MONOTONE METHODS ON NON-MATCHING GRIDS FOR NON
LINEAR CONTACT PROBLEMS
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Abstract. Nonconforming domain decomposition techniques provide a powerful tool for the numer-
ical approximation of partial differential equations. We use a generalized mortar method based on dual
Lagrange multipliers for the discretization of a non linear contact problem between linear elastic bodies.
In the case of unilateral contact problems, pointwise constraints occur and monotone multigrid methods
yield efficient iterative solvers. Here, we generalize these techniques to non-matching triangulations where
the constraints are realized in terms of weak integral conditions. The basic new idea is the construction
of a nested sequence of nonconforming constrained spaces. We use suitable basis transformations and
a multiplicative correction. In contrast to other approaches, no outer iteration scheme is required. The
resulting monotone method is of optimal complexity and can be implemented as a multigrid method.
Numerical results illustrate the performance of our approach in 2D and 3D.
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1. Introduction. During the last decades, the interest in the numerical simulation
of contact problems has lead to an increased research activity in this area, see, e.g.,
[13, 16, 17, 38] and [23, 24, 42] for survey papers. Unfortunately, the numerical simulation
of contact problems turns out to be difficult. The non penetration condition between the
bodies coming into contact gives rise to an unknown contact zone depending non linearly
on the displacements. By means of suitable inequality constraints which model the non
penetration condition, non linear and non differentiable problems arise. Thus, standard
Newton methods cannot be applied directly.

Often, active set strategies [1, 11, 15, 21, 22] are used. Here, the actual contact set is
iterated and within each iteration step one linear problem with a given contact zone has to
be solved. Also widely used for the numerical simulation of contact problems are penalty
methods. They are based on regularization and give rise to a non linear but differentiable
regularized energy functional. In the case of a multi body contact problem, penalty
methods can be combined with contact elements working on non-matching triangulations,
see, e.g., [12, 37, 43]. The advantage of penalty methods is that they can be implemented
in a straightforward way. However, the quality of the numerical solution depends strongly
on the penalty parameter.

For one-sided contact problems, monotone multigrid methods yield globally conver-
gent and efficient iterative solvers, see [28, 30, 31]. These methods are based on the
minimization of the non linear energy functional and do not depend on a penalty param-
eter. Monotone multigrid methods can be implemented as a modification of a standard
linear multigrid cycle and provide multigrid efficiency for one-sided contact problems.
Unfortunately, these techniques cannot be applied directly to multi body contact prob-
lems. This is caused by the nonconforming situation at the interface between the bodies.
On the discrete level, the meshes of the bodies cannot be expected to match. Since the
accuracy of the numerical solution depends strongly on the discretization of the transmis-
sion conditions, the choice of the discrete transfer operator is of crucial importance for the
whole discretization scheme. A stable as well as efficient discretization of the transmission
conditions at the interface can be provided by mortar methods. Originally introduced for
linear problems in the context of nonconforming domain decomposition techniques in [6],
they have also been applied to contact problems, see, e.g., [4, 10, 20].
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In this paper, we present a new monotone multigrid method which does not require
any regularization of the non differentiability and which uses mortar techniques for the
information transfer at the interface. In that way, we obtain not only a globally conver-
gent method but also optimal estimates for the discretization error. The resulting new
approach for the efficient numerical simulation of multi body contact problems is based
on the combination of monotone multigrid techniques, [30, 31], dual mortar methods,
[6, 7, 41], a suitable basis transformation and a new sequence of nested nonconforming
finite element spaces. Here in contrast to [4, 10, 20], we use dual Lagrange multipliers
yielding locally defined basis functions. Dual Lagrange multipliers yield the same accu-
racy as standard multipliers but give rise to a more efficient realization of the transfer
operator. In particular, no mass matrix has to be inverted at the interface.

Our new iterative solver is globally convergent and of optimal complexity. It requires
only one suitable basis transformation and can be realized in terms of a standard multigrid
method and local pre- and postprocessing steps. Thus, it can be implemented as a modifi-
cation of a standard linear geometric or algebraic multigrid method. Moreover, optimal a
priori estimates for the boundary stresses which play the role of a Lagrange multiplier are
available. The approach is very flexible and can be easily generalized to contact problems
including friction. Particularly, the method does not rely on a penalty parameter and no
outer iteration is required. We also emphasize that once the discrete contact boundary
has been identified, our new method reduces to a linear subspace correction method.

The rest of this paper is organized as follows: In Section 2, we introduce the non
linear contact problem, and we formulate the discrete non penetration condition in terms
of weak integral inequalities using dual Lagrange multipliers. In Section 3, we introduce
a suitable basis transformation and decompose the global non linear problem in a global
linear and local non linear subproblems. In Section 4, we provide a nested sequence of
nonconforming spaces and introduce modified prolongation and restriction operators. In
terms of these modifications, we can define our new monotone multigrid method. Finally
in Section 5, numerical results in 2D and 3D are shown illustrating the efficiency and
flexibility of our new algorithm.

2. A non linear contact problem. In this section, we consider a nonconforming
approach for the elastic contact between deformable bodies. The discretization is based on
mortar finite element techniques using dual Lagrange multipliers. A similar formulation
in terms of standard Lagrange multipliers can be found in [5, 20].

\\

Surface Forces s

Fia. 2.1. Two body contact problem and decomposition into I'p, 'y and I'c

For simplicity, we restrict ourselves to the case of two deformable bodies in contact.
The two bodies in their reference configuration are identified with the domains Q;, C R?,
k € {s,m}, d = 2,3, and we decompose the solution u in u = (uy,u,,), and write
(ug)n, := uy -ng, k € {s,m}, where n; is the outer unit normal on 9Q;. The non-
mortar side is associated with subdomain €, and the mortar side with the domain €,,.
The subscript s is motivated by the non-mortar side playing the role of a ”slave” side.



Correspondingly, quantities on the mortar or "master” side are being attached by the
subscript m. We start with the decomposition of the boundary of €2 into three disjoint
parts, I'p is the Dirichlet part, 'y denotes the Neumann part and I'c stands for the
contact boundary, see Figure 2.1.

On both subdomains, the possible contact boundary ' is associated with a suitable
parametrization. The actual contact zone between the two bodies is a priori unknown
and is assumed to be a subset of I'c. We denote tensor and vector quantities by bold
symbols, e.g., 7 and v, and its components by 7;; and v;, 1 < 4,57 < d. The partial
derivative with respect to x; is abbreviated with the index ;. Furthermore, we enforce
the summation convention on all repeated indices ranging from 1 to d, and we denote by
di; the Kronecker symbol.

