
MONOTONE METHODS ON NON-MATCHING GRIDS FOR NONLINEAR CONTACT PROBLEMSBARBARA I. WOHLMUTH� AND ROLF H. KRAUSEyAbstra
t. Non
onforming domain de
omposition te
hniques provide a powerful tool for the numer-i
al approximation of partial di�erential equations. We use a generalized mortar method based on dualLagrange multipliers for the dis
retization of a non linear 
onta
t problem between linear elasti
 bodies.In the 
ase of unilateral 
onta
t problems, pointwise 
onstraints o

ur and monotone multigrid methodsyield eÆ
ient iterative solvers. Here, we generalize these te
hniques to non-mat
hing triangulations wherethe 
onstraints are realized in terms of weak integral 
onditions. The basi
 new idea is the 
onstru
tionof a nested sequen
e of non
onforming 
onstrained spa
es. We use suitable basis transformations anda multipli
ative 
orre
tion. In 
ontrast to other approa
hes, no outer iteration s
heme is required. Theresulting monotone method is of optimal 
omplexity and 
an be implemented as a multigrid method.Numeri
al results illustrate the performan
e of our approa
h in 2D and 3D.Key words. 
onta
t problems, dual spa
e, linear elasti
ity, monotone methods, mortar �nite ele-ments, multigrid methods, non-mat
hing triangulationsAMS subje
t 
lassi�
ations. 65N30, 65N55, 74B101. Introdu
tion. During the last de
ades, the interest in the numeri
al simulationof 
onta
t problems has lead to an in
reased resear
h a
tivity in this area, see, e.g.,[13, 16, 17, 38℄ and [23, 24, 42℄ for survey papers. Unfortunately, the numeri
al simulationof 
onta
t problems turns out to be diÆ
ult. The non penetration 
ondition between thebodies 
oming into 
onta
t gives rise to an unknown 
onta
t zone depending non linearlyon the displa
ements. By means of suitable inequality 
onstraints whi
h model the nonpenetration 
ondition, non linear and non di�erentiable problems arise. Thus, standardNewton methods 
annot be applied dire
tly.Often, a
tive set strategies [1, 11, 15, 21, 22℄ are used. Here, the a
tual 
onta
t set isiterated and within ea
h iteration step one linear problem with a given 
onta
t zone has tobe solved. Also widely used for the numeri
al simulation of 
onta
t problems are penaltymethods. They are based on regularization and give rise to a non linear but di�erentiableregularized energy fun
tional. In the 
ase of a multi body 
onta
t problem, penaltymethods 
an be 
ombined with 
onta
t elements working on non-mat
hing triangulations,see, e.g., [12, 37, 43℄. The advantage of penalty methods is that they 
an be implementedin a straightforward way. However, the quality of the numeri
al solution depends stronglyon the penalty parameter.For one-sided 
onta
t problems, monotone multigrid methods yield globally 
onver-gent and eÆ
ient iterative solvers, see [28, 30, 31℄. These methods are based on theminimization of the non linear energy fun
tional and do not depend on a penalty param-eter. Monotone multigrid methods 
an be implemented as a modi�
ation of a standardlinear multigrid 
y
le and provide multigrid eÆ
ien
y for one-sided 
onta
t problems.Unfortunately, these te
hniques 
annot be applied dire
tly to multi body 
onta
t prob-lems. This is 
aused by the non
onforming situation at the interfa
e between the bodies.On the dis
rete level, the meshes of the bodies 
annot be expe
ted to mat
h. Sin
e thea

ura
y of the numeri
al solution depends strongly on the dis
retization of the transmis-sion 
onditions, the 
hoi
e of the dis
rete transfer operator is of 
ru
ial importan
e for thewhole dis
retization s
heme. A stable as well as eÆ
ient dis
retization of the transmission
onditions at the interfa
e 
an be provided by mortar methods. Originally introdu
ed forlinear problems in the 
ontext of non
onforming domain de
omposition te
hniques in [6℄,they have also been applied to 
onta
t problems, see, e.g., [4, 10, 20℄.�Math. Institut A, Universit�at Stuttgart, Pfa�enwaldring 57, D{70569 Stuttgart, Germany.wohlmuth�mathematik.uni-stuttgart.de, http://www.mathematik.uni-stuttgart.de/mathA/lst7y Institut f�ur Mathematik I, Freie Universit�at Berlin, Arnimallee 2, D{14195 Berlin, Germanykrause�math.fu-berlin.de, http://www.math.fu-berlin.de/~krause1



2 In this paper, we present a new monotone multigrid method whi
h does not requireany regularization of the non di�erentiability and whi
h uses mortar te
hniques for theinformation transfer at the interfa
e. In that way, we obtain not only a globally 
onver-gent method but also optimal estimates for the dis
retization error. The resulting newapproa
h for the eÆ
ient numeri
al simulation of multi body 
onta
t problems is basedon the 
ombination of monotone multigrid te
hniques, [30, 31℄, dual mortar methods,[6, 7, 41℄, a suitable basis transformation and a new sequen
e of nested non
onforming�nite element spa
es. Here in 
ontrast to [4, 10, 20℄, we use dual Lagrange multipliersyielding lo
ally de�ned basis fun
tions. Dual Lagrange multipliers yield the same a

u-ra
y as standard multipliers but give rise to a more eÆ
ient realization of the transferoperator. In parti
ular, no mass matrix has to be inverted at the interfa
e.Our new iterative solver is globally 
onvergent and of optimal 
omplexity. It requiresonly one suitable basis transformation and 
an be realized in terms of a standard multigridmethod and lo
al pre- and postpro
essing steps. Thus, it 
an be implemented as a modi�-
ation of a standard linear geometri
 or algebrai
 multigrid method. Moreover, optimal apriori estimates for the boundary stresses whi
h play the role of a Lagrange multiplier areavailable. The approa
h is very 
exible and 
an be easily generalized to 
onta
t problemsin
luding fri
tion. Parti
ularly, the method does not rely on a penalty parameter and noouter iteration is required. We also emphasize that on
e the dis
rete 
onta
t boundaryhas been identi�ed, our new method redu
es to a linear subspa
e 
orre
tion method.The rest of this paper is organized as follows: In Se
tion 2, we introdu
e the nonlinear 
onta
t problem, and we formulate the dis
rete non penetration 
ondition in termsof weak integral inequalities using dual Lagrange multipliers. In Se
tion 3, we introdu
ea suitable basis transformation and de
ompose the global non linear problem in a globallinear and lo
al non linear subproblems. In Se
tion 4, we provide a nested sequen
e ofnon
onforming spa
es and introdu
e modi�ed prolongation and restri
tion operators. Interms of these modi�
ations, we 
an de�ne our new monotone multigrid method. Finallyin Se
tion 5, numeri
al results in 2D and 3D are shown illustrating the eÆ
ien
y and
exibility of our new algorithm.2. A non linear 
onta
t problem. In this se
tion, we 
onsider a non
onformingapproa
h for the elasti
 
onta
t between deformable bodies. The dis
retization is based onmortar �nite element te
hniques using dual Lagrange multipliers. A similar formulationin terms of standard Lagrange multipliers 
an be found in [5, 20℄.
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Fig. 2.1. Two body 
onta
t problem and de
omposition into �D, �N and �CFor simpli
ity, we restri
t ourselves to the 
ase of two deformable bodies in 
onta
t.The two bodies in their referen
e 
on�guration are identi�ed with the domains 
k � IRd,k 2 fs;mg, d = 2; 3, and we de
ompose the solution u in u = (u1;um), and write(uk)n := uk � nk, k 2 fs;mg, where nk is the outer unit normal on �
k. The non-mortar side is asso
iated with subdomain 
s and the mortar side with the domain 
m.The subs
ript s is motivated by the non-mortar side playing the role of a "slave" side.



