ON CONSTRAINED NEWTON LINEARIZATION AND
MULTIGRID FOR VARIATIONAL INEQUALITIES

RALF KORNHUBER

ABSTRACT. We consider the fast solution of a class of large, piecewise smooth
minimization problems. For lack of smoothness, usual Newton multigrid meth-
ods cannot be applied. We propose a new approach based on a combination
of convex minization with constrained Newton linearization. No regularization
is involved. We show global convergence of the resulting monotone multigrid
methods and give polylogarithmic upper bounds for the asymptotic conver-
gence rates. Efficiency is illustrated by numerical experiments.

1. INTRODUCTION

Let Q be a bounded, polyhedral domain in the Euclidean space R?. We consider
the minimization problem

(L.1) ueH: J(u) + ¢(u) < T (v) + ¢(v) Yve H

on a closed subspace H C H'(2). For simplicity, we concentrate on H = H_ ()
and d = 2. The quadratic functional .7,

(1.2) J () = 2a(v,v) — ((v),
is induced by a continuous, symmetric and H-elliptic bilinear form a(-,-) and by a
linear functional £ € H'. H is equipped with the energy norm || - || = a(-,-)*/2. The

functional ¢,

(1.3) b(v) = /Q B(u(z)) d,

is generated by a convex function ® : R — RU {+oo} with the properties
P(z) =00 Vz<0, P(z) <o Vz>0
[®(2) — @) <Gz + 2]z = 2] Vz,2' 20

where G is some scalar, affine function and

(1.4)

(1.5) & € C?(0,00), @ is uniformly Lipschitz on compact subsets of (0, c0).

As a consequence of (1.4), ¢ is convex, lower semi—continuous and proper. Hence,
(1.1) admits a unique solution v € H (cf. [12], pp. 28). This property and all
results to be presented can be generalized to functions & with a finite number of
singularities.
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Let 7; be a partition of Q in triangles ¢ € 7; with minimal diameter of order 277.
The set of interior nodes is called N. Discretizing (1.1) by continuous, piecewise
linear finite elements S; C H, we obtain the finite dimensional problem

(1.6) uj €Sj0 J(ug) + ¢j(u;) < T () +¢(v) VveS;.
Observe that the functional ¢ is approximated by S;—interpolation of ®(v), giving

(L.7) i) = 3 By, = / 2D (z) di

pGNj

where /\I(,j ), p € Nj, denote the nodal basis functions of S;. The discrete minimiza-
tion problem (1.6) is uniquely solvable and can be reformulated as the variational
inequality

(1.8) uj € Sj 1+ a(uj,v —uy) + ¢;(v) — ¢i(u;) > lv—u;) WweS;
or as the variational inclusion
(1.9) uj €S5: L) —a(u;,v) € 09;(uj)(v) YvesS;

where 0¢; is the set—valued subdifferential of ¢;. Problems of the form (1.1) and
related discretizations arise in a wide range of applications and have been studied for
quite a while. For further information we refer e.g. to [6, 7, 12] and the bibliography
cited therein.

Here, we shall concentrate on the fast solution of the discrete minimization prob-
lem (1.6). It is clear that Newton—multigrid methods [1, 4] cannot be applied,
because the functional ¢; is not differentiable. Nonlinear multigrid techniques [8]
as well as nonlinear subspace corrections in the spirit of [5, 17] also rely on the
smoothness of the nonlinearity. A common remedy is to use such methods after
some suitable regularization of ®. Unfortunately, reasonable convergence speed
may then have to be paid by unacceptable discretization errors and vice versa.
Similar problems arise in case of static piecewise quadratic approximation of ® as
applied in [12], pp. 138.

In this paper, we extend monotone multigrid methods [10, 11, 12] from piecewise
quadratic functions ® to the piecewise smooth case (1.5). To this end, monotone
multigrid methods are regarded as two-stage iterations consisting of a globally con-
vergent, fine grid smoother M; and a coarse grid correction C; preserving global
convergence by preserving monotonically decreasing energy.

Gaufl—Seidel type relaxation is used for fine grid smoothing. As exact solu-
tions of the occurring scalar problems might be unavailable, we present an inexact
variant including a stopping criterion for simple bisection. The basic idea for con-
structing C; is to constrain coarse grid corrections to a neighborhood of the actual
smoothed iterate where Newton linearization can be controlled by pointwise Lip-
schitz constants. There is no coarse grid correction at the singularity. Hence, no
regularization is involved. In contrast to piecewise quadratic ®, suitable damping
of coarse grid correction is required in order to preserve monotonicity. We propose
local damping of each local correction associated with a fixed node on a fixed re-
finement level. This strategy is especially suited for heavily varying local Lipschitz
constants.

Within this general framework, we derive standard and truncated versions of
monotone multigrid methods. Similar algorithms were presented in [13] without
proofs. Global convergence proofs carry over from [11, 12]. Detailed convergence



analysis clarifies the interplay of fine grid smoothing, constrained Newton lineariza-
tion and local damping and provides polylogarithmic bounds of asymptotic conver-
gence rates. The practical relevance of our asymptotic analysis is supported by
numerical experiments with a stationary porous medium flow. Despite of intrinsic
singularities of the problem, we observed similar efficiency as in the linear self-
adjoint case.

2. INEXACT GAUSS-SEIDEL RELAXATION

Nonlinear Gauf—Seidel relaxation [7, 12] for the iterative solution of (1.6) is
based on the successive minimization of the discrete energy functional J + ¢; in

the direction of the nodal basis functions A,(,{), l=1,...,n; = #N;. For given
w € §j, the local correction Tiw € V; = span{/\,(,{)} in the direction of )\;(o],') is the
unique solution of
Tiw € Vi: J(w+Tiw) + @(w(p) + Trw(pi)) by,
< TJ(w+v) + @(w(p) +v(p))hy, Yo € V.

In general, the exact solution Tjw of the scalar problem (2.1) is not available. For
this reason, we consider inexact Gaufi—Seidel relazation defined as follows.

For given iterate uj, we introduce a sequence of intermediate iterates w; accord-
ing to

(2.1)

(2.2) wy = uj, w =w_+v, I=1,...,n;,
with approximations v;’ € V; of Tjw;_,. For example, v/ might be resulting from
some steps of an iterative solver as applied to (2.1). Finally, the new iterate is given
by

(2.3) u;f‘H = Mjuj =w, .