The non linear contact problem can be written as a boundary value problem. Here,
we consider the case without friction. In addition to the equilibrium conditions in 0, and
Q,, and the boundary conditions on 9f)

—oij(u); = fi, in Q, U0, |
u = 0, onTp | (2.1)
oij(u)-n; = p;, on 'y |

we have the following conditions on the possible contact boundary T'c:

0,

UT(“S) = UT(um) =
Un(us) = Un(um) < 0, (22)
and the linearized contact condition on I'c
2.3
0 = (o + (W) — ) ou(m) (23)

where the function ¢: ' € R? — R is the distance between the two bodies in normal
direction taken with respect to the reference configuration; see, e.g., [8, 16]. We assume
that g is continuous. The system (2.1) is obtained by the equation of equilibrium, the
strain-displacement relation and the constitutive law. We refer to [24] for an introduction
to linear elasticity. In the case of a linear elastic material, the stress tensor o depends
linearly on the infinitesimal strain tensor €(u) := 1/2(Vu+ Vu®). The stress tensor o is
given by Hooke’s law

0ij(0) 1= Ejjim Um

where Hooke’s tensor E := (Eijlm);'ijlm:la Eijim € L>(Q), is assumed to be sufficiently
smooth, symmetric and uniformly positive definite. In the case of a homogeneous isotropic

material, Hooke’s tensor has the simple form

FEv

B = T -2

0ij0m + (0051 + 0itdjk)

FE
2(1+v)

where E > 0 is Young’s modulus and v € (0,1/2) is the Poisson ratio. Figure 2.2
illustrates the normal stress at the contact boundary.

Qm
On(Up)
Ay

FyNoonu) | Qg

Fi1G. 2.2. Normal stress at the contact boundary



Since no friction occurs, the tangential component of the stress tensor vanishes at the
contact boundary, and is set to zero in the first equation of (2.2). We have only contact
pressure at I'c. If there is no contact between the two bodies, the boundary stresses at
¢ are zero; see (2.2) and (2.3). The bilinear form a(-,-) is defined by

2 2
a(v,w) = Z/Q Ei_jlmwi7_jvl,m dil?, W,V € H I‘I1 (Qk) R
k=1 k k=1

where Ejji,,, is assumed to be constant on each subdomain and H'(Qy) := (H'(Q4))%.
We write f(v) := (v,f)o.0 + (v, P)o;ry and denote by fi(-) and ag(-,-) the restriction of
f() and a(-,-) to Q , k € {s,m}, respectively.

The weak solution of the non linear contact problem can be obtained by a minimiza-
tion problem on a convex set K. We define the set of admissible displacements by

K = {VEX‘ (Vs)n+(vm)n Sq} s

where X := HL(Q,) x HL(Q,,) and H!(Q)) c H'(Q}) satisfies homogeneous Dirichlet
boundary conditions on 9Q; NTp, k € {s,m}. Then, the weak solution of (2.1)—(2.3) is
defined by: Find u € K such that

J(u) < 3161% J(v) (2.4)

where the energy functional J(-) is given by J(v) := %a(v7v) — f(v) on K; see, e.g.,
[8, 16]. The minimization problem (2.4) is equivalent to a variational inequality: Find

u € K such that
a(u,v—u) > f(v—u), velk . (2.5)

In the rest of this section, we consider a saddle point formulation of (2.5). To do
so, we introduce a Lagrange multiplier space M := M?. More precisely, we use the dual
space of the trace space W := W% of H! () restricted to I'c. Here, we assume that I'c
is compact embedded in 9Q, \ ' or that g € HééQ(Fc). We note that if 90, N Ty =0
then M = H /2(T) = (H*(To))*.

Then (2.5) can be rewritten as: Find (u,A) € (X, M)

a(u,v) +b(A,v) = f(v), veX, (2.6)
b(u:“) S (H'Hs79>rc7 H€M+7

where M* := {p € M| (p - ng,w)r
bilinear form b(-, -) is defined by

> 0,w e W, Wt = {we W|w > 0}. The

c

b(pe, v) == ((Vs)n + (Vin)ns - 1)1

and (-, -)r. denotes the duality pairing between M and W. From the second inequality in
(2.6), we find u € K. The variational inequalities (2.5) and (2.6) form the starting point
for our discrete approach.

On each subdomain, we use a shape regular triangulation and lowest order conform-
ing finite elements, i.e., piecewise linear finite elements on simplicial triangulations and
piecewise bilinear and bicubic elements on rectangular and hexahedral triangulations, re-
spectively. The finite element spaces associated with Qg and 2, satisfying homogeneous
Dirichlet boundary conditions on I'j, are denoted by X.;,, and X,,.5,,, respectively. Ad-
ditionally, we introduce a discrete Lagrange multiplier space Mj being defined on the
non-mortar side of the possible contact boundary I'c. The discrete trace space of X,
on the non-mortar side is denoted by Wj,. We assume that I' can be written as the union



of faces and edges in 3D and 2D, respectively. The corresponding discrete spaces for the d-
dimensional vector fields are denoted by bold characters X, := Xsd;hs, Xomsh, = X;i;hm
Xy = Xgn, X Xpsh, s Wiy := W and My, := M{. Here, we use dual Lagrange mul-
tiplier spaces. For mortar finite element discretizations dual Lagrange multiplier spaces
have been analyzed in [39] and generalized in [25, 34, 40].
For convenience, we recall the characteristic properties of the dual basis functions

1, € My, associated with the vertices ¢ on the non-mortar side of I'c. We note that in
contrast to the standard mortar approach no modifications of ¢, near the boundary of I'c
are necessary. We denote the standard nodal hat functions associated with the vertices
g on the non-mortar side 9Q, N T¢ by ¢, The set of vertices on the non-mortar side
00, NT¢ is called Pcin,. We briefly recall the characteristic properties of our dual basis
functions ¢, € Mp:

e supp g = supp ¢y, q € Poun,

e 1), is piecewise linear or bilinear,

o Z '(/)q =1,

qEPC hy
o fzpp o5 do = 0y, fgi)s do, p,q € Pc.n,, F C I, for all boundary faces in 3D and

all boundary edges in 2D.
We remark that the last property, in general, does not hold for the dual basis functions
constructed in [34]. The last property guarantees the biorthogonality relation

Uy d); do = dp, d); do, p,q € Pcin, - (2.7)
Tc JTe

Other choices of dual Lagrange multiplier spaces are possible. In [40], continuous Lagrange

multipliers are constructed which are locally defined and piecewise cubic on simplicial

triangulations and piecewise bicubic on hexahedral triangulations.

