
MONOTONE METHODS ON NON-MATCHING GRIDS FOR NONLINEAR CONTACT PROBLEMSBARBARA I. WOHLMUTH� AND ROLF H. KRAUSEyAbstrat. Nononforming domain deomposition tehniques provide a powerful tool for the numer-ial approximation of partial di�erential equations. We use a generalized mortar method based on dualLagrange multipliers for the disretization of a non linear ontat problem between linear elasti bodies.In the ase of unilateral ontat problems, pointwise onstraints our and monotone multigrid methodsyield eÆient iterative solvers. Here, we generalize these tehniques to non-mathing triangulations wherethe onstraints are realized in terms of weak integral onditions. The basi new idea is the onstrutionof a nested sequene of nononforming onstrained spaes. We use suitable basis transformations anda multipliative orretion. In ontrast to other approahes, no outer iteration sheme is required. Theresulting monotone method is of optimal omplexity and an be implemented as a multigrid method.Numerial results illustrate the performane of our approah in 2D and 3D.Key words. ontat problems, dual spae, linear elastiity, monotone methods, mortar �nite ele-ments, multigrid methods, non-mathing triangulationsAMS subjet lassi�ations. 65N30, 65N55, 74B101. Introdution. During the last deades, the interest in the numerial simulationof ontat problems has lead to an inreased researh ativity in this area, see, e.g.,[13, 16, 17, 38℄ and [23, 24, 42℄ for survey papers. Unfortunately, the numerial simulationof ontat problems turns out to be diÆult. The non penetration ondition between thebodies oming into ontat gives rise to an unknown ontat zone depending non linearlyon the displaements. By means of suitable inequality onstraints whih model the nonpenetration ondition, non linear and non di�erentiable problems arise. Thus, standardNewton methods annot be applied diretly.Often, ative set strategies [1, 11, 15, 21, 22℄ are used. Here, the atual ontat set isiterated and within eah iteration step one linear problem with a given ontat zone has tobe solved. Also widely used for the numerial simulation of ontat problems are penaltymethods. They are based on regularization and give rise to a non linear but di�erentiableregularized energy funtional. In the ase of a multi body ontat problem, penaltymethods an be ombined with ontat elements working on non-mathing triangulations,see, e.g., [12, 37, 43℄. The advantage of penalty methods is that they an be implementedin a straightforward way. However, the quality of the numerial solution depends stronglyon the penalty parameter.For one-sided ontat problems, monotone multigrid methods yield globally onver-gent and eÆient iterative solvers, see [28, 30, 31℄. These methods are based on theminimization of the non linear energy funtional and do not depend on a penalty param-eter. Monotone multigrid methods an be implemented as a modi�ation of a standardlinear multigrid yle and provide multigrid eÆieny for one-sided ontat problems.Unfortunately, these tehniques annot be applied diretly to multi body ontat prob-lems. This is aused by the nononforming situation at the interfae between the bodies.On the disrete level, the meshes of the bodies annot be expeted to math. Sine theauray of the numerial solution depends strongly on the disretization of the transmis-sion onditions, the hoie of the disrete transfer operator is of ruial importane for thewhole disretization sheme. A stable as well as eÆient disretization of the transmissiononditions at the interfae an be provided by mortar methods. Originally introdued forlinear problems in the ontext of nononforming domain deomposition tehniques in [6℄,they have also been applied to ontat problems, see, e.g., [4, 10, 20℄.�Math. Institut A, Universit�at Stuttgart, Pfa�enwaldring 57, D{70569 Stuttgart, Germany.wohlmuth�mathematik.uni-stuttgart.de, http://www.mathematik.uni-stuttgart.de/mathA/lst7y Institut f�ur Mathematik I, Freie Universit�at Berlin, Arnimallee 2, D{14195 Berlin, Germanykrause�math.fu-berlin.de, http://www.math.fu-berlin.de/~krause1



2 In this paper, we present a new monotone multigrid method whih does not requireany regularization of the non di�erentiability and whih uses mortar tehniques for theinformation transfer at the interfae. In that way, we obtain not only a globally onver-gent method but also optimal estimates for the disretization error. The resulting newapproah for the eÆient numerial simulation of multi body ontat problems is basedon the ombination of monotone multigrid tehniques, [30, 31℄, dual mortar methods,[6, 7, 41℄, a suitable basis transformation and a new sequene of nested nononforming�nite element spaes. Here in ontrast to [4, 10, 20℄, we use dual Lagrange multipliersyielding loally de�ned basis funtions. Dual Lagrange multipliers yield