse grid 
orre
tions to a neighborhood of the a
tual

smoothed iterate where Newton linearization 
an be 
ontrolled by pointwise Lip-

s
hitz 
onstants. There is no 
oarse grid 
orre
tion at the singularity. Hen
e, no

regularization is involved. In 
ontrast to pie
ewise quadrati
 �, suitable damping

of 
oarse grid 
orre
tion is required in order to preserve monotoni
ity. We propose

lo
al damping of ea
h lo
al 
orre
tion asso
iated with a �xed node on a �xed re-

�nement level. This strategy is espe
ially suited for heavily varying lo
al Lips
hitz


onstants.

Within this general framework, we derive standard and trun
ated versions of

monotone multigrid methods. Similar algorithms were presented in [13℄ without

proofs. Global 
onvergen
e proofs 
arry over from [11, 12℄. Detailed 
onvergen
e
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analysis 
lari�es the interplay of �ne grid smoothing, 
onstrained Newton lineariza-

tion and lo
al damping and provides polylogarithmi
 bounds of asymptoti
 
onver-

gen
e rates. The pra
ti
al relevan
e of our asymptoti
 analysis is supported by

numeri
al experiments with a stationary porous medium 
ow. Despite of intrinsi


singularities of the problem, we observed similar eÆ
ien
y as in the linear self{

adjoint 
ase.

2. Inexa
t Gau�-Seidel Relaxation

Nonlinear Gau�{Seidel relaxation [7, 12℄ for the iterative solution of (1.6) is

based on the su

essive minimization of the dis
rete energy fun
tional J + �

j

in

the dire
tion of the nodal basis fun
tions �

(j)

p

l

, l = 1; : : : ; n

j

= #N

j

. For given

w 2 S

j

, the lo
al 
orre
tion T

l

w 2 V

l

= spanf�

(j)

p

l

g in the dire
tion of �

(j)

p

l

is the

unique solution of

T

l

w 2 V

l

: J (w + T

l

w) + �(w(p

l

) + T

l

w(p

l

))h

p

l

� J (w + v) + �(w(p

l

) + v(p

l

))h

p

l

8v 2 V

l

:

(2.1)

In general, the exa
t solution T

l

w of the s
alar problem (2.1) is not available. For

this reason, we 
onsider inexa
t Gau�{Seidel relaxation de�ned as follows.

For given iterate u

�

j

, we introdu
e a sequen
e of intermediate iterates w

�

l

a

ord-

ing to

w

�

0

= u

�

j

; w

�

l

= w

�

l�1

+ v

�

l

; l = 1; : : : ; n

j

;(2.2)

with approximations v

�

l

2 V

l

of T

l

w

�

l�1

. For example, v

�

l

might be resulting from

some steps of an iterative solver as applied to (2.1). Finally, the new iterate is given

by

u

�+1

j

=M

j

u

�

j

= w

�

n

j

:(2.3)

For notational 
onvenien
e, the index � will be frequently skipped in the sequel.

Theorem 2.1. Assume that the 
orre
tions v

l

in (2.2) are 
hosen in su
h a way

that

M

j

u

0

j

2 K

j

= fv 2 S

j

j v(p) � 0 8p 2 N

j

g 8u

0

j

2 S

j

and

v

l

= !(w)T

l

w; !(w) 2 [!

0

; 1℄ 8w 2 K

j

(2.4)

is valid with some �xed !

0

2 (0; 1℄. Then the inexa
t Gau�{Seidel relaxation (2.3)

is globally 
onvergent.

Proof. We shall use the abbreviation

�

J = J +�

j

. Utilizing (2.4) and the 
onvexity

of

�

J , we obtain the monotoni
ity

�

J (w

l

) �

�

J (w

l�1

+ !

0

T

l

w

l�1

) �

�

J (w

l�1

); l = 1; : : : ; n

j

:(2.5)

As a 
onsequen
e, we get

�

J (u

�+1

j

) �

�

J (u

�

j

) �

�

J (u

1

j

) < 1 for all � � 1. Sin
e �

j

is 
onvex, lower semi
ontinuous and proper, there exist 
, C 2 R su
h that

�

j

(v) � 
kvk+ C 8v 2 S

j

(2.6)

(
f. e.g. [6℄). From (2.6) and from the boundedness of (

�

J (u

�

j

))

��1

we 
on
lude that

the sequen
e (u

�

j

)

��0

must also be bounded. Let (u

�

k

j

)

k�0

� K

j

be a 
onvergent

subsequen
e with limit u

�

j

2 K

j

. We now prove that u

�

j

= u

j

.
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Observe that the estimate

`(T

l

w)� a(w + T

l

w; T

l

w) + �

j

(w) � �

j

(w + T

l

w) � 0(2.7)

is resulting from the variational formulation of (2.1). Utilizing the monotoni
ity

(2.5), the 
onvexity estimate

�

j

(w) � �

j

(w + !

0

T

l

w) � !

0

(�

j

(w) � �

j

(w + T

l

w));

and (2.7), we obtain

�

J (u

�

k

j

)�

�

J (u

�

k+1

j

) �

�

J (u

�

k

j

)�

�

J (u

�

k

+1

j

)

=

n

j

X

i=1

�

�

J(w

�

k

i�1

)�

�

J(w

�

k

i

)

�

�

n

j

X

i=1

�

�

J(w

�

k

i�1

)�

�

J(w

�

k

i�1

+ !

0

T

i

w

�

k

i�1

)

�

=

n

j

X

i=1

�

!

0

(`(T

i

w

�

k

i�1

)� a(w

�

k

i�1

+ T

i

w

�

k

i�1

; T

i

w

�

k

i�1

))

+�

j

(w

�

k

i�1

)� �

j

(w

�

k

i�1

+ !

0

T

i

w

�

k

i�1

)

�

+!

0

(1�

!

0

2

)

n

j

X

i=1

kT

i

w

�

k

i�1

k

2

� !

0

(1�

!

0

2

)

n

j

X

i=1

kT

i

w

�

k

i�1

k

2

:

(2.8)

On the other hand, the triangle inequality, the Cau
hy{S
hwarz inequality and

(2.4) lead to

ku

�

k

j

� w

�

k

l�1

k

2

� n

j

n

j

X

i=1

kT

i

w

�

k

i�1

k

2

; l = 1; : : : ; n

j

:(2.9)

Sin
e

�

J is 
ontinuous on K

j

, we 
on
lude from (2.8) and (2.9) that

w

�

k

l�1

! u

�

j

; k !1; l = 1; : : : ; n

j

:

The monotoni
ity (2.5) yields

�

J (u

�

k+1

j

) �

�

J (u

�

k

+1

j

) �

�

J (w

�

k

l

) �

�

J (w

�

k

l�1

+ !

0

T

l

w

�

k

l�1

) �

�

J (u

�

k

j

)(2.10)

for ea
h �xed l = 1; : : : ; n

j

. Sin
e

�

J and T

l

are 
ontinuous on K

j

, we 
an pass to

the limit so that

�

J (u

�

j

) =

�

J (u

�

j

+ !

0

T

l

u

�

j

):

Moreover, the 
onvexity of

�

J and (2.1) imply

�

J (u

�

j

) =

�

J (u

�

j

+T

l

u

�

j

). As T

l

u

�

j

is the

unique solution of (2.1), we get T

l

u

�

j

= 0. The same holds true for all l = 1; : : : ; n

j

so that u

�

j

must be a �xed point of the original nonlinear Gau�{Seidel relaxation

whi
h is well-known to have the unique �xed point u

j

. This 
on
ludes the proof.

Observe that 
ondition (2.4) 
an be repla
ed by the energy redu
tion

J (w + v

l

) + �

j

(w + v

l

) � J (w + !

0

T

l

w) + �

j

(w + !

0

T

l

w)(2.11)

together with the additional assumption kv

l

k � 
kT

l

wk.
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Theorem 2.1 
an be used as a stopping 
riterion for the iterative solution of (2.1).