On both subdomains independent triangulations can be used resulting generally in
non-matching triangulations at I'c. In that situation, a pointwise matching condition
yields a non-optimal discretization scheme, see, e.g., [19] and [20] for numerical results in
2D. However, optimal discretization schemes for non-matching triangulations can be ob-
tained if mortar techniques are applied. The essential idea is to replace a strong pointwise
coupling condition by a weaker integral condition. We refer to [3, 6, 7] for an overview of
mortar methods in the linear case and to [4, 5, 20] for non linear contact problems. The
proof of the discretization error is based on the use of the standard Lagrange multiplier
space. We do not use this approach, but point out that the same qualitative results can
be obtained for our approach. Then, the discrete variational problems reads as follows:
Find uy € Kj such that

a(up, v —up) > f(vy —uy), vy € Kp (2.8)

where X, := X5, X X5, and K, is a suitable discrete approximation of K. We set

Kn = {veXy] / [v] - my, ¢, do < / gn Yp do, p € Pon,} s
JT o JT e

where g, € W}, and g, > 0 is a suitable approximation of g. The discrete normal vector

n, associated with the vertex p is defined by

n, = a, Z np| F |,

FC supp ¢,

where a;, > 0 such that ||ny|| =1, | F' | is the area of F', and np is the outer unit normal
vector on F', see Figure 2.3.

We note that, in general, ;, is not a subspace of K. For convenience of the reader,
we review the a priori bounds and the main ideas of the proof, see [20, Theorem 3.1].



Fic. 2.3. Outer normal vectors ng and ny,

LeMMA 2.1. Under suitable reqularity assumptions on the solution u and the actual
contact boundary, we obtain optimal a priori estimates for the discretization error

a(u —up,u— uh)% < C(a)(hs + hm),

where C'(u) does not depend on the meshsize, and hs and hy, stand for the meshsize on
the non-mortar and mortar side, respectively.

The proof follows the same lines as given in [20]. However, there are two essential
differences. We do not use a subset of the finite element trace space on the non-mortar
side to define our Lagrange multiplier space. In contrast to [4, 20], we use a locally
defined dual basis to define our Lagrange multiplier space. The second main difference
is that we do not use a scalar Lagrange multiplier space but a vector valued one. This
modification is motivated by the following observation. The discrete Lagrange multiplier
in the mortar setting approximates the boundary stress. In the case of a contact problem,
the boundary stress can be decomposed into a scalar component and a vector valued one
(scalar in 2D) representing the normal and tangential stresses. If no friction occurs, the
tangential stress components are equal to zero and can be therefore eliminated. Then,
the Lagrange multiplier space can be defined as an appropriate discrete approximation
for the normal stress. However working with a vector valued Lagrange multiplier space is
more general, and friction terms can be easily included in the approach. Following [20],
it is sufficient to verify a H'/2-stability of the mortar projection and to have appropriate
approximation properties for the Lagrange multiplier space to obtain the a priori estimate.
The stability result for the dual Lagrange multiplier space can be found in [41] and the

approximation properties follow by construction from the property Zpepp_h Y, do = 1.

3. A non linear Gaufl—Seidel method. One of the major difficulties in the nu-
merical simulation of contact problems is the non differentiability of the associated energy
functional at the contact boundary. Very often regularization techniques; see, e.g., [9, 13],
or augmented Lagrangian methods; see, e.g., [33, 35] are used. For multi body contact
problems, contact elements can be applied, see, e.g., [43]. Then, the discrete solution
depends on a penalty parameter. In [32], a new non linear Dirichlet Neumann algorithm
in combination with mortar techniques has been introduced. It is based on the solution of
a linear Neumann problem and a non linear unilateral contact problem in each step. The
non linear contact problem is solved by monotone multigrid techniques [28, 29, 30, 31].
Two damping parameters control the convergence of the Dirichlet Neumann method. If
the damping parameters are too small, we observe a slow convergence. On the other
hand if the damping parameters are too large, the method does not converge. In 2D,
convergence rates which are independent of the refinement level and which are robust
with respect to the damping factor can be observed. We refer to [32] for some numerical
results illustrating the influence of the damping parameters. However in 3D, the conver-
gence rates depend sensitively on the damping factor. Moreover, the choice of a good
damping factor depends extremely on the geometry of the elastic bodies. Figures 3.1 and
3.2 illustrate the influence of the geometry.

In both examples, we use the same parameter setting. The difference is the length
of the linear elastic bar which is situated in between of the two cylinders. The two
figures show the deformation after 15, 25, 35 and 40 steps of the Dirichlet Neumann



Fic. 3.1. Convergence of the Dirichlet—Neumann algorithm

iteration. In case of the short bar, convergence after a few number of iteration steps
can be observed. All pictures in Figure 3.1 show the same displacements. The situation
is completely different for the long bar. In that case, the method seems to convergence
within the first iteration steps but after 30 iteration steps we observe large oscillations,

and no convergence can be obtained.

FiG. 3.2. Oscillation of the Dirichlet Neumann algorithm

This observation motivates the introduction of a new monotone method. In partic-
ular, the convergence of our new algorithm is guaranteed and does not depend on the
choice of a damping parameter. We focus on monotone methods for the iterative solution
of the discrete contact problem. In each local iteration step, the solution minimizes the
energy with respect to the local search direction and is admissible. An iterate u” is called
admissible, if it satisfies the constraints at the contact boundary, i.e., if u” € K. To do
so, we introduce local subspaces X, C X;, 1 < k < K, and define an iteration sequence
u” by u"t! := ug and uy := u”

J(llk) = ""I’flglg(llc J(llk,] + Wk), 1<kE<K . (31)
up_1twE €Ky

It is well known [14, 36] that the minimization process (3.1) is equivalent to a non linear
block Gaufi—Seidel method. Unfortunately to obtain a globally convergent sequence u”,
it is not, sufficient to have X; = X, + X,,, + ... Xk.

In the following, we discuss a very simple counterexample and refer to [14, 36] for
more details. Let X := R?, X; := span {e;}, X» := span {e;} and the energy functional
J(71,72) := 22 + x3. The convex set is defined by K := {(z1,22) |72 > 0,21 + 22 > 1}.
Then it is easy to see that the solution of the minimization problem is (0.5,0.5). Using
(1,0) as start iterate x° and applying the iteration (3.1), we find x"* = x°, and we have
no convergence. However, if we replace X, by span {es — e; }, we obtain x' = (0.5,0.5).
Figure 3.3 illustrates the parameterization of the convex set K with respect to the two
different choices of subspaces. On the left the convex set is written in terms of ae; + fe,
and on the right in terms of ae; + S(ex —e;). Theorem 3.1 in [14] yields that the iteration
sequence defined by (3.1) converges if the associated parameterization of the convex set
has a tensor product structure.