the same au-ray as standard multipliers but give rise to a more eÆient realization of the transferoperator. In partiular, no mass matrix has to be inverted at the interfae.Our new iterative solver is globally onvergent and of optimal omplexity. It requiresonly one suitable basis transformation and an be realized in terms of a standard multigridmethod and loal pre- and postproessing steps. Thus, it an be implemented as a modi�-ation of a standard linear geometri or algebrai multigrid method. Moreover, optimal apriori estimates for the boundary stresses whih play the role of a Lagrange multiplier areavailable. The approah is very exible and an be easily generalized to ontat problemsinluding frition. Partiularly, the method does not rely on a penalty parameter and noouter iteration is required. We also emphasize that one the disrete ontat boundaryhas been identi�ed, our new method redues to a linear subspae orretion method.The rest of this paper is organized as follows: In Setion 2, we introdue the nonlinear ontat problem, and we formulate the disrete non penetration ondition in termsof weak integral inequalities using dual Lagrange multipliers. In Setion 3, we introduea suitable basis transformation and deompose the global non linear problem in a globallinear and loal non linear subproblems. In Setion 4, we provide a nested sequene ofnononforming spaes and introdue modi�ed prolongation and restrition operators. Interms of these modi�ations, we an de�ne our new monotone multigrid method. Finallyin Setion 5, numerial results in 2D and 3D are shown illustrating the eÆieny andexibility of our new algorithm.2. A non linear ontat problem. In this setion, we onsider a nononformingapproah for the elasti ontat between deformable bodies. The disretization is based onmortar �nite element tehniques using dual Lagrange multipliers. A similar formulationin terms of standard Lagrange multipliers an be found in [5, 20℄.
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Fig. 2.1. Two body ontat problem and deomposition into �D, �N and �CFor simpliity, we restrit ourselves to the ase of two deformable bodies in ontat.The two bodies in their referene on�guration are identi�ed with the domains 
k � IRd,k 2 fs;mg, d = 2; 3, and we deompose the solution u in u = (u1;um), and write(uk)n := uk � nk, k 2 fs;mg, where nk is the outer unit normal on �
k. The non-mortar side is assoiated with subdomain 
s and the mortar side with the domain 
m.The subsript s is motivated by the non-mortar side playing the role of a "slave" side.



3Correspondingly, quantities on the mortar or "master" side are being attahed by thesubsript m. We start with the deomposition of the boundary of 
 into three disjointparts, �D is the Dirihlet part, �N denotes the Neumann part and �C stands for theontat boundary, see Figure 2.1.On both subdomains, the possible ontat boundary �C is assoiated with a suitableparametrization. The atual ontat zone between the two bodies is a priori unknownand is assumed to be a subset of �C . We denote tensor and vetor quantities by boldsymbols, e.g., � and v, and its omponents by �ij and vi, 1 � i; j � d. The partialderivative with respet to xj is abbreviated with the index ;j . Furthermore, we enforethe summation onvention on all repeated indies ranging from 1 to d, and we denote byÆij the Kroneker symbol.The non linear ontat problem an be written as a boundary value problem. Here,we onsider the ase without frition. In addition to the equilibrium onditions in 
s and
m and the boundary onditions on �
��ij(u);j = fi; in 
s [ 
m ;u = 0; on �D ;�ij(u) � nj = pi; on �N ; (2.1)we have the following onditions on the possible ontat boundary �C�T (us) = �T (um) = 0 ;�n(us) = �n(um) � 0 ; (2.2)and the linearized ontat ondition on �Cg � (us)n + (um)n ;0 = ((us)n + (um)n � g)�n(us) ; (2.3)where the funtion g : �C � IRd �! IR is the distane between the two bodies in normaldiretion taken with respet to the referene on�guration; see, e.g., [8, 16℄. We assumethat g is ontinuous. The system (2.1) is obtained by the equation of equilibrium, thestrain-displaement relation and the onstitutive law. We refer to [24℄ for an introdutionto linear elastiity. In the ase of a linear elasti material, the stress tensor � dependslinearly on the in�nitesimal strain tensor �(u) := 1=2(ru+ruT ). The stress tensor � isgiven by Hooke's law �ij(u) := Eijlm ul;m ;where Hooke's tensor E := (Eijlm)dijlm=1, Eijlm 2 L1(
), is assumed to be suÆientlysmooth, symmetri and uniformly positive de�nite. In the ase of a homogeneous isotropimaterial, Hooke's tensor has the simple formEijlm = E �(1 + �)(1� 2�)ÆijÆkl + E2(1 + �) (ÆikÆjl + ÆilÆjk) ;where E > 0 is Young's modulus and � 2 (0; 1=2) is the Poisson ratio. Figure 2.2illustrates the normal stress at the ontat boundary.