For notational convenience, the index v will be frequently skipped in the sequel.

Theorem 2.1. Assume that the corrections vy in (2.2) are chosen in such a way
that

M;ud € Kj ={v e S;|v(p) >0VpeN;} Vu) € S;
and
(2.4) v =ww)iw, w(w)é€ w,l] Yw € K;
is valid with some fized wo € (0,1]. Then the inezact GaufS—Seidel relaxation (2.3)

is globally convergent.

Proof. We shall use the abbreviation J = J +¢;. Utilizing (2.4) and the convexity
of J, we obtain the monotonicity

(2.5) T (wy) < T(wp—y +woTyw; 1) < T(wi—1), I=1,... N

As a consequence, we get j(u?“) < j(u;’) < j(u;) < oo for all ¥ > 1. Since ¢;

is convex, lower semicontinuous and proper, there exist ¢, C' € R such that

(2.6) 6;(0) 2 cllol| +C WeS,

(cf. e.g. [6]). From (2.6) and from the boundedness of (J (u})),>1 we conclude that
the sequence (u}),>o must also be bounded. Let (u}*)r>0 C K; be a convergent
subsequence with limit u} € K;. We now prove that uj = u;.



Observe that the estimate
(2.7) (Tiw) — a(w + Tiw, Tiw) + ¢j(w) — ¢ (w + Tyw) >0

is resulting from the variational formulation of (2.1). Utilizing the monotonicity
(2.5), the convexity estimate

¢j(w) — ¢j(w + woTiw) > wo(9;(w) — ¢ (w + Tiw)),

and (2.7), we obtain
JWi) = J i) > Juf*) = T ()
- 3t~ i)
> i(f(wl 1) = Ty +woTiw,))
(2.8) - i (wo(U(Tywl* ) — a(wl*, + Tywl*,, Trw?™,))

(i) = (i +woTui,)
o ENTwIF

> wo(l - %)ZHTiwﬁﬂF-
i=1

On the other hand, the triangle inequality, the Cauchy—Schwarz inequality and
(2.4) lead to

(2.9) [ — wy® 1||2<n]Z||Tw A2 I1=1,...,n,.

Since J is continuous on K;, we conclude from (2.8) and (2.9) that
w* —ui, k- oo, l=1,...,n;.
The monotonicity (2.5) yields
(210)  J@F) <T@ < J(p) < T, +woTiwf,) < T ()
for each fixed [ = 1,...,n;. Since J and 7T} are continuous on K;, we can pass to
the limit so that
j(u]*) = j(u]* + woTiuj).

Moreover, the convexity of 7 and (2.1) imply J (u}) = J (u} +Tiu}). As Tjuj is the

unique solution of (2.1), we get Tiuj = 0. The same holds true foralll =1,...,n;

so that u} must be a fixed point of the original nonlinear Gaufi—Seidel relaxation

which is well-known to have the unique fixed point u;. This concludes the proof. [
Observe that condition (2.4) can be replaced by the energy reduction

(2.11) J(w+wv)+¢j(w+v) <JT(w+ wTiw) + ¢j(w + woTiw)

together with the additional assumption ||v|| < ¢||Tyw]|.



Theorem 2.1 can be used as a stopping criterion for the iterative solution of (2.1).
To give an example, let us first reformulate (2.1) as the scalar inclusion
(2.12) 0 € g(z) = 0®(w(p) + z1)hp, + auzr — 7
where

zl)\z(,{) =Tiw, ay= a(AI(,{),AI(,{)), r = E(AI(,JZ')) — a(w,/\g))

and 0% is the subdifferential of ®. We shall now describe a simple bisection method
for the approximate solution of (2.12). First, let wy = max{0, —w(p)}. Now we have
to distinguish three cases. Of course, z; = wy is the exact solution, if 0 € g(wy). If
g = sup g(wp) < 0, then it is easily checked that z € [2°,2°] with 2° = wy and 2° =
—g/ay > wy. Starting with [2°,2°], we continue bisection until the new midpoint
2= (28 + 7')/2 satisfies 0 € g(z) or supg(z!) < 0. Then v = z\Y has the
property (2.4) with wp = 1. In the remaining case inf g(wo) > 0 we first conclude
wo = 0. Then we proceed in a symmetrical way starting with 20 = —w(p) < 0 and
z° = 0. Finally, it is clear that (w +v;)(p) > 0, giving M;u9 € K; for all u} € S;.

More sophisticated algorithms based on secant approximations or Newton lin-
earization can be constructed in a similar way.

3. MONOTONE ITERATIONS

Nonlinear or inexact Gauf-Seidel relaxation M, as considered in the preceding
section, typically suffer from rapidly deteriorating convergence rates when proceed-
ing to more and more refined triangulations. As a possible remedy, we introduce
so-called monotone iterations

_ oV
= M u}

J
(3.1)
U;’+1 = Cjﬂ]'{

where the additional substep C; is intended to accelerate the convergence speed.
Adopting multigrid terminology, M is called fine grid smoother, u} is the smoothed
iterate and C; is called coarse grid correction.

Theorem 3.1. Assume that the smoother M; satisfies the conditions of Theo-
rem 2.1 and that the coarse grid correction C; has the monotonicity property

(3.2) J(Cjw) + ¢;(Cjw) < T(w) + ¢j(w)  VYw € K.
Then the monotone iteration (3.1) is globally convergent.

Proof. Exploiting (3.2), the proof is almost the same as for Theorem 2.1. For
example, (2.10) now takes the form

T () < J(Cjut) < T(af) < T(wpy +woTyw)*,) < T (uf).

As a by-product, we also get convergence of the smoothed iterates
(3.3) uf — uj vV — 0.

We emphasize that the coarse grid correction alone does not need to be convergent.
This gives considerable flexibility in constructing C;.



4. MoNOTONE COARSE GRID CORRECTION WITH LocAL DAMPING

Recall that classical Newton multigrid methods cannot be applied to (1.6) for
lack of smoothness. In this section, we shall derive constrained Newton multigrid
methods to be used as coarse grid correction C;.

