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Abstrat. We onsider the fast solution of a lass of large, pieewise smooth

minimization problems. For lak of smoothness, usual Newton multigrid meth-

ods annot be applied. We propose a new approah based on a ombination

of onvex minization with onstrained Newton linearization. No regularization

is involved. We show global onvergene of the resulting monotone multigrid

methods and give polylogarithmi upper bounds for the asymptoti onver-

gene rates. EÆieny is illustrated by numerial experiments.

1. Introdution

Let 
 be a bounded, polyhedral domain in the Eulidean spae R

d

. We onsider

the minimization problem

u 2 H : J (u) + �(u) � J (v) + �(v) 8v 2 H(1.1)

on a losed subspae H � H

1

(
). For simpliity, we onentrate on H = H

1

0

(
)

and d = 2. The quadrati funtional J ,

J (v) =

1

2

a(v; v) � `(v);(1.2)

is indued by a ontinuous, symmetri and H{ellipti bilinear form a(�; �) and by a

linear funtional ` 2 H

0

. H is equipped with the energy norm k � k = a(�; �)

1=2

. The

funtional �,

�(v) =

Z




�(v(x)) dx;(1.3)

is generated by a onvex funtion � : R ! R [ f+1g with the properties

�(z) =1 8z < 0; �(z) <1 8z � 0

j�(z)� �(z

0

)j � G(jzj+ jz

0

j)jz � z

0

j 8z; z

0

� 0

(1.4)

where G is some salar, aÆne funtion and

� 2 C

2

(0;1); �

00

is uniformly Lipshitz on ompat subsets of (0;1):(1.5)

As a onsequene of (1.4), � is onvex, lower semi{ontinuous and proper. Hene,

(1.1) admits a unique solution u 2 H (f. [12℄, pp. 28). This property and all

results to be presented an be generalized to funtions � with a �nite number of

singularities.
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Let T

j

be a partition of 
 in triangles t 2 T

j

with minimal diameter of order 2

�j

.

The set of interior nodes is alled N

j

. Disretizing (1.1) by ontinuous, pieewise

linear �nite elements S

j

� H , we obtain the �nite dimensional problem

u

j

2 S

j

: J (u

j

) + �

j

(u

j

) � J (v) + �

j

(v) 8v 2 S

j

:(1.6)

Observe that the funtional � is approximated by S

j

{interpolation of �(v), giving

�

j

(v) =

X

p2N

j

�(v(p))h

p

; h

p

=

Z




�

(j)

p

(x) dx(1.7)

where �

(j)

p

, p 2 N

j

, denote the nodal basis funtions of S

j

. The disrete minimiza-

tion problem (1.6) is uniquely solvable and an be reformulated as the variational

inequality

u

j

2 S

j

: a(u

j

; v � u

j

) + �

j

(v)� �

j

(u

j

) � `(v � u

j

) 8v 2 S

j

(1.8)

or as the variational inlusion

u

j

2 S

j

: `(v)� a(u

j

; v) 2 ��

j

(u

j

)(v) 8v 2 S

j

(1.9)

where ��

j

is the set{valued subdi�erential of �

j

. Problems of the form (1.1) and

related disretizations arise in a wide range of appliations and have been studied for

quite a while. For further information we refer e.g. to [6, 7, 12℄ and the bibliography

ited therein.

Here, we shall onentrate on the fast solution of the disrete minimization prob-

lem (1.6). It is lear that Newton{multigrid methods [1, 4℄ annot be applied,

beause the funtional �

j

is not di�erentiable. Nonlinear multigrid tehniques [8℄

as well as nonlinear subspae orretions in the spirit of [5, 17℄ also rely on the

smoothness of the nonlinearity. A ommon remedy is to use suh methods after

some suitable regularization of �. Unfortunately, reasonable onvergene speed

may then have to be paid by unaeptable disretization errors and vie versa.

Similar problems arise in ase of stati pieewise quadrati approximation of � as

applied in [12℄, pp. 138.

In this paper, we extend monotone multigrid methods [10, 11, 12℄ from pieewise

quadrati funtions � to the pieewise smooth ase (1.5). To this end, monotone

multigrid methods are regarded as two-stage iterations onsisting of a globally on-

vergent �ne grid smoother M

j

and a oarse grid orretion C

j

preserving global

onvergene by preserving monotonially dereasing energy.

Gau�{Seidel type relaxation is used for �ne grid smoothing. As exat solu-

tions of the ourring salar problems might be unavailable, we present an inexat

variant inluding a stopping riterion for simple bisetion. The basi idea for on-

struting C

j

is to onstrain oarse grid orretions to a neighborhood of the atual

smoothed iterate where Newton linearization an be ontrolled by pointwise Lip-

shitz onstants. There is no oarse grid orretion at the singularity. Hene, no

regularization is involved. In ontrast to pieewise quadrati �, suitable damping

of oarse grid orretion is required in order to preserve monotoniity. We propose

loal damping of eah loal orretion assoiated with a �xed node on a �xed re-

�nement level. This strategy is espeially suited for heavily varying loal Lipshitz

onstants.

Within this general framework, we derive standard and trunated versions of

monotone multigrid methods. Similar algorithms were presented in [13℄ without

proofs. Global onvergene proofs arry over from [11, 12℄. Detailed onvergene
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analysis lari�es the interplay of �ne grid smoothing, onstrained Newton lineariza-

tion and loal damping and provides polylogarithmi bounds of asymptoti onver-

gene rates. The pratial relevane of our asymptoti analysis is supported by

numerial experiments with a stationary porous medium ow. Despite of intrinsi

singularities of the problem, we observed similar eÆieny as in the linear self{

adjoint ase.

2. Inexat Gau�-Seidel Relaxation

Nonlinear Gau�{Seidel relaxation [7, 12℄ for the iterative solution of (1.6) is

based on the suessive minimization of the disrete energy funtional J + �

j

in

the diretion of the nodal basis funtions �

(j)

p

l

, l = 1; : : : ; n

j

= #N

j

. For given

w 2 S

j

, the loal orretion T

l

w 2 V

l

= spanf�

(j)

p

l

g in the diretion of �

(j)

p

l

is the

unique solution of

T

l

w 2 V

l

: J (w + T

l

w) + �(w(p

l

) + T

l

w(p

l

))h

p

l

� J (w + v) + �(w(p

l

) + v(p

l

))h

p

l

8v 2 V

l

:

(2.1)

In general, the exat solution T

l

w of the salar problem (2.1) is not available. For

this reason, we onsider inexat Gau�{Seidel relaxation de�ned as follows.

For given iterate u

�

j

, we introdue a sequene of intermediate iterates w

�

l

aord-

ing to

w

�

0

= u

�

j

; w

�

l

= w

�

l�1

+ v

�

l

; l = 1; : : : ; n

j

;(2.2)

with approximations v

�

l

2 V

l

of T

l

w

�

l�1

. For example, v

�

l

might be resulting from

some steps of an iterative solver as applied to (2.1). Finally, the new iterate is given

by

u

�+1

j

=M

j

u

�

j

= w

�

n

j

:(2.3)

For notational onveniene, the index � will be frequently skipped in the sequel.

Theorem 2.1. Assume that the orretions v

l

in (2.2) are hosen in suh a way

that

M

j

u

0

j

2 K

j

= fv 2 S

j

j v(p) � 0 8p 2 N

j

g 8u

0

j

2 S

j

and

v

l

= !(w)T

l

w; !(w) 2 [!

0

; 1℄ 8w 2 K

j

(2.4)

is valid with some �xed !

0

2 (0; 1℄. Then the inexat Gau�{Seidel relaxation (2.3)

is globally onvergent.

Proof. We shall use the abbreviation

�

J = J +�

j

. Utilizing (2.4) and the onvexity

of

�

J , we obtain the monotoniity

�

J (w

l

) �

�

J (w

l�1

+ !

0

T

l

w

l�1

) �

�

J (w

l�1

); l = 1; : : : ; n

j

:(2.5)

As a onsequene, we get

�

J (u

�+1

j

) �

�

J (u

�

j

) �

�

J (u

1

j

) < 1 for all � � 1. Sine �

j

is onvex, lower semiontinuous and proper, there exist , C 2 R suh that

�

j

(v) � kvk+ C 8v 2 S

j

(2.6)

(f. e.g. [6℄). From (2.6) and from the boundedness of (

�

J (u

�

j

))

��1

we onlude that

the sequene (u

�

j

)

��0

must also be bounded. Let (u

�

k

j

)

k�0

� K

j

be a onvergent

subsequene with limit u

�

j

2 K

j

. We now prove that u

�

j

= u

j

.