To give an example, let us �rst reformulate (2.1) as the s
alar in
lusion

0 2 g(z

l

) = ��(w(p) + z

l

)h

p

l

+ a

ll

z

l

� r

l

(2.12)

where

z

l

�

(j)

p

l

= T

l

w; a

ll

= a(�

(j)

p

l

; �

(j)

p

l

); r

l

= `(�

(j)

p

l

)� a(w; �

(j)

p

l

)

and �� is the subdi�erential of �. We shall now des
ribe a simple bise
tion method

for the approximate solution of (2.12). First, let w

0

= maxf0;�w(p)g. Now we have

to distinguish three 
ases. Of 
ourse, z

l

= w

0

is the exa
t solution, if 0 2 g(w

0

). If

g = sup g(w

0

) < 0, then it is easily 
he
ked that z

l

2 [z

0

; z

0

℄ with z

0

= w

0

and z

0

=

�g=a

ll

> w

0

. Starting with [z

0

; z

0

℄, we 
ontinue bise
tion until the new midpoint

z

i

= (z

i

+ z

i

)=2 satis�es 0 2 g(z

i

) or sup g(z

i

) < 0. Then v

l

= z

i

�

(j)

p

has the

property (2.4) with !

0

=

1

2

. In the remaining 
ase inf g(w

0

) > 0 we �rst 
on
lude

w

0

= 0. Then we pro
eed in a symmetri
al way starting with z

0

= �w(p) < 0 and

z

0

= 0. Finally, it is 
lear that (w + v

l

)(p

l

) � 0, giving M

j

u

0

j

2 K

j

for all u

0

j

2 S

j

.

More sophisti
ated algorithms based on se
ant approximations or Newton lin-

earization 
an be 
onstru
ted in a similar way.

3. Monotone Iterations

Nonlinear or inexa
t Gau�-Seidel relaxationM

j

, as 
onsidered in the pre
eding

se
tion, typi
ally su�er from rapidly deteriorating 
onvergen
e rates when pro
eed-

ing to more and more re�ned triangulations. As a possible remedy, we introdu
e

so-
alled monotone iterations

�u

�

j

=M

j

u

�

j

u

�+1

j

= C

j

�u

�

j

(3.1)

where the additional substep C

j

is intended to a

elerate the 
onvergen
e speed.

Adopting multigrid terminology,M

j

is 
alled �ne grid smoother, �u

�

j

is the smoothed

iterate and C

j

is 
alled 
oarse grid 
orre
tion.

Theorem 3.1. Assume that the smoother M

j

satis�es the 
onditions of Theo-

rem 2.1 and that the 
oarse grid 
orre
tion C

j

has the monotoni
ity property

J (C

j

w) + �

j

(C

j

w) � J (w) + �

j

(w) 8w 2 K

j

:(3.2)

Then the monotone iteration (3.1) is globally 
onvergent.

Proof. Exploiting (3.2), the proof is almost the same as for Theorem 2.1. For

example, (2.10) now takes the form

�

J (u

�

k+1

j

) �

�

J (C

j

�u

�

k

j

) �

�

J (�u

�

k

j

) �

�

J (w

�

k

l�1

+ !

0

T

l

w

�

k

l�1

) �

�

J (u

�

k

j

):

As a by-produ
t, we also get 
onvergen
e of the smoothed iterates

�u

�

j

! u

j

� !1:(3.3)

We emphasize that the 
oarse grid 
orre
tion alone does not need to be 
onvergent.

This gives 
onsiderable 
exibility in 
onstru
ting C

j

.
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4. Monotone Coarse Grid Corre
tion with Lo
al Damping

Re
all that 
lassi
al Newton multigrid methods 
annot be applied to (1.6) for

la
k of smoothness. In this se
tion, we shall derive 
onstrained Newton multigrid

methods to be used as 
oarse grid 
orre
tion C

j

.

For given smoothed iterate �u

�

j

, we introdu
e the set of regular nodes

N

Æ

j

(�u

�

j

) = fp 2 N

j

j �u

�

j

(p) > 0g � N

j

:(4.1)

Consider some �xed p 2 N

Æ

j

(�u

�

j

). Then, as a 
onsequen
e of (1.5), there exists a

neighborhood of �u

�

j

(p),

0 < '

�u

�

j

(p) < �u

�

j

(p) < '

�u

�

j

(p);(4.2)

where uniform Lips
hitz 
ontinuity

j�

00

(z

1

)� �

00

(z

2

)j � L

�

p

jz

1

� z

2

j 8z

1

; z

2

2 ['

�u

�

j

(p); '

�u

�

j

(p)℄(4.3)

holds with pointwise Lips
hitz 
onstant L

�

p

> 0. For instan
e, let us 
hoose

'

�u

�

j

(p) =

1

2

�u

�

j

(p); '

�u

�

j

(p) = 2�u

�

j

(p) 8p 2 N

Æ

j

(�u

�

j

):(4.4)

We de�ne

'

�u

�

j

(p) = '

�u

�

j

(p) = �u

�

j

(p)(4.5)

at the remaining 
riti
al nodes

p 2 N

�

j

(�u

�

j

) = N

j

n N

Æ

j

(�u

�

j

):

Colle
ting these intervals for all p 2 N

j

, we introdu
e the neighborhood K

�u

�

j

of �u

�

j

,

K

�u

�

j

= fw 2 S

j

j '

�u

�

j

(p) � w(p) � '

�u

�

j

(p); p 2 N

j

g � S

j

:(4.6)

The above de�nitions were motivated by the following lo
al representation of �

j

,

�

j

(w) = �

�u

�

j

(w) + 
onst. 8w 2 K

�u

�

j

;(4.7)

by the smooth fun
tional �

�u

�

j

,

�

�u

�

j

(w) =

X

p2N

Æ

j

(�u

�

j

)

�(w(p))h

p

; w 2 K

�u

�

j

:(4.8)

Let us 
onsider the 
onstrained minimization of the smooth energy J + �

�u

�

j

u

�u

�

j

2 K

�u

�

j

: J (u

�u

�

j

) + �

�u

�

j

(u

�u

�

j

) � J (v) + �

�u

�

j

(v) 8v 2 K

�u

�

j

:(4.9)

As a 
onsequen
e of (3.3), we have dist(u

j

;K

�u

�

j

) ! 0 as � ! 1. Hen
e, the

solutions of (4.9) tend to u

j

. Moreover, we shall see later on that u

j

2 K

�u

�

j

holds for

non{degenerate problems (1.6) after a �nite number of iteration steps. In this 
ase,

we 
learly have u

�u

�

j

= u

j

or, equivalently, our original non{smooth problem (1.6)

redu
es to the 
onstrained smooth problem (4.9). Hen
e, approximate solutions of

(4.9) are good 
andidates for the next iterate u

�+1

j

.

The main advantage of (4.9) is that Newton linearization 
an be applied to the

smooth energy J +�

�u

�

j

. More pre
isely, we approximate J +�

�u

�

j

by the quadrati


energy fun
tional J

�u

�

j

,

J

�u

�

j

(w) =

1

2

a

�u

�

j

(w;w) � `

�u

�

j

(w) � J (w) + �

�u

�

j

(w) + 
onst.; w 2 K

�u

�

j

;
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where the bilinear form

a

�u

�

j

(w;w) = a(w;w) + �

00

�u

�

j

(�u

�

j

)(w;w)(4.10)

and the linear fun
tional

`

�u

�

j

(w) = `(w)� �

0

�u

�

j

(�u

�

j

)(w) + �

00

�u

�

j

(�u

�

j

)(�u

�

j

; w)

are obtained by Taylor's expansion

�

�u

�

j

(w) � �

�u

�

j

(�u

�

j

) + �

0

�u

�

j

(�u

�

j

)(w � �u

�

j

) +

1

2

�

00

�u

�

j

(�u

�

j

)(w � �u

�

j

; w � �u

�

j

):

The resulting quadrati
 obsta
le problem

w

�u

�

j

2 K

�u

�

j

: J

�u

�

j

(w

�u

�

j

) � J

�u

�

j

(v) 8v 2 K

�u

�

j

(4.11)


an be regarded as 
onstrained Newton linearization re
e
ting that � is only pie
e-

wise di�erentiable.