For given smoothed iterate uY, we introduce the set of regular nodes

(4.1) N7 (@) ={p € Nj | aj(p) > 0} C Nj.

Consider some fixed p € N7 (u}). Then, as a consequence of (1.5), there exists a
neighborhood of @ (p),

(4.2) 0 <@ (p) <aj(p) < Puy (p),

where uniform Lipschitz continuity

(4.3) 2" (21) = " ()| < Lyler — 2] V1,22 € [0, (P), Puy (P)]
holds with pointwise Lipschitz constant L > 0. For instance, let us choose
(4.4) 0 (P) = 505 (p),  Pax(p) =2u5(p)  Vp € NP ().

We define

(4.5) ©50 (P) = Py (p) = 5 (p)

at the remaining critical nodes

P €N (@) = NG \ N} (&),
Collecting these intervals for all p € N, we introduce the neighborhood ICE; of a¥,
(4.6) Kay = {w € Sjl ¢, () < w(p) <Pay (), p € Nj} € i
The above definitions were motivated by the following local representation of ¢;,
(4.7) ¢;j(w) = ¢gv(w) + const. Vw € Kay,
by the smooth functional gi)g;,
(4.8) par(w) = > D(w(p))hy, w € Kgy.

PENT (1Y)

Let us consider the constrained minimization of the smooth energy J + ¢)g;{
(4.9) way € Kay = T (uay) + dur (uar) < T (v) + dur (v) Vo € Ky

As a consequence of (3.3), we have dist(u;,Kar) — 0 as v — oo. Hence, the
solutions of (4.9) tend to u;. Moreover, we shall see later on that u; € Kuy holds for
non—degenerate problems (1.6) after a finite number of iteration steps. In this case,
we clearly have Ugy = uj or, equivalently, our original non-smooth problem (1.6)
reduces to the constrained smooth problem (4.9). Hence, approximate solutions of
(4.9) are good candidates for the next iterate u;'H.

The main advantage of (4.9) is that Newton linearization can be applied to the
smooth energy J + ¢ﬁ;{. More precisely, we approximate J + ¢a; by the quadratic
energy functional jg;{,

Tay (w) = %aﬂ; (w,w) — Cay (w) =~ J(w) + Pay (w) + const., w € Kay,



where the bilinear form
(4.10) agy (w,w) = a(w,w) + ¢, (@) (w, w)
and the linear functional
o (w) = €w) — Gy () (1) + g (i) (), )
are obtained by Taylor’s expansion
Suy (w) = ay (@) + Py (05) (w — 1) + 3¢5, (@F) (w — @Y, w — @).
The resulting quadratic obstacle problem

can be regarded as constrained Newton linearization reflecting that ® is only piece-
wise differentiable.

We approximate (4.11) by one step of an extended underrelazation as introduced
in [10]. In contrast to [10], local damping parameters now have to be computed
explicitly to enforce monotonicity (3.2) of the functional J + ¢; which might be
different from jﬁ?. Hence, we briefly recall the basic algorithm for further reference
and analysis. We choose scaled search directions py,

w €Sy, maxy(z)| =1, l=n;+1,...,mj,

which may depend on the actual constraints ICE;. It is convenient to start numer-
ation at m; + 1, because intermediate iterates w;’, I = 1,...,n;, are already given
by (2.2). We now continue this sequence according to

— v v, v v
(4.12) w, = uj, w) =w_y +wiv), l=n;+1,....,mj.

Each local correction v} is the solution of the local obstacle problem
(4.13) v €Dp: Tay(wi_y +vf) < Jay(wi_y +v) YveD
with constraints D C V}” := span{y; } satisfying

(4.14) 0eDy c{veVw_,+veKut

In order to guarantee the monotonicity (3.2), the local damping parameters w; are
chosen such that

(4.15) T (wi) + day (wy) < T (wi' 1) + duy (wi" ;).

Finally, our monotone coarse grid correction with local damping is given by

my
(4.16) Cif = why =uf + Y wivy.
I=n;+1
Using the monotonicity (4.15), general convergence results on extended under-

relaxations carry over to the present case. For example, we get convergence of each
infinite sequence of intermediate iterates (cf. [12], Corollary 2.3, p. 54)

(4.17) w] = uj vV — 00.

We now derive a sufficient condition for the local monotonicity (4.15). Again, the
index v will be frequently suppressed. We shall use the notation z; = max{0, z}.



Proposition 4.1. Let vy = 2z be the solution of (4.13). Assume that w; € [0, 1]
satisfies

(4.18) il < 2 { [Car () — aqy (wi—1, )| — Llay — “’ll||§o,l}
' 1<l >

agy (s ) + Ly (|04 — wi—illoo,r + wilzi])
with local Lipschitz constant
(4.19) Li= Y Lylu) hy
PENT (@)
and local mazimum norm

4.2 = .
(4.20) Iollcs = max ol

Then the damped correction wyv; fulfills the local monotonicity condition (4.15).

Proof. The assertion is trivial for z; = 0. Assuming z; # 0, we introduce the scalar
function

g(w) = T (wi—1 +wuy) + (;5,—4{ (wi—1 + wuy).

Obviously, (4.15) is equivalent to g(w;) < g(0). As g € C?[0,1], we can use Taylor’s
expansion to reformulate this condition as

9'(0)
4.21 O<w < —-2——
20 =4S )
with suitable 7 € (0,1). To obtain a lower bound for —g¢'(0), we first state the
estimate

B (w2 ) (1) < S (05) (1) + Gy () (wrmr — ), 00) + Ll lwogr — 52,

which is a consequence of Taylor’s formula and the pointwise Lipschitz condition
(4.3). Moreover, we have Ea; (v) — aqy (wi—1,v;) > 0 because v; is the solution of
(4.13). Combining these estimates, we get the lower bound

—9'(0) = =J" (wi—1)(vr) — Plgy (wi—1)(v1)

(4.22)
> [l (v1) — aay (wi—1,v)| = Lilzl[Jwi—1 — %1% -

Using
Py (w1 + Twivr) (vr, v1)
< @l (@) (i, v0) + 27 L (i = 5 lloog + wil 1))
the upper bound

g" (twr) = T" (wi—1 + Twivr) (v, v1) + Pgv (wi—1 + Twvr) (v, v1)
(4.23) '
< agy (vi,v0) + 27 L (lwi—1 — @ lloo,t + wil 1)

is obtained in a similar way. Inserting (4.22) and (4.23) in (4.21), it is clear that
(4.18) implies (4.15) O

We emphasize that only local properties (i.e. properties on supp ;) enter the
upper bound in (4.18).