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4 Sine no frition ours, the tangential omponent of the stress tensor vanishes at theontat boundary, and is set to zero in the �rst equation of (2.2). We have only ontatpressure at �C . If there is no ontat between the two bodies, the boundary stresses at�C are zero; see (2.2) and (2.3). The bilinear form a(�; �) is de�ned bya(v;w) := 2Xk=1 Z
k Eijlmwi;jvl;m dx; w;v 2 2Yk=1H1(
k) ;where Eijlm is assumed to be onstant on eah subdomain and H1(
k) := (H1(
k))d.We write f(v) := (v; f)0;
 + (v;p)0;�N and denote by fk(�) and ak(�; �) the restrition off(�) and a(�; �) to 
k ; k 2 fs;mg, respetively.The weak solution of the non linear ontat problem an be obtained by a minimiza-tion problem on a onvex set K. We de�ne the set of admissible displaements byK := fv 2 X j (vs)n + (vm)n � gg ;where X := H1�(
s) �H1�(
m) and H1�(
k) � H1(
k) satis�es homogeneous Dirihletboundary onditions on �
k \ �D, k 2 fs;mg. Then, the weak solution of (2.1){(2.3) isde�ned by: Find u 2 K suh that J(u) � minv2K J(v) ; (2.4)where the energy funtional J(�) is given by J(v) := 12a(v;v) � f(v) on K; see, e.g.,[8, 16℄. The minimization problem (2.4) is equivalent to a variational inequality: Findu 2 K suh that a(u;v � u) � f(v � u); v 2 K : (2.5)In the rest of this setion, we onsider a saddle point formulation of (2.5). To doso, we introdue a Lagrange multiplier spae M :=Md. More preisely, we use the dualspae of the trae spae W :=W d of H1�(
s) restrited to �C . Here, we assume that �Cis ompat embedded in �
s n �D or that g 2 H1=200 (�C). We note that if �
s \ �N = ;then M =H�1=2(�C) = (H1=200 (�C))�.Then (2.5) an be rewritten as: Find (u;�) 2 (X;M+)a(u;v) + b(�;v) = f(v); v 2 X;b(�;u) � h� � ns; gi�C ; � 2M+; (2.6)where M+ := f� 2 M j h� � ns; wi�C � 0; w 2 W+g, W+ := fw 2 W jw � 0g. Thebilinear form b(�; �) is de�ned byb(�;v) := h(vs)n + (vm)n;� � nsi�C ;and h�; �i�C denotes the duality pairing betweenM and W . From the seond inequality in(2.6), we �nd u 2 K. The variational inequalities (2.5) and (2.6) form the starting pointfor our disrete approah.On eah subdomain, we use a shape regular triangulation and lowest order onform-ing �nite elements, i.e., pieewise linear �nite elements on simpliial triangulations andpieewise bilinear and biubi elements on retangular and hexahedral triangulations, re-spetively. The �nite element spaes assoiated with 
s and 
m satisfying homogeneousDirihlet boundary onditions on �D are denoted by Xs;hs and Xm;hm , respetively. Ad-ditionally, we introdue a disrete Lagrange multiplier spae Mh being de�ned on thenon-mortar side of the possible ontat boundary �C . The disrete trae spae of Xs;hson the non-mortar side is denoted byWh. We assume that �C an be written as the union