3



Observe that the estimate

`(T

l

w)� a(w + T

l

w; T

l

w) + �

j

(w) � �

j

(w + T

l

w) � 0(2.7)

is resulting from the variational formulation of (2.1). Utilizing the monotoniity

(2.5), the onvexity estimate

�

j

(w) � �

j

(w + !

0

T

l

w) � !

0

(�

j

(w) � �

j

(w + T

l

w));

and (2.7), we obtain

�

J (u

�

k

j

)�

�

J (u

�

k+1

j

) �

�

J (u

�

k

j

)�

�

J (u

�

k

+1

j

)

=

n

j

X

i=1

�

�

J(w

�

k

i�1

)�

�

J(w

�

k

i

)

�

�

n

j

X

i=1

�

�

J(w

�

k

i�1

)�

�

J(w

�

k

i�1

+ !

0

T

i

w

�

k

i�1

)

�

=

n

j

X

i=1

�

!

0

(`(T

i

w

�

k

i�1

)� a(w

�

k

i�1

+ T

i

w

�

k

i�1

; T

i

w

�

k

i�1

))

+�

j

(w

�

k

i�1

)� �

j

(w

�

k

i�1

+ !

0

T

i

w

�

k

i�1

)

�

+!

0

(1�

!

0

2

)

n

j

X

i=1

kT

i

w

�

k

i�1

k

2

� !

0

(1�

!

0

2

)

n

j

X

i=1

kT

i

w

�

k

i�1

k

2

:

(2.8)

On the other hand, the triangle inequality, the Cauhy{Shwarz inequality and

(2.4) lead to

ku

�

k

j

� w

�

k

l�1

k

2

� n

j

n

j

X

i=1

kT

i

w

�

k

i�1

k

2

; l = 1; : : : ; n

j

:(2.9)

Sine

�

J is ontinuous on K

j

, we onlude from (2.8) and (2.9) that

w

�

k

l�1

! u

�

j

; k !1; l = 1; : : : ; n

j

:

The monotoniity (2.5) yields

�

J (u

�

k+1

j

) �

�

J (u

�

k

+1

j

) �

�

J (w

�

k

l

) �

�

J (w

�

k

l�1

+ !

0

T

l

w

�

k

l�1

) �

�

J (u

�

k

j

)(2.10)

for eah �xed l = 1; : : : ; n

j

. Sine

�

J and T

l

are ontinuous on K

j

, we an pass to

the limit so that

�

J (u

�

j

) =

�

J (u

�

j

+ !

0

T

l

u

�

j

):

Moreover, the onvexity of

�

J and (2.1) imply

�

J (u

�

j

) =

�

J (u

�

j

+T

l

u

�

j

). As T

l

u

�

j

is the

unique solution of (2.1), we get T

l

u

�

j

= 0. The same holds true for all l = 1; : : : ; n

j

so that u

�

j

must be a �xed point of the original nonlinear Gau�{Seidel relaxation

whih is well-known to have the unique �xed point u

j

. This onludes the proof.

Observe that ondition (2.4) an be replaed by the energy redution

J (w + v

l

) + �

j

(w + v

l

) � J (w + !

0

T

l

w) + �

j

(w + !

0

T

l

w)(2.11)

together with the additional assumption kv

l

k � kT

l

wk.
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Theorem 2.1 an be used as a stopping riterion for the iterative solution of (2.1).

To give an example, let us �rst reformulate (2.1) as the salar inlusion

0 2 g(z

l

) = ��(w(p) + z

l

)h

p

l

+ a

ll

z

l

� r

l

(2.12)

where

z

l

�

(j)

p

l

= T

l

w; a

ll

= a(�

(j)

p

l

; �

(j)

p

l

); r

l

= `(�

(j)

p

l

)� a(w; �

(j)

p

l

)

and �� is the subdi�erential of �. We shall now desribe a simple bisetion method

for the approximate solution of (2.12). First, let w

0

= maxf0;�w(p)g. Now we have

to distinguish three ases. Of ourse, z

l

= w

0

is the exat solution, if 0 2 g(w

0

). If

g = sup g(w

0

) < 0, then it is easily heked that z

l

2 [z

0

; z

0

℄ with z

0

= w

0

and z

0

=

�g=a

ll

> w

0

. Starting with [z

0

; z

0

℄, we ontinue bisetion until the new midpoint

z

i

= (z

i

+ z

i

)=2 satis�es 0 2 g(z

i

) or sup g(z

i

) < 0. Then v

l

= z

i

�

(j)

p

has the

property (2.4) with !

0

=

1

2

. In the remaining ase inf g(w

0

) > 0 we �rst onlude

w

0

= 0. Then we proeed in a symmetrial way starting with z

0

= �w(p) < 0 and

z

0

= 0. Finally, it is lear that (w + v

l

)(p

l

) � 0, giving M

j

u

0

j

2 K

j

for all u

0

j

2 S

j

.

More sophistiated algorithms based on seant approximations or Newton lin-

earization an be onstruted in a similar way.

3. Monotone Iterations

Nonlinear or inexat Gau�-Seidel relaxationM

j

, as onsidered in the preeding

setion, typially su�er from rapidly deteriorating onvergene rates when proeed-

ing to more and more re�ned triangulations. As a possible remedy, we introdue

so-alled monotone iterations

�u

�

j

=M

j

u

�

j

u

�+1

j

= C

j

�u

�

j

(3.1)

where the additional substep C

j

is intended to aelerate the onvergene speed.

Adopting multigrid terminology,M

j

is alled �ne grid smoother, �u

�

j

is the smoothed

iterate and C

j

is alled oarse grid orretion.

Theorem 3.1. Assume that the smoother M

j

satis�es the onditions of Theo-

rem 2.1 and that the oarse grid orretion C

j

has the monotoniity property

J (C

j

w) + �

j

(C

j

w) � J (w) + �

j

(w) 8w 2 K

j

:(3.2)

Then the monotone iteration (3.1) is globally onvergent.

Proof. Exploiting (3.2), the proof is almost the same as for Theorem 2.1. For

example, (2.10) now takes the form

�

J (u

�

k+1

j

) �

�

J (C

j

�u

�

k

j

) �

�

J (�u

�

k

j

) �

�

J (w

�

k

l�1

+ !

0

T

l

w

�

k

l�1

) �

�

J (u

�

k

j

):

As a by-produt, we also get onvergene of the smoothed iterates

�u

�

j

! u

j

� !1:(3.3)

We emphasize that the oarse grid orretion alone does not need to be onvergent.

This gives onsiderable exibility in onstruting C

j

.
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4. Monotone Coarse Grid Corretion with Loal Damping

Reall that lassial Newton multigrid methods annot be applied to (1.6) for

lak of smoothness. In this setion, we shall derive onstrained Newton multigrid

methods to be used as oarse grid orretion C

j

.