Our algorithm will be based on a suitable basis of the unconstrained product spaces
Xp. As we will see, the standard nodal basis of X, is not a good choice. The set of
all vertices of the triangulations on 4 and 2, is called P,. Defining for all vertices p
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FiG. 3.3. Parameterizations of the convex set

the local d-dimensional space X, by X, := {¢,a|a € R*}, we find X;, =} _p X,
However, the parameterization of the convex set I, with respect to this choice does not
have the required tensor product structure. Thus, we cannot expect a convergent scheme.
To get a better feeling, we consider the structure of the convex set K, in more detail. The
constraints can be associated with the nodes on the non-mortar side. For each vertex on
the non-mortar side, we have one weak non penetration condition. The biorthogonality
of the dual Lagrange multiplier guarantees that the constraints are decoupled. As a
consequence, changing the value on the non-mortar side at the vertex p € P¢,;, has no
influence on the penetration at the vertex ¢ € Pc.n,, ¢ # p. To start, let us consider the
contact zone. As it is standard in the mortar context, the constraints at the interface are
formulated in terms of the Lagrange multiplier space. The algebraic form of the discrete
non penetration condition can be written as

ODu® < OMu™ +§ | (3.2)

where u® and u” denote the vector representation of the displacement on the non-mortar
and mortar side with respect to the standard nodal basis functions, respectively. The
components of the vector g are obtained by

,@p = wp 9h d(T, pE PC;hS . (33)
JT e

Due to the use of a dual Lagrange multiplier space, the matrix D is a dn, x dn, diagonal
matrix and the matrix M a dng X dn,, mass matrix, where ng stands for the number of
vertices on the non-mortar side and n,, stands/f\or the number of vertices on the mortar
side. The block entries of the matrices D and M are given by

dpp = /F ¢, do 1dgxa and My, = /F Yp¢y do 1daxa, p € Pcin,,q € Poin,
" (&) " (&)

respectively, where Pc;p, is the set of vertices on the mortar side, i.e., on 99, N Tc.
The additional upper index indicates on which side the nodal hat functions are defined.
We recall that the index s stands for the non-mortar side and the index m for the mortar
side, i.e., " is the standard nodal basis function on the mortar side associated with the
vertex g € Pc,p,,. Finally, the matrix O is a block diagonal ng X dn, matrix, the entries
are given by the row vectors oy, := nZ, p € Pcip,. Observing that D and O are block
diagonal matrices, we find

(u’)y =0’ <OMu™ +g ,

where the components of the vector g are obtained by g, := gp/(frc ¢y, do), p € Poin, -
The biorthogonality of the basis sets and the locality of the supports yield that M :=
D~ M is a sparse rectangular mass matrix involving the Lagrange multiplier on the non-
mortar side and the basis functions on the mortar side. The duality of the Lagrange



multiplier yields that the constraint (3.2) results in one local constraint for each vertex
on the non-mortar side

(us)p ‘n, < (Mum)p ‘n, +4g,, p€Pon, - (3.4)

We remark that we have by construction g, = gn(p) > 0. Let us start with the case
of a non linear Gau3—Seidel method in terms of the standard nodal basis. Then, the
Gauf} Seidel method can be carried out locally for all interior nodes and the nodes on
the non-mortar side. For each interior node, we solve a linear d X d system, and for
each non-mortar node, we solve a non linear d x d system with one constraint in normal
direction. Unfortunately, the situation for a mortar node is more complex. Solving for
each node on the mortar side a local minimization problem does not yield a convergent
method. We remark that changing the values uj" at the vertex ¢ € Pc;p,, on the mortar
side influences the non penetration condition at p € P¢;p, for p such that m,, # 0. To
obtain a convergent method and to work with nodal basis functions, we have to increase
the dimension of X, ¢ € Pcp,,. Enlarging the space X, corresponds to increasing the
block size in the non linear Gaufi—Seidel method. We associate with each nodal point
p™ € Pcip,, on the mortar side, all nodal points p® € Pc.y, with p* € Im = {¢° €
Pcih, | mgapm # 0} on the non-mortar side. The number of vertices n,m in Ipym reflects
the local ratio between the meshsize on the mortar and non-mortar side. Then, a non
linear d(nym + 1) x d(ny~ + 1) problem has to be solved for each nodal point on the
mortar side. As long as the block size is small, this can be carried out in an efficient way.
However in 3D, unstructured grids result easily in complex block structures, see Figure
3.4. In the right picture all nodes in I,~» are marked with a filled circle. Although the
meshsize on mortar and non-mortar side is roughly the same, the resulting non linear
system for the mortar node p'™ has dimension 54.

mortar side non-mortar side

FiG. 3.4. Unstructured grids on a 2D interface

If the meshsize on the mortar side is larger than on the non-mortar side, the dimension
of the non linear problems which have to be solved can be considerably large. Moreover if
we consider a hierarchical multilevel structure on the mortar side, the dimension increases
with decreasing refinement level k, more precisely, it is proportional to 2(4=1(E=F) where
L is the finest level on the mortar side. Thus working with nodal basis functions for the
unconstrained product space is not very efficient in a multigrid context.

Now, the central idea is to modify the nodal basis functions on the mortar side such
that the constraint (3.4) can be easily satisfied. One possibility is to replace the nodal
hat functions associated with the vertices on the mortar side by the corresponding basis
functions of a suitable constrained space V. It turns out that a good choice is the
nonconforming space of a mortar discretization

VhZ:{VEXh‘ [V]'¢d0207 ¢€Mh}-
I'e
We note that in the definition of the space Vj, the normal direction does not enter and
that My, is a vector valued Lagrange multiplier space. A different possibility to define
the space would be to glue only the normal components of the traces together, i.e.,

{VEXh‘ [V'np] ¢Pd0:07 pEPO;hs} .
JT o



10

Since, we are interested in a general approach which can also handle friction, we do not
follow this line. Let us consider an element in Vj, in more detail. The definition of V,
yields

/ [v] npp,do =0
I'e

for all vertices p on the non-mortar side. Thus (3.4) is automatically satisfied for all
elements in Vy,, and V, is a subspace of K. It can be easily verified that

Xp =V, + Z span {gpe; |1 <i<d} =V, + Z Sy . (3.5)

PEPC;n, PEPC h,

where e; € R? is the i-th. unit vector. Working with the nodal basis of V; and the
d-dimensional local space S,, p € Pc;p,, the non linear block Gaui—Seidel method is
extremely easy to realize. In each step, we have to solve a linear d x d system for
each block basis function of V. Additionally, we solve for each S, a non linear d x d
problem. We point out that the dimension of the non linear subproblems is independent
of the triangulations at the interface. In contrast to the nodal basis of X, no non linear
problem of larger dimension than d has to be solved. Moreover, the number of non linear
problems to be solved in each step is the number of vertices on the non-mortar side. This
is not the case for the nodal basis of X,. In that case additionally to the d-dimensional
non linear problems associated with the nodal points on the non-mortar side, we have to
solve non linear problems associated with the vertices on the mortar side. Moreover, the
dimension depends on the meshsize and can be considerably large.