3Correspondingly, quantities on the mortar or "master" side are being atta
hed by thesubs
ript m. We start with the de
omposition of the boundary of 
 into three disjointparts, �D is the Diri
hlet part, �N denotes the Neumann part and �C stands for the
onta
t boundary, see Figure 2.1.On both subdomains, the possible 
onta
t boundary �C is asso
iated with a suitableparametrization. The a
tual 
onta
t zone between the two bodies is a priori unknownand is assumed to be a subset of �C . We denote tensor and ve
tor quantities by boldsymbols, e.g., � and v, and its 
omponents by �ij and vi, 1 � i; j � d. The partialderivative with respe
t to xj is abbreviated with the index ;j . Furthermore, we enfor
ethe summation 
onvention on all repeated indi
es ranging from 1 to d, and we denote byÆij the Krone
ker symbol.The non linear 
onta
t problem 
an be written as a boundary value problem. Here,we 
onsider the 
ase without fri
tion. In addition to the equilibrium 
onditions in 
s and
m and the boundary 
onditions on �
��ij(u);j = fi; in 
s [ 
m ;u = 0; on �D ;�ij(u) � nj = pi; on �N ; (2.1)we have the following 
onditions on the possible 
onta
t boundary �C�T (us) = �T (um) = 0 ;�n(us) = �n(um) � 0 ; (2.2)and the linearized 
onta
t 
ondition on �Cg � (us)n + (um)n ;0 = ((us)n + (um)n � g)�n(us) ; (2.3)where the fun
tion g : �C � IRd �! IR is the distan
e between the two bodies in normaldire
tion taken with respe
t to the referen
e 
on�guration; see, e.g., [8, 16℄. We assumethat g is 
ontinuous. The system (2.1) is obtained by the equation of equilibrium, thestrain-displa
ement relation and the 
onstitutive law. We refer to [24℄ for an introdu
tionto linear elasti
ity. In the 
ase of a linear elasti
 material, the stress tensor � dependslinearly on the in�nitesimal strain tensor �(u) := 1=2(ru+ruT ). The stress tensor � isgiven by Hooke's law �ij(u) := Eijlm ul;m ;where Hooke's tensor E := (Eijlm)dijlm=1, Eijlm 2 L1(
), is assumed to be suÆ
ientlysmooth, symmetri
 and uniformly positive de�nite. In the 
ase of a homogeneous isotropi
material, Hooke's tensor has the simple formEijlm = E �(1 + �)(1� 2�)ÆijÆkl + E2(1 + �) (ÆikÆjl + ÆilÆjk) ;where E > 0 is Young's modulus and � 2 (0; 1=2) is the Poisson ratio. Figure 2.2illustrates the normal stress at the 
onta
t boundary.
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mFig. 2.2. Normal stress at the 
onta
t boundary



4 Sin
e no fri
tion o

urs, the tangential 
omponent of the stress tensor vanishes at the
onta
t boundary, and is set to zero in the �rst equation of (2.2). We have only 
onta
tpressure at �C . If there is no 
onta
t between the two bodies, the boundary stresses at�C are zero; see (2.2) and (2.3). The bilinear form a(�; �) is de�ned bya(v;w) := 2Xk=1 Z
k Eijlmwi;jvl;m dx; w;v 2 2Yk=1H1(
k) ;where Eijlm is assumed to be 
onstant on ea
h subdomain and H1(
k) := (H1(
k))d.We write f(v) := (v; f)0;
 + (v;p)0;�N and denote by fk(�) and ak(�; �) the restri
tion off(�) and a(�; �) to 
k ; k 2 fs;mg, respe
tively.The weak solution of the non linear 
onta
t problem 
an be obtained by a minimiza-tion problem on a 
onvex set K. We de�ne the set of admissible displa
ements byK := fv 2 X j (vs)n + (vm)n � gg ;where X := H1�(
s) �H1�(
m) and H1�(
k) � H1(
k) satis�es homogeneous Diri
hletboundary 
onditions on �
k \ �D, k 2 fs;mg. Then, the weak solution of (2.1){(2.3) isde�ned by: Find u 2 K su
h that J(u) � minv2K J(v) ; (2.4)where the energy fun
tional J(�) is given by J(v) := 12a(v;v) � f(v) on K; see, e.g.,[8, 16℄. The minimization problem (2.4) is equivalent to a variational inequality: Findu 2 K su
h that a(u;v � u) � f(v � u); v 2 K : (2.5)In the rest of this se
tion, we 
onsider a saddle point formulation of (2.5). To doso, we introdu
e a Lagrange multiplier spa
e M :=Md. More pre
isely, we use the dualspa
e of the tra
e spa
e W :=W d of H1�(
s) restri
ted to �C . Here, we assume that �Cis 
ompa
t embedded in �
s n �D or that g 2 H1=200 (�C). We note that if �
s \ �N = ;then M =H�1=2(�C) = (H1=200 (�C))�.Then (2.5) 
an be rewritten as: Find (u;�) 2 (X;M+)a(u;v) + b(�;v) = f(v); v 2 X;b(�;u) � h� � ns; gi�C ; � 2M+; (2.6)where M+ := f� 2 M j h� � ns; wi�C � 0; w 2 W+g, W+ := fw 2 W jw � 0g. Thebilinear form b(�; �) is de�ned byb(�;v) := h(vs)n + (vm)n;� � nsi�C ;and h�; �i�C denotes the duality pairing betweenM and W . From the se
ond inequality in(2.6), we �nd u 2 K. The variational inequalities (2.5) and (2.6) form the starting pointfor our dis
rete approa
h.On ea
h subdomain, we use a shape regular triangulation and lowest order 
onform-ing �nite elements, i.e., pie
ewise linear �nite elements on simpli
ial triangulations andpie
ewise bilinear and bi
ubi
 elements on re
tangular and hexahedral triangulations, re-spe
tively. The �nite element spa
es asso
iated with 
s and 
m satisfying homogeneousDiri
hlet boundary 
onditions on �D are denoted by Xs;hs and Xm;hm , respe
tively. Ad-ditionally, we introdu
e a dis
rete Lagrange multiplier spa
e Mh being de�ned on thenon-mortar side of the possible 
onta
t boundary �C . The dis
rete tra
e spa
e of Xs;hson the non-mortar side is denoted byWh. We assume that �C 
an be written as the union