For given smoothed iterate �u

�

j

, we introdue the set of regular nodes

N

Æ

j

(�u

�

j

) = fp 2 N

j

j �u

�

j

(p) > 0g � N

j

:(4.1)

Consider some �xed p 2 N

Æ

j

(�u

�

j

). Then, as a onsequene of (1.5), there exists a

neighborhood of �u

�

j

(p),

0 < '

�u

�

j

(p) < �u

�

j

(p) < '

�u

�

j

(p);(4.2)

where uniform Lipshitz ontinuity

j�

00

(z

1

)� �

00

(z

2

)j � L

�

p

jz

1

� z

2

j 8z

1

; z

2

2 ['

�u

�

j

(p); '

�u

�

j

(p)℄(4.3)

holds with pointwise Lipshitz onstant L

�

p

> 0. For instane, let us hoose

'

�u

�

j

(p) =

1

2

�u

�

j

(p); '

�u

�

j

(p) = 2�u

�

j

(p) 8p 2 N

Æ

j

(�u

�

j

):(4.4)

We de�ne

'

�u

�

j

(p) = '

�u

�

j

(p) = �u

�

j

(p)(4.5)

at the remaining ritial nodes

p 2 N

�

j

(�u

�

j

) = N

j

n N

Æ

j

(�u

�

j

):

Colleting these intervals for all p 2 N

j

, we introdue the neighborhood K

�u

�

j

of �u

�

j

,

K

�u

�

j

= fw 2 S

j

j '

�u

�

j

(p) � w(p) � '

�u

�

j

(p); p 2 N

j

g � S

j

:(4.6)

The above de�nitions were motivated by the following loal representation of �

j

,

�

j

(w) = �

�u

�

j

(w) + onst. 8w 2 K

�u

�

j

;(4.7)

by the smooth funtional �

�u

�

j

,

�

�u

�

j

(w) =

X

p2N

Æ

j

(�u

�

j

)

�(w(p))h

p

; w 2 K

�u

�

j

:(4.8)

Let us onsider the onstrained minimization of the smooth energy J + �

�u

�

j

u

�u

�

j

2 K

�u

�

j

: J (u

�u

�

j

) + �

�u

�

j

(u

�u

�

j

) � J (v) + �

�u

�

j

(v) 8v 2 K

�u

�

j

:(4.9)

As a onsequene of (3.3), we have dist(u

j

;K

�u

�

j

) ! 0 as � ! 1. Hene, the

solutions of (4.9) tend to u

j

. Moreover, we shall see later on that u

j

2 K

�u

�

j

holds for

non{degenerate problems (1.6) after a �nite number of iteration steps. In this ase,

we learly have u

�u

�

j

= u

j

or, equivalently, our original non{smooth problem (1.6)

redues to the onstrained smooth problem (4.9). Hene, approximate solutions of

(4.9) are good andidates for the next iterate u

�+1

j

.

The main advantage of (4.9) is that Newton linearization an be applied to the

smooth energy J +�

�u

�

j

. More preisely, we approximate J +�

�u

�

j

by the quadrati

energy funtional J

�u

�

j

,

J

�u

�

j

(w) =

1

2

a

�u

�

j

(w;w) � `

�u

�

j

(w) � J (w) + �

�u

�

j

(w) + onst.; w 2 K

�u

�

j

;
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where the bilinear form

a

�u

�

j

(w;w) = a(w;w) + �

00

�u

�

j

(�u

�

j

)(w;w)(4.10)

and the linear funtional

`

�u

�

j

(w) = `(w)� �

0

�u

�

j

(�u

�

j

)(w) + �

00

�u

�

j

(�u

�

j

)(�u

�

j

; w)

are obtained by Taylor's expansion

�

�u

�

j

(w) � �

�u

�

j

(�u

�

j

) + �

0

�u

�

j

(�u

�

j

)(w � �u

�

j

) +

1

2

�

00

�u

�

j

(�u

�

j

)(w � �u

�

j

; w � �u

�

j

):

The resulting quadrati obstale problem

w

�u

�

j

2 K

�u

�

j

: J

�u

�

j

(w

�u

�

j

) � J

�u

�

j

(v) 8v 2 K

�u

�

j

(4.11)

an be regarded as onstrained Newton linearization reeting that � is only piee-

wise di�erentiable.

We approximate (4.11) by one step of an extended underrelaxation as introdued

in [10℄. In ontrast to [10℄, loal damping parameters now have to be omputed

expliitly to enfore monotoniity (3.2) of the funtional J + �

j

whih might be

di�erent from J

�u

�

j

. Hene, we briey reall the basi algorithm for further referene

and analysis. We hoose saled searh diretions �

�

l

,

�

�

l

2 S

j

; max

x2


j�

�

l

(x)j = 1; l = n

j

+ 1; : : : ;m

�

j

;

whih may depend on the atual onstraints K

�u

�

j

. It is onvenient to start numer-

ation at n

j

+ 1, beause intermediate iterates w

�

l

, l = 1; : : : ; n

j

, are already given

by (2.2). We now ontinue this sequene aording to

w

�

n

j

= �u

�

j

; w

�

l

= w

�

l�1

+ !

�

l

v

�

l

; l = n

j

+ 1; : : : ;m

�

j

:(4.12)

Eah loal orretion v

�

l

is the solution of the loal obstale problem

v

�

l

2 D

�

l

: J

�u

�

j

(w

�

l�1

+ v

�

l

) � J

�u

�

j

(w

�

l�1

+ v) 8v 2 D

�

l

(4.13)

with onstraints D

�

l

� V

�

l

:= spanf�

�

l

g satisfying

0 2 D

�

l

� fv 2 V

�

l

j w

�

l�1

+ v 2 K

�u

�

j

g:(4.14)

In order to guarantee the monotoniity (3.2), the loal damping parameters !

�

l

are

hosen suh that

J (w

�

l

) + �

�u

�

j

(w

�

l

) � J (w

�

l�1

) + �

�u

�

j

(w

�

l�1

):(4.15)

Finally, our monotone oarse grid orretion with loal damping is given by

C

j

�u

�

j

= w

�

m

�

j

= �u

�

j

+

m

�

j

X

l=n

j

+1

!

�

l

v

�

l

:(4.16)

Using the monotoniity (4.15), general onvergene results on extended under-

relaxations arry over to the present ase. For example, we get onvergene of eah

in�nite sequene of intermediate iterates (f. [12℄, Corollary 2.3, p. 54)

w

�

l

! u

j

� !1:(4.17)

We now derive a suÆient ondition for the loal monotoniity (4.15). Again, the

index � will be frequently suppressed. We shall use the notation z

+

= maxf0; zg

+

.
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Proposition 4.1. Let v

l

= z

l

�

l

be the solution of (4.13). Assume that !

l

2 [0; 1℄

satis�es

!

l

jz

l

j � 2

(

j`

�u

�

j

(�

l

)� a

�u

�

j

(w

l�1

; �

l

)j � L

l

k�u

�

j

� w

l�1

k

2

1;l

a

�u

�

j

(�

l

; �

l

) + L

l

�

k�u

�

j

� w

l�1

k

1;l

+ !

l

jz

l

j

�

)

+

(4.18)

with loal Lipshitz onstant

L

l

=

X

p2N

Æ

j

(�u

�

j

)

L

p

j�

l

(p)j h

p

(4.19)

and loal maximum norm

kvk

1;l

= max

p2N

j

\ int supp �

l

jv(p)j:(4.20)

Then the damped orretion !

l

v

l

ful�lls the loal monotoniity ondition (4.15).

Proof. The assertion is trivial for z

l

= 0. Assuming z

l

6= 0, we introdue the salar

funtion

g(!) = J (w

l�1

+ !v

l

) + �

�u

�

j

(w

l�1

+ !v

l

):

Obviously, (4.15) is equivalent to g(!

l

) � g(0). As g 2 C

2

[0; 1℄, we an use Taylor's

expansion to reformulate this ondition as

0 � !

l

� �2

g

0

(0)

g

00

(�!

l

)

(4.21)

with suitable � 2 (0; 1). To obtain a lower bound for �g

0

(0), we �rst state the

estimate

�

0

�u

�

j

(w

l�1

)(v

l

) � �

0

�u

�

j

(�u

�

j

)(v

l

) + �

00

�u

�

j

(�u

�

j

)(w

l�1

� �u

�

j

; v

l

) + L

l

jz

l

jkw

l�1

� �u

�

j

k

2

1;l

whih is a onsequene of Taylor's formula and the pointwise Lipshitz ondition

(4.3). Moreover, we have `

�u

�

j

(v

l

) � a

�u

�

j

(w

l�1

; v

l

) � 0 beause v

l

is the solution of

(4.13). Combining these estimates, we get the lower bound

�g

0

(0) = �J

0

(w

l�1

)(v

l

)� �

0

�u

�

j

(w

l�1

)(v

l

)

� j`

�u

�

j

(v

l

)� a

�u

�

j

(w

l�1

; v

l

)j � L

l

jz

l

jkw

l�1

� �u

�

j

k

2

1;l

:

(4.22)

Using

�

00

�u

�

j

(w

l�1

+ �!

l

v

l

)(v

l

; v

l

)

� �

00

�u

�

j

(�u

�

j

)(v

l

; v

l

) + z

2

l

L

l

�

kw

l�1

� �u

�

j

k

1;l

+ !

l

jz

l

j

�

the upper bound

g

00

(�!

l

) = J

00

(w

l�1

+ �!

l

v

l

)(v

l

; v

l

) + �

00

�u

�

j

(w

l�1

+ �!

l

v

l

)(v

l

; v

l

)

� a

�u

�

j

(v

l

; v

l

) + z

2

l

L

l

�

kw

l�1

� �u

�

j

k

1;l

+ !

l

jz

l

j

�

(4.23)

is obtained in a similar way. Inserting (4.22) and (4.23) in (4.21), it is lear that

(4.18) implies (4.15)

We emphasize that only loal properties (i.e. properties on supp �

l

) enter the

upper bound in (4.18).
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As an alternative to loal damping, one might always set !

l

= 1 in (4.12) and

enfore monotoniity (3.2) by global damping

u

�+1

j

= �u

�

j

+ �!

m

j

X

l=n

j

+1

v

l

(4.24)

with suitable �! 2 [0; 1℄. This would simplify onvergene analysis, beause e.g. the

results from [10℄ ould be applied diretly. However, upper bounds for �! (f. e.g. [1,

4℄) typially deteriorate for inreasing global Lipshitz onstant

�

L = max

p2

S

m

j

l=1

int supp �

l

L

p

:

Hene, for heavily varying L

p

as onsidered here, global damping (4.24) is likely to

provide very little progress in omparison with the loal strategy (4.12).