In the rest of this section, we consider the variational problem in more detail to see
how the implementation can be realized. We start by introducing a modified basis of Xy,
based on the decomposition (3.5). Three different sets of nodes are introduced I, I, and
I;. The sets I, and I, stand for the nodes associated with the vertices on non-mortar
and mortar side, respectively. The third set I; contains all remaining nodes. Now, we
consider a modified basis © of X;,. We obtain © from the nodal basis ® of X}, by a local
basis transformation

0; Id 0 0 P,
O = O, = 0 Id MT D,, =: B® .
0, 0 0 Id P,
Associated with this new basis is the modified stiffness matrix
Id 0 0 Ay Apm Ay Id 0 0 ~
A= 0 Id MT Api Apm 0 0 Id 0 | =BABT , (3.6)
0 0 1Id A, 0 A, 0 M Id

where /ikl, k,l € {s,m,i}, are the block stiffness matrices associated with the nodal basis
functions. A straightforward computation shows that A is given as

Ay Aj + A M A
A= | Ani+MTA,; Apm+MTAM MTA,,
Asi AssM Ass

In terms of the new modified basis, the convergence of our non linear block Gaufi—Seidel
method is guaranteed, [14, 36]. Moreover, the implementation is extremely easy to realize.
In addition to the non linear block Gaufl Seidel method, we have to carry out one pre-
and one post processing step. We modify the stiffness matrix according to (3.6) and the
right hand side f is replaced by f,
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Now, we can apply a non linear Gaufl Seidel method on the modified system. Within
each step, we solve for each index j € I; U I,,, a linear d x d system

u; = A_Zj] (f] — ZAjkuk) , (37)
k#j

and for j € Iy we solve for all v; n; < g;

(vi —u)TAjm; > (v —uy)"(f =Y Ajug), wjmn;<g; . (3.8)
k7

The non linear block Gauf3 Seidel method gives a solution vector ug with respect to
the modified basis ®. To obtain the nodal values of the displacements ug, we have to
apply B”, i.e., uy = B"Tug. The pre- and post processing step require two additional
multiplications by B and BT which are of lower complexity. We remark that the special
structure of B yields that only a multiplication with the sparse mass matrix M has to be
carried out. Additionally, the action of B can be restricted to the interface.

However, we cannot expect a better convergence rate as in the linear case which is of
O(1— h?), where h is the meshsize. Thus from the numerical point of view, the non linear
Gaufl Seidel method does not fit our requirements. Figure 3.5 shows the convergence
rates of the non linear block Gaufi—Seidel method for a simple 3D example. After a few
refinement steps, the convergence rate is extremely close to one. We note that due to
roundoff errors, for more complex examples in 3D no convergence can be observed and
the method fails. These observations motivate the introduction of our new monotone
multigrid method.

0.9

Convergence rate

0.8

10" 10> 10* 10" 10°
Number of elements
Fia. 3.5. Convergence rate of the non linear Gaufl Seidel method for a 3D contact problem

4. A monotone multigrid method. Monotone multigrid methods have been in-
troduced and analyzed for variational inequalities in [26, 27, 28]. Generalization to a
one-sided Signorini problem are highly nontrivial and are studied in [29, 30, 31]. One
crucial property is the fact that the discrete contact condition can be satisfied locally per
node. In the previous section, we have introduced a modified basis such that the multi
body contact problem has formally the same algebraic structure as a one-sided Signorini
problem. The main idea of this section is to apply monotone multigrid methods. These
techniques combine multigrid methods with succesive energy minimization, yielding opti-
mal iterative solvers for this type of non linear problem. The key property for the global
convergence of monotone multigrid methods is the minimization of energy in each local
correction step.

We assume that we have a nested sequence of triangulations 7, i = 1,2, k =
0,1,..., L. Then the associated unconstrained product spaces X are nested, i.e., X3 C
Xk41. Unfortunately the nonconforming constrained spaces Vj are not nested if the
triangulations are non-matching. Thus the prolongation operator from Vj onto V4
cannot be the identity. As a consequence no energy minimization can be guaranteed and
monotone multigrid methods cannot be applied directly. In a first step, we consider a
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local projection operator II; () from X; onto V;

s vi] e ¢, do
Mvi)=vi—» Y Jr vl -ei ¢

S
i=1 pEPc;n, fFC' ¢p do

(j)Zei .

We note that II;(-) restricted to V; is the identity. This operator has been introduced in
the scalar case in [41]. Due to the biorthogonality (2.7), it is a projection. This can be
easily seen by considering I1;(II;(v;)) and using II;(¢;e;) = 0. Based on this projection
is a modified transfer operator (Ill“)mod from V; onto V;;; which has been introduced
and analyzed in [41]. Its algebraic representation is defined in terms of the weighted mass
matrix My, on Level [ +1

Id 0 0
(L moa := | 0 ]éd 0 | =Wyt
0 My 0

where Ill“ is the transfer operator from X; onto X;4; with respect to the standard nodal

basis ®; and ®;;. We note that the unconstrained product spaces X; are nested and
that If+1 is the algebraic representation of the natural embedding operator. Now, the
application of the modified transfer operator is of optimal complexity. Compared with
the standard transfer operator, one additional multiplication with the sparse mass matrix
M1 has to be carried out. Let us consider the operator (Ill“)mod in more detail to see
why it does not fit our requirements. Observing that the algebraic representation of the
linear functional II,;(-) is W}, we find for v, := (IlH'l)modvl

J(vig1) = J(Iga(vr))