As an alternative to local damping, one might always set w; = 1 in (4.12) and
enforce monotonicity (3.2) by global damping

m;
(4.24) wt=al+o Y

with suitable @ € [0,1]. This would simplify convergence analysis, because e.g. the
results from [10] could be applied directly. However, upper bounds for @ (cf. e.g. [1,
4]) typically deteriorate for increasing global Lipschitz constant
L= _ max L,.
pEU,) int supp i
Hence, for heavily varying L, as considered here, global damping (4.24) is likely to
provide very little progress in comparison with the local strategy (4.12).

5. STANDARD MONOTONE MULTIGRID METHODS

Assume that 7; is resulting from j refinements of an intentionally coarse tri-
angulation 7g. In this way, we obtain a sequence of triangulations 7p,...,7; and
corresponding nested finite element spaces Sop C --- C S;. Though the algorithms
and convergence results to be presented can be easily generalized to nonuniform
grids, we assume for convenience that the triangulations are uniformly refined.
More precisely, each triangle ¢ € T is subdivided into four congruent subtriangles
in order to produce the next triangulation 7;41. Collecting all nodal basis functions
from all refinement levels, we obtain the multilevel nodal basis Ag,

(5.1) As = (A(J) AP AG AR, A )

177 P2 [y 2 7 Py
The ms = n; + -+ -+ ng elements
— \(k — —
)\l—)\éll), l—nj+1,...,mj—nj+m3,

are ordered from fine to coarse.
Using the abstract framework of the preceding section, we now specify the coarse
grid correction C]S-td. We select constant search directions

ul = A, l=n;+1,...,mj, Yv > 0.
For each u} the admissible set Ky is chosen according to (4.6) with ¢ v Pux taken

from (4.4). The constraints D}, appearing in the local problems (4. 13) take the
form

(5.2) Dy ={veVi|y/ <v<i},

where local obstacles dz” %j € V; are intended to approximate the fine grid con-
straints ¢, —w;’ 4, cpu —wy_,, respectively. The property ¢” %j € 1} allows to

check the constraints dlrectly on the coarse grid. In order to guarantee (4.15), wi
impose the condition

14

(5.3) @, () —w,(p) <Y/ () <0< (p) <p
Finally, we assume that

ﬂ/:%(ﬁ 7w;j7---aw;:1)7 El :El(aﬂ

-
uj

(p) —wi 1 (p) VYpeWN;.



v

are continuous functions of Pow> Par Wy ooy Wy, satisfying
Ly Yy

(54) E(ﬁwa“ja- . ,Uj)(p) <0< El(@u]-auja v ,u]')(p) Vp € int supp )‘la

if int supp A\; C ./\/]9(14]'). Local obstacles ﬂ’,%j € V; with the properties (5.3) and
(5.4) can be obtained inductively by quasioptimal monotone restriction. We refer
to [10] or [12], pp. 74, for details. As usual, the index v is mostly skipped in the
sequel.

In the light of Proposition 4.1, we choose local damping parameters

. 2(|€ay () = agy (wi—1, \i)| — LiBy})
(5.5) w; = min {1’ { |21l (aay (A, \o) + Li(Br + |z1) }+}

for all non—zero local corrections v; = 2z;\; obtained from (4.13). Denoting
Joelloe = max e (2)],

the upper bounds
-1

(5.6) Bi= > willvellse > 184 = wi—1llooy
k=n;+1

make w; computable without visiting the fine grid (cf. [13]).

As a consequence of the above considerations, the resulting coarse grid correction
C]S-td can be implemented as a classical V—cycle with optimal numerical complexity.
For further reference, the monotone iteration

u? = M;u¥
J 7175
(5.7)

v+l _ C;td,azg

uJ J

is called standard monotone multigrid method.

It is clear from Theorem 3.1 and Proposition 4.1 that (5.7) is globally convergent,
if the smoother M satisfies the conditions of Theorem 2.1. We shall now derive
upper bounds for the asymptotic convergence rates with respect to the local energy
norm

(58) lolluy = au, (v,0)'72.

The symmetric, positive definite bilinear form a,;(v,v) is defined according to
(4.10). We first state that the discrete free boundary is detected after a finite
number of steps.

Lemma 5.1. Assume that the discrete minimization problem (1.6) satisfies the
non—degeneracy condition

(5.9) Z(/\I(,j)) — a(u;j, )\I(,j)) € int 8¢j(uj)(/\1(,j)) Vp € J\/]-'(uj)

and that ezact nonlinear Gaufi-Seidel relazation (2.1) is used as smoother M;.
Then there is a vy > 0 such that

(5.10) N7 (uf) = N7 (a5) = N7 (uj) Vv > vp.

j
Proof. Note that

NP () = NP (@)

J J J J

10



follows directly from (4.5). Hence, it is sufficient to show the second equality in
(5.10). Recall that 4% — wu; (cf. (3.3)). Hence, we have @¥(p) > 0, if u;(p) > 0 and
v is large enough. This implies

(5.11) N () € N3 ()
for sufficiently large v. It remains to show
N () € N (@),

Let p; € ./\/'j’(uj) or, equivalently, u;(p) = 0. Rewriting (2.1) as a variational inclu-
sion, we get

(5.12) L(v) — a(wy,v) € 0®(w] (p1))v(p) hp, Yo eV, = span{/\g)}.
As wy(pr) = a;f(pl) forall i =1,...,n;, this leads to

Z(AI()JZ')) _ a(w;’ ,\(j)) € 8‘1’(113/(17!)) hyp,.