5of fa
es and edges in 3D and 2D, respe
tively. The 
orresponding dis
rete spa
es for the d-dimensional ve
tor �elds are denoted by bold 
hara
tersXs;hs := Xds;hs , Xm;hm := Xds;hm ,Xh := Xs;hs � Xm;hm , Wh := W dh and Mh := Mdh . Here, we use dual Lagrange mul-tiplier spa
es. For mortar �nite element dis
retizations dual Lagrange multiplier spa
eshave been analyzed in [39℄ and generalized in [25, 34, 40℄.For 
onvenien
e, we re
all the 
hara
teristi
 properties of the dual basis fun
tions q 2 Mh asso
iated with the verti
es q on the non-mortar side of �C . We note that in
ontrast to the standard mortar approa
h no modi�
ations of  q near the boundary of �Care ne
essary. We denote the standard nodal hat fun
tions asso
iated with the verti
esq on the non-mortar side �
s \ �C by �sq . The set of verti
es on the non-mortar side�
s \ �C is 
alled PC;hs . We brie
y re
all the 
hara
teristi
 properties of our dual basisfun
tions  q 2Mh:� supp  q = supp �sq , q 2 PC;hs ,�  q is pie
ewise linear or bilinear,� Pq2PC;hs  q = 1,� RF  p �sq d� = Æpq RF �sq d�, p; q 2 PC;hs , F � �C , for all boundary fa
es in 3D andall boundary edges in 2D.We remark that the last property, in general, does not hold for the dual basis fun
tions
onstru
ted in [34℄. The last property guarantees the biorthogonality relationZ�C  p �sq d� = Æpq Z�C �sq d�; p; q 2 PC;hs : (2.7)Other 
hoi
es of dual Lagrange multiplier spa
es are possible. In [40℄, 
ontinuous Lagrangemultipliers are 
onstru
ted whi
h are lo
ally de�ned and pie
ewise 
ubi
 on simpli
ialtriangulations and pie
ewise bi
ubi
 on hexahedral triangulations.On both subdomains independent triangulations 
an be used resulting generally innon-mat
hing triangulations at �C . In that situation, a pointwise mat
hing 
onditionyields a non-optimal dis
retization s
heme, see, e.g., [19℄ and [20℄ for numeri
al results in2D. However, optimal dis
retization s
hemes for non-mat
hing triangulations 
an be ob-tained if mortar te
hniques are applied. The essential idea is to repla
e a strong pointwise
oupling 
ondition by a weaker integral 
ondition. We refer to [3, 6, 7℄ for an overview ofmortar methods in the linear 
ase and to [4, 5, 20℄ for non linear 
onta
t problems. Theproof of the dis
retization error is based on the use of the standard Lagrange multiplierspa
e. We do not use this approa
h, but point out that the same qualitative results 
anbe obtained for our approa
h. Then, the dis
rete variational problems reads as follows:Find uh 2 Kh su
h thata(uh;vh � uh) � f(vh � uh); vh 2 Kh ; (2.8)where Xh := Xs;hs �Xm;hm and Kh is a suitable dis
rete approximation of K. We setKh := fv 2 Xh j Z�C [v℄ � np  p d� � Z�C gh  p d�; p 2 PC;hsg ;where gh 2 Wh and gh � 0 is a suitable approximation of g. The dis
rete normal ve
tornp asso
iated with the vertex p is de�ned bynp := �p XF� supp  p nF j F j ;where �p > 0 su
h that knpk = 1, j F j is the area of F , and nF is the outer unit normalve
tor on F , see Figure 2.3.We note that, in general, Kh is not a subspa
e of K. For 
onvenien
e of the reader,we review the a priori bounds and the main ideas of the proof, see [20, Theorem 3.1℄.



6
nF
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nFn nppFig. 2.3. Outer normal ve
tors nF and npLemma 2.1. Under suitable regularity assumptions on the solution u and the a
tual
onta
t boundary, we obtain optimal a priori estimates for the dis
retization errora(u� uh;u� uh) 12 � C(u)(hs + hm);where C(u) does not depend on the meshsize, and hs and hm stand for the meshsize onthe non-mortar and mortar side, respe
tively.The proof follows the same lines as given in [20℄. However, there are two essentialdi�eren
es. We do not use a subset of the �nite element tra
e spa
e on the non-mortarside to de�ne our Lagrange multiplier spa
e. In 
ontrast to [4, 20℄, we use a lo
allyde�ned dual basis to de�ne our Lagrange multiplier spa
e. The se
ond main di�eren
eis that we do not use a s
alar Lagrange multiplier spa
e but a ve
tor valued one. Thismodi�
ation is motivated by the following observation. The dis
rete Lagrange multiplierin the mortar setting approximates the boundary stress. In the 
ase of a 
onta
t problem,the boundary stress 
an be de
omposed into a s
alar 
omponent and a ve
tor valued one(s
alar in 2D) representing the normal and tangential stresses. If no fri
tion o

urs, thetangential stress 
omponents are equal to zero and 
an be therefore eliminated. Then,the Lagrange multiplier spa
e 
an be de�ned as an appropriate dis
rete approximationfor the normal stress. However working with a ve
tor valued Lagrange multiplier spa
e ismore general, and fri
tion terms 
an be easily in
luded in the approa
h. Following [20℄,it is suÆ
ient to verify a H1=2-stability of the mortar proje
tion and to have appropriateapproximation properties for the Lagrange multiplier spa
e to obtain the a priori estimate.The stability result for the dual Lagrange multiplier spa
e 
an be found in [41℄ and theapproximation properties follow by 
onstru
tion from the propertyPp2PC;hs  p d� = 1.3. A non linear Gau�{Seidel method. One of the major diÆ
ulties in the nu-meri
al simulation of 
onta
t problems is the non di�erentiability of the asso
iated energyfun
tional at the 
onta
t boundary. Very often regularization te
hniques; see, e.g., [9, 13℄,or augmented Lagrangian methods; see, e.g., [33, 35℄ are used. For multi body 
onta
tproblems, 
onta
t elements 
an be applied, see, e.g., [43℄. Then, the dis
rete solutiondepends on a penalty parameter. In [32℄, a new non linear Diri
hlet{Neumann algorithmin 
ombination with mortar te
hniques has been introdu
ed. It is based on the solution ofa linear Neumann problem and a non linear unilateral 
onta
t problem in ea
h step. Thenon linear 
onta
t problem is solved by monotone multigrid te
hniques [28, 29, 30, 31℄.Two damping parameters 
ontrol the 
onvergen
e of the Diri
hlet{Neumann method. Ifthe damping parameters are too small, we observe a slow 
onvergen
e. On the otherhand if the damping parameters are too large, the method does not 
onverge. In 2D,
onvergen
e rates whi
h are independent of the re�nement level and whi
h are robustwith respe
t to the damping fa
tor 
an be observed. We refer to [32℄ for some numeri
alresults illustrating the in
uen
e of the damping parameters. However in 3D, the 
onver-gen
e rates depend sensitively on the damping fa
tor. Moreover, the 
hoi
e of a gooddamping fa
tor depends extremely on the geometry of the elasti
 bodies. Figures 3.1 and3.2 illustrate the in
uen
e of the geometry.In both examples, we use the same parameter setting. The di�eren
e is the lengthof the linear elasti
 bar whi
h is situated in between of the two 
ylinders. The two�gures show the deformation after 15, 25, 35 and 40 steps of the Diri
hlet{Neumann
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Fig. 3.1. Convergen
e of the Diri
hlet{Neumann algorithmiteration. In 
ase of the short bar, 
onvergen
e after a few number of iteration steps
an be observed. All pi
tures in Figure 3.1 show the same displa
ements. The situationis 
ompletely di�erent for the long bar. In that 
ase, the method seems to 
onvergen
ewithin the �rst iteration steps but after 30 iteration steps we observe large os
illations,and no 
onvergen
e 
an be obtained.
Fig. 3.2. Os
illation of the Diri
hlet{Neumann algorithmThis observation motivates the introdu
tion of a new monotone method. In parti
-ular, the 
onvergen
e of our new algorithm is guaranteed and does not depend on the
hoi
e of a damping parameter. We fo
us on monotone methods for the iterative solutionof the dis
rete 
onta
t problem. In ea
h lo
al iteration step, the solution minimizes theenergy with respe
t to the lo
al sear
h dire
tion and is admissible. An iterate un is 
alledadmissible, if it satis�es the 
onstraints at the 
onta
t boundary, i.e., if un 2 Kh. To doso, we introdu
e lo
al subspa
es Xk � Xh, 1 � k � K, and de�ne an iteration sequen
eun by un+1 := uK and u0 := unJ(uk) := minwk2Xkuk�1+wk2Kh J(uk�1 +wk); 1 � k � K : (3.1)It is well known [14, 36℄ that the minimization pro
ess (3.1) is equivalent to a non linearblo
k Gau�{Seidel method. Unfortunately to obtain a globally 
onvergent sequen
e un,it is not suÆ
ient to have Xh = Xs +Xm + : : :XK .In the following, we dis
uss a very simple 
ounterexample and refer to [14, 36℄ formore details. Let X := R2 , X1 := span fe1g, X2 := span fe2g and the energy fun
tionalJ(x1; x2) := x21 + x22. The 
onvex set is de�ned by K := f(x1; x2) jx2 � 0; x1 + x2 � 1g.Then it is easy to see that the solution of the minimization problem is (0:5; 0:5). Using(1; 0) as start iterate x0 and applying the iteration (3.1), we �nd xn = x0, and we haveno 
onvergen
e. However, if we repla
e X2 by span fe2 � e1g, we obtain x1 = (0:5; 0:5).Figure 3.3 illustrates the parameterization of the 
onvex set K with respe
t to the twodi�erent 
hoi
es of subspa
es. On the left the 
onvex set is written in terms of �e1+�e2and on the right in terms of �e1+�(e2�e1). Theorem 3.1 in [14℄ yields that the iterationsequen
e de�ned by (3.1) 
onverges if the asso
iated parameterization of the 
onvex sethas a tensor produ
t stru
ture.Our algorithm will be based on a suitable basis of the un
onstrained produ
t spa
esXh. As we will see, the standard nodal basis of Xh is not a good 
hoi
e. The set ofall verti
es of the triangulations on 
s and 
m is 
alled Ph. De�ning for all verti
es p
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Fig. 3.3. Parameterizations of the 
onvex setthe lo
al d-dimensional spa
e Xp by Xp := f�p� j� 2 Rdg, we �nd Xh = Pp2Ph Xp.However, the parameterization of the 
onvex set Kh with respe
t to this 
hoi
e does nothave the required tensor produ
t stru
ture. Thus, we 
annot expe
t a 
onvergent s
heme.To get a better feeling, we 
onsider the stru
ture of the 
onvex set Kh in more detail. The
onstraints 
an be asso
iated with the nodes on the non-mortar side. For ea
h vertex onthe non-mortar side, we have one weak non penetration 
ondition. The biorthogonalityof the dual Lagrange multiplier guarantees that the 
onstraints are de
oupled. As a
onsequen
e, 
hanging the value on the non-mortar side at the vertex p 2 PC;hs has noin
uen
e on the penetration at the vertex q 2 PC;hs , q 6= p. To start, let us 
onsider the
onta
t zone. As it is standard in the mortar 
ontext, the 
onstraints at the interfa
e areformulated in terms of the Lagrange multiplier spa
e. The algebrai
 form of the dis
retenon penetration 
ondition 
an be written asODus � O
Mum + ĝ ; (3.2)where us and um denote the ve
tor representation of the displa
ement on the non-mortarand mortar side with respe
t to the standard nodal basis fun
tions, respe
tively. The
omponents of the ve
tor ĝ are obtained byĝp := Z�C  p gh d�; p 2 PC;hs : (3.3)Due to the use of a dual Lagrange multiplier spa
e, the matrix D is a dns� dns diagonalmatrix and the matrix 
M a dns � dnm mass matrix, where ns stands for the number ofverti
es on the non-mortar side and nm stands for the number of verti
es on the mortarside. The blo
k entries of the matri
es D and 
M are given bydpp := Z�C �sp d� Idd�d and bmpq := Z�C  p�mq d� Idd�d; p 2 PC;hs ; q 2 PC;hm ;respe
tively, where PC;hm is the set of verti
es on the mortar side, i.e., on �
m \ �C .The additional upper index indi
ates on whi
h side the nodal hat fun
tions are de�ned.We re
all that the index s stands for the non-mortar side and the index m for the mortarside, i.e., �mq is the standard nodal basis fun
tion on the mortar side asso
iated with thevertex q 2 PC;hm . Finally, the matrix O is a blo
k diagonal ns � dns matrix, the entriesare given by the row ve
tors opp := nTp , p 2 PC;hs . Observing that D and O are blo
kdiagonal matri
es, we �nd (us)n := Ous � OMum + g ;where the 
omponents of the ve
tor g are obtained by gp := ĝp=(R�C �sp d�), p 2 PC;hs .The biorthogonality of the basis sets and the lo
ality of the supports yield that M :=D�1
M is a sparse re
tangular mass matrix involving the Lagrange multiplier on the non-mortar side and the basis fun
tions on the mortar side. The duality of the Lagrange