5. Standard Monotone Multigrid Methods

Assume that T

j

is resulting from j re�nements of an intentionally oarse tri-

angulation T

0

. In this way, we obtain a sequene of triangulations T

0

; : : : ; T

j

and

orresponding nested �nite element spaes S

0

� � � � � S

j

. Though the algorithms

and onvergene results to be presented an be easily generalized to nonuniform

grids, we assume for onveniene that the triangulations are uniformly re�ned.

More preisely, eah triangle t 2 T

k

is subdivided into four ongruent subtriangles

in order to produe the next triangulation T

k+1

. Colleting all nodal basis funtions

from all re�nement levels, we obtain the multilevel nodal basis �

S

,

�

S

=

�

�

(j)

p

1

; �

(j)

p

2

: : : ; �

(j)

p

n

j

; : : : ; �

(0)

p

1

; : : : ; �

(0)

p

n

0

�

:(5.1)

The m

S

= n

j

+ � � �+ n

0

elements

�

l

= �

(k

l

)

p

l

; l = n

j

+ 1; : : : ;m

j

= n

j

+m

S

;

are ordered from �ne to oarse.

Using the abstrat framework of the preeding setion, we now speify the oarse

grid orretion C

std

j

. We selet onstant searh diretions

�

�

l

= �

l

; l = n

j

+ 1; : : : ;m

j

; 8� � 0:

For eah �u

�

j

the admissible set K

�u

�

j

is hosen aording to (4.6) with '

�u

�

j

, '

�u

�

j

taken

from (4.4). The onstraints D

�

l

, appearing in the loal problems (4.13), take the

form

D

�

l

= fv 2 V

l

j  

�

l

� v �  

�

l

g;(5.2)

where loal obstales  

�

l

;  

�

l

2 V

l

are intended to approximate the �ne grid on-

straints '

�u

�

j

� w

�

l�1

, '

�u

�

j

� w

�

l�1

, respetively. The property  

�

l

;  

�

l

2 V

l

allows to

hek the onstraints diretly on the oarse grid. In order to guarantee (4.15), we

impose the ondition

'

�u

�

j

(p)� w

�

l�1

(p) �  

�

l

(p) � 0 �  

�

l

(p) � '

�u

�

j

(p)� w

�

l�1

(p) 8p 2 N

j

:(5.3)

Finally, we assume that

 

�

l

=  

l

('

�u

�

j

; w

�

n

j

; : : : ; w

�

l�1

);  

�

l

=  

l

('

�u

�

j

; w

�

n

j

; : : : ; w

�

l�1

)
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are ontinuous funtions of '

�u

�

j

; '

�u

�

j

; w

�

n

j

; : : : ; w

�

l�1

, satisfying

 

l

('

u

j

; u

j

; : : : ; u

j

)(p) < 0 <  

l

('

u

j

; u

j

; : : : ; u

j

)(p) 8p 2 int supp �

l

;(5.4)

if int supp �

l

� N

Æ

j

(u

j

). Loal obstales  

�

l

;  

�

l

2 V

l

with the properties (5.3) and

(5.4) an be obtained indutively by quasioptimal monotone restrition. We refer

to [10℄ or [12℄, pp. 74, for details. As usual, the index � is mostly skipped in the

sequel.

In the light of Proposition 4.1, we hoose loal damping parameters

!

l

= min

(

1;

(

2(j`

�u

�

j

(�

l

)� a

�u

�

j

(w

l�1

; �

l

)j � L

l

B

2

l

)

jz

l

j(a

�u

�

j

(�

l

; �

l

) + L

l

(B

l

+ jz

l

j))

)

+

)

(5.5)

for all non{zero loal orretions v

l

= z

l

�

l

obtained from (4.13). Denoting

kv

k

k

1

= max

x2


jv

k

(x)j;

the upper bounds

B

l

=

l�1

X

k=n

j

+1

!

k

kv

k

k

1

� k�u

�

j

� w

l�1

k

1;l

(5.6)

make !

l

omputable without visiting the �ne grid (f. [13℄).

As a onsequene of the above onsiderations, the resulting oarse grid orretion

C

std

j

an be implemented as a lassial V{yle with optimal numerial omplexity.

For further referene, the monotone iteration

�u

�

j

=M

j

u

�

j

u

�+1

j

= C

std

j

�u

�

j

(5.7)

is alled standard monotone multigrid method.

It is lear from Theorem 3.1 and Proposition 4.1 that (5.7) is globally onvergent,

if the smoother M

j

satis�es the onditions of Theorem 2.1. We shall now derive

upper bounds for the asymptoti onvergene rates with respet to the loal energy

norm

kvk

u

j

= a

u

j

(v; v)

1=2

:(5.8)

The symmetri, positive de�nite bilinear form a

u

j

(v; v) is de�ned aording to

(4.10). We �rst state that the disrete free boundary is deteted after a �nite

number of steps.

Lemma 5.1. Assume that the disrete minimization problem (1.6) satis�es the

non{degeneray ondition

`(�

(j)

p

)� a(u

j

; �

(j)

p

) 2 int ��

j

(u

j

)(�

(j)

p

) 8p 2 N

�

j

(u

j

)(5.9)

and that exat nonlinear Gau�{Seidel relaxation (2.1) is used as smoother M

j

.

Then there is a �

0

� 0 suh that

N

Æ

j

(u

�

j

) = N

Æ

j

(�u

�

j

) = N

Æ

j

(u

j

) 8� � �

0

:(5.10)

Proof. Note that

N

Æ

j

(u

�

j

) = N

Æ

j

(�u

��1

j

)

10



follows diretly from (4.5). Hene, it is suÆient to show the seond equality in

(5.10). Reall that �u

�

j

! u

j

(f. (3.3)). Hene, we have �u

�

j

(p) > 0, if u

j

(p) > 0 and

� is large enough. This implies

N

Æ

j

(u

j

) � N

Æ

j

(�u

�

j

)(5.11)

for suÆiently large �. It remains to show

N

�

j

(u

j

) � N

�

j

(�u

�

j

):

Let p

l

2 N

�

j

(u

j

) or, equivalently, u

j

(p) = 0. Rewriting (2.1) as a variational inlu-

sion, we get

`(v)� a(w

�

l

; v) 2 ��(w

�

l

(p

l

))v(p) h

p

l

8v 2 V

l

= spanf�

(j)

p

l

g:(5.12)

As w

�

l

(p

l

) = �u

�

j

(p

l

) for all l = 1; : : : ; n

j

, this leads to

`(�

(j)

p

l

)� a(w

�

l

; �

(j)

p

l

) 2 ��(�u

�

j

(p

l

)) h

p

l

:

Reall that w

�

l

! u

j

(f. (4.17)). Hene, (5.9) yields

`(�

(j)

p

l

)� a(w

�

l

; �

(j)

p

l

) 2 ��(0) h

p

l

(5.13)

for suÆiently large �. As �� is maximal monotone, these two inlusions imply

�u

�

j

(p

l

) = 0. We �nally hose �

0

suh that (5.11) and (5.13) are satis�ed.

Note that Lemma 5.1 an not be extended to inexat Gau�{Seidel smoothing.