We approximate (4.11) by one step of an extended underrelaxation as introdu
ed

in [10℄. In 
ontrast to [10℄, lo
al damping parameters now have to be 
omputed

expli
itly to enfor
e monotoni
ity (3.2) of the fun
tional J + �

j

whi
h might be

di�erent from J

�u

�

j

. Hen
e, we brie
y re
all the basi
 algorithm for further referen
e

and analysis. We 
hoose s
aled sear
h dire
tions �

�

l

,

�

�

l

2 S

j

; max

x2


j�

�

l

(x)j = 1; l = n

j

+ 1; : : : ;m

�

j

;

whi
h may depend on the a
tual 
onstraints K

�u

�

j

. It is 
onvenient to start numer-

ation at n

j

+ 1, be
ause intermediate iterates w

�

l

, l = 1; : : : ; n

j

, are already given

by (2.2). We now 
ontinue this sequen
e a

ording to

w

�

n

j

= �u

�

j

; w

�

l

= w

�

l�1

+ !

�

l

v

�

l

; l = n

j

+ 1; : : : ;m

�

j

:(4.12)

Ea
h lo
al 
orre
tion v

�

l

is the solution of the lo
al obsta
le problem

v

�

l

2 D

�

l

: J

�u

�

j

(w

�

l�1

+ v

�

l

) � J

�u

�

j

(w

�

l�1

+ v) 8v 2 D

�

l

(4.13)

with 
onstraints D

�

l

� V

�

l

:= spanf�

�

l

g satisfying

0 2 D

�

l

� fv 2 V

�

l

j w

�

l�1

+ v 2 K

�u

�

j

g:(4.14)

In order to guarantee the monotoni
ity (3.2), the lo
al damping parameters !

�

l

are


hosen su
h that

J (w

�

l

) + �

�u

�

j

(w

�

l

) � J (w

�

l�1

) + �

�u

�

j

(w

�

l�1

):(4.15)

Finally, our monotone 
oarse grid 
orre
tion with lo
al damping is given by

C

j

�u

�

j

= w

�

m

�

j

= �u

�

j

+

m

�

j

X

l=n

j

+1

!

�

l

v

�

l

:(4.16)

Using the monotoni
ity (4.15), general 
onvergen
e results on extended under-

relaxations 
arry over to the present 
ase. For example, we get 
onvergen
e of ea
h

in�nite sequen
e of intermediate iterates (
f. [12℄, Corollary 2.3, p. 54)

w

�

l

! u

j

� !1:(4.17)

We now derive a suÆ
ient 
ondition for the lo
al monotoni
ity (4.15). Again, the

index � will be frequently suppressed. We shall use the notation z

+

= maxf0; zg

+

.
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Proposition 4.1. Let v

l

= z

l

�

l

be the solution of (4.13). Assume that !

l

2 [0; 1℄

satis�es

!

l

jz

l

j � 2

(

j`

�u

�

j

(�

l

)� a

�u

�

j

(w

l�1

; �

l

)j � L

l

k�u

�

j

� w

l�1

k

2

1;l

a

�u

�

j

(�

l

; �

l

) + L

l

�

k�u

�

j

� w

l�1

k

1;l

+ !

l

jz

l

j

�

)

+

(4.18)

with lo
al Lips
hitz 
onstant

L

l

=

X

p2N

Æ

j

(�u

�

j

)

L

p

j�

l

(p)j h

p

(4.19)

and lo
al maximum norm

kvk

1;l

= max

p2N

j

\ int supp �

l

jv(p)j:(4.20)

Then the damped 
orre
tion !

l

v

l

ful�lls the lo
al monotoni
ity 
ondition (4.15).

Proof. The assertion is trivial for z

l

= 0. Assuming z

l

6= 0, we introdu
e the s
alar

fun
tion

g(!) = J (w

l�1

+ !v

l

) + �

�u

�

j

(w

l�1

+ !v

l

):

Obviously, (4.15) is equivalent to g(!

l

) � g(0). As g 2 C

2

[0; 1℄, we 
an use Taylor's

expansion to reformulate this 
ondition as

0 � !

l

� �2

g

0

(0)

g

00

(�!

l

)

(4.21)

with suitable � 2 (0; 1). To obtain a lower bound for �g

0

(0), we �rst state the

estimate

�

0

�u

�

j

(w

l�1

)(v

l

) � �

0

�u

�

j

(�u

�

j

)(v

l

) + �

00

�u

�

j

(�u

�

j

)(w

l�1

� �u

�

j

; v

l

) + L

l

jz

l

jkw

l�1

� �u

�

j

k

2

1;l

whi
h is a 
onsequen
e of Taylor's formula and the pointwise Lips
hitz 
ondition

(4.3). Moreover, we have `

�u

�

j

(v

l

) � a

�u

�

j

(w

l�1

; v

l

) � 0 be
ause v

l

is the solution of

(4.13). Combining these estimates, we get the lower bound

�g

0

(0) = �J

0

(w

l�1

)(v

l

)� �

0

�u

�

j

(w

l�1

)(v

l

)

� j`

�u

�

j

(v

l

)� a

�u

�

j

(w

l�1

; v

l

)j � L

l

jz

l

jkw

l�1

� �u

�

j

k

2

1;l

:

(4.22)

Using

�

00

�u

�

j

(w

l�1

+ �!

l

v

l

)(v

l

; v

l

)

� �

00

�u

�

j

(�u

�

j

)(v

l

; v

l

) + z

2

l

L

l

�

kw

l�1

� �u

�

j

k

1;l

+ !

l

jz

l

j

�

the upper bound

g

00

(�!

l

) = J

00

(w

l�1

+ �!

l

v

l

)(v

l

; v

l

) + �

00

�u

�

j

(w

l�1

+ �!

l

v

l

)(v

l

; v

l

)

� a

�u

�

j

(v

l

; v

l

) + z

2

l

L

l

�

kw

l�1

� �u

�

j

k

1;l

+ !

l

jz

l

j

�

(4.23)

is obtained in a similar way. Inserting (4.22) and (4.23) in (4.21), it is 
lear that

(4.18) implies (4.15)

We emphasize that only lo
al properties (i.e. properties on supp �

l

) enter the

upper bound in (4.18).
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As an alternative to lo
al damping, one might always set !

l

= 1 in (4.12) and

enfor
e monotoni
ity (3.2) by global damping

u

�+1

j

= �u

�

j

+ �!

m

j

X

l=n

j

+1

v

l

(4.24)

with suitable �! 2 [0; 1℄. This would simplify 
onvergen
e analysis, be
ause e.g. the

results from [10℄ 
ould be applied dire
tly. However, upper bounds for �! (
f. e.g. [1,

4℄) typi
ally deteriorate for in
reasing global Lips
hitz 
onstant

�

L = max

p2

S

m

j

l=1

int supp �

l

L

p

:

Hen
e, for heavily varying L

p

as 
onsidered here, global damping (4.24) is likely to

provide very little progress in 
omparison with the lo
al strategy (4.12).

5. Standard Monotone Multigrid Methods

Assume that T

j

is resulting from j re�nements of an intentionally 
oarse tri-

angulation T

0

. In this way, we obtain a sequen
e of triangulations T

0

; : : : ; T

j

and


orresponding nested �nite element spa
es S

0

� � � � � S

j

. Though the algorithms

and 
onvergen
e results to be presented 
an be easily generalized to nonuniform

grids, we assume for 
onvenien
e that the triangulations are uniformly re�ned.

More pre
isely, ea
h triangle t 2 T

k

is subdivided into four 
ongruent subtriangles

in order to produ
e the next triangulation T

k+1

. Colle
ting all nodal basis fun
tions

from all re�nement levels, we obtain the multilevel nodal basis �

S

,

�

S

=

�

�

(j)

p

1

; �

(j)

p

2

: : : ; �

(j)

p

n

j

; : : : ; �

(0)

p

1

; : : : ; �

(0)

p

n

0

�

:(5.1)

The m

S

= n

j

+ � � �+ n

0

elements

�

l

= �

(k

l

)

p

l

; l = n

j

+ 1; : : : ;m

j

= n

j

+m

S

;

are ordered from �ne to 
oarse.