L )
Recall that w; — u; (cf. (4.17)). Hence, (5.9) yields
(5.13) (G — a(wy, A5)) € 08(0) hy,

for sufficiently large v. As 0® is maximal monotone, these two inclusions imply
a?(p) = 0. We finally chose v such that (5.11) and (5.13) are satisfied. O
Note that Lemma 5.1 can not be extended to inexact GauB3—Seidel smoothing.
We continue with an asymptotic error estimate for nonlinear Gaufi-Seidel relax-
ation. Note that known results on nonlinear subspace correction methods (cf. [5,
17]) cannot be applied, because ® is not uniformly Lipschitz.

Lemma 5.2. Assume that the conditions in Lemma 5.1 are satisfied. Then, for
each ¢ > 0, there is a v: > 0 such that
(5.14) laf —ujllu; < A+ e)luf —ujlly;, Vv 2> ve.

Proof. Choosel =1,...,n; and arbitrary p; € ./\/']5’ (uj). Using (5.10), the minimiza-
tion problem (2.1) for the correction v} = Tjw;_, can be equivalently rewritten as

() = a(wy +vf',v) = ' (wiy () + v (P))v(pr) by, Y €V

Observe that wy (p) = wi_y (pi) +vf (m) = @%(pr), | = 1,...,n;. Inserting v = vy
we get

a(wi_y,vf) = L)) —a(vf,vf) = (@5 (p)v] (pr) T,

On the other hand, use (1.9) with v = v/ to obtain

a(uj, vf) = £(v") = ' (u;(p)vi (1) Dy, -

Now the mean-value theorem gives

(5.15)  a(wi_y —uj,vf) = —a(vf,v)) — " (@ (p)) (@] (1) — wj(P))vi (p) hp,

11



denoting @ (p) = u;(pr) + (@ (p1) — u;j(pr)) with suitable 7 € (0,1). Using (5.15)
and again wy’_ (p1) + vy (m) = @} (p1), we compute
lwy —ujlls; = llwi_y +op —ull5,
= lwizy =l + 71,
+2(a(wy_y —uj,v) + ¢Z] (uj)(wy_y — uj,v)))
= lwizy — w3, + 71,
+2 (—a(vy,v)') — " (uj(p))oy (p0)* hyp,
+@" (u;(p)) (vf (m1)* + of (o) (wi_y (p1) — uj(pr)) hy,
— @ (i@ (p)) vy (p) (4 (pr) — uj(pr)) T,
= lwiy =l = 7IR,
+2(®" (u;(pr)) — " (@ (pr))) (@ (1) = uj(P))v] (1) by, -

We now derive an upper bound for |®"(u;(p;)) — ®"(@(p1))|. Convergence (3.3)
provides

(5.16) Tui(p) = 175 () —ui(p) >0 Vp € N7 (uy)
for sufficiently large v. Choosing

5.17 =1 mi i(p), p=2 i(p),
(5.17) 4 ngin[jz?uj)ua(p) P pgg}j@t@j)u](p)

(5.16) implies
(5.18) w5 (p) € [, 8] C (0,00)  Vp € N (uy).

Hence, assumption (1.5) yields
@ (u;(p)) — " (w(p))| < L*|uf(p) —u;(p)]  Vp € N} (u;)

with suitable L* independent of { = 1,...,n; and v. Inserting this estimate in the
above representation of [|w] — 'U/j”ij, we get

lwy = ujlls, < lwizy —wslls, +2L% o) (p)|(@5 (pr) — wj (1)) B,
Successive application gives
15 —ujlls, < lluf —uilly, + 20515 = uflloo Y (@ (1) = uj(pr)* by
=1
It is well-known that shape regularity of 7;, Poincaré’s inequality, ellipticity of
a(+,+) and convexity of ® provide
(5.19) S 0(p)hy, <o / o(@) de < Ol < Clll2,  Wwe S
=1 Q
with suitable ¢, C' € R independent of v and j. The last two estimates imply
(1 —=2CL*laf — uflleo) llaf —ully, < lluf —ujll3,-
We finally chose v, such that (5.10), (5.18) and
(5.20) 1—20L"|a} —u}]lo > (1+&)7"

are valid for all v > v,. O
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We now prove that the coarse grid correction C; is asymptotically based on a
smooth nonlinear problem.

Lemma 5.3. Assume that the conditions in Lemma 5.1 are satisfied. Then there
is a vy such that for v > vy the constrained smooth problem (4.9) has the solution
u; and can be equivalently rewritten as

(5.21) uj € U3 - a(uj,v) + ¢, (u;)(v) = £(v) Yv € S
with ¢.; defined according to (4.8),
S;={veS;lv(p) =0 Vpe N} (uj)} CS;j
and U? = {v € S7 | v(p) > 0Vp € N7 (u;)} CS5.
Proof. We first show that there is vy such that
(5.22) uj C Kar Yv > vp.
Using (5.10), we only have to prove that

@ (p) = 305 (p) < uj(p) < 205(p) =Py () VP € N7 (uy)

U
J

which is an immediate consequence of (5.16). Exploiting Lemma 5.1 and the conver-
gence of @Y (cf. (3.3)), we finally choose 1 such that (5.10) and (5.16) are satisfied
for v > 1g.

By definition, u; is minimizing 7 + ¢; on the whole space S;. As u; € Kgy and
¢a; = ¢; Yv > v, u; must be the solution of (4.9) for all v > 1. The formulation
(5.21) follows immediately from (1.9). O

As a consequence of Lemma, 5.3, ezact solution of the constrained smooth prob-
lem (4.9) in each iteration step would provide an asymptotically ezact method.

Lemma 5.4. Assume that the conditions in Lemma 5.1 are satisfied. Then there
is a vy such that constrained Newton linearization (4.11) is equivalent to classical
Newton linearization of (5.21) at u}

(5.23) wer €85 agy(way,v) = lar(v) Vv €S

Moreover, for each € > 0 there is a v. > vy such that

(5.24) lway —wlly < ellif = ujll, Vo >0

Proof. Note that (5.10) yields @ € U7 so that (5.23) is well-defined for sufficiently

large v. For the moment, let w” denote the solution of (5.23). We first prove that
for given ¢ > 0 there is a v. such that

(5.25) lw” —ujllu; <ellaf —ujllu; Yv > v..