We ontinue with an asymptoti error estimate for nonlinear Gau�{Seidel relax-

ation. Note that known results on nonlinear subspae orretion methods (f. [5,

17℄) annot be applied, beause � is not uniformly Lipshitz.

Lemma 5.2. Assume that the onditions in Lemma 5.1 are satis�ed. Then, for

eah " > 0, there is a �

"

� 0 suh that

k�u

�

j

� u

j

k

u

j

� (1 + ")ku

�

j

� u

j

k

u

j

8� � �

"

:(5.14)

Proof. Choose l = 1; : : : ; n

j

and arbitrary p

l

2 N

Æ

j

(u

j

). Using (5.10), the minimiza-

tion problem (2.1) for the orretion v

�

l

= T

l

w

�

l�1

an be equivalently rewritten as

`(v)� a(w

�

l�1

+ v

�

l

; v) = �

0

(w

�

l�1

(p

l

) + v

�

l

(p

l

))v(p

l

) h

p

l

8v 2 V

l

:

Observe that w

�

l

(p

l

) = w

�

l�1

(p

l

) + v

�

l

(p

l

) = �u

�

j

(p

l

), l = 1; : : : ; n

j

. Inserting v = v

�

l

we get

a(w

�

l�1

; v

�

l

) = `(v

�

l

)� a(v

�

l

; v

�

l

)� �

0

(�u

�

j

(p

l

))v

�

l

(p

l

) h

p

l

:

On the other hand, use (1.9) with v = v

�

l

to obtain

a(u

j

; v

�

l

) = `(v

�

l

)� �

0

(u

j

(p

l

))v

�

l

(p

l

) h

p

l

:

Now the mean-value theorem gives

a(w

�

l�1

� u

j

; v

�

l

) = �a(v

�

l

; v

�

l

)� �

00

( ~w(p

l

))(�u

�

j

(p

l

)� u

j

(p

l

))v

�

l

(p) h

p

l

(5.15)
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denoting ~w(p

l

) = u

j

(p

l

) + �(�u

�

j

(p

l

)� u

j

(p

l

)) with suitable � 2 (0; 1). Using (5.15)

and again w

�

l�1

(p

l

) + v

�

l

(p

l

) = �u

�

j

(p

l

), we ompute

kw

�

l

� u

j

k

2

u

j

= kw

�

l�1

+ v

�

l

� u

j

k

2

u

j

= kw

�

l�1

� u

j

k

2

u

j

+ kv

�

l

k

2

u

j

+2(a(w

�

l�1

� u

j

; v

�

l

) + �

00

u

j

(u

j

)(w

�

l�1

� u

j

; v

�

l

))

= kw

�

l�1

� u

j

k

2

u

j

+ kv

�

l

k

2

u

j

+2

�

�a(v

�

l

; v

�

l

)� �

00

(u

j

(p

l

))v

�

l

(p

l

)

2

h

p

l

+�

00

(u

j

(p

l

))(v

�

l

(p

l

)

2

+ v

�

l

(p

l

)(w

�

l�1

(p

l

)� u

j

(p

l

))) h

p

l

� �

00

( ~w(p

l

))v

�

l

(p

l

)(�u

�

j

(p

l

)� u

j

(p

l

)) h

p

l

�

= kw

�

l�1

� u

j

k

2

u

j

� kv

�

l

k

2

u

j

+2 (�

00

(u

j

(p

l

))� �

00

( ~w(p

l

))) (�u

�

j

(p

l

)� u

j

(p

l

))v

�

l

(p

l

) h

p

l

:

We now derive an upper bound for j�

00

(u

j

(p

l

)) � �

00

( ~w(p

l

))j. Convergene (3.3)

provides

1

4

u

j

(p)� j�u

�

j

(p)� u

j

(p)j � 0 8p 2 N

Æ

j

(u

j

)(5.16)

for suÆiently large �. Choosing

' =

1

2

min

p2N

Æ

j

(u

j

)

u

j

(p); ' = 2 max

p2N

Æ

j

(u

j

)

u

j

(p);(5.17)

(5.16) implies

�u

�

j

(p) 2 ['; '℄ � (0;1) 8p 2 N

Æ

j

(u

j

):(5.18)

Hene, assumption (1.5) yields

j�

00

(u

j

(p))� �

00

( ~w(p))j � L

�

j�u

�

j

(p)� u

j

(p)j 8p 2 N

Æ

j

(u

j

)

with suitable L

�

independent of l = 1; : : : ; n

j

and �. Inserting this estimate in the

above representation of kw

�

l

� u

j

k

2

u

j

, we get

kw

�

l

� u

j

k

2

u

j

� kw

�

l�1

� u

j

k

2

u

j

+ 2L

�

jv

�

l

(p

l

)j(�u

�

j

(p

l

)� u

j

(p

l

))

2

h

p

l

:

Suessive appliation gives

k�u

�

j

� u

j

k

2

u

j

� ku

�

j

� u

j

k

2

u

j

+ 2L

�

k�u

�

j

� u

�

j

k

1

n

j

X

l=1

(�u

�

j

(p

l

)� u

j

(p

l

))

2

h

p

l

:

It is well{known that shape regularity of T

j

, Poinar�e's inequality, elliptiity of

a(�; �) and onvexity of � provide

n

j

X

l=1

v(p)

2

h

p

l

� 

Z




v(x)

2

dx � Ckvk

2

� Ckvk

2

u

j

8v 2 S

j

(5.19)

with suitable ; C 2 R independent of � and j. The last two estimates imply

(1� 2CL

�

k�u

�

j

� u

�

j

k

1

) k�u

�

j

� u

j

k

2

u

j

� ku

�

j

� u

j

k

2

u

j

:

We �nally hose �

"

suh that (5.10), (5.18) and

1� 2CL

�

k�u

�

j

� u

�

j

k

1

� (1 + ")

�1

(5.20)

are valid for all � � �

"

.
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We now prove that the oarse grid orretion C

j

is asymptotially based on a

smooth nonlinear problem.

Lemma 5.3. Assume that the onditions in Lemma 5.1 are satis�ed. Then there

is a �

0

suh that for � � �

0

the onstrained smooth problem (4.9) has the solution

u

j

and an be equivalently rewritten as

u

j

2 U

Æ

j

: a(u

j

; v) + �

0

u

j

(u

j

)(v) = `(v) 8v 2 S

Æ

j

(5.21)

with �

u

j

de�ned aording to (4.8),

S

Æ

j

= fv 2 S

j

j v(p) = 0 8p 2 N

�

j

(u

j

)g � S

j

and U

Æ

j

= fv 2 S

Æ

j

j v(p) > 0 8p 2 N

Æ

j

(u

j

)g � S

Æ

j

.

Proof. We �rst show that there is �

0

suh that

u

j

� K

�u

�

j

8� � �

0

:(5.22)

Using (5.10), we only have to prove that

'

�u

�

j

(p) =

1

2

�u

�

j

(p) � u

j

(p) � 2�u

�

j

(p) = '

�u

�

j

(p) 8p 2 N

Æ

j

(u

j

)

whih is an immediate onsequene of (5.16). Exploiting Lemma 5.1 and the onver-

gene of �u

�

j

(f. (3.3)), we �nally hoose �

0

suh that (5.10) and (5.16) are satis�ed

for � � �

0

.

By de�nition, u

j

is minimizing J + �

j

on the whole spae S

j

. As u

j

2 K

�u

�

j

and

�

�u

�

j

= �

j

8� � �

0

, u

j

must be the solution of (4.9) for all � � �

0

. The formulation

(5.21) follows immediately from (1.9).

As a onsequene of Lemma 5.3, exat solution of the onstrained smooth prob-

lem (4.9) in eah iteration step would provide an asymptotially exat method.