Using the abstra
t framework of the pre
eding se
tion, we now spe
ify the 
oarse

grid 
orre
tion C

std

j

. We sele
t 
onstant sear
h dire
tions

�

�

l

= �

l

; l = n

j

+ 1; : : : ;m

j

; 8� � 0:

For ea
h �u

�

j

the admissible set K

�u

�

j

is 
hosen a

ording to (4.6) with '

�u

�

j

, '

�u

�

j

taken

from (4.4). The 
onstraints D

�

l

, appearing in the lo
al problems (4.13), take the

form

D

�

l

= fv 2 V

l

j  

�

l

� v �  

�

l

g;(5.2)

where lo
al obsta
les  

�

l

;  

�

l

2 V

l

are intended to approximate the �ne grid 
on-

straints '

�u

�

j

� w

�

l�1

, '

�u

�

j

� w

�

l�1

, respe
tively. The property  

�

l

;  

�

l

2 V

l

allows to


he
k the 
onstraints dire
tly on the 
oarse grid. In order to guarantee (4.15), we

impose the 
ondition

'

�u

�

j

(p)� w

�

l�1

(p) �  

�

l

(p) � 0 �  

�

l

(p) � '

�u

�

j

(p)� w

�

l�1

(p) 8p 2 N

j

:(5.3)

Finally, we assume that

 

�

l

=  

l

('

�u

�

j

; w

�

n

j

; : : : ; w

�

l�1

);  

�

l

=  

l

('

�u

�

j

; w

�

n

j

; : : : ; w

�

l�1

)
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are 
ontinuous fun
tions of '

�u

�

j

; '

�u

�

j

; w

�

n

j

; : : : ; w

�

l�1

, satisfying

 

l

('

u

j

; u

j

; : : : ; u

j

)(p) < 0 <  

l

('

u

j

; u

j

; : : : ; u

j

)(p) 8p 2 int supp �

l

;(5.4)

if int supp �

l

� N

Æ

j

(u

j

). Lo
al obsta
les  

�

l

;  

�

l

2 V

l

with the properties (5.3) and

(5.4) 
an be obtained indu
tively by quasioptimal monotone restri
tion. We refer

to [10℄ or [12℄, pp. 74, for details. As usual, the index � is mostly skipped in the

sequel.

In the light of Proposition 4.1, we 
hoose lo
al damping parameters

!

l

= min

(

1;

(

2(j`

�u

�

j

(�

l

)� a

�u

�

j

(w

l�1

; �

l

)j � L

l

B

2

l

)

jz

l

j(a

�u

�

j

(�

l

; �

l

) + L

l

(B

l

+ jz

l

j))

)

+

)

(5.5)

for all non{zero lo
al 
orre
tions v

l

= z

l

�

l

obtained from (4.13). Denoting

kv

k

k

1

= max

x2


jv

k

(x)j;

the upper bounds

B

l

=

l�1

X

k=n

j

+1

!

k

kv

k

k

1

� k�u

�

j

� w

l�1

k

1;l

(5.6)

make !

l


omputable without visiting the �ne grid (
f. [13℄).

As a 
onsequen
e of the above 
onsiderations, the resulting 
oarse grid 
orre
tion

C

std

j


an be implemented as a 
lassi
al V{
y
le with optimal numeri
al 
omplexity.

For further referen
e, the monotone iteration

�u

�

j

=M

j

u

�

j

u

�+1

j

= C

std

j

�u

�

j

(5.7)

is 
alled standard monotone multigrid method.

It is 
lear from Theorem 3.1 and Proposition 4.1 that (5.7) is globally 
onvergent,

if the smoother M

j

satis�es the 
onditions of Theorem 2.1. We shall now derive

upper bounds for the asymptoti
 
onvergen
e rates with respe
t to the lo
al energy

norm

kvk

u

j

= a

u

j

(v; v)

1=2

:(5.8)

The symmetri
, positive de�nite bilinear form a

u

j

(v; v) is de�ned a

ording to

(4.10). We �rst state that the dis
rete free boundary is dete
ted after a �nite

number of steps.

Lemma 5.1. Assume that the dis
rete minimization problem (1.6) satis�es the

non{degenera
y 
ondition

`(�

(j)

p

)� a(u

j

; �

(j)

p

) 2 int ��

j

(u

j

)(�

(j)

p

) 8p 2 N

�

j

(u

j

)(5.9)

and that exa
t nonlinear Gau�{Seidel relaxation (2.1) is used as smoother M

j

.

Then there is a �

0

� 0 su
h that

N

Æ

j

(u

�

j

) = N

Æ

j

(�u

�

j

) = N

Æ

j

(u

j

) 8� � �

0

:(5.10)

Proof. Note that

N

Æ

j

(u

�

j

) = N

Æ

j

(�u

��1

j

)
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follows dire
tly from (4.5). Hen
e, it is suÆ
ient to show the se
ond equality in

(5.10). Re
all that �u

�

j

! u

j

(
f. (3.3)). Hen
e, we have �u

�

j

(p) > 0, if u

j

(p) > 0 and

� is large enough. This implies

N

Æ

j

(u

j

) � N

Æ

j

(�u

�

j

)(5.11)

for suÆ
iently large �. It remains to show

N

�

j

(u

j

) � N

�

j

(�u

�

j

):

Let p

l

2 N

�

j

(u

j

) or, equivalently, u

j

(p) = 0. Rewriting (2.1) as a variational in
lu-

sion, we get

`(v)� a(w

�

l

; v) 2 ��(w

�

l

(p

l

))v(p) h

p

l

8v 2 V

l

= spanf�

(j)

p

l

g:(5.12)

As w

�

l

(p

l

) = �u

�

j

(p

l

) for all l = 1; : : : ; n

j

, this leads to

`(�

(j)

p

l

)� a(w

�

l

; �

(j)

p

l

) 2 ��(�u

�

j

(p

l

)) h

p

l

:

Re
all that w

�

l

! u

j

(
f. (4.17)). Hen
e, (5.9) yields

`(�

(j)

p

l

)� a(w

�

l

; �

(j)

p

l

) 2 ��(0) h

p

l

(5.13)

for suÆ
iently large �. As �� is maximal monotone, these two in
lusions imply

�u

�

j

(p

l

) = 0. We �nally 
hose �

0

su
h that (5.11) and (5.13) are satis�ed.

Note that Lemma 5.1 
an not be extended to inexa
t Gau�{Seidel smoothing.

We 
ontinue with an asymptoti
 error estimate for nonlinear Gau�{Seidel relax-

ation. Note that known results on nonlinear subspa
e 
orre
tion methods (
f. [5,

17℄) 
annot be applied, be
ause � is not uniformly Lips
hitz.

Lemma 5.2. Assume that the 
onditions in Lemma 5.1 are satis�ed. Then, for

ea
h " > 0, there is a �

"

� 0 su
h that

k�u

�

j

� u

j

k

u

j

� (1 + ")ku

�

j

� u

j

k

u

j

8� � �

"

:(5.14)

Proof. Choose l = 1; : : : ; n

j

and arbitrary p

l

2 N

Æ

j

(u

j

). Using (5.10), the minimiza-

tion problem (2.1) for the 
orre
tion v

�

l

= T

l

w

�

l�1


an be equivalently rewritten as

`(v)� a(w

�

l�1

+ v

�

l

; v) = �

0

(w

�

l�1

(p

l

) + v

�

l

(p

l

))v(p

l

) h

p

l

8v 2 V

l

:

Observe that w

�

l

(p

l

) = w

�

l�1

(p

l

) + v

�

l

(p

l

) = �u

�

j

(p

l

), l = 1; : : : ; n

j

. Inserting v = v

�

l

we get

a(w

�

l�1

; v

�

l

) = `(v

�

l

)� a(v

�

l

; v

�

l

)� �

0

(�u

�

j

(p

l

))v

�

l

(p

l

) h

p

l

:

On the other hand, use (1.9) with v = v

�

l

to obtain

a(u

j

; v

�

l

) = `(v

�

l

)� �

0

(u

j

(p

l

))v

�

l

(p

l

) h

p

l

:

Now the mean-value theorem gives

a(w

�

l�1

� u

j

; v

�

l

) = �a(v

�

l

; v

�

l

)� �

00

( ~w(p

l

))(�u

�

j

(p

l

)� u

j

(p

l

))v

�

l

(p) h

p

l

(5.15)
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denoting ~w(p

l

) = u

j

(p

l

) + �(�u

�

j

(p

l

)� u

j

(p

l

)) with suitable � 2 (0; 1). Using (5.15)

and again w

�

l�1

(p

l

) + v

�

l

(p

l

) = �u

�

j

(p

l

), we 
ompute

kw

�

l

� u

j

k

2

u

j

= kw

�

l�1

+ v

�

l

� u

j

k

2

u

j

= kw

�

l�1

� u

j

k

2

u

j

+ kv

�

l

k

2

u

j

+2(a(w

�

l�1

� u

j

; v

�

l

) + �

00

u

j

(u

j

)(w

�

l�1

� u

j

; v

�

l

))