From this equality, we cannot deduce that J(v;y1) < J(v;). To guarantee J(v;31) < J(v;)
for all v; € V;, we have to define v;;; in terms of an a-orthogonal projection operator.
The application of which requires the solution of a global linear equation system with
condition number (’)(h,ljf]). On the other hand if we work with a prolongation operator
which does not satisfy J(v;11) < J(v;), the monotonicity is violated, and we cannot
guarantee the convergence of our method. From the numerical point of view, the solution
of the global system is too expensive. Thus, we propose a different approach and introduce
a nested sequence of new spaces Vo C ... C V. We start by defining V := V. Let
0;11- = Hﬁ)e,; be the standard nodal basis of V;, then we define the new basis functions by

w; = Bim'
fork = 1,...,(L 1) »
Wik = ILie(Wipk—1) (4.1)
~
D = Wy,

~1
It is easy to see that {6, ,},; forms a set of linear independent functions. As a conse-

quence, we get dim V; = dim \N/'l. Moreover by construction, we have
~ ~
(0, =, (wr-1)) =Hr(wr—1) =6,

-~
and thus 0

p.i € V. Considering the definition in more detail, we find a multiplicative
structure

~
ap,i:HLOHLflo...HH_l alp,i:HLOHL—1°-..Hl ¢i)7z ,

where qﬁim» = qﬁi)ei denotes the standard nodal hat functions on Level [ associated with
the nodes on the mortar side.
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Mortar Non-mortar
<~ Level 0
D Level 1
-~ Level 2
- Level 3
- Level 4

Lo . . ) ~1
F1a. 4.1. Multiplicative structure of the modified basis functions 6, ;

Figure 4.1 illustrates the multilevel structure of éiw-. On the non-mortar side correc-
tions are added in a multiplicative way. A different possibility would be to use an additive
decomposition. Since multigrid methods are multiplicative Schwarz variants, we prefer
(4.1). To define the linear part of our multigrid method, we start with the construction of
the prolongation operator Z; from \71 + S; onto \N/'H] + S;4+1. The algebraic presentation

~1
of 8, ; in the nodal basis is given by
Wil W Iy, I Wi,
~+1
and of 6, ; by
WLIF Wi aIp =y I Wit

The last two equalities show that the prolongation from \N/'l onto \N/'H] is given by

I (i + I isMy 0
Iwy = 0 LY 0
0 0 0

We point out that the prolongation operator Ill“ W, is the algebraic representation of the
natural embedding of V; in V4. Figure 4.2 illustrates the prolongation operator.

,,,,,,,,,,,,,,,,, ,
—————————————————————————————————— *----0 ]
3 *

,,,,,,,,, . S S
i .
—————————————————————————————————— 9----0 g

,,,,,,,,, ! e R

® Coordinate vector on level | ® Coordinate vector on level I+1

Fic. 4.2. Prolongation operator from {71 onto \71“ ,L=14+1

For simplicity, we restrict ourselves to a function in \7 being zero at all interior
vertices. The support of such a function is marked by the shadowed region. Then, the
function as an element in V; is uniquely defined by its values at the vertices on the mortar
side which are marked by filled circles in the left picture of Figure 4.2. The values on
the mortar side are extended to the non-mortar side in the defined multiplicative way
such that the constraints at the interface on Level L are satisfied. The vertices on the
non-mortar side on Level I are marked by empty circles and on Level L := [+ 1 by empty
squares. Now, we interpret the function as an element in V4. In the right picture, the
relevant vertices to specify the function are shown by filled circles. The values at the
filled circles in the interior of the non-mortar subdomain are obtained by the values at
the empty circles and the standard prolongation. We note that the values at the empty
squares do not, contribute.
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The prolongation from S; onto \~/'H_1 + Sy is standard. We note that S; ¢ S; 41 but
S; C Si+1 + Viy1. Using the fact that the prolongation 7, is a linear mapping, we get

(I (L) i + ()M (I
7 = 0 (LY mm 0 . (4.2)
0 0 (I )ss

We remark that the prolongation Z; is the algebraic representation of the natural embed-
ding Vi +S; C Vi41 +Si41.

In a second step, we have to take care of the non linearity associated with the nodal
basis functions of Sz. Unfortunately for | < L, the standard nodal basis functions of S,
are not suitable in the non linear multigrid context. To see this, let us consider a simple
two dimensional example of a curvilinear contact boundary as is depicted in Figure 4.3.
Let r be a node on Level L — 1 and let p # ¢ be the neighboring nodes of r on Level L.

1gid foundation
/

Fia. 4.3. Coarse grid correction at curvilinear boundary

We assume that we have different outer normals n, # n, and that we have contact
at p and ¢g. Then, any coarse grid correction . - 871, v, € R, has to satisfy o, - n), =
o, -n, = 0 and thus o, = 0. Using standard nodal basis functions, there is no coarse grid
correction associated with the node r on Level L — 1. As a consequence the low frequency
part of the error in tangential direction at the node r cannot be handled appropriately.
The additional constraints at the nodes p and ¢ result in a reduction of the dimension
of the coarse space, and the approximation property is lost. Working with the standard
nodal basis of S; and satisfying the constraints on Level L, we cannot guarantee anymore
the optimality of the multigrid method.

Therefore, we are interested in coarse search directions which accelerate the conver-
gence speed by generating some low-frequency sliding along the contact boundary and
do not violate the non penetration condition on the finest Level L. Such type of search
directions can be obtained by suitable modifications of the standard coarse grid functions.
We refer to [31, 30] for the introduction of a so called truncated coarse grid function. We
emphasize that the particular shape of the truncated coarse grid functions depends on
the actual guess of the contact zone. Let us first consider the two level situation. As
before in the linear setting, we introduce a modified coarse space §L71, set, QL := S and
denote by 0,’1‘11- = Ggei the standard nodal basis of S;. Then, we define the truncated
basis functions by

~L—1 _ -
0,, =6.."- Z 0.7 (q) -my) 6F n,, (4.3)
qeJL

where J7, is the set of nodes on Level L being in contact after the leading Gausf3 Seidel
steps on Level L. We remark that we suppress for simplicity an additional index indicating
the iteration step.

Figure 4.4 illustrates the shape of a truncated coarse grid function for given contact
nodes. The given contact nodes are marked by filled circles. In the left picture, the
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Fig. 4.4. Two level (left) and multilevel (right) truncated coarse grid function

two level situation is shown, and in the right picture, a multilevel situation is given. By

construction, it is easy to see that éi:l(q) -n, = 0 for all ¢ € J. The construction
of the truncated coarse grid functions guarantees that for each node being in contact
with respect to the aczual iterate on the finest grid, the constraints are automatically
satisfied, and no correction in normal direction occurs. As a consequence, we do not
obtain additional constraints, and the dimension of the modified coarse grid spaces Si_y
is not reduced in tangential direction.