We subtract (5.21) from (5.23), use the mean-value theorem and insert v = w” —u;
to get the equality

(5.26) [Jw” — w3, + ¢y, (@0)(@] = uj,w” —uj) — ¢y (@)(@5 — uj,w” —uz) =0

where @ € U7 C 87 is given by the nodal values w(p) = u(p) + 7p(u;(p) — u}(p))
with suitable 7, € (0,1). Using (5.16), we get

@7 (@ (p)) — " (wf(p)| < L*|uf(p) —u;(p)] V€ N7 (uy)
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in the same way as in the proof of Lemma 5.2. Together with the Cauchy-Schwarz
inequality and (5.19) this leads to

| P, (D) (@] — wj,w” —uj) — ¢y (wf) (W} — uj,w” — u;)|

(5.27) <Lt Y (@) —ui(p)’|w” (p) — ui(p)] by
p€N]-°(uJ')
< CL* @ = uslloe @ — usllas 1w = ujlas
Inserting this estimate in (5.26), we get
(5.25) lw” = usllay < CL* 2 — usllooll — usllas-
We finally choose v. such that (5.10) (5.16) and CL*||4} — ujl| < € are satisfied
forv > v..

We still have to show that w” = wyg
that (5.10) yields

v holds for sufficiently large v. First note
w”(p) =war(p)  Vp € N} (uy).

Convergence (3.3) in combination with (5.28) provides

(5.29) 3u;(P) — [w” (p) — u;(p)| — [} (p) —u;(p)| >0 Vp € N7 (u))

for sufficiently large v, giving

g (p) = 515 (p) < w(p) < 205 (p) =Pur(p) VP € N7 (uy).

Hence, w” € Ky» so that (4.11) and (5.23) must have the same solution wy» = w".
We finally choose vy such that (5.10) and (5.29) are valid. O

Now we shall see that C]S-td is asymptotically becomes a linear subspace correction
method for the reduced linear problem (5.23).

Lemma 5.5. Assume that the conditions in Lemma 5.1 are satisfied. Then there
is a Vo such that the local obstacle problems (4.13) can be equivalently rewritten as

(5.30) v €Vit o ap (v, v) = lar (v) — agy (wi_y,v) Vv €V,
if int supp \; C ./\/']?’(uj) and we have

(5.31) v =0 if int supp A\ & N7 (u;).

Assume further that non—zero corrections v; have the property

(5.32) o112, = o(||v) [|eo), v — o0, k=n;+1,...,1-1.

Then vy > vy can be chosen such that the damping parameters w; defined in (5.5)
satisfy

(5.33) wy =1 Yv > vy,
Proof. Let p € int supp Ay NN} (u;). Then (5.10) provides

Pay (p) =wi_1(p) = Pay (p) =0.

U

Hence, ¥ (p) = ¥; (p) =0, due to (5.3). As v, ¢; € Vi = span{)\;}, this leads to
¢, (p) = ¥, (p) = 0 and (5.31) follows. Now let int supp A C N7 (uj). By assump-

. v . —
tion, %’, 1, , depend continuously on Pows Purs w?
2

14
n;»---»w[_q. Hence, convergence
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(4.17) of the intermediate iterates w; and condition (5.4) imply that we can find
€ > 0 independent of I and v such that

%’(p) <—e<0<e<y(p) Vp € int supp N\

holds for sufficiently large v. Convergence (4.17) yields v/ — 0 so that we can
finally choose vy in such a way that (5.10) and

(5.34) $r(p) <vf(p) <¥/(p)  Vp € int supp N

are valid for v > vpy. This proves (5.30) and (5.31).
We still have to show (5.33). The solution v} = 2z/'A; of (5.30) is given by

Cay (\i) — agy (wi-1, M)

aﬁ;’ ()‘la Al)
Let z; # 0. Inserting (5.35) in (5.5), we get

, agy (A, M)|27 | — LB}

1 22— —.

|27 [(aar (A, M) + Li(Br + [27]))
In order to estimate L;, note that (5.16) provides

<, (P) <Pu) <P  VpeN;(u)

(5.35) 2 =

W

with ¢, @ defined in (5.17). Hence, exploiting property (1.5) of ®, we get
L, <L Vp € N7 (u;)
with L* independent of v. Using (5.10) this leads to
L= Y LN hy < Q1L
peNjo (uj)
with || denoting the area of 2. In the light of agy (A, A1) > a(A, ) we now obtain

2
¥ -1 v 1/2
2 20710 <||Uk||<2>o> /

> _
- L*|Q l
1+ aull,x\l) ey 08 lloo @A) |, V7 lloo

wi

=n;+1

Exploiting ||v}]lcc = 0 and (5.32) we can finally choose 1 > vy such that (5.16)
and (5.33) are satisfied. O
The technical assumption (5.32) is the price that we have to pay for evaluating
derivatives of ¢a; at ﬂ;’ # w;_,. However, evaluating derivatives at w;”_; would
require additional interpolations that lead to suboptimal complexity ranging from
O(nlogn) (uniform refinement) to O(n?) (highly nonuniform case).
Now we are ready to state the main result of this section.

Theorem 5.6. Assume that the conditions of Lemma 5.5 are satisfied. Let
(5.36) [ollu; < ;llo]] Vv € Sj.

Then there is a v; > 0 such that the iterates produced by the standard monotone
multigrid method (5.7) fulfill the error estimate

(5.37) lluj =y <A@ =er G+ D g —uflly, Yo > vy

with a positive constant ¢ depending only on the ellipticity of a(-,-) and on the initial
triangulation Ty.
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Proof. We have seen in Lemma 5.5 that coarse grid correction st.td becomes a
linear subspace correction for the linear reduced problem (5.21) if v > v;. The
corresponding subspaces Wy, k =0, ..., J, are given by

Wi = span{A{F) € As N S7,p € Ni}.

On these subspaces, the bilinear form agy (-, -) is approximated by the non-symmetric
bilinear form by (-, -) representing the standard Gauf-Seidel smoother. We now give
an upper bound for the convergence rate of this linear iteration. More precisely, we
want to show

(538) ||wﬁ;’ — C]Std’lj;/“ﬁ;f < qj||wﬂ;: — ’17,;/“11; Vv >y

with ¢; = (1 — Efyj_l(j +1)7%) and a constant & depending only on the shape
regularity of 7p and on the ellipticity of a(:, ).