= kw

�

l�1

� u

j

k

2

u

j

+ kv

�

l

k

2

u

j

+2

�

�a(v

�

l

; v

�

l

)� �

00

(u

j

(p

l

))v

�

l

(p

l

)

2

h

p

l

+�

00

(u

j

(p

l

))(v

�

l

(p

l

)

2

+ v

�

l

(p

l

)(w

�

l�1

(p

l

)� u

j

(p

l

))) h

p

l

� �

00

( ~w(p

l

))v

�

l

(p

l

)(�u

�

j

(p

l

)� u

j

(p

l

)) h

p

l

�

= kw

�

l�1

� u

j

k

2

u

j

� kv

�

l

k

2

u

j

+2 (�

00

(u

j

(p

l

))� �

00

( ~w(p

l

))) (�u

�

j

(p

l

)� u

j

(p

l

))v

�

l

(p

l

) h

p

l

:

We now derive an upper bound for j�

00

(u

j

(p

l

)) � �

00

( ~w(p

l

))j. Convergen
e (3.3)

provides

1

4

u

j

(p)� j�u

�

j

(p)� u

j

(p)j � 0 8p 2 N

Æ

j

(u

j

)(5.16)

for suÆ
iently large �. Choosing

' =

1

2

min

p2N

Æ

j

(u

j

)

u

j

(p); ' = 2 max

p2N

Æ

j

(u

j

)

u

j

(p);(5.17)

(5.16) implies

�u

�

j

(p) 2 ['; '℄ � (0;1) 8p 2 N

Æ

j

(u

j

):(5.18)

Hen
e, assumption (1.5) yields

j�

00

(u

j

(p))� �

00

( ~w(p))j � L

�

j�u

�

j

(p)� u

j

(p)j 8p 2 N

Æ

j

(u

j

)

with suitable L

�

independent of l = 1; : : : ; n

j

and �. Inserting this estimate in the

above representation of kw

�

l

� u

j

k

2

u

j

, we get

kw

�

l

� u

j

k

2

u

j

� kw

�

l�1

� u

j

k

2

u

j

+ 2L

�

jv

�

l

(p

l

)j(�u

�

j

(p

l

)� u

j

(p

l

))

2

h

p

l

:

Su

essive appli
ation gives

k�u

�

j

� u

j

k

2

u

j

� ku

�

j

� u

j

k

2

u

j

+ 2L

�

k�u

�

j

� u

�

j

k

1

n

j

X

l=1

(�u

�

j

(p

l

)� u

j

(p

l

))

2

h

p

l

:

It is well{known that shape regularity of T

j

, Poin
ar�e's inequality, ellipti
ity of

a(�; �) and 
onvexity of � provide

n

j

X

l=1

v(p)

2

h

p

l

� 


Z




v(x)

2

dx � Ckvk

2

� Ckvk

2

u

j

8v 2 S

j

(5.19)

with suitable 
; C 2 R independent of � and j. The last two estimates imply

(1� 2CL

�

k�u

�

j

� u

�

j

k

1

) k�u

�

j

� u

j

k

2

u

j

� ku

�

j

� u

j

k

2

u

j

:

We �nally 
hose �

"

su
h that (5.10), (5.18) and

1� 2CL

�

k�u

�

j

� u

�

j

k

1

� (1 + ")

�1

(5.20)

are valid for all � � �

"

.
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We now prove that the 
oarse grid 
orre
tion C

j

is asymptoti
ally based on a

smooth nonlinear problem.

Lemma 5.3. Assume that the 
onditions in Lemma 5.1 are satis�ed. Then there

is a �

0

su
h that for � � �

0

the 
onstrained smooth problem (4.9) has the solution

u

j

and 
an be equivalently rewritten as

u

j

2 U

Æ

j

: a(u

j

; v) + �

0

u

j

(u

j

)(v) = `(v) 8v 2 S

Æ

j

(5.21)

with �

u

j

de�ned a

ording to (4.8),

S

Æ

j

= fv 2 S

j

j v(p) = 0 8p 2 N

�

j

(u

j

)g � S

j

and U

Æ

j

= fv 2 S

Æ

j

j v(p) > 0 8p 2 N

Æ

j

(u

j

)g � S

Æ

j

.

Proof. We �rst show that there is �

0

su
h that

u

j

� K

�u

�

j

8� � �

0

:(5.22)

Using (5.10), we only have to prove that

'

�u

�

j

(p) =

1

2

�u

�

j

(p) � u

j

(p) � 2�u

�

j

(p) = '

�u

�

j

(p) 8p 2 N

Æ

j

(u

j

)

whi
h is an immediate 
onsequen
e of (5.16). Exploiting Lemma 5.1 and the 
onver-

gen
e of �u

�

j

(
f. (3.3)), we �nally 
hoose �

0

su
h that (5.10) and (5.16) are satis�ed

for � � �

0

.

By de�nition, u

j

is minimizing J + �

j

on the whole spa
e S

j

. As u

j

2 K

�u

�

j

and

�

�u

�

j

= �

j

8� � �

0

, u

j

must be the solution of (4.9) for all � � �

0

. The formulation

(5.21) follows immediately from (1.9).

As a 
onsequen
e of Lemma 5.3, exa
t solution of the 
onstrained smooth prob-

lem (4.9) in ea
h iteration step would provide an asymptoti
ally exa
t method.

Lemma 5.4. Assume that the 
onditions in Lemma 5.1 are satis�ed. Then there

is a �

0

su
h that 
onstrained Newton linearization (4.11) is equivalent to 
lassi
al

Newton linearization of (5.21) at �u

�

j

w

�u

�

j

2 S

Æ

j

: a

�u

�

j

(w

�u

�

j

; v) = `

�u

�

j

(v) 8v 2 S

Æ

j

:(5.23)

Moreover, for ea
h " > 0 there is a �

"

� �

0

su
h that

kw

�u

�

j

� u

j

k

u

j

� "k�u

�

j

� u

j

k

u

j

8� � �

"

:(5.24)

Proof. Note that (5.10) yields �u

�

j

2 U

Æ

j

so that (5.23) is well-de�ned for suÆ
iently

large �. For the moment, let w

�

denote the solution of (5.23). We �rst prove that

for given " > 0 there is a �

"

su
h that

kw

�

� u

j

k

u

j

� "k�u

�

j

� u

j

k

u

j

8� � �

"

:(5.25)

We subtra
t (5.21) from (5.23), use the mean-value theorem and insert v = w

�

�u

j

to get the equality

kw

�

� u

j

k

2

u

j

+ �

00

u

j

( ~w)(�u

�

j

� u

j

; w

�

� u

j

)� �

00

u

j

(�u

�

j

)(�u

�

j

� u

j

; w

�

� u

j

) = 0(5.26)

where ~w 2 U

Æ

j

� S

Æ

j

is given by the nodal values ~w(p) = �u

�

j

(p) + �

p

(u

j

(p)� �u

�

j

(p))

with suitable �

p

2 (0; 1). Using (5.16), we get

j�

00

( ~w(p))� �

00

(�u

�

j

(p))j � L

�

j�u

�

j

(p)� u

j

(p)j 8p 2 N

Æ

j

(u

j

)
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in the same way as in the proof of Lemma 5.2. Together with the Cau
hy-S
hwarz

inequality and (5.19) this leads to

j�

00

u

j

( ~w)(�u

�

j

� u

j

; w

�

� u

j

)� �

00

u

j

(�u

�

j

)(�u

�

j

� u

j

; w

�

� u

j

)j

� L

�

X

p2N

Æ

j

(u

j

)

(�u

�

j

(p)� u

j

(p))

2

jw

�

(p)� u

j

(p)j h

p

� CL

�

k�u

�

j

� u

j

k

1

k�u

�

j

� u

j

k

�u

�

j

kw

�

� u

j

k

�u

�

j

(5.27)

Inserting this estimate in (5.26), we get

kw

�

� u

j

k

�u

�

j

� CL

�

k�u

�

j

� u

j

k

1

k�u

�

j

� u

j

k

�u

�

j

:(5.28)

We �nally 
hoose �

"

su
h that (5.10) (5.16) and CL

�

k�u

�

j

� u

j

k

1

� " are satis�ed

for � � �

"

.