9multiplier yields that the 
onstraint (3.2) results in one lo
al 
onstraint for ea
h vertexon the non-mortar side(us)p � np � (Mum)p � np + gp; p 2 PC;hs : (3.4)We remark that we have by 
onstru
tion gp = gh(p) � 0. Let us start with the 
aseof a non linear Gau�{Seidel method in terms of the standard nodal basis. Then, theGau�{Seidel method 
an be 
arried out lo
ally for all interior nodes and the nodes onthe non-mortar side. For ea
h interior node, we solve a linear d � d system, and forea
h non-mortar node, we solve a non linear d� d system with one 
onstraint in normaldire
tion. Unfortunately, the situation for a mortar node is more 
omplex. Solving forea
h node on the mortar side a lo
al minimization problem does not yield a 
onvergentmethod. We remark that 
hanging the values umq at the vertex q 2 PC;hm on the mortarside in
uen
es the non penetration 
ondition at p 2 PC;hs for p su
h that mpq 6= 0. Toobtain a 
onvergent method and to work with nodal basis fun
tions, we have to in
reasethe dimension of Xq , q 2 PC;hm . Enlarging the spa
e Xq 
orresponds to in
reasing theblo
k size in the non linear Gau�{Seidel method. We asso
iate with ea
h nodal pointpm 2 PC;hm on the mortar side, all nodal points ps 2 PC;hs with ps 2 Ipm := fqs 2PC;hs jmqspm 6= 0g on the non-mortar side. The number of verti
es npm in Ipm re
e
tsthe lo
al ratio between the meshsize on the mortar and non-mortar side. Then, a nonlinear d(npm + 1) � d(npm + 1) problem has to be solved for ea
h nodal point on themortar side. As long as the blo
k size is small, this 
an be 
arried out in an eÆ
ient way.However in 3D, unstru
tured grids result easily in 
omplex blo
k stru
tures, see Figure3.4. In the right pi
ture all nodes in Ipm are marked with a �lled 
ir
le. Although themeshsize on mortar and non-mortar side is roughly the same, the resulting non linearsystem for the mortar node pm has dimension 54.
pm

mortar side non-mortar side

Fig. 3.4. Unstru
tured grids on a 2D interfa
eIf the meshsize on the mortar side is larger than on the non-mortar side, the dimensionof the non linear problems whi
h have to be solved 
an be 
onsiderably large. Moreover ifwe 
onsider a hierar
hi
al multilevel stru
ture on the mortar side, the dimension in
reaseswith de
reasing re�nement level k, more pre
isely, it is proportional to 2(d�1)(L�k) whereL is the �nest level on the mortar side. Thus working with nodal basis fun
tions for theun
onstrained produ
t spa
e is not very eÆ
ient in a multigrid 
ontext.Now, the 
entral idea is to modify the nodal basis fun
tions on the mortar side su
hthat the 
onstraint (3.4) 
an be easily satis�ed. One possibility is to repla
e the nodalhat fun
tions asso
iated with the verti
es on the mortar side by the 
orresponding basisfun
tions of a suitable 
onstrained spa
e Vh. It turns out that a good 
hoi
e is thenon
onforming spa
e of a mortar dis
retizationVh := fv 2 Xhj Z�C [v℄ � d� = 0;  2Mhg :We note that in the de�nition of the spa
e Vh, the normal dire
tion does not enter andthat Mh is a ve
tor valued Lagrange multiplier spa
e. A di�erent possibility to de�nethe spa
e would be to glue only the normal 
omponents of the tra
es together, i.e.,fv 2 Xhj Z�C [v � np℄  p d� = 0; p 2 PC;hsg :