In order to prove (5.38), we shall apply Theorem 2.5 from a recent paper of
Neuss [15]. To this end, we have to check the conditions (V0)—-(V2) stated there.
Let b(-,-) denote the symmetric bilinear form as induced by the symmetric Gau$}-
Seidel relaxation on Wj. For some v € S7, we consider the splitting

J
v= E Vg, vo = Iov, wp=1Iw—1Ix qv,
=0

induced by modified interpolation operators I, defined by

ey (K) o
I _J vl ifN €S
(v} (p) { 0 else

The smoothing property (V0)
(5.39) agr (v,v) <wbg(v,v) Vv €Wy

with suitable w € (0,2) depending only on Tp is explicitly stated in Theorem 3.2
in [15].
Stability condition (V1) with K; = Cy;(j + 1)? takes the form

J
(5.40) S By vk, vr) < Oy + D2l
k=0

In order to prove (5.40) with a constant C' depending only on 75 and on the ellip-
ticity of a(-,-), we use the estimate

Nk
bi (vk,vk) < Y amy (AL, A Jug (pi)°
i=1

which holds for all v, € Wy, with ¢ > 0 depending only on 7y (see e.g. (29) in [15]),
condition (5.36) and recent results on modified hierarchical splittings as contained
in section 5 of [14].

Finally,

(5.41) agy (v, v) < w%b?(vl,vl)%bk(vk,vk)% Yu € Wy, v, € W,
follows directly from the Cauchy-Schwarz inequality, (5.39) and

Ay (v, ) < by (v, 1)

16



which is the well-known smoothing property of the symmetric Gau-Seidel relax-
ation. As a consequence of (5.41), (V2) holds with K> = v/2(j 4+ 1). Now, we can
apply Theorem 2.5 in [15] in order to get the desired estimate (5.38).

Note that for given 6 > 0 (5.10) and convergence (3.3) provide the norm equiv-
alence

(L= O)vllu; < llvllay < (1 +0)|v]lu;

uniformly on bounded subsets of S7 for sufficiently large v. Hence, for given e > 0
we can find v, such that

(5.42) |lway — C;ftdﬂ;-’Huj < (A +e)gjllway — @5y, Vv >ve.

To conclude the proof, we combine the estimates (5.14), (5.24) and (5.42) by the
triangle inequality in order to get

lluj —ui* ;= lluy = €55 |y
< lway = wjllu; + llway — €540 ||,
<ellay —ujllu; + (1 +e)gjllway — afllu;
< e(1+ o)l — wglluy + (1 + )l — slluy + 1 — wsll;)
< (e(t+e) + (1 +e)” + (1 +2)%)g;) lluj — uf||u;-
We finally choose v. > vy such that (5.14), (5.24) and (5.42) hold with
<t °
Ty + 1)t

Then, the desired estimate (5.37) follows with ¢ = £ and v; = v.. O

We emphasize that (5.37) describes the worst case and can be easily improved
on suitable regularity assumptions. For example, let

(5.43) €

sup  max ®"(u;j(p)) < const. < oo
JEN DPENY(uj)

and assume that the bilinear form a(-,-) takes the form

2
(5.44) a(v,w) = / Z ai Ov Opw dz,
Q

k=1

with coefficients a;, € C'(Q). Then, exploiting a sharpened Cauchy-Schwarz in-
equality instead of (5.41), we get the usual O(572)-estimate for hierarchical bases.
Further improvements can be made by using L2-like projections instead of the mod-
ified interpolations Ij,. We refer to [14, 16] for further information. In numerical
computations [13], we also observed mesh-independent convergence rates with re-
spect to the usual energy norm induced by a(-,-). A theoretical justification will
be subject of future research.

The preceding convergence analysis clarifies the basic idea behind monotone
iterations (3.1). Fine grid smoother M, provides global convergence exploiting
convexity of the underlying minimization problem. Additional coarse grid correc-
tion C]S-td asymptotically becomes a Newton multigrid method with polylogarithmic
convergence rates exploiting local smoothness of ®. The accuracy of iterates u} re-
quired to enter the asymptotic regime depends on stability of critical nodes N} (u;)
and on Lipschitz continuity of ®" at u;(p), p € N} (u;). Numerical experiments
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indicate that initial iterates u(])- as resulting from nested iteration are frequently

good enough to provide multigrid convergence rates immediately.

6. TRUNCATED MONOTONE MULTIGRID METHODS

Monotone iterations (3.1) are constructed in such a way that coarse grid correc-
tion C; does not change the values of the smoothed iterate @} at the critical nodes
pE ./\/']'(ﬂ}’) Hence, only functions A; € As with the property

(6.1) int supp N VN7 (a%) =0

actually contribute to the coarse grid correction C]S-td. It is well-known (cf. eg. [14])
that this may lead to poor representation of low frequency parts of the error. In
order to improve the convergence rates by improved coarse grid transport, we shall
now modify all \; € As with the property (6.1) according to N7 (u}).

Following [10, 14], we define modified basis functions

(6.2) AR =11 A0 p e N,
by using truncation operators T}, k =0,...,J,
(63) T]':k = IS;’ 0O:---0 ISZ

Here Isy : §j — Sf denotes the S -interpolation, and the spaces S C Sk,
(6.4) Sy ={v €Sk |vlp) =0, pe N} C Sk,

are reduced subspaces with respect to Ny = N N N7 (uf), k = 0,...,j. Similar
subspaces of S; have been considered recently by other authors [2, 9] in connection
with the coarsening of a given mesh.

The resulting truncated multilevel nodal basis A%,

Ay = (Aggp,...,Ag,gj,xg,{*l),...,A;J;g,...,A;(;),...,A;?O) L v>0,

clearly depends on the set ./\/'j' (ﬂ;’ ) which may change in each iteration step. We now
derive a truncated coarse grid correction C]t.’rc by the same reasoning as described in
the previous section. More precisely, introducing some ordering from fine to coarse

Xlz;\glf’), l=n;+1,...,m] =n; +mg

of the Mm% non-zero elements of A%, we now use the search directions
u = A, l=nj+1,....mJ, v2>0.