5of faes and edges in 3D and 2D, respetively. The orresponding disrete spaes for the d-dimensional vetor �elds are denoted by bold haratersXs;hs := Xds;hs , Xm;hm := Xds;hm ,Xh := Xs;hs � Xm;hm , Wh := W dh and Mh := Mdh . Here, we use dual Lagrange mul-tiplier spaes. For mortar �nite element disretizations dual Lagrange multiplier spaeshave been analyzed in [39℄ and generalized in [25, 34, 40℄.For onveniene, we reall the harateristi properties of the dual basis funtions q 2 Mh assoiated with the verties q on the non-mortar side of �C . We note that inontrast to the standard mortar approah no modi�ations of  q near the boundary of �Care neessary. We denote the standard nodal hat funtions assoiated with the vertiesq on the non-mortar side �
s \ �C by �sq . The set of verties on the non-mortar side�
s \ �C is alled PC;hs . We briey reall the harateristi properties of our dual basisfuntions  q 2Mh:� supp  q = supp �sq , q 2 PC;hs ,�  q is pieewise linear or bilinear,� Pq2PC;hs  q = 1,� RF  p �sq d� = Æpq RF �sq d�, p; q 2 PC;hs , F � �C , for all boundary faes in 3D andall boundary edges in 2D.We remark that the last property, in general, does not hold for the dual basis funtionsonstruted in [34℄. The last property guarantees the biorthogonality relationZ�C  p �sq d� = Æpq Z�C �sq d�; p; q 2 PC;hs : (2.7)Other hoies of dual Lagrange multiplier spaes are possible. In [40℄, ontinuous Lagrangemultipliers are onstruted whih are loally de�ned and pieewise ubi on simpliialtriangulations and pieewise biubi on hexahedral triangulations.On both subdomains independent triangulations an be used resulting generally innon-mathing triangulations at �C . In that situation, a pointwise mathing onditionyields a non-optimal disretization sheme, see, e.g., [19℄ and [20℄ for numerial results in2D. However, optimal disretization shemes for non-mathing triangulations an be ob-tained if mortar tehniques are applied. The essential idea is to replae a strong pointwiseoupling ondition by a weaker integral ondition. We refer to [3, 6, 7℄ for an overview ofmortar methods in the linear ase and to [4, 5, 20℄ for non linear ontat problems. Theproof of the disretization error is based on the use of the standard Lagrange multiplierspae. We do not use this approah, but point out that the same qualitative results anbe obtained for our approah. Then, the disrete variational problems reads as follows:Find uh 2 Kh suh thata(uh;vh � uh) � f(vh � uh); vh 2 Kh ; (2.8)where Xh := Xs;hs �Xm;hm and Kh is a suitable disrete approximation of K. We setKh := fv 2 Xh j Z�C [v℄ � np  p d� � Z�C gh  p d�; p 2 PC;hsg ;where gh 2 Wh and gh � 0 is a suitable approximation of g. The disrete normal vetornp assoiated with the vertex p is de�ned bynp := �p XF� supp  p nF j F j ;where �p > 0 suh that knpk = 1, j F j is the area of F , and nF is the outer unit normalvetor on F , see Figure 2.3.We note that, in general, Kh is not a subspae of K. For onveniene of the reader,we review the a priori bounds and the main ideas of the proof, see [20, Theorem 3.1℄.