Lemma 5.4. Assume that the onditions in Lemma 5.1 are satis�ed. Then there

is a �

0

suh that onstrained Newton linearization (4.11) is equivalent to lassial

Newton linearization of (5.21) at �u

�

j

w

�u

�

j

2 S

Æ

j

: a

�u

�

j

(w

�u

�

j

; v) = `

�u

�

j

(v) 8v 2 S

Æ

j

:(5.23)

Moreover, for eah " > 0 there is a �

"

� �

0

suh that

kw

�u

�

j

� u

j

k

u

j

� "k�u

�

j

� u

j

k

u

j

8� � �

"

:(5.24)

Proof. Note that (5.10) yields �u

�

j

2 U

Æ

j

so that (5.23) is well-de�ned for suÆiently

large �. For the moment, let w

�

denote the solution of (5.23). We �rst prove that

for given " > 0 there is a �

"

suh that

kw

�

� u

j

k

u

j

� "k�u

�

j

� u

j

k

u

j

8� � �

"

:(5.25)

We subtrat (5.21) from (5.23), use the mean-value theorem and insert v = w

�

�u

j

to get the equality

kw

�

� u

j

k

2

u

j

+ �

00

u

j

( ~w)(�u

�

j

� u

j

; w

�

� u

j

)� �

00

u

j

(�u

�

j

)(�u

�

j

� u

j

; w

�

� u

j

) = 0(5.26)

where ~w 2 U

Æ

j

� S

Æ

j

is given by the nodal values ~w(p) = �u

�

j

(p) + �

p

(u

j

(p)� �u

�

j

(p))

with suitable �

p

2 (0; 1). Using (5.16), we get

j�

00

( ~w(p))� �

00

(�u

�

j

(p))j � L

�

j�u

�

j

(p)� u

j

(p)j 8p 2 N

Æ

j

(u

j

)
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in the same way as in the proof of Lemma 5.2. Together with the Cauhy-Shwarz

inequality and (5.19) this leads to

j�

00

u

j

( ~w)(�u

�

j

� u

j

; w

�

� u

j

)� �

00

u

j

(�u

�

j

)(�u

�

j

� u

j

; w

�

� u

j

)j

� L

�

X

p2N

Æ

j

(u

j

)

(�u

�

j

(p)� u

j

(p))

2

jw

�

(p)� u

j

(p)j h

p

� CL

�

k�u

�

j

� u

j

k

1

k�u

�

j

� u

j

k

�u

�

j

kw

�

� u

j

k

�u

�

j

(5.27)

Inserting this estimate in (5.26), we get

kw

�

� u

j

k

�u

�

j

� CL

�

k�u

�

j

� u

j

k

1

k�u

�

j

� u

j

k

�u

�

j

:(5.28)

We �nally hoose �

"

suh that (5.10) (5.16) and CL

�

k�u

�

j

� u

j

k

1

� " are satis�ed

for � � �

"

.

We still have to show that w

�

= w

�u

�

j

holds for suÆiently large �. First note

that (5.10) yields

w

�

(p) = w

�u

�

j

(p) 8p 2 N

�

j

(u

j

):

Convergene (3.3) in ombination with (5.28) provides

1

2

u

j

(p)� jw

�

(p)� u

j

(p)j � j�u

�

j

(p)� u

j

(p)j � 0 8p 2 N

Æ

j

(u

j

)(5.29)

for suÆiently large �, giving

'

�u

�

j

(p) =

1

2

�u

�

j

(p) � w

�

(p) � 2�u

�

j

(p) = '

�u

�

j

(p) 8p 2 N

Æ

j

(u

j

):

Hene, w

�

2 K

�u

�

j

so that (4.11) and (5.23) must have the same solution w

�u

�

j

= w

�

.

We �nally hoose �

0

suh that (5.10) and (5.29) are valid.

Now we shall see that C

std

j

is asymptotially beomes a linear subspae orretion

method for the redued linear problem (5.23).

Lemma 5.5. Assume that the onditions in Lemma 5.1 are satis�ed. Then there

is a �

0

suh that the loal obstale problems (4.13) an be equivalently rewritten as

v

�

l

2 V

l

: a

�u

�

j

(v

�

l

; v) = `

�u

�

j

(v)� a

�u

�

j

(w

�

l�1

; v) 8v 2 V

l

;(5.30)

if int supp �

l

� N

Æ

j

(u

j

) and we have

v

�

l

= 0 if int supp �

l

6� N

Æ

j

(u

j

):(5.31)

Assume further that non{zero orretions v

�

l

have the property

kv

�

k

k

2

1

= o(kv

�

l

k

1

); � !1; k = n

j

+ 1; : : : ; l � 1:(5.32)

Then �

1

� �

0

an be hosen suh that the damping parameters !

�

l

de�ned in (5.5)

satisfy

!

�

l

= 1 8� � �

1

:(5.33)

Proof. Let p 2 int supp �

l

\ N

�

j

(u

j

). Then (5.10) provides

'

�u

�

j

(p) = w

�

l�1

(p) = '

�u

�

j

(p) = 0:

Hene,  

�

l

(p) =  

�

l

(p) = 0, due to (5.3). As  

�

l

,  

�

l

2 V

l

= spanf�

l

g, this leads to

 

�

l

(p) �  

�

l

(p) � 0 and (5.31) follows. Now let int supp �

l

� N

Æ

j

(u

j

). By assump-

tion,  

�

l

,  

�

l

, depend ontinuously on '

�u

�

j

, '

�u

�

j

, w

�

n

j

; : : : ; w

�

l�1

. Hene, onvergene

14



(4.17) of the intermediate iterates w

�

l

and ondition (5.4) imply that we an �nd

" > 0 independent of l and � suh that

 

�

l

(p) < �" < 0 < " <  

�

l

(p) 8p 2 int supp �

l

holds for suÆiently large �. Convergene (4.17) yields v

�

l

! 0 so that we an

�nally hoose �

0

in suh a way that (5.10) and

 

�

l

(p) < v

�

l

(p) <  

�

l

(p) 8p 2 int supp �

l

(5.34)

are valid for � � �

0

. This proves (5.30) and (5.31).

We still have to show (5.33). The solution v

�

l

= z

�

l

�

l

of (5.30) is given by

z

�

l

=

`

�u

�

j

(�

l

)� a

�u

�

j

(w

l�1

; �

l

)

a

�u

�

j

(�

l

; �

l

)

:(5.35)

Let z

�

l

6= 0. Inserting (5.35) in (5.5), we get

!

�

l

� 2

a

�u

�

j

(�

l

; �

l

)jz

�

l

j � L

l

B

2

l

jz

�

l

j(a

�u

�

j

(�

l

; �

l

) + L

l

(B

l

+ jz

�

l

j))

:

In order to estimate L

l

, note that (5.16) provides

' < '

�u

�

j

(p) < '

�u

�

j

(p) < ' 8p 2 N

Æ

j

(u

j

)

with ', ' de�ned in (5.17). Hene, exploiting property (1.5) of �, we get

L

�

p

� L

�

8p 2 N

Æ

j

(u

j

)

with L

�

independent of �. Using (5.10) this leads to

L

l

=

X

p2N

Æ

j

(u

j

)

L

�

p

j�

l

(p)j h

p

� j
jL

�

with j
j denoting the area of 
. In the light of a

�u

�

j

(�

l

; �

l

) � a(�

l

; �

l

) we now obtain

!

�

l

�

2

1 +

L

�

j
j

a(�

l

;�

l

)

P

l

k=n

j

+1

kv

�

k

k

1

�

2L

�

j
j

a(�

l

; �

l

)

0

�

l�1

X

k=n

j

+1

�

kv

�

k

k

2

1

kv

�

l

k

1

�

1=2

1

A

2

:

Exploiting kv

�

k

k

1

! 0 and (5.32) we an �nally hoose �

1

� �

0

suh that (5.16)

and (5.33) are satis�ed.

The tehnial assumption (5.32) is the prie that we have to pay for evaluating

derivatives of �

�u

�

j

at �u

�

j

6= w

�

l�1

. However, evaluating derivatives at w

�

l�1

would

require additional interpolations that lead to suboptimal omplexity ranging from

O(n logn) (uniform re�nement) to O(n

2

) (highly nonuniform ase).

Now we are ready to state the main result of this setion.