10Sin
e, we are interested in a general approa
h whi
h 
an also handle fri
tion, we do notfollow this line. Let us 
onsider an element in Vh in more detail. The de�nition of Vhyields Z�C [v℄ � np p d� = 0for all verti
es p on the non-mortar side. Thus (3.4) is automati
ally satis�ed for allelements in Vh, and Vh is a subspa
e of Kh. It 
an be easily veri�ed thatXh = Vh + Xp2PC;hs span f�spei j 1 � i � dg =: Vh + Xp2PC;hs Sp ; (3.5)where ei 2 Rd is the i-th. unit ve
tor. Working with the nodal basis of Vh and thed-dimensional lo
al spa
e Sp, p 2 PC;hs , the non linear blo
k Gau�{Seidel method isextremely easy to realize. In ea
h step, we have to solve a linear d � d system forea
h blo
k basis fun
tion of Vh. Additionally, we solve for ea
h Sp a non linear d � dproblem. We point out that the dimension of the non linear subproblems is independentof the triangulations at the interfa
e. In 
ontrast to the nodal basis of Xh, no non linearproblem of larger dimension than d has to be solved. Moreover, the number of non linearproblems to be solved in ea
h step is the number of verti
es on the non-mortar side. Thisis not the 
ase for the nodal basis of Xh. In that 
ase additionally to the d-dimensionalnon linear problems asso
iated with the nodal points on the non-mortar side, we have tosolve non linear problems asso
iated with the verti
es on the mortar side. Moreover, thedimension depends on the meshsize and 
an be 
onsiderably large.In the rest of this se
tion, we 
onsider the variational problem in more detail to seehow the implementation 
an be realized. We start by introdu
ing a modi�ed basis of Xhbased on the de
omposition (3.5). Three di�erent sets of nodes are introdu
ed Is, Im andIi. The sets Is and Im stand for the nodes asso
iated with the verti
es on non-mortarand mortar side, respe
tively. The third set Ii 
ontains all remaining nodes. Now, we
onsider a modi�ed basis � of Xh. We obtain � from the nodal basis � of Xh by a lo
albasis transformation� := 0� �i�m�s 1A := 0� Id 0 00 Id MT0 0 Id 1A0� �i�m�s 1A =: B� :Asso
iated with this new basis is the modi�ed sti�ness matrixA := 0� Id 0 00 Id MT0 0 Id 1A 0� Âii Âim ÂisÂmi Âmm 0Âsi 0 Âss 1A 0� Id 0 00 Id 00 M Id 1A = B bABT ; (3.6)where Âkl, k; l 2 fs;m; ig, are the blo
k sti�ness matri
es asso
iated with the nodal basisfun
tions. A straightforward 
omputation shows that A is given asA = 0� Âii Âim + ÂisM ÂisÂmi +MT Âsi Âmm +MT ÂssM MT ÂssÂsi ÂssM Âss 1A :In terms of the new modi�ed basis, the 
onvergen
e of our non linear blo
k Gau�{Seidelmethod is guaranteed, [14, 36℄. Moreover, the implementation is extremely easy to realize.In addition to the non linear blo
k Gau�{Seidel method, we have to 
arry out one pre-and one post pro
essing step. We modify the sti�ness matrix a

ording to (3.6) and theright hand side f̂ is repla
ed by f ,f := Bf̂ = 0� f̂îfm +MT f̂sf̂s 1A :



11Now, we 
an apply a non linear Gau�{Seidel method on the modi�ed system. Withinea
h step, we solve for ea
h index j 2 Ii [ Im a linear d� d systemuj = A�1jj (fj �Xk 6=j Ajkuk) ; (3.7)and for j 2 Is we solve for all vj nj � gj(vj � uj)TAjjuj � (vj � uj)T (fj �Xk 6=j Ajkuk); uj nj � gj : (3.8)The non linear blo
k Gau�{Seidel method gives a solution ve
tor u� with respe
t tothe modi�ed basis �. To obtain the nodal values of the displa
ements u�, we have toapply BT , i.e., u� = BTu�. The pre- and post pro
essing step require two additionalmultipli
ations by B and BT whi
h are of lower 
omplexity. We remark that the spe
ialstru
ture of B yields that only a multipli
ation with the sparse mass matrix M has to be
arried out. Additionally, the a
tion of B 
an be restri
ted to the interfa
e.However, we 
annot expe
t a better 
onvergen
e rate as in the linear 
ase whi
h is ofO(1�h2), where h is the meshsize. Thus from the numeri
al point of view, the non linearGau�{Seidel method does not �t our requirements. Figure 3.5 shows the 
onvergen
erates of the non linear blo
k Gau�{Seidel method for a simple 3D example. After a fewre�nement steps, the 
onvergen
e rate is extremely 
lose to one. We note that due toroundo� errors, for more 
omplex examples in 3D no 
onvergen
e 
an be observed andthe method fails. These observations motivate the introdu
tion of our new monotonemultigrid method.PSfrag repla
ements

Number of elements
10:90:8101 102 103 104 105106Convergen
era

te
Fig. 3.5. Convergen
e rate of the non linear Gau�{Seidel method for a 3D 
onta
t problem4. A monotone multigrid method. Monotone multigrid methods have been in-trodu
ed and analyzed for variational inequalities in [26, 27, 28℄. Generalization to aone-sided Signorini problem are highly nontrivial and are studied in [29, 30, 31℄. One
ru
ial property is the fa
t that the dis
rete 
onta
t 
ondition 
an be satis�ed lo
ally pernode. In the previous se
tion, we have introdu
ed a modi�ed basis su
h that the multibody 
onta
t problem has formally the same algebrai
 stru
ture as a one-sided Signoriniproblem. The main idea of this se
tion is to apply monotone multigrid methods. Thesete
hniques 
ombine multigrid methods with su

esive energy minimization, yielding opti-mal iterative solvers for this type of non linear problem. The key property for the global
onvergen
e of monotone multigrid methods is the minimization of energy in ea
h lo
al
orre
tion step.We assume that we have a nested sequen
e of triangulations T ik , i = 1; 2, k =0; 1; : : : ; L. Then the asso
iated un
onstrained produ
t spa
es Xk are nested, i.e., Xk �Xk+1. Unfortunately the non
onforming 
onstrained spa
es Vk are not nested if thetriangulations are non-mat
hing. Thus the prolongation operator from Vk onto Vk+1
annot be the identity. As a 
onsequen
e no energy minimization 
an be guaranteed andmonotone multigrid methods 
annot be applied dire
tly. In a �rst step, we 
onsider a