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nFn nppFig. 2.3. Outer normal vetors nF and npLemma 2.1. Under suitable regularity assumptions on the solution u and the atualontat boundary, we obtain optimal a priori estimates for the disretization errora(u� uh;u� uh) 12 � C(u)(hs + hm);where C(u) does not depend on the meshsize, and hs and hm stand for the meshsize onthe non-mortar and mortar side, respetively.The proof follows the same lines as given in [20℄. However, there are two essentialdi�erenes. We do not use a subset of the �nite element trae spae on the non-mortarside to de�ne our Lagrange multiplier spae. In ontrast to [4, 20℄, we use a loallyde�ned dual basis to de�ne our Lagrange multiplier spae. The seond main di�ereneis that we do not use a salar Lagrange multiplier spae but a vetor valued one. Thismodi�ation is motivated by the following observation. The disrete Lagrange multiplierin the mortar setting approximates the boundary stress. In the ase of a ontat problem,the boundary stress an be deomposed into a salar omponent and a vetor valued one(salar in 2D) representing the normal and tangential stresses. If no frition ours, thetangential stress omponents are equal to zero and an be therefore eliminated. Then,the Lagrange multiplier spae an be de�ned as an appropriate disrete approximationfor the normal stress. However working with a vetor valued Lagrange multiplier spae ismore general, and frition terms an be easily inluded in the approah. Following [20℄,it is suÆient to verify a H1=2-stability of the mortar projetion and to have appropriateapproximation properties for the Lagrange multiplier spae to obtain the a priori estimate.The stability result for the dual Lagrange multiplier spae an be found in [41℄ and theapproximation properties follow by onstrution from the propertyPp2PC;hs  p d� = 1.3. A non linear Gau�{Seidel method. One of the major diÆulties in the nu-merial simulation of ontat problems is the non di�erentiability of the assoiated energyfuntional at the ontat boundary. Very often regularization tehniques; see, e.g., [9, 13℄,or augmented Lagrangian methods; see, e.g., [33, 35℄ are used. For multi body ontatproblems, ontat elements an be applied, see, e.g., [43℄. Then, the disrete solutiondepends on a penalty parameter. In [32℄, a new non linear Dirihlet{Neumann algorithmin ombination with mortar tehniques has been introdued. It is based on the solution ofa linear Neumann problem and a non linear unilateral ontat problem in eah step. Thenon linear ontat problem is solved by monotone multigrid tehniques [28, 29, 30, 31℄.Two damping parameters ontrol the onvergene of the Dirihlet{Neumann method. Ifthe damping parameters are too small, we observe a slow onvergene. On the otherhand if the damping parameters are too large, the method does not onverge. In 2D,onvergene rates whih are independent of the re�nement level and whih are robustwith respet to the damping fator an be observed. We refer to [32℄ for some numerialresults illustrating the inuene of the damping parameters. However in 3D, the onver-gene rates depend sensitively on the damping fator. Moreover, the hoie of a gooddamping fator depends extremely on the geometry of the elasti bodies. Figures 3.1 and3.2 illustrate the inuene of the geometry.In both examples, we use the same parameter setting. The di�erene is the lengthof the linear elasti bar whih is situated in between of the two ylinders. The two�gures show the deformation after 15, 25, 35 and 40 steps of the Dirihlet{Neumann
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Fig. 3.1. Convergene of the Dirihlet{Neumann algorithmiteration. In ase of the short bar, onvergene after a few number of iteration stepsan be observed. All pitures in Figure 3.1 show the same displaements. The situationis ompletely di�erent for the long bar. In that ase, the method seems to onvergenewithin the �rst iteration steps but after 30 iteration steps we observe large osillations,and no onvergene an be obtained.