We still have to show that w

�

= w

�u

�

j

holds for suÆ
iently large �. First note

that (5.10) yields

w

�

(p) = w

�u

�

j

(p) 8p 2 N

�

j

(u

j

):

Convergen
e (3.3) in 
ombination with (5.28) provides

1

2

u

j

(p)� jw

�

(p)� u

j

(p)j � j�u

�

j

(p)� u

j

(p)j � 0 8p 2 N

Æ

j

(u

j

)(5.29)

for suÆ
iently large �, giving

'

�u

�

j

(p) =

1

2

�u

�

j

(p) � w

�

(p) � 2�u

�

j

(p) = '

�u

�

j

(p) 8p 2 N

Æ

j

(u

j

):

Hen
e, w

�

2 K

�u

�

j

so that (4.11) and (5.23) must have the same solution w

�u

�

j

= w

�

.

We �nally 
hoose �

0

su
h that (5.10) and (5.29) are valid.

Now we shall see that C

std

j

is asymptoti
ally be
omes a linear subspa
e 
orre
tion

method for the redu
ed linear problem (5.23).

Lemma 5.5. Assume that the 
onditions in Lemma 5.1 are satis�ed. Then there

is a �

0

su
h that the lo
al obsta
le problems (4.13) 
an be equivalently rewritten as

v

�

l

2 V

l

: a

�u

�

j

(v

�

l

; v) = `

�u

�

j

(v)� a

�u

�

j

(w

�

l�1

; v) 8v 2 V

l

;(5.30)

if int supp �

l

� N

Æ

j

(u

j

) and we have

v

�

l

= 0 if int supp �

l

6� N

Æ

j

(u

j

):(5.31)

Assume further that non{zero 
orre
tions v

�

l

have the property

kv

�

k

k

2

1

= o(kv

�

l

k

1

); � !1; k = n

j

+ 1; : : : ; l � 1:(5.32)

Then �

1

� �

0


an be 
hosen su
h that the damping parameters !

�

l

de�ned in (5.5)

satisfy

!

�

l

= 1 8� � �

1

:(5.33)

Proof. Let p 2 int supp �

l

\ N

�

j

(u

j

). Then (5.10) provides

'

�u

�

j

(p) = w

�

l�1

(p) = '

�u

�

j

(p) = 0:

Hen
e,  

�

l

(p) =  

�

l

(p) = 0, due to (5.3). As  

�

l

,  

�

l

2 V

l

= spanf�

l

g, this leads to

 

�

l

(p) �  

�

l

(p) � 0 and (5.31) follows. Now let int supp �

l

� N

Æ

j

(u

j

). By assump-

tion,  

�

l

,  

�

l

, depend 
ontinuously on '

�u

�

j

, '

�u

�

j

, w

�

n

j

; : : : ; w

�

l�1

. Hen
e, 
onvergen
e
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(4.17) of the intermediate iterates w

�

l

and 
ondition (5.4) imply that we 
an �nd

" > 0 independent of l and � su
h that

 

�

l

(p) < �" < 0 < " <  

�

l

(p) 8p 2 int supp �

l

holds for suÆ
iently large �. Convergen
e (4.17) yields v

�

l

! 0 so that we 
an

�nally 
hoose �

0

in su
h a way that (5.10) and

 

�

l

(p) < v

�

l

(p) <  

�

l

(p) 8p 2 int supp �

l

(5.34)

are valid for � � �

0

. This proves (5.30) and (5.31).

We still have to show (5.33). The solution v

�

l

= z

�

l

�

l

of (5.30) is given by

z

�

l

=

`

�u

�

j

(�

l

)� a

�u

�

j

(w

l�1

; �

l

)

a

�u

�

j

(�

l

; �

l

)

:(5.35)

Let z

�

l

6= 0. Inserting (5.35) in (5.5), we get

!

�

l

� 2

a

�u

�

j

(�

l

; �

l

)jz

�

l

j � L

l

B

2

l

jz

�

l

j(a

�u

�

j

(�

l

; �

l

) + L

l

(B

l

+ jz

�

l

j))

:

In order to estimate L

l

, note that (5.16) provides

' < '

�u

�

j

(p) < '

�u

�

j

(p) < ' 8p 2 N

Æ

j

(u

j

)

with ', ' de�ned in (5.17). Hen
e, exploiting property (1.5) of �, we get

L

�

p

� L

�

8p 2 N

Æ

j

(u

j

)

with L

�

independent of �. Using (5.10) this leads to

L

l

=

X

p2N

Æ

j

(u

j

)

L

�

p

j�

l

(p)j h

p

� j
jL

�

with j
j denoting the area of 
. In the light of a

�u

�

j

(�

l

; �

l

) � a(�

l

; �

l

) we now obtain

!

�

l

�

2

1 +

L

�

j
j

a(�

l

;�

l

)

P

l

k=n

j

+1

kv

�

k

k

1

�

2L

�

j
j

a(�

l

; �

l

)

0

�

l�1

X

k=n

j

+1

�

kv

�

k

k

2

1

kv

�

l

k

1

�

1=2

1

A

2

:

Exploiting kv

�

k

k

1

! 0 and (5.32) we 
an �nally 
hoose �

1

� �

0

su
h that (5.16)

and (5.33) are satis�ed.

The te
hni
al assumption (5.32) is the pri
e that we have to pay for evaluating

derivatives of �

�u

�

j

at �u

�

j

6= w

�

l�1

. However, evaluating derivatives at w

�

l�1

would

require additional interpolations that lead to suboptimal 
omplexity ranging from

O(n logn) (uniform re�nement) to O(n

2

) (highly nonuniform 
ase).

Now we are ready to state the main result of this se
tion.

Theorem 5.6. Assume that the 
onditions of Lemma 5.5 are satis�ed. Let

kvk

u

j

� 


j

kvk 8v 2 S

Æ

j

:(5.36)

Then there is a �

j

� 0 su
h that the iterates produ
ed by the standard monotone

multigrid method (5.7) ful�ll the error estimate

ku

j

� u

�+1

j

k

u

j

� (1� 



�1

j

(j + 1)

�4

)ku

j

� u

�

j

k

u

j

8� � �

j

:(5.37)

with a positive 
onstant 
 depending only on the ellipti
ity of a(�; �) and on the initial

triangulation T

0

.
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Proof. We have seen in Lemma 5.5 that 
oarse grid 
orre
tion C

std

j

be
omes a

linear subspa
e 
orre
tion for the linear redu
ed problem (5.21) if � � �

1

. The


orresponding subspa
es W

k

, k = 0; : : : ; j, are given by

W

k

= spanf�

(k)

p

2 �

S

\ S

Æ

j

; p 2 N

k

g:

On these subspa
es, the bilinear form a

�u

�

j

(�; �) is approximated by the non{symmetri


bilinear form b

k

(�; �) representing the standard Gau�-Seidel smoother. We now give

an upper bound for the 
onvergen
e rate of this linear iteration. More pre
isely, we

want to show

kw

�u

�

j

� C

std

j

�u

�

j

k

�u

�

j

� q

j

kw

�u

�

j

� �u

�

j

k

�u

�

j

8� � �

1

(5.38)

with q

j

= (1 � ~



�1

j

(j + 1)

�4

) and a 
onstant ~
 depending only on the shape

regularity of T

0

and on the ellipti
ity of a(�; �).

In order to prove (5.38), we shall apply Theorem 2.5 from a re
ent paper of

Neuss [15℄. To this end, we have to 
he
k the 
onditions (V0){(V2) stated there.

Let b

s

k

(�; �) denote the symmetri
 bilinear form as indu
ed by the symmetri
 Gau�-

Seidel relaxation on W

k

. For some v 2 S

Æ

j

, we 
onsider the splitting

v =

j

X

i=0

v

k

; v

0

= I

0

v; v

k

= I

k

v � I

k�1

v;

indu
ed by modi�ed interpolation operators I

k

de�ned by

(I

k

v)(p) =

�

v(p) if �

(k)

p

2 S

Æ

j

0 else

:

The smoothing property (V0)

a

�u

�

j

(v; v) � !b

k

(v; v) 8v 2 W

k

(5.39)

with suitable ! 2 (0; 2) depending only on T

0

is expli
itly stated in Theorem 3.2

in [15℄.