12lo
al proje
tion operator �l(�) from Xl onto Vl�l(vl) := vl � dXi=1 Xp2PC;hs R�C [vl℄ � ei  p d�R�C �sp d� �spei :We note that �l(�) restri
ted to Vl is the identity. This operator has been introdu
ed inthe s
alar 
ase in [41℄. Due to the biorthogonality (2.7), it is a proje
tion. This 
an beeasily seen by 
onsidering �l(�l(vl)) and using �l(�spei) = 0. Based on this proje
tionis a modi�ed transfer operator (I l+1l )mod from Vl onto Vl+1 whi
h has been introdu
edand analyzed in [41℄. Its algebrai
 representation is de�ned in terms of the weighted massmatrix Ml+1 on Level l + 1(I l+1l )mod := 0� Id 0 00 Id 00 Ml+1 0 1A I l+1l =:Wl+1I l+1l ;where I l+1l is the transfer operator from Xl onto Xl+1 with respe
t to the standard nodalbasis �l and �l+1. We note that the un
onstrained produ
t spa
es Xl are nested andthat I l+1l is the algebrai
 representation of the natural embedding operator. Now, theappli
ation of the modi�ed transfer operator is of optimal 
omplexity. Compared withthe standard transfer operator, one additional multipli
ation with the sparse mass matrixMl+1 has to be 
arried out. Let us 
onsider the operator (I l+1l )mod in more detail to seewhy it does not �t our requirements. Observing that the algebrai
 representation of thelinear fun
tional �l(�) is Wl, we �nd for vl+1 := (I l+1l )modvlJ(vl+1) = J(�l+1(vl)) :From this equality, we 
annot dedu
e that J(vl+1) � J(vl). To guarantee J(vl+1) � J(vl)for all vl 2 Vl, we have to de�ne vl+1 in terms of an a-orthogonal proje
tion operator.The appli
ation of whi
h requires the solution of a global linear equation system with
ondition number O(h�2l+1). On the other hand if we work with a prolongation operatorwhi
h does not satisfy J(vl+1) � J(vl), the monotoni
ity is violated, and we 
annotguarantee the 
onvergen
e of our method. From the numeri
al point of view, the solutionof the global system is too expensive. Thus, we propose a di�erent approa
h and introdu
ea nested sequen
e of new spa
es eV0 � : : : � eVL. We start by de�ning eVL := VL. Let�lp;i := �lpei be the standard nodal basis of Vl, then we de�ne the new basis fun
tions bywl := �lp;ifor k = 1; : : : ; (L� l)wl+k := �l+k(wl+k�1)e�lp;i := wL : (4.1)It is easy to see that fe�lp;igp;i forms a set of linear independent fun
tions. As a 
onse-quen
e, we get dim Vl = dim eVl. Moreover by 
onstru
tion, we have�L(e�lp;i) = �L(�L(wL�1)) = �L(wL�1) = e�lp;iand thus e�lp;i 2 VL. Considering the de�nition in more detail, we �nd a multipli
ativestru
ture e�lp;i = �L Æ�L�1 Æ : : :�l+1 �lp;i = �L Æ�L�1 Æ : : :�l �lp;i ;where �lp;i := �lpei denotes the standard nodal hat fun
tions on Level l asso
iated withthe nodes on the mortar side.



13
Mortar Non−mortar

Level 1

Level 0

Level 2

Level 3

Level 4Fig. 4.1. Multipli
ative stru
ture of the modi�ed basis fun
tions e�lp;iFigure 4.1 illustrates the multilevel stru
ture of e�lp;i. On the non-mortar side 
orre
-tions are added in a multipli
ative way. A di�erent possibility would be to use an additivede
omposition. Sin
e multigrid methods are multipli
ative S
hwarz variants, we prefer(4.1). To de�ne the linear part of our multigrid method, we start with the 
onstru
tion ofthe prolongation operator Zl from eVl + Sl onto eVl+1 + Sl+1. The algebrai
 presentationof e�lp;i in the nodal basis is given byWLILL�1WL�1IL�1L�2 : : : I l+1l Wl�lp;iand of e�l+1p;i by WLILL�1WL�1IL�1L�2 : : : I l+2l+1Wl+1�l+1p;i :The last two equalities show that the prolongation from eVl onto eVl+1 is given byI l+1l Wl = 0� (I l+1l )ii (I l+1l )im + (I l+1l )isMl 00 (I l+1l )mm 00 0 0 1A :We point out that the prolongation operator I l+1l Wl is the algebrai
 representation of thenatural embedding of eVl in eVl+1. Figure 4.2 illustrates the prolongation operator.
Coordinate vector on level l Coordinate vector on level l+1Fig. 4.2. Prolongation operator from eVl onto eVl+1, L := l+ 1For simpli
ity, we restri
t ourselves to a fun
tion in eVl being zero at all interiorverti
es. The support of su
h a fun
tion is marked by the shadowed region. Then, thefun
tion as an element in eVl is uniquely de�ned by its values at the verti
es on the mortarside whi
h are marked by �lled 
ir
les in the left pi
ture of Figure 4.2. The values onthe mortar side are extended to the non-mortar side in the de�ned multipli
ative waysu
h that the 
onstraints at the interfa
e on Level L are satis�ed. The verti
es on thenon-mortar side on Level l are marked by empty 
ir
les and on Level L := l+1 by emptysquares. Now, we interpret the fun
tion as an element in eVl+1. In the right pi
ture, therelevant verti
es to spe
ify the fun
tion are shown by �lled 
ir
les. The values at the�lled 
ir
les in the interior of the non-mortar subdomain are obtained by the values atthe empty 
ir
les and the standard prolongation. We note that the values at the emptysquares do not 
ontribute.



14 The prolongation from Sl onto eVl+1+Sl+1 is standard. We note that Sl 6� Sl+1 butSl � Sl+1 + eVl+1. Using the fa
t that the prolongation Zl is a linear mapping, we getZl := 0� (I l+1l )ii (I l+1l )im + (I l+1l )isMl (I l+1l )is0 (I l+1l )mm 00 0 (I l+1l )ss 1A : (4.2)We remark that the prolongation Zl is the algebrai
 representation of the natural embed-ding eVl + Sl � eVl+1 + Sl+1.In a se
ond step, we have to take 
are of the non linearity asso
iated with the nodalbasis fun
tions of SL. Unfortunately for l < L, the standard nodal basis fun
tions of Slare not suitable in the non linear multigrid 
ontext. To see this, let us 
onsider a simpletwo dimensional example of a 
urvilinear 
onta
t boundary as is depi
ted in Figure 4.3.Let r be a node on Level L� 1 and let p 6= q be the neighboring nodes of r on Level L.
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PSfrag repla
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Fig. 4.3. Coarse grid 
orre
tion at 
urvilinear boundaryWe assume that we have di�erent outer normals np 6= nq and that we have 
onta
tat p and q. Then, any 
oarse grid 
orre
tion �r � �L�1r , �r 2 R2 , has to satisfy �r � np =�r �nq = 0 and thus �r = 0. Using standard nodal basis fun
tions, there is no 
oarse grid
orre
tion asso
iated with the node r on Level L�1. As a 
onsequen
e the low frequen
ypart of the error in tangential dire
tion at the node r 
annot be handled appropriately.The additional 
onstraints at the nodes p and q result in a redu
tion of the dimensionof the 
oarse spa
e, and the approximation property is lost. Working with the standardnodal basis of Sl and satisfying the 
onstraints on Level L, we 
annot guarantee anymorethe optimality of the multigrid method.Therefore, we are interested in 
oarse sear
h dire
tions whi
h a

elerate the 
onver-gen
e speed by generating some low-frequen
y sliding along the 
onta
t boundary anddo not violate the non penetration 
ondition on the �nest Level L. Su
h type of sear
hdire
tions 
an be obtained by suitable modi�
ations of the standard 
oarse grid fun
tions.We refer to [31, 30℄ for the introdu
tion of a so 
alled trun
ated 
oarse grid fun
tion. Weemphasize that the parti
ular shape of the trun
ated 
oarse grid fun
tions depends onthe a
tual guess of the 
onta
t zone. Let us �rst 
onsider the two level situation. Asbefore in the linear setting, we introdu
e a modi�ed 
oarse spa
e ~SL�1, set ~SL := SL anddenote by �Lp;i := �Lp ei the standard nodal basis of SL. Then, we de�ne the trun
atedbasis fun
tions by ~�L�1p;i := �L�1p;i � Xq2JL(�L�1p;i (q) � nq) �Lq nq ; (4.3)where JL is the set of nodes on Level L being in 
onta
t after the leading Gaus�{Seidelsteps on Level L. We remark that we suppress for simpli
ity an additional index indi
atingthe iteration step.Figure 4.4 illustrates the shape of a trun
ated 
oarse grid fun
tion for given 
onta
tnodes. The given 
onta
t nodes are marked by �lled 
ir
les. In the left pi
ture, the
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Fig. 4.4. Two level (left) and multilevel (right) trun
ated 
oarse grid fun
tiontwo level situation is shown, and in the right pi
ture, a multilevel situation is given. By
onstru
tion, it is easy to see that ~�L�1p;i (q) � nq = 0 for all q 2 JL. The 
onstru
tionof the trun
ated 
oarse grid fun
tions guarantees that for ea
h node being in 
onta
twith respe
t to the a
zual iterate on the �nest grid, the 
onstraints are automati
allysatis�ed, and no 
orre
tion in normal dire
tion o

urs. As a 
onsequen
e, we do notobtain additional 
onstraints, and the dimension of the modi�ed 
oarse grid spa
es ~SL�1is not redu
ed in tangential dire
tion.