Theorem 5.6. Assume that the onditions of Lemma 5.5 are satis�ed. Let

kvk

u

j

� 

j

kvk 8v 2 S

Æ

j

:(5.36)

Then there is a �

j

� 0 suh that the iterates produed by the standard monotone

multigrid method (5.7) ful�ll the error estimate

ku

j

� u

�+1

j

k

u

j

� (1� 

�1

j

(j + 1)

�4

)ku

j

� u

�

j

k

u

j

8� � �

j

:(5.37)

with a positive onstant  depending only on the elliptiity of a(�; �) and on the initial

triangulation T

0

.
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Proof. We have seen in Lemma 5.5 that oarse grid orretion C

std

j

beomes a

linear subspae orretion for the linear redued problem (5.21) if � � �

1

. The

orresponding subspaes W

k

, k = 0; : : : ; j, are given by

W

k

= spanf�

(k)

p

2 �

S

\ S

Æ

j

; p 2 N

k

g:

On these subspaes, the bilinear form a

�u

�

j

(�; �) is approximated by the non{symmetri

bilinear form b

k

(�; �) representing the standard Gau�-Seidel smoother. We now give

an upper bound for the onvergene rate of this linear iteration. More preisely, we

want to show

kw

�u

�

j

� C

std

j

�u

�

j

k

�u

�

j

� q

j

kw

�u

�

j

� �u

�

j

k

�u

�

j

8� � �

1

(5.38)

with q

j

= (1 � ~

�1

j

(j + 1)

�4

) and a onstant ~ depending only on the shape

regularity of T

0

and on the elliptiity of a(�; �).

In order to prove (5.38), we shall apply Theorem 2.5 from a reent paper of

Neuss [15℄. To this end, we have to hek the onditions (V0){(V2) stated there.

Let b

s

k

(�; �) denote the symmetri bilinear form as indued by the symmetri Gau�-

Seidel relaxation on W

k

. For some v 2 S

Æ

j

, we onsider the splitting

v =

j

X

i=0

v

k

; v

0

= I

0

v; v

k

= I

k

v � I

k�1

v;

indued by modi�ed interpolation operators I

k

de�ned by

(I

k

v)(p) =

�

v(p) if �

(k)

p

2 S

Æ

j

0 else

:

The smoothing property (V0)

a

�u

�

j

(v; v) � !b

k

(v; v) 8v 2 W

k

(5.39)

with suitable ! 2 (0; 2) depending only on T

0

is expliitly stated in Theorem 3.2

in [15℄.

Stability ondition (V1) with K

1

= C

j

(j + 1)

2

takes the form

j

X

k=0

b

s

k

(v

k

; v

k

) � C

j

(j + 1)

2

kvk

2

�u

�

j

:(5.40)

In order to prove (5.40) with a onstant C depending only on T

0

and on the ellip-

tiity of a(�; �), we use the estimate

b

s

k

(v

k

; v

k

) � 

n

k

X

i=1

a

�u

�

j

(�

(k)

p

i

; �

(k)

p

i

)v

k

(p

i

)

2

whih holds for all v

k

2 W

k

with  > 0 depending only on T

0

(see e.g. (29) in [15℄),

ondition (5.36) and reent results on modi�ed hierarhial splittings as ontained

in setion 5 of [14℄.

Finally,

a

�u

�

j

(v

l

; v

k

) � !

1

2

b

s

l

(v

l

; v

l

)

1

2

b

k

(v

k

; v

k

)

1

2

8v

l

2 W

l

; v

k

2 W

k

(5.41)

follows diretly from the Cauhy-Shwarz inequality, (5.39) and

a

�u

�

j

(v

l

; v

l

) � b

s

k

(v

l

; v

l

)
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whih is the well-known smoothing property of the symmetri Gau�-Seidel relax-

ation. As a onsequene of (5.41), (V2) holds with K

2

=

p

2(j + 1). Now, we an

apply Theorem 2.5 in [15℄ in order to get the desired estimate (5.38).

Note that for given Æ > 0 (5.10) and onvergene (3.3) provide the norm equiv-

alene

(1� Æ)kvk

u

j

� kvk

�u

�

j

� (1 + Æ)kvk

u

j

uniformly on bounded subsets of S

Æ

j

for suÆiently large �. Hene, for given " > 0

we an �nd �

"

suh that

kw

�u

�

j

� C

std

j

�u

�

j

k

u

j

� (1 + ")q

j

kw

�u

�

j

� �u

�

j

k

u

j

8� � �

"

:(5.42)

To onlude the proof, we ombine the estimates (5.14), (5.24) and (5.42) by the

triangle inequality in order to get

ku

j

� u

�+1

j

k

u

j

= ku

j

� C

std

j

�u

�

j

k

u

j

� kw

�u

�

j

� u

j

k

u

j

+ kw

�u

�

j

� C

std

j

�u

�

j

k

u

j

� "k�u

�

j

� u

j

k

u

j

+ (1 + ")q

j

kw

�u

�

j

� �u

�

j

k

u

j

� "(1 + ")ku

�

j

� u

j

k

u

j

+ (1 + ")q

j

(kw

�u

�

j

� u

j

k

u

j

+ k�u

�

j

� u

j

k

u

j

)

�

�

"(1 + ") + ("(1 + ")

2

+ (1 + ")

2

)q

j

�

ku

j

� u

�

j

k

u

j

:

We �nally hoose �

"

� �

1

suh that (5.14), (5.24) and (5.42) hold with

" �

1
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j

(j + 1)

4

:(5.43)

Then, the desired estimate (5.37) follows with  =

~

2

and �

j

= �

"

.

We emphasize that (5.37) desribes the worst ase and an be easily improved

on suitable regularity assumptions. For example, let

sup

j2N

max

p2N

Æ

j

(u

j

)

�

00

(u

j

(p)) � onst: <1

and assume that the bilinear form a(�; �) takes the form

a(v; w) =

Z




2

X

l;k=1

a

lk

�

l

v �

k

w dx;(5.44)

with oeÆients a

lk

2 C

1

(

�


). Then, exploiting a sharpened Cauhy-Shwarz in-

equality instead of (5.41), we get the usual O(j

�2

)-estimate for hierarhial bases.

Further improvements an be made by using L

2

-like projetions instead of the mod-

i�ed interpolations I

k

. We refer to [14, 16℄ for further information. In numerial

omputations [13℄, we also observed mesh-independent onvergene rates with re-

spet to the usual energy norm indued by a(�; �). A theoretial justi�ation will

be subjet of future researh.

The preeding onvergene analysis lari�es the basi idea behind monotone

iterations (3.1). Fine grid smoother M

j

provides global onvergene exploiting

onvexity of the underlying minimization problem. Additional oarse grid orre-

tion C

std

j

asymptotially beomes a Newton multigrid method with polylogarithmi

onvergene rates exploiting loal smoothness of �. The auray of iterates u

�

j

re-

quired to enter the asymptoti regime depends on stability of ritial nodes N

�

j

(u

j

)

and on Lipshitz ontinuity of �

00

at u

j

(p), p 2 N

Æ

j

(u

j

). Numerial experiments
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indiate that initial iterates u

0

j

as resulting from nested iteration are frequently

good enough to provide multigrid onvergene rates immediately.

6. Trunated Monotone Multigrid Methods

Monotone iterations (3.1) are onstruted in suh a way that oarse grid orre-

tion C

j

does not hange the values of the smoothed iterate �u

�

j

at the ritial nodes

p 2 N

�

j

(�u

�

j

). Hene, only funtions �

l

2 �

S

with the property

int supp �

l

\ N

�

j

(�u

�

j

) = ;(6.1)

atually ontribute to the oarse grid orretion C

std

j

. It is well-known (f. eg. [14℄)

that this may lead to poor representation of low frequeny parts of the error. In

order to improve the onvergene rates by improved oarse grid transport, we shall

now modify all �

l

2 �

S

with the property (6.1) aording to N

�

j

(�u

�

j

).

Following [10, 14℄, we de�ne modi�ed basis funtions

~

�

(k)

p

= T

�

j;k

�

(k)

p

; p 2 N

k

;(6.2)

by using trunation operators T

�

j;k

, k = 0; : : : ; j,

T

�

j;k

= I

S

�

j

Æ � � � Æ I

S

�

k

:(6.3)

Here I

S

�

k

: S

j

! S

�

k

denotes the S

�

k

{interpolation, and the spaes S

�

k

� S

k

,

S

�

k

= fv 2 S

k

j v(p) = 0; p 2 N

�

k

g � S

k

;(6.4)

are redued subspaes with respet to N

�

k

= N

k

\ N

�

j

(�u

�

j

), k = 0; : : : ; j. Similar

subspaes of S

j

have been onsidered reently by other authors [2, 9℄ in onnetion

with the oarsening of a given mesh.