Local constraints D, as appearing in (4.13), are obtained from slightly modified
monotone restrictions (see [10, 13]) and local damping parameters w; are obtained
by replacing A; by A; in (5.5).
The resulting iterative scheme
Y = /\/l]-u‘f
(6.5) ! !

v+l _ ptresv
u; —Cj uf

is called truncated monotone multigrid method. Global convergence of (6.5) follows
from Theorem 3.1 and Proposition 4.1.
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Theorem 6.1. Assume that the conditions of Lemma 5.1 and (5.36) hold. Assume
further that all non—zero corrections v/ = z¢' N, \i € A%, as resulting from (4.13)
have property (5.32).

Then there is a v; > 0 such that the iterates produced by the truncated monotone
multigrid method (6.5) fulfill the error estimate

(6.6) lluj =y A =er G+ WMy —uflly, Vo>

with a positive constant ¢ depending only on the ellipticity of a(-,-) and on the initial
triangulation To.

Proof. The proof is essentially the same as for Theorem 5.6. We only have to
establish an analogue of Lemma 5.5 involving N o= :\1(,1,6’) instead of \; = )\z(,]fl) and
an error estimate of the form (5.42) for the reduced linear iteration. Note that

(5.39) and (5.41) still hold if Wy, is replaced by the larger space Wy,
Wi, = span{\{F) € A%, p € Nj}.

O

As functions v € W in general do not satisfy a strengthened Cauchy-Schwarz

inequality, further improvements of (6.6) are more difficult than in the standard
case.

Consider some p € int supp A with Ly >> 1. Then our local damping strategy

clearly gives w; & 0 so that there is almost no contribution from . Hence, such p
play a similar role as critical nodes N7 (@) in (6.1) and it seams reasonable to treat
them similarly in the truncation process. This can be done by replacing definition
(4.1) of regular nodes by

(6.7) N2(@) = {p e Nj | @(p) > 0 and LY < Ly}

with some given threshold Ly, > 0. Of course, this modification preserves global
convergence. If L.y is sufficiently large, then there is a vy such that (4.1) and
(6.7) define the same sets for v > vg. Hence, we still have asymptotic bounds of
the convergence rates in this case. For numerical results, we refer to [13] and the
experiments to be reported below.

7. NUMERICAL RESULTS
We consider the stationary porous medium equation
(7.1) —AP>—fH) =0 6>0
with absorption term

6, if 8 €10,1)
fo)=4q [L2], iff=1
2 if6>1

)

and constant Dirichlet boundary conditions § = 2 on 00, O = (—10,10)2. After
Kirchhoff-type transformation u = 6% the weak formulation of (7.1) takes the form
(1.1) with a(v,w) = (Vuv, Vw),

[ (=00,0], ifu=0
aq’(“)‘{ f/a), w0
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Q = (0,10)? and appropriate boundary conditions. Observe that our model problem
combines an obstacle condition, a jump and unbounded Lipschitz constants for
u € (0,1).

The initial triangulation 7g is obtained by subdividing €2 in 4 congruent triangles.
Triangulation 7;41 is obtained from 7; by an ad hoc local refinement strategy: A
triangle ¢ € 7; is marked for refinement if %; does not vanish on ¢. The approximate
solution @; on T; is computed up to 0.05% accuracy. More precisely, @; = u .
accepted as soon as the stopping criterion

(7.2) = e <510 ]

is

is fulfilled. Note that |[|-]|,.+ is intended to approximate the local energy norm |- ||,
2

as defined in (5.8). For iterative solution of the discrete problems (1.6) on each
refinement level j we use the standard monotone multigrid method (STDKH) and
the truncated variant (TRCKH) as described in Sections 5 and 6, respectively. The
second singularity at w = 1 is incorporated as described in [12], pp. 65. Truncation
is based on the modification (6.7) with Lyax = 10'2. In the light of Theorems 5.6
and 6.1 nonlinear Gauf-Seidel smoothing with exact evaluation of (2.1) is applied.
Using the initial iterate u? = Gj_1, j = 1,...,8, (nested iteration) at most 7
(STDKH) or 6 (TRCKH) iteration steps were needed in order to meet the accuracy
requirement (7.2). We found similar results for the inexact variant as described in
Section 2. Implementation was carried out in the framework of the finite element

toolbox KASKADE [3].

F1GURE 1. Final grid 7g and level curves of final approximation g

Figure 1 shows the final triangulation 7g together with the level curves of the
final approximation #g. Bold lines are used for the free boundaries g = 0 and
iig = 1. Observe that in large parts of the computational domain g is close to the
singularity zero where local Lipschitz constants tend to infinity.

We take a closer look at the convergence behavior of our monotone multigrid
methods on the final level j = 8 with 97 285 unknowns. The left picture of Figure 2
shows the algebraic error ||us — u§||us over the number v of iteration steps. The
initial iterate is ud = @7 (nested iteration). The exact solution ug is precomputed
up to machine precision. For both methods, we observe a fast reduction of the
high frequency contributions to the error in the first iteration step. Then, asymp-
totic linear convergence dominates the whole iteration history. This supports the
practical relevance of our asymptotic convergence analysis. In the leading iteration
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FIGURE 2. Iteration history and asymptotic convergence rates

steps, the algorithms provide damping of at most 126 (STDKH) or 153 (TRCKH)
local corrections. Minor effects on the convergence rates illustrate the benefits of
local damping. No damping occurs after 28 (STDKH) or 24 (TRCKH) iteration
steps confirming our theoretical analysis (cf. Lemma 5.5). In comparison with
the standard method the truncated variant exhibits a considerable improvement of
convergence speed. This justifies our heuristic reasoning in Section 6. Of course,
dominance of asymptotic convergence rates is a consequence of sufficiently accurate
initial iterates as obtained by nested iteration. Starting from u? = 0, i.e. directly
from the singularity, TRCKH required 180 iteration steps to enter the asymptotic
regime.
The right picture in Figure 2 shows approximate asymptotic convergence rates
w; — Y ||u
pj = —Ill-]— uyf—|1|||] , j=0,...,8.

J j uj
Here, v* is chosen such that ||Ju; — u;’||uJ < 107'% and again u; is precomputed
up to machine precision. The asymptotic convergence rates seem to saturate with
increasing refinement level j confirming the convergence results as stated in Theo-
rems 5.6 and 6.1, respectively.
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