Fig. 3.2. Osillation of the Dirihlet{Neumann algorithmThis observation motivates the introdution of a new monotone method. In parti-ular, the onvergene of our new algorithm is guaranteed and does not depend on thehoie of a damping parameter. We fous on monotone methods for the iterative solutionof the disrete ontat problem. In eah loal iteration step, the solution minimizes theenergy with respet to the loal searh diretion and is admissible. An iterate un is alledadmissible, if it satis�es the onstraints at the ontat boundary, i.e., if un 2 Kh. To doso, we introdue loal subspaes Xk � Xh, 1 � k � K, and de�ne an iteration sequeneun by un+1 := uK and u0 := unJ(uk) := minwk2Xkuk�1+wk2Kh J(uk�1 +wk); 1 � k � K : (3.1)It is well known [14, 36℄ that the minimization proess (3.1) is equivalent to a non linearblok Gau�{Seidel method. Unfortunately to obtain a globally onvergent sequene un,it is not suÆient to have Xh = Xs +Xm + : : :XK .In the following, we disuss a very simple ounterexample and refer to [14, 36℄ formore details. Let X := R2 , X1 := span fe1g, X2 := span fe2g and the energy funtionalJ(x1; x2) := x21 + x22. The onvex set is de�ned by K := f(x1; x2) jx2 � 0; x1 + x2 � 1g.Then it is easy to see that the solution of the minimization problem is (0:5; 0:5). Using(1; 0) as start iterate x0 and applying the iteration (3.1), we �nd xn = x0, and we haveno onvergene. However, if we replae X2 by span fe2 � e1g, we obtain x1 = (0:5; 0:5).Figure 3.3 illustrates the parameterization of the onvex set K with respet to the twodi�erent hoies of subspaes. On the left the onvex set is written in terms of �e1+�e2and on the right in terms of �e1+�(e2�e1). Theorem 3.1 in [14℄ yields that the iterationsequene de�ned by (3.1) onverges if the assoiated parameterization of the onvex sethas a tensor produt struture.Our algorithm will be based on a suitable basis of the unonstrained produt spaesXh. As we will see, the standard nodal basis of Xh is not a good hoie. The set ofall verties of the triangulations on 
s and 
m is alled Ph. De�ning for all verties p
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Fig. 3.3. Parameterizations of the onvex setthe loal d-dimensional spae Xp by Xp := f�p� j� 2 Rdg, we �nd Xh = Pp2Ph Xp.However, the parameterization of the onvex set Kh with respet to this hoie does nothave the required tensor produt struture. Thus, we annot expet a onvergent sheme.To get a better feeling, we onsider the struture of the onvex set Kh in more detail. Theonstraints an be assoiated with the nodes on the non-mortar side. For eah vertex onthe non-mortar side, we have one weak non penetration ondition. The biorthogonalityof the dual Lagrange multiplier guarantees that the onstraints are deoupled. As aonsequene, hanging the value on the non-mortar side at the vertex p 2 PC;hs has noinuene on the penetration at the vertex q 2 PC;hs , q 6= p. To start, let us onsider theontat zone. As it is standard in the mortar ontext, the onstraints at the interfae areformulated in terms of the Lagrange multiplier spae. The algebrai form of the disretenon penetration ondition an be written asODus � OMum + ĝ ; (3.2)where us and um denote the vetor representation of the displaement on the non-mortarand mortar side with respet to the standard nodal basis funtions, respetively. Theomponents of the vetor ĝ are obtained byĝp := Z�C  p gh d�; p 2 PC;hs : (3.3)Due to the use of a dual Lagrange multiplier spae, the matrix D is a dns� dns diagonalmatrix and the matrix M a dns � dnm mass matrix, where ns stands for the number ofverties on the non-mortar side and nm stands for the number of verties on the mortarside. The blok entries of the matries D and M are given bydpp := Z�C �sp d� Idd�d and bmpq := Z�C  p�mq d� Idd�d; p 2 PC;hs ; q 2 PC;hm ;respetively, where PC;hm is the set of verties on the mortar side, i.e., on �
m \ �C .The additional upper index indiates on whih side the nodal hat funtions are de�ned.We reall that the index s stands for the non-mortar side and the index m for the mortarside, i.e., �mq is the standard nodal basis funtion on the mortar side assoiated with thevertex q 2 PC;hm . Finally, the matrix O is a blok diagonal ns � dns matrix, the entriesare given by the row vetors opp := nTp , p 2 PC;hs . Observing that D and O are blokdiagonal matries, we �nd (us)n := Ous � OMum + g ;where the omponents of the vetor g are obtained by gp := ĝp=(R�C �sp d�), p 2 PC;hs .The biorthogonality of the basis sets and the loality of the supports yield that M :=D�1M is a sparse retangular mass matrix involving the Lagrange multiplier on the non-mortar side and the basis funtions on the mortar side. The duality of the Lagrange