The resulting trunated multilevel nodal basis

~

�

�

S

,

~

�

�

S

=

�

�

(j)

p

1

; : : : ; �

(j)

p

n

j

;

~

�

(j�1)

p

1

; : : : ;

~

�

(j�1)

p

n

j�1

; : : : ;

~

�

(0)

p

1

; : : : ;

~

�

(0)

p

n

0

�

; � � 0;

learly depends on the set N

�

j

(�u

�

j

) whih may hange in eah iteration step. We now

derive a trunated oarse grid orretion C

tr

j

by the same reasoning as desribed in

the previous setion. More preisely, introduing some ordering from �ne to oarse

~

�

l

=

~

�

(k

l

)

p

l

; l = n

j

+ 1; : : : ;m

�

j

= n

j

+ ~m

�

S

of the ~m

�

S

non{zero elements of

~

�

�

S

, we now use the searh diretions

�

�

l

=

~

�

l

; l = n

j

+ 1; : : : ;m

�

j

; � � 0:

Loal onstraints D

l

, as appearing in (4.13), are obtained from slightly modi�ed

monotone restritions (see [10, 13℄) and loal damping parameters !

l

are obtained

by replaing �

l

by

~

�

l

in (5.5).

The resulting iterative sheme

�u

�

j

=M

j

u

�

j

u

�+1

j

= C

tr

j

�u

�

j

(6.5)

is alled trunated monotone multigrid method. Global onvergene of (6.5) follows

from Theorem 3.1 and Proposition 4.1.
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Theorem 6.1. Assume that the onditions of Lemma 5.1 and (5.36) hold. Assume

further that all non{zero orretions v

�

l

= z

�

l

~

�

l

,

~

�

l

2

~

�

�

S

, as resulting from (4.13)

have property (5.32).

Then there is a �

j

� 0 suh that the iterates produed by the trunated monotone

multigrid method (6.5) ful�ll the error estimate

ku

j

� u

�+1

j

k

u

j

� (1� 

�1

j

(j + 1)

�4

)ku

j

� u

�

j

k

u

j

8� � �

j

(6.6)

with a positive onstant  depending only on the elliptiity of a(�; �) and on the initial

triangulation T

0

.

Proof. The proof is essentially the same as for Theorem 5.6. We only have to

establish an analogue of Lemma 5.5 involving

~

�

l

=

~

�

(k

l

)

p

l

instead of �

l

= �

(k

l

)

p

l

and

an error estimate of the form (5.42) for the redued linear iteration. Note that

(5.39) and (5.41) still hold if W

k

is replaed by the larger spae

~

W

k

,

~

W

k

= spanf

~

�

(k)

p

2

~

�

�

S

; p 2 N

k

g:

As funtions v 2

~

W

k

in general do not satisfy a strengthened Cauhy-Shwarz

inequality, further improvements of (6.6) are more diÆult than in the standard

ase.

Consider some p 2 int supp

~

�

l

with L

�

p

>> 1. Then our loal damping strategy

learly gives !

l

� 0 so that there is almost no ontribution from

~

�

l

. Hene, suh p

play a similar role as ritial nodes N

�

j

(�u

�

j

) in (6.1) and it seams reasonable to treat

them similarly in the trunation proess. This an be done by replaing de�nition

(4.1) of regular nodes by

N

Æ

j

(�u

�

j

) = fp 2 N

j

j �u

�

j

(p) > 0 and L

�

p

< L

max

g(6.7)

with some given threshold L

max

> 0. Of ourse, this modi�ation preserves global

onvergene. If L

max

is suÆiently large, then there is a �

0

suh that (4.1) and

(6.7) de�ne the same sets for � � �

0

. Hene, we still have asymptoti bounds of

the onvergene rates in this ase. For numerial results, we refer to [13℄ and the

experiments to be reported below.

7. Numerial Results

We onsider the stationary porous medium equation

���

2

� f(�) = 0 � � 0(7.1)

with absorption term

f(�) =

8

<

:

�; if � 2 [0; 1)

[1,2℄; if � = 1

2; if � � 1

and onstant Dirihlet boundary onditions � � 2 on �O, O = (�10; 10)

2

. After

Kirhho�{type transformation u = �

2

the weak formulation of (7.1) takes the form

(1.1) with a(v; w) = (rv;rw),

��(u) =

�

(�1; 0℄; if u = 0

f(

p

u); if u > 0

;
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 = (0; 10)

2

and appropriate boundary onditions. Observe that our model problem

ombines an obstale ondition, a jump and unbounded Lipshitz onstants for

u 2 (0; 1).

The initial triangulation T

0

is obtained by subdividing 
 in 4 ongruent triangles.

Triangulation T

j+1

is obtained from T

j

by an ad ho loal re�nement strategy: A

triangle t 2 T

j

is marked for re�nement if ~u

j

does not vanish on t. The approximate

solution ~u

j

on T

j

is omputed up to 0:05% auray. More preisely, ~u

j

= u

�

�

j

is

aepted as soon as the stopping riterion

ku

�

�

j

� u

�

�

�1

j

k

u

�

�

j

� 5 � 10

�4

ku

�

�

j

k

u

�

�

j

(7.2)

is ful�lled. Note that k�k

u

�

�

j

is intended to approximate the loal energy norm k�k

u

j

as de�ned in (5.8). For iterative solution of the disrete problems (1.6) on eah

re�nement level j we use the standard monotone multigrid method (STDKH) and

the trunated variant (TRCKH) as desribed in Setions 5 and 6, respetively. The

seond singularity at u = 1 is inorporated as desribed in [12℄, pp. 65. Trunation

is based on the modi�ation (6.7) with L

max

= 10

12

. In the light of Theorems 5.6

and 6.1 nonlinear Gau�-Seidel smoothing with exat evaluation of (2.1) is applied.

Using the initial iterate u

0

j

= ~u

j�1

, j = 1; : : : ; 8, (nested iteration) at most 7

(STDKH) or 6 (TRCKH) iteration steps were needed in order to meet the auray

requirement (7.2). We found similar results for the inexat variant as desribed in

Setion 2. Implementation was arried out in the framework of the �nite element

toolbox KASKADE [3℄.

Figure 1. Final grid T

8

and level urves of �nal approximation ~u

8

Figure 1 shows the �nal triangulation T

8

together with the level urves of the

�nal approximation ~u

8

. Bold lines are used for the free boundaries ~u

8

� 0 and

~u

8

� 1. Observe that in large parts of the omputational domain ~u

8

is lose to the

singularity zero where loal Lipshitz onstants tend to in�nity.

We take a loser look at the onvergene behavior of our monotone multigrid

methods on the �nal level j = 8 with 97 285 unknowns. The left piture of Figure 2

shows the algebrai error ku

8

� u

�

8

k

u

8

over the number � of iteration steps. The

initial iterate is u

0

8

= ~u

7

(nested iteration). The exat solution u

8

is preomputed

up to mahine preision. For both methods, we observe a fast redution of the

high frequeny ontributions to the error in the �rst iteration step. Then, asymp-

toti linear onvergene dominates the whole iteration history. This supports the

pratial relevane of our asymptoti onvergene analysis. In the leading iteration
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Figure 2. Iteration history and asymptoti onvergene rates

steps, the algorithms provide damping of at most 126 (STDKH) or 153 (TRCKH)

loal orretions. Minor e�ets on the onvergene rates illustrate the bene�ts of

loal damping. No damping ours after 28 (STDKH) or 24 (TRCKH) iteration

steps on�rming our theoretial analysis (f. Lemma 5.5). In omparison with

the standard method the trunated variant exhibits a onsiderable improvement of

onvergene speed. This justi�es our heuristi reasoning in Setion 6. Of ourse,

dominane of asymptoti onvergene rates is a onsequene of suÆiently aurate

initial iterates as obtained by nested iteration. Starting from u

0

8

� 0, i.e. diretly

from the singularity, TRCKH required 180 iteration steps to enter the asymptoti

regime.

The right piture in Figure 2 shows approximate asymptoti onvergene rates

�

j

=

ku

j

� u

�

�

j

k

u

j

ku

j

� u

�

�

�1

j

k

u

j

; j = 0; : : : ; 8:

Here, �

�

is hosen suh that ku

j

� u

�

�

j

k

u

j

< 10

�10

and again u

j

is preomputed

up to mahine preision. The asymptoti onvergene rates seem to saturate with

inreasing re�nement level j on�rming the onvergene results as stated in Theo-

rems 5.6 and 6.1, respetively.
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