FiG. 4.5. Local box constraints K;(p) on Level | (left) and K;_,(p) Level | — 1 (right)

Unfortunately, it is not sufficient to construct coarse grid functions satisfying the
constraints for all p being at the actual iterate in contact. To guarantee that a new
iterate is in the convex set K, it is not sufficient to verify one constraint per node on
Level [ < L. Additionally, we have to satisfy all constraints on Level L being not at the
actual iterate in contact. Using uniform refinement, we obtain O(2(?~D(Z=1) constraints
for each node p on Level [. As a consequence, the optimal complexity of the algorithm is
lost and a logarithm occurs. To avoid this, we use modified convex sets. In a first step,
we introduce convex sets depending on the actual iterate. We define for a given convex
set D; on Level I < L and a given vector z;, the convex set P;(z;, D;) := {vi|vi+2z; € D;}.
Moreover, we define the restriction of a given convex set D; on Level [ < L in terms of local
box constraints such that D,y := R;D; C D, see [28, 31]. More precisely, the constraints
for D;_1 are only associated with the nodes on Level [ — 1. Let D; be the actual convex

set defined by local box constraints Bl, := [t 6P x . ox o B2, aP e [—o0,0]

Bip;l € [0,00], 1 < i < d, for each node p on the non-mortar side on Level . Then, we
define R;D; by local box constraints B, := [a" ™", BV x ... x [af'~", 857 for each

node p on the non-mortar side on Level [ — 1. We set

pil—1 asl pil—1 : qsl
/% = a . . . = 1 . s
a; max(a;"), i win (%)

where 7, is set of nodes ¢ on Level [ such that ¢ and p are vertices of one boundary
face on Level I. On the finest Level L, we define for a given z; € K; the convex set
Pr(zr, € K1) by local box constraints Bﬁ with

ol = —co, PP i=d (g, —2(p) mp)/(1p); .

it (n,); > 0 and
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Bz /,/

BL

By

Fia. 4.6. Construction of box constraints on Level L

if (n,); <0and o’ := —o0, BP" = 0 if (n,); = 0, see Figure 4.6.

For more sophisticated strategies, we refer to [31, 28]. It can be easily seen that
zr, + wy, € Ky, for wy, € Pr(zr,Kr). We note that in general Pp(zr, ) is a true
subset of {wy, |wr +z1, € K1 }. Now, we are ready to define our truncated coarse basis

~I,
recursively. We start with 8 := 0" and set

6 = (Il )ePin@ ", 1=L-1,L-2,....0,

where Pyq is a dn't! x dnl*' block matrix depending on the actual iterate. Here, n\t!
stands for the number of vertices on Level [ + 1 on the non-mortar side. The d x d block
matrices are associated with the nodes p on Level [ 4+ 1 on the non-mortar side. On Level
I+ 1= L, they are given by
T
Id — wynyn,
and we set w, = 1 if z1,(p) -n, = g, and w, = 0 otherwise. On the lower levels I +1 < L,
the truncation strategy is slightly different. Here, truncation is not restricted to one
direction. For a given z; € D;, truncation is applied whenever z;(p) touches the boundary
of the local box constraint. We set

d
T
Id — E Wp,i€p,i€) ;

i=1

where w, ; = 1, if the local correction at the node p is on the boundary of the convex set
B’;‘l in direction e; and wy; = 0 otherwise. The truncations strategies being different
reflects the fact that only on the finest grid we have to take care of the normal directions.
We note that P44 is the identity if the actual iterate is in the interior of the (restricted)
convex set. Combining this non linear restriction operator with our linear one given by
the transposed of the prolongation (4.2), we define

- . (Ill+1)ijz; ’ l 0 0
Zl = (Il'+1)m7'f -Il- Ml (Il}])Si (Il+])mm . O
(Il+1)si 0 (Il+1)sspl+1

In terms of this new non linear restriction operator, we formulate our iterative scheme
qu = MG(L, AL, fr,u},Kr,m1,mz) as V-cycle multigrid method with m; pre- and
my postsmoothing steps. The start iterate u) is given. We denote by GS(4,d, v, D, k)
the k-th iterate of the non linear Gauf3—Seidel method applied to the start iterate v with
matrix A, right hand side d and constraint set D.

MONOTONE MULTIGRID ALGORITHM: MG(l, A;, d;, vy, Dy, mq,ms)

Presmoothing: z; := GS(4;,d;,v;, Dy, m;)
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Coarse grid correction:
Ay = 2742
di_q1:= ZlT(dl — /Lzl])
Dy := R/Pi(z,Dy)
if 1> 1, q_1 :=MG({ —1,4;_1,di_1,0,D;_1,m1,m5)
else qQo := GS(0, Ay, dg, 0, Dy, 00)

Prolongation: zl2 = zl1 + Zlql,1
Postsmoothing: MG (1, A, dy,vi, Dy, my,ms) == GS(A;, dy, 27, Dy, ms).

On the coarsest level, the resulting constrained problem is solved up to a given toler-
ance by suitably many steps of the non linear Gaufl Seidel method. This is denoted by
the ficticious iteration number co. In case of a coarse grid with many degrees of freedom,
an equally modified algebraic multigrid method can be applied. For a numerical result,
we refer to the 3D example in Section 5. We remark that the restriction Z, depends on
7}, see also [31]. In our implementation, the coarse grid matrices are only locally reassem-
bled if a change of phase occurs. The definition of R; guarantees that the prolongated
correction is in P(z},D;) and thus z} € D.

Our definition of the truncated search directions give rise to local corrections which are
admissible with respect to the actual guess of the contact boundary. The corresponding
non linear W-cycle multigrid algorithm is straightforward.

THEOREM 4.1. Under suitable assumptions, our monotone multigrid algorithm is
globally convergent. Moreover, the discrete contact boundary is identified after a finite
number of iteration steps.

In [30, 31], the global convergence of a truncated monotone multigrid method for a
one-sided Signorini problem has been shown. Moreover, under some stability assumption,
it is also shown that in this case the discrete contact boundary is detected after a finite
number of iteration step. Due to the decomposition (3.5), these results do also apply for
our monotone method. We refer to [31, Theorem 3.9] for details.