9multiplier yields that the onstraint (3.2) results in one loal onstraint for eah vertexon the non-mortar side(us)p � np � (Mum)p � np + gp; p 2 PC;hs : (3.4)We remark that we have by onstrution gp = gh(p) � 0. Let us start with the aseof a non linear Gau�{Seidel method in terms of the standard nodal basis. Then, theGau�{Seidel method an be arried out loally for all interior nodes and the nodes onthe non-mortar side. For eah interior node, we solve a linear d � d system, and foreah non-mortar node, we solve a non linear d� d system with one onstraint in normaldiretion. Unfortunately, the situation for a mortar node is more omplex. Solving foreah node on the mortar side a loal minimization problem does not yield a onvergentmethod. We remark that hanging the values umq at the vertex q 2 PC;hm on the mortarside inuenes the non penetration ondition at p 2 PC;hs for p suh that mpq 6= 0. Toobtain a onvergent method and to work with nodal basis funtions, we have to inreasethe dimension of Xq , q 2 PC;hm . Enlarging the spae Xq orresponds to inreasing theblok size in the non linear Gau�{Seidel method. We assoiate with eah nodal pointpm 2 PC;hm on the mortar side, all nodal points ps 2 PC;hs with ps 2 Ipm := fqs 2PC;hs jmqspm 6= 0g on the non-mortar side. The number of verties npm in Ipm reetsthe loal ratio between the meshsize on the mortar and non-mortar side. Then, a nonlinear d(npm + 1) � d(npm + 1) problem has to be solved for eah nodal point on themortar side. As long as the blok size is small, this an be arried out in an eÆient way.However in 3D, unstrutured grids result easily in omplex blok strutures, see Figure3.4. In the right piture all nodes in Ipm are marked with a �lled irle. Although themeshsize on mortar and non-mortar side is roughly the same, the resulting non linearsystem for the mortar node pm has dimension 54.
pm

mortar side non-mortar side

Fig. 3.4. Unstrutured grids on a 2D interfaeIf the meshsize on the mortar side is larger than on the non-mortar side, the dimensionof the non linear problems whih have to be solved an be onsiderably large. Moreover ifwe onsider a hierarhial multilevel struture on the mortar side, the dimension inreaseswith dereasing re�nement level k, more preisely, it is proportional to 2(d�1)(L�k) whereL is the �nest level on the mortar side. Thus working with nodal basis funtions for theunonstrained produt spae is not very eÆient in a multigrid ontext.Now, the entral idea is to modify the nodal basis funtions on the mortar side suhthat the onstraint (3.4) an be easily satis�ed. One possibility is to replae the nodalhat funtions assoiated with the verties on the mortar side by the orresponding basisfuntions of a suitable onstrained spae Vh. It turns out that a good hoie is thenononforming spae of a mortar disretizationVh := fv 2 Xhj Z�C [v℄ � d� = 0;  2Mhg :We note that in the de�nition of the spae Vh, the normal diretion does not enter andthat Mh is a vetor valued Lagrange multiplier spae. A di�erent possibility to de�nethe spae would be to glue only the normal omponents of the traes together, i.e.,fv 2 Xhj Z�C [v � np℄  p d� = 0; p 2 PC;hsg :



10Sine, we are interested in a general approah whih an also handle frition, we do notfollow this line. Let us onsider an element in Vh in more detail. The de�nition of Vhyields Z�C [v℄ � np p d� = 0for all verties p on the non-mortar side. Thus (3.4) is automatially satis�ed for allelements in Vh, and Vh is a subspae of Kh. It an be easily veri�ed thatXh = Vh + Xp2PC;hs span f�spei j 1 � i � dg =: Vh + Xp2PC;hs Sp ; (3.5)where ei 2 Rd is the i-th. unit vetor. Working with the nodal basis of Vh and thed-dimensional loal spae Sp, p 2 PC;hs , the non linear blok Gau�{Seidel method isextremely easy to realize. In eah step, we have to solve a linear d � d system foreah blok basis funtion of Vh. Additionally, we solve for eah Sp a non linear d � dproblem. We point out that the dimension of the non linear subproblems is independentof the triangulations at the interfae. In ontrast to the nodal basis of Xh, no non linearproblem of larger dimension than d has to be solved. Moreover, the number of non linearproblems to be solved in eah step is the number of verties on the non-mortar side. Thisis not the ase for the nodal basis of Xh. In that ase additionally to the d-dimensionalnon linear problems assoiated with the nodal points on the non-mortar side, we have tosolve non linear problems assoiated with the verties on the mortar side. Moreover, thedimension depends on the meshsize and an be onsiderably large.In the rest of this setion, we onsider the variational problem in more detail to seehow the implementation an be realized. We start by introduing a modi�ed basis of Xhbased on