Stability 
ondition (V1) with K

1

= C


j

(j + 1)

2

takes the form

j

X

k=0

b

s

k

(v

k

; v

k

) � C


j

(j + 1)

2

kvk

2

�u

�

j

:(5.40)

In order to prove (5.40) with a 
onstant C depending only on T

0

and on the ellip-

ti
ity of a(�; �), we use the estimate

b

s

k

(v

k

; v

k

) � 


n

k

X

i=1

a

�u

�

j

(�

(k)

p

i

; �

(k)

p

i

)v

k

(p

i

)

2

whi
h holds for all v

k

2 W

k

with 
 > 0 depending only on T

0

(see e.g. (29) in [15℄),


ondition (5.36) and re
ent results on modi�ed hierar
hi
al splittings as 
ontained

in se
tion 5 of [14℄.

Finally,

a

�u

�

j

(v

l

; v

k

) � !

1

2

b

s

l

(v

l

; v

l

)

1

2

b

k

(v

k

; v

k

)

1

2

8v

l

2 W

l

; v

k

2 W

k

(5.41)

follows dire
tly from the Cau
hy-S
hwarz inequality, (5.39) and

a

�u

�

j

(v

l

; v

l

) � b

s

k

(v

l

; v

l

)

16



whi
h is the well-known smoothing property of the symmetri
 Gau�-Seidel relax-

ation. As a 
onsequen
e of (5.41), (V2) holds with K

2

=

p

2(j + 1). Now, we 
an

apply Theorem 2.5 in [15℄ in order to get the desired estimate (5.38).

Note that for given Æ > 0 (5.10) and 
onvergen
e (3.3) provide the norm equiv-

alen
e

(1� Æ)kvk

u

j

� kvk

�u

�

j

� (1 + Æ)kvk

u

j

uniformly on bounded subsets of S

Æ

j

for suÆ
iently large �. Hen
e, for given " > 0

we 
an �nd �

"

su
h that

kw

�u

�

j

� C

std

j

�u

�

j

k

u

j

� (1 + ")q

j

kw

�u

�

j

� �u

�

j

k

u

j

8� � �

"

:(5.42)

To 
on
lude the proof, we 
ombine the estimates (5.14), (5.24) and (5.42) by the

triangle inequality in order to get

ku

j

� u

�+1

j

k

u

j

= ku

j

� C

std

j

�u

�

j

k

u

j

� kw

�u

�

j

� u

j

k

u

j

+ kw

�u

�

j

� C

std

j

�u

�

j

k

u

j

� "k�u

�

j

� u

j

k

u

j

+ (1 + ")q

j

kw

�u

�

j

� �u

�

j

k

u

j

� "(1 + ")ku

�

j

� u

j

k

u

j

+ (1 + ")q

j

(kw

�u

�

j

� u

j

k

u

j

+ k�u

�

j

� u

j

k

u

j

)

�

�

"(1 + ") + ("(1 + ")

2

+ (1 + ")

2

)q

j

�

ku

j

� u

�

j

k

u

j

:

We �nally 
hoose �

"

� �

1

su
h that (5.14), (5.24) and (5.42) hold with

" �

1
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j

(j + 1)

4

:(5.43)

Then, the desired estimate (5.37) follows with 
 =

~


2

and �

j

= �

"

.

We emphasize that (5.37) des
ribes the worst 
ase and 
an be easily improved

on suitable regularity assumptions. For example, let

sup

j2N

max

p2N

Æ

j

(u

j

)

�

00

(u

j

(p)) � 
onst: <1

and assume that the bilinear form a(�; �) takes the form

a(v; w) =

Z




2

X

l;k=1

a

lk

�

l

v �

k

w dx;(5.44)

with 
oeÆ
ients a

lk

2 C

1

(

�


). Then, exploiting a sharpened Cau
hy-S
hwarz in-

equality instead of (5.41), we get the usual O(j

�2

)-estimate for hierar
hi
al bases.

Further improvements 
an be made by using L

2

-like proje
tions instead of the mod-

i�ed interpolations I

k

. We refer to [14, 16℄ for further information. In numeri
al


omputations [13℄, we also observed mesh-independent 
onvergen
e rates with re-

spe
t to the usual energy norm indu
ed by a(�; �). A theoreti
al justi�
ation will

be subje
t of future resear
h.

The pre
eding 
onvergen
e analysis 
lari�es the basi
 idea behind monotone

iterations (3.1). Fine grid smoother M

j

provides global 
onvergen
e exploiting


onvexity of the underlying minimization problem. Additional 
oarse grid 
orre
-

tion C

std

j

asymptoti
ally be
omes a Newton multigrid method with polylogarithmi



onvergen
e rates exploiting lo
al smoothness of �. The a

ura
y of iterates u

�

j

re-

quired to enter the asymptoti
 regime depends on stability of 
riti
al nodes N

�

j

(u

j

)

and on Lips
hitz 
ontinuity of �

00

at u

j

(p), p 2 N

Æ

j

(u

j

). Numeri
al experiments
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indi
ate that initial iterates u

0

j

as resulting from nested iteration are frequently

good enough to provide multigrid 
onvergen
e rates immediately.

6. Trun
ated Monotone Multigrid Methods

Monotone iterations (3.1) are 
onstru
ted in su
h a way that 
oarse grid 
orre
-

tion C

j

does not 
hange the values of the smoothed iterate �u

�

j

at the 
riti
al nodes

p 2 N

�

j

(�u

�

j

). Hen
e, only fun
tions �

l

2 �

S

with the property

int supp �

l

\ N

�

j

(�u

�

j

) = ;(6.1)

a
tually 
ontribute to the 
oarse grid 
orre
tion C

std

j

. It is well-known (
f. eg. [14℄)

that this may lead to poor representation of low frequen
y parts of the error. In

order to improve the 
onvergen
e rates by improved 
oarse grid transport, we shall

now modify all �

l

2 �

S

with the property (6.1) a

ording to N

�

j

(�u

�

j

).

Following [10, 14℄, we de�ne modi�ed basis fun
tions

~

�

(k)

p

= T

�

j;k

�

(k)

p

; p 2 N

k

;(6.2)

by using trun
ation operators T

�

j;k

, k = 0; : : : ; j,

T

�

j;k

= I

S

�

j

Æ � � � Æ I

S

�

k

:(6.3)

Here I

S

�

k

: S

j

! S

�

k

denotes the S

�

k

{interpolation, and the spa
es S

�

k

� S

k

,

S

�

k

= fv 2 S

k

j v(p) = 0; p 2 N

�

k

g � S

k

;(6.4)

are redu
ed subspa
es with respe
t to N

�

k

= N

k

\ N

�

j

(�u

�

j

), k = 0; : : : ; j. Similar

subspa
es of S

j

have been 
onsidered re
ently by other authors [2, 9℄ in 
onne
tion

with the 
oarsening of a given mesh.

The resulting trun
ated multilevel nodal basis

~

�

�

S

,

~

�

�

S

=

�

�

(j)

p

1

; : : : ; �

(j)

p

n

j

;

~

�

(j�1)

p

1

; : : : ;

~

�

(j�1)

p

n

j�1

; : : : ;

~

�

(0)

p

1

; : : : ;

~

�

(0)

p

n

0

�

; � � 0;


learly depends on the set N

�

j

(�u

�

j

) whi
h may 
hange in ea
h iteration step. We now

derive a trun
ated 
oarse grid 
orre
tion C

tr


j

by the same reasoning as des
ribed in

the previous se
tion. More pre
isely, introdu
ing some ordering from �ne to 
oarse

~

�

l

=

~

�

(k

l

)

p

l

; l = n

j

+ 1; : : : ;m

�

j

= n

j

+ ~m

�

S

of the ~m

�

S

non{zero elements of

~

�

�

S

, we now use the sear
h dire
tions

�

�

l

=

~

�

l

; l = n

j

+ 1; : : : ;m

�

j

; � � 0:

Lo
al 
onstraints D

l

, as appearing in (4.13), are obtained from slightly modi�ed

monotone restri
tions (see [10, 13℄) and lo
al damping parameters !

l

are obtained

by repla
ing �

l

by

~

�

l

in (5.5).