5. Numerical Results in 2D and 3D. In this section, we present numerical re-
sults in 2D and 3D illustrating the performance of our new method for elastic contact
problems. Moreover, we compare our new non linear method with a standard linear multi-
grid method. To this end, the boundary stresses computed by means of our monotone
multigrid method are taken as boundary data for the standard linear multigrid method.
As it turns out, the convergence rates of our new non linear and of the linear multigrid
method are almost the same. With respect to execution time, there is no significant
difference between our non linear multigrid method applied to a contact problem and
the standard multigrid method applied to the corresponding linear problem with known
boundary stresses. Our non linear method has been implemented in the framework of
the finite element toolbox UG, see [2]. The implementation of the non linear method is
based on the abstract obstacle problem class developed in [31] in the context of one-sided
contact problems.

The first example to be considered is a frictionless Hertzian contact problem of a disc
with a plane in 2D. The problem data is taken from [9] where a penalty method is applied
to the contact problem. For this example, the boundary stresses are given analytically,
see [18], and we can compare the computed boundary stresses with the analytical ones.
On top of the disc, Dirichlet boundary conditions are applied corresponding to a point
load of F = 100N. The coarse grid, see the left picture of Figure 5.1, has been generated
using a grid generator. During the adaptive refinement process, new boundary nodes are
moved to their position on the boundary of the disc.

The plane is modeled by a rectangle with homogeneous Dirichlet boundary conditions
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Fic. 5.1. 2D example: Coarse grid and comparison of non linear and linear method

on the left and the right side. Homogeneous Neumann boundary conditions are applied
elsewhere. We use different materials for the plane and the disc and take E = 10% and
v = 0.45 for the plane and E = 7000 and v = 0.3 for the disc. On each level, the arising
discrete system is solved up to a given tolerance of eTor, = 107 '!, e.g., the iteration
process on Level [ is stopped if

a(u —u tuf —u N7 < epqp . (5.1)

We denote the final iterate by u;". To measure the performance of our new monotone
multigrid method, the computed boundary stresses are taken as boundary data for a
standard linear multigrid method. In both cases, we chose u) = 0 on each Level [, use
(5.1) as stopping criteria and apply a W(3, 3)—cycle. The asymptotic linear convergence
rates are defined by

ny nlfl ny nlfl

2= a(w —uw" " u - u" )
[ Tl,lfl n172 nlfl Tl,172
a(w, —u" - )

We emphasize, that the iteration process of our monotone multigrid method takes care
of the non linearity at the contact boundary. Due to the modifications, we observe an
increase of about 10 % of the cpu time on each level. The asymptotic convergence rates
of our non linear (crosses) and of the linear (diamonds) multigrid method vs. the number
of unknowns are given in the right picture of Figure 5.1. We observe level independent
convergence rates. Moreover, the asymptotic convergence rates are for both methods are
the same.

# iterations
Level 1 n monotone | standard | # contact nodes
0 186 4 4 1
1 654 20 20 3
2 1.336 22 22 3
3 2.874 22 21 7
4 7.794 21 21 13
5 22.132 22 22 27
6 65.208 23 23 53
7 178.598 24 24 105
8 412.430 24 24 209
9 811.030 24 24 417
TABLE 5.1

2D example: Non linear method for unknown contact boundary vs. linear method for known contact
boundary data for the Hertzian contact problem
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Table 5.1 shows the number of required iterations n; on each Level [ for both methods.
As can be seen, the number of iterations is bounded independently of the refinement level.
For almost all refinement levels, the numbers are the same.

o0l F—— 500~
I 4001
400 3
300 I 3007 £
s 200 &
200 <
100} £
100 ¢ 3
—50
g 0 0.5 1
123 45 67 x-coordinate
Fic. 5.2. Hertzian contact problem (2D): Mazimal contact stresses on Level 0,...,7 (left) and

boundary stresses on Level 9 (right)

The final approximation of the boundary stresses on Level L = 9 can be seen in the
right picture of Figure 5.2. Here, the approximation of the contact stresses obtained using
our new monotone method is plotted. We note that the horizontal line is the computed
tangential stresses. The use of vector valued dual Lagrange multipliers to approximate the
stresses yields very accurate results. In particular, the tangential stress is an additional
unknown. Thus, our approach can be easily generalized to multi body contact problems
including friction. In the left picture of Figure 5.2, the maximal boundary stresses com-
puted on each level and the theoretical value (horizontal line with squares) of the maximal
boundary stresses is depicted. On Level 3, the error of the maximal boundary stress with
respect to the analytical solution is 0.016% and on Level 4 only 0.002%. This corresponds
to 7 and 13 nodes being in contact with the plane, see Table 5.1.

Fi1c. 5.3. 3D example: Corse grid (left) and refined grid (right)

In 3D, we reconsider the example given in Section 3. The geometry consists of two
rollers and a bar and is depicted in Figure 3.1. Inhomogeneous Dirichlet boundary condi-
tions are applied on the upper and lower part of the upper and lower roller, respectively,
pressing the two rollers against the bar. Homogeneous Neumann boundary conditions are
applied elsewhere. In a first step, we apply our new monotone method for elastic contact.
In contrast to the Dirichlet Neumann method, see Figure 3.2, no oscillation occurs. This
is due to the fact that our method is monotone and global convergence is guaranteed.
The final approximation of the geometry using adaptive refinement can be seen in the
right picture of Figure 5.3. In the left picture of Figure 5.3, the coarse grid is shown.

In Table 5.2, we compare the performance of our new non linear method with a
standard multigrid method applied to the linear problem. The required iteration numbers
needed to achieve the given tolerance etor, = 107 are reported. For both methods,
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# iterations
level ng, monotone | standard | # contact

0 1.725 2 2 10

1 5.253 11 11 18

2 10.191 12 22 34

3 23.799 13 25 198

4 38.487 24 23 514

5 75.045 12 19 1.630
TABLE 5.2

3D example: Non linear method for unknown contact boundary vs. linear method for known boundary
data

nested iteration is used. As can be seen, the non linear method behaves as well as the
standard multigrid method.

We use trilinear finite elements on hexahedrons. Although these kinds of elements
are well suited for the numerical approximation of elastic materials, the aspect ratio
of the elements situated at the boundary of the cylinders does depend on the level.
For this reason, our method is accelerated by a conjugated gradient method, once the
contact boundary has been identified. Additionally, the inner nodes of the grids are
moved after each refinement step to improve the grid quality. Proceeding in this way, it
is possible to compensate the influence of the badly shaped elements at the boundary.
We remark, that it is also possible to use tetrahedrons or prisms instead of hexahedrons.
However, hexahedrons usually give rise to a better approximation of the displacements
and boundary stresses. Since on the coarse grid we have 1.725 unknowns, we do not use
a non linear Gauss—Seidel method as coarse grid solver. Instead, we apply an algebraic
monotone multigrid method.
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