Fig. 4.5. Lo
al box 
onstraints ~Kl(p) on Level l (left) and ~Kl�1(p) Level l� 1 (right)Unfortunately, it is not suÆ
ient to 
onstru
t 
oarse grid fun
tions satisfying the
onstraints for all p being at the a
tual iterate in 
onta
t. To guarantee that a newiterate is in the 
onvex set KL, it is not suÆ
ient to verify one 
onstraint per node onLevel l < L. Additionally, we have to satisfy all 
onstraints on Level L being not at thea
tual iterate in 
onta
t. Using uniform re�nement, we obtain O(2(d�1)(L�l)) 
onstraintsfor ea
h node p on Level l. As a 
onsequen
e, the optimal 
omplexity of the algorithm islost and a logarithm o

urs. To avoid this, we use modi�ed 
onvex sets. In a �rst step,we introdu
e 
onvex sets depending on the a
tual iterate. We de�ne for a given 
onvexset Dl on Level l < L and a given ve
tor zl, the 
onvex set Pl(zl;Dl) := fvljvl+zl 2 Dlg.Moreover, we de�ne the restri
tion of a given 
onvex set Dl on Level l � L in terms of lo
albox 
onstraints su
h that Dl�1 := RlDl � Dl, see [28, 31℄. More pre
isely, the 
onstraintsfor Dl�1 are only asso
iated with the nodes on Level l � 1. Let Dl be the a
tual 
onvexset de�ned by lo
al box 
onstraints Blp := [�p;l1 ; �p;l1 ℄ � : : : � [�p;ld ; �p;ld ℄, �p;li 2 [�1; 0℄,�p;li 2 [0;1℄, 1 � i � d, for ea
h node p on the non-mortar side on Level l. Then, wede�ne RlDl by lo
al box 
onstraints Bl�1p := [�p;l�11 ; �p;l�11 ℄� : : :� [�p;l�1d ; �p;l�1d ℄ for ea
hnode p on the non-mortar side on Level l � 1. We set�p;l�1i := maxq2Jp(�q;li ) ; �p;l�1i := minq2Jp(�q;li ) ;where Jp is set of nodes q on Level l su
h that q and p are verti
es of one boundaryfa
e on Level l. On the �nest Level L, we de�ne for a given zL 2 KL the 
onvex setPL(zL 2 KL) by lo
al box 
onstraints BLp with�p;Li := �1 ; �p;Li := d�1(gp � zL(p) � np)=(np)i :if (np)i > 0 and �p;Li := d�1(gp � zL(p) � np)=(np)i ; �p;Li :=1 ;
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2PSfrag repla
ements BLFig. 4.6. Constru
tion of box 
onstraints on Level Lif (np)i < 0 and �p;Li := �1 ; �p;Li :=1 if (np)i = 0, see Figure 4.6.For more sophisti
ated strategies, we refer to [31, 28℄. It 
an be easily seen thatzL + wL 2 KL for wL 2 PL(zL;KL). We note that in general PL(zL;KL) is a truesubset of fwL jwL + zL 2 KLg. Now, we are ready to de�ne our trun
ated 
oarse basisre
ursively. We start with ~�L := �L and set~�l := (I ll+1)ssPl+1~�l+1; l = L� 1; L� 2; : : : ; 0 ;where Pl+1 is a dnl+1s � dnl+1s blo
k matrix depending on the a
tual iterate. Here, nl+1sstands for the number of verti
es on Level l+1 on the non-mortar side. The d� d blo
kmatri
es are asso
iated with the nodes p on Level l+1 on the non-mortar side. On Levell + 1 = L, they are given by Id� !pnpnTpand we set !p = 1 if zL(p) � np = gp and !p = 0 otherwise. On the lower levels l+1 < L,the trun
ation strategy is slightly di�erent. Here, trun
ation is not restri
ted to onedire
tion. For a given zl 2 Dl, trun
ation is applied whenever zl(p) tou
hes the boundaryof the lo
al box 
onstraint. We setId� dXi=1 !p;iep;ieTp;i ;where !p;i = 1, if the lo
al 
orre
tion at the node p is on the boundary of the 
onvex setBl+1p in dire
tion ei and !p;i = 0 otherwise. The trun
ations strategies being di�erentre
e
ts the fa
t that only on the �nest grid we have to take 
are of the normal dire
tions.We note that Pl+1 is the identity if the a
tual iterate is in the interior of the (restri
ted)
onvex set. Combining this non linear restri
tion operator with our linear one given bythe transposed of the prolongation (4.2), we de�ne~ZTl := 0� (I ll+1)ii 0 0(I ll+1)mi +MTl (I ll+1)si (I ll+1)mm 0(I ll+1)si 0 (I ll+1)ssPl+11A :In terms of this new non linear restri
tion operator, we formulate our iterative s
hemeun+1L := MG(L;AL; fL;unL;KL;m1;m2) as V-
y
le multigrid method with m1 pre- andm2 postsmoothing steps. The start iterate u0L is given. We denote by GS(A; d;v;D; k)the k-th iterate of the non linear Gau�{Seidel method applied to the start iterate v withmatrix A, right hand side d and 
onstraint set D.Monotone multigrid algorithm: MG(l; ~Al; dl;vl; ~Dl;m1;m2)Presmoothing: z1l := GS( ~Al; dl;vl; ~Dl;m1)



17Coarse grid 
orre
tion:~Al�1 := ~ZTl ~Al ~Zldl�1 := ~ZTl (dl � ~Alz1l )~Dl�1 := RlPl(z1l ; ~Dl)if l > 1, ql�1 := MG(l � 1; ~Al�1; dl�1;0; ~Dl�1;m1;m2)else q0 := GS(0; ~A0; d0;0; ~D0;1)Prolongation: z2l := z1l + ~Zlql�1Postsmoothing: MG(l; ~Al; dl;vl; ~Dl;m1;m2) := GS( ~Al; dl; z2l ; ~Dl;m2).On the 
oarsest level, the resulting 
onstrained problem is solved up to a given toler-an
e by suitably many steps of the non linear Gau�{Seidel method. This is denoted bythe �
ti
ious iteration number 1. In 
ase of a 
oarse grid with many degrees of freedom,an equally modi�ed algebrai
 multigrid method 
an be applied. For a numeri
al result,we refer to the 3D example in Se
tion 5. We remark that the restri
tion ~Zl depends onz1l , see also [31℄. In our implementation, the 
oarse grid matri
es are only lo
ally reassem-bled if a 
hange of phase o

urs. The de�nition of Rl guarantees that the prolongated
orre
tion is in Pl(z1l ; ~Dl) and thus z2l 2 Dl.Our de�nition of the trun
ated sear
h dire
tions give rise to lo
al 
orre
tions whi
h areadmissible with respe
t to the a
tual guess of the 
onta
t boundary. The 
orrespondingnon linear W-
y
le multigrid algorithm is straightforward.Theorem 4.1. Under suitable assumptions, our monotone multigrid algorithm isglobally 
onvergent. Moreover, the dis
rete 
onta
t boundary is identi�ed after a �nitenumber of iteration steps.In [30, 31℄, the global 
onvergen
e of a trun
ated monotone multigrid method for aone-sided Signorini problem has been shown. Moreover, under some stability assumption,it is also shown that in this 
ase the dis
rete 
onta
t boundary is dete
ted after a �nitenumber of iteration step. Due to the de
omposition (3.5), these results do also apply forour monotone method. We refer to [31, Theorem 3.9℄ for details.5. Numeri
al Results in 2D and 3D. In this se
tion, we present numeri
al re-sults in 2D and 3D illustrating the performan
e of our new method for elasti
 
onta
tproblems. Moreover, we 
ompare our new non linear method with a standard linear multi-grid method. To this end, the boundary stresses 
omputed by means of our monotonemultigrid method are taken as boundary data for the standard linear multigrid method.As it turns out, the 
onvergen
e rates of our new non linear and of the linear multigridmethod are almost the same. With respe
t to exe
ution time, there is no signi�
antdi�eren
e between our non linear multigrid method applied to a 
onta
t problem andthe standard multigrid method applied to the 
orresponding linear problem with knownboundary stresses. Our non linear method has been implemented in the framework ofthe �nite element toolbox UG, see [2℄. The implementation of the non linear method isbased on the abstra
t obsta
le problem 
lass developed in [31℄ in the 
ontext of one-sided
onta
t problems.The �rst example to be 
onsidered is a fri
tionless Hertzian 
onta
t problem of a dis
with a plane in 2D. The problem data is taken from [9℄ where a penalty method is appliedto the 
onta
t problem. For this example, the boundary stresses are given analyti
ally,see [18℄, and we 
an 
ompare the 
omputed boundary stresses with the analyti
al ones.On top of the dis
, Diri
hlet boundary 
onditions are applied 
orresponding to a pointload of F = 100N . The 
oarse grid, see the left pi
ture of Figure 5.1, has been generatedusing a grid generator. During the adaptive re�nement pro
ess, new boundary nodes aremoved to their position on the boundary of the dis
.The plane is modeled by a re
tangle with homogeneous Diri
hlet boundary 
onditions
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0:90:70:50:30:1Fig. 5.1. 2D example: Coarse grid and 
omparison of non linear and linear methodon the left and the right side. Homogeneous Neumann boundary 
onditions are appliedelsewhere. We use di�erent materials for the plane and the dis
 and take E = 106 and� = 0:45 for the plane and E = 7000 and � = 0:3 for the dis
. On ea
h level, the arisingdis
rete system is solved up to a given toleran
e of "TOL = 10�11, e.g., the iterationpro
ess on Level l is stopped ifa(unl � un�1l ;unl � un�1l )1=2 � "TOL : (5.1)We denote the �nal iterate by unll . To measure the performan
e of our new monotonemultigrid method, the 
omputed boundary stresses are taken as boundary data for astandard linear multigrid method. In both 
ases, we 
hose u0l = 0 on ea
h Level l, use(5.1) as stopping 
riteria and apply a W(3; 3){
y
le. The asymptoti
 linear 
onvergen
erates are de�ned by �2l = a(unll � unl�1l ;unll � unl�1l )a(unl�1l � unl�2l ;unl�1l � unl�2l ) :We emphasize, that the iteration pro
ess of our monotone multigrid method takes 
areof the non linearity at the 
onta
t boundary. Due to the modi�
ations, we observe anin
rease of about 10 % of the 
pu time on ea
h level. The asymptoti
 
onvergen
e ratesof our non linear (
rosses) and of the linear (diamonds) multigrid method vs. the numberof unknowns are given in the right pi
ture of Figure 5.1. We observe level independent
onvergen
e rates. Moreover, the asymptoti
 
onvergen
e rates are for both methods arethe same. # iterationsLevel l nl monotone standard # 
onta
t nodes0 186 4 4 11 654 20 20 32 1.336 22 22 33 2.874 22 21 74 7.794 21 21 135 22.132 22 22 276 65.208 23 23 537 178.598 24 24 1058 412.430 24 24 2099 811.030 24 24 417Table 5.12D example: Non linear method for unknown 
onta
t boundary vs. linear method for known 
onta
tboundary data for the Hertzian 
onta
t problem



19Table 5.1 shows the number of required iterations nl on ea
h Level l for both methods.As 
an be seen, the number of iterations is bounded independently of the re�nement level.For almost all re�nement levels, the numbers are the same.
1l
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0 10:5Fig. 5.2. Hertzian 
onta
t problem (2D): Maximal 
onta
t stresses on Level 0; : : : ; 7 (left) andboundary stresses on Level 9 (right)The �nal approximation of the boundary stresses on Level L = 9 
an be seen in theright pi
ture of Figure 5.2. Here, the approximation of the 
onta
t stresses obtained usingour new monotone method is plotted. We note that the horizontal line is the 
omputedtangential stresses. The use of ve
tor valued dual Lagrange multipliers to approximate thestresses yields very a

urate results. In parti
ular, the tangential stress is an additionalunknown. Thus, our approa
h 
an be easily generalized to multi body 
onta
t problemsin
luding fri
tion. In the left pi
ture of Figure 5.2, the maximal boundary stresses 
om-puted on ea
h level and the theoreti
al value (horizontal line with squares) of the maximalboundary stresses is depi
ted. On Level 3, the error of the maximal boundary stress withrespe
t to the analyti
al solution is 0:016% and on Level 4 only 0:002%. This 
orrespondsto 7 and 13 nodes being in 
onta
t with the plane, see Table 5.1.

Fig. 5.3. 3D example: Corse grid (left) and re�ned grid (right)In 3D, we re
onsider the example given in Se
tion 3. The geometry 
onsists of tworollers and a bar and is depi
ted in Figure 3.1. Inhomogeneous Diri
hlet boundary 
ondi-tions are applied on the upper and lower part of the upper and lower roller, respe
tively,pressing the two rollers against the bar. Homogeneous Neumann boundary 
onditions areapplied elsewhere. In a �rst step, we apply our new monotone method for elasti
 
onta
t.In 
ontrast to the Diri
hlet{Neumann method, see Figure 3.2, no os
illation o

urs. Thisis due to the fa
t that our method is monotone and global 
onvergen
e is guaranteed.The �nal approximation of the geometry using adaptive re�nement 
an be seen in theright pi
ture of Figure 5.3. In the left pi
ture of Figure 5.3, the 
oarse grid is shown.In Table 5.2, we 
ompare the performan
e of our new non linear method with astandard multigrid method applied to the linear problem. The required iteration numbersneeded to a
hieve the given toleran
e "TOL = 10�7 are reported. For both methods,



20 # iterationslevel nk monotone standard # 
onta
t0 1.725 2 2 101 5.253 11 11 182 10.191 12 22 343 23.799 13 25 1984 38.487 24 23 5145 75.045 12 19 1.630Table 5.23D example: Non linear method for unknown 
onta
t boundary vs. linear method for known boundarydatanested iteration is used. As 
an be seen, the non linear method behaves as well as thestandard multigrid method.We use trilinear �nite elements on hexahedrons. Although these kinds of elementsare well suited for the numeri
al approximation of elasti
 materials, the aspe
t ratioof the elements situated at the boundary of the 
ylinders does depend on the level.For this reason, our method is a

elerated by a 
onjugated gradient method, on
e the
onta
t boundary has been identi�ed. Additionally, the inner nodes of the grids aremoved after ea
h re�nement step to improve the grid quality. Pro
eeding in this way, itis possible to 
ompensate the in
uen
e of the badly shaped elements at the boundary.We remark, that it is also possible to use tetrahedrons or prisms instead of hexahedrons.However, hexahedrons usually give rise to a better approximation of the displa
ementsand boundary stresses. Sin
e on the 
oarse grid we have 1:725 unknowns, we do not usea non linear Gauss{Seidel method as 
oarse grid solver. Instead, we apply an algebrai
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