The resulting iterative s
heme

�u

�

j

=M

j

u

�

j

u

�+1

j

= C

tr


j

�u

�

j

(6.5)

is 
alled trun
ated monotone multigrid method. Global 
onvergen
e of (6.5) follows

from Theorem 3.1 and Proposition 4.1.
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Theorem 6.1. Assume that the 
onditions of Lemma 5.1 and (5.36) hold. Assume

further that all non{zero 
orre
tions v

�

l

= z

�

l

~

�

l

,

~

�

l

2

~

�

�

S

, as resulting from (4.13)

have property (5.32).

Then there is a �

j

� 0 su
h that the iterates produ
ed by the trun
ated monotone

multigrid method (6.5) ful�ll the error estimate

ku

j

� u

�+1

j

k

u

j

� (1� 



�1

j

(j + 1)

�4

)ku

j

� u

�

j

k

u

j

8� � �

j

(6.6)

with a positive 
onstant 
 depending only on the ellipti
ity of a(�; �) and on the initial

triangulation T

0

.

Proof. The proof is essentially the same as for Theorem 5.6. We only have to

establish an analogue of Lemma 5.5 involving

~

�

l

=

~

�

(k

l

)

p

l

instead of �

l

= �

(k

l

)

p

l

and

an error estimate of the form (5.42) for the redu
ed linear iteration. Note that

(5.39) and (5.41) still hold if W

k

is repla
ed by the larger spa
e

~

W

k

,

~

W

k

= spanf

~

�

(k)

p

2

~

�

�

S

; p 2 N

k

g:

As fun
tions v 2

~

W

k

in general do not satisfy a strengthened Cau
hy-S
hwarz

inequality, further improvements of (6.6) are more diÆ
ult than in the standard


ase.

Consider some p 2 int supp

~

�

l

with L

�

p

>> 1. Then our lo
al damping strategy


learly gives !

l

� 0 so that there is almost no 
ontribution from

~

�

l

. Hen
e, su
h p

play a similar role as 
riti
al nodes N

�

j

(�u

�

j

) in (6.1) and it seams reasonable to treat

them similarly in the trun
ation pro
ess. This 
an be done by repla
ing de�nition

(4.1) of regular nodes by

N

Æ

j

(�u

�

j

) = fp 2 N

j

j �u

�

j

(p) > 0 and L

�

p

< L

max

g(6.7)

with some given threshold L

max

> 0. Of 
ourse, this modi�
ation preserves global


onvergen
e. If L

max

is suÆ
iently large, then there is a �

0

su
h that (4.1) and

(6.7) de�ne the same sets for � � �

0

. Hen
e, we still have asymptoti
 bounds of

the 
onvergen
e rates in this 
ase. For numeri
al results, we refer to [13℄ and the

experiments to be reported below.

7. Numeri
al Results

We 
onsider the stationary porous medium equation

���

2

� f(�) = 0 � � 0(7.1)

with absorption term

f(�) =

8

<

:

�; if � 2 [0; 1)

[1,2℄; if � = 1

2; if � � 1

and 
onstant Diri
hlet boundary 
onditions � � 2 on �O, O = (�10; 10)

2

. After

Kir
hho�{type transformation u = �

2

the weak formulation of (7.1) takes the form

(1.1) with a(v; w) = (rv;rw),

��(u) =

�

(�1; 0℄; if u = 0

f(

p

u); if u > 0

;
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 = (0; 10)

2

and appropriate boundary 
onditions. Observe that our model problem


ombines an obsta
le 
ondition, a jump and unbounded Lips
hitz 
onstants for

u 2 (0; 1).

The initial triangulation T

0

is obtained by subdividing 
 in 4 
ongruent triangles.

Triangulation T

j+1

is obtained from T

j

by an ad ho
 lo
al re�nement strategy: A

triangle t 2 T

j

is marked for re�nement if ~u

j

does not vanish on t. The approximate

solution ~u

j

on T

j

is 
omputed up to 0:05% a

ura
y. More pre
isely, ~u

j

= u

�

�

j

is

a

epted as soon as the stopping 
riterion

ku

�

�

j

� u

�

�

�1

j

k

u

�

�

j

� 5 � 10

�4

ku

�

�

j

k

u

�

�

j

(7.2)

is ful�lled. Note that k�k

u

�

�

j

is intended to approximate the lo
al energy norm k�k

u

j

as de�ned in (5.8). For iterative solution of the dis
rete problems (1.6) on ea
h

re�nement level j we use the standard monotone multigrid method (STDKH) and

the trun
ated variant (TRCKH) as des
ribed in Se
tions 5 and 6, respe
tively. The

se
ond singularity at u = 1 is in
orporated as des
ribed in [12℄, pp. 65. Trun
ation

is based on the modi�
ation (6.7) with L

max

= 10

12

. In the light of Theorems 5.6

and 6.1 nonlinear Gau�-Seidel smoothing with exa
t evaluation of (2.1) is applied.

Using the initial iterate u

0

j

= ~u

j�1

, j = 1; : : : ; 8, (nested iteration) at most 7

(STDKH) or 6 (TRCKH) iteration steps were needed in order to meet the a

ura
y

requirement (7.2). We found similar results for the inexa
t variant as des
ribed in

Se
tion 2. Implementation was 
arried out in the framework of the �nite element

toolbox KASKADE [3℄.

Figure 1. Final grid T

8

and level 
urves of �nal approximation ~u

8

Figure 1 shows the �nal triangulation T

8

together with the level 
urves of the

�nal approximation ~u

8

. Bold lines are used for the free boundaries ~u

8

� 0 and

~u

8

� 1. Observe that in large parts of the 
omputational domain ~u

8

is 
lose to the

singularity zero where lo
al Lips
hitz 
onstants tend to in�nity.

We take a 
loser look at the 
onvergen
e behavior of our monotone multigrid

methods on the �nal level j = 8 with 97 285 unknowns. The left pi
ture of Figure 2

shows the algebrai
 error ku

8

� u

�

8

k

u

8

over the number � of iteration steps. The

initial iterate is u

0

8

= ~u

7

(nested iteration). The exa
t solution u

8

is pre
omputed

up to ma
hine pre
ision. For both methods, we observe a fast redu
tion of the

high frequen
y 
ontributions to the error in the �rst iteration step. Then, asymp-

toti
 linear 
onvergen
e dominates the whole iteration history. This supports the

pra
ti
al relevan
e of our asymptoti
 
onvergen
e analysis. In the leading iteration
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Figure 2. Iteration history and asymptoti
 
onvergen
e rates

steps, the algorithms provide damping of at most 126 (STDKH) or 153 (TRCKH)

lo
al 
orre
tions. Minor e�e
ts on the 
onvergen
e rates illustrate the bene�ts of

lo
al damping. No damping o

urs after 28 (STDKH) or 24 (TRCKH) iteration

steps 
on�rming our theoreti
al analysis (
f. Lemma 5.5). In 
omparison with

the standard method the trun
ated variant exhibits a 
onsiderable improvement of


onvergen
e speed. This justi�es our heuristi
 reasoning in Se
tion 6. Of 
ourse,

dominan
e of asymptoti
 
onvergen
e rates is a 
onsequen
e of suÆ
iently a

urate

initial iterates as obtained by nested iteration. Starting from u

0

8

� 0, i.e. dire
tly

from the singularity, TRCKH required 180 iteration steps to enter the asymptoti


regime.

The right pi
ture in Figure 2 shows approximate asymptoti
 
onvergen
e rates

�

j

=

ku

j

� u

�

�

j

k

u

j

ku

j

� u

�

�

�1

j

k

u

j

; j = 0; : : : ; 8:

Here, �

�

is 
hosen su
h that ku

j

� u

�

�

j

k

u

j

< 10

�10

and again u

j

is pre
omputed

up to ma
hine pre
ision. The asymptoti
 
onvergen
e rates seem to saturate with

in
reasing re�nement level j 
on�rming the 
onvergen
e results as stated in Theo-

rems 5.6 and 6.1, respe
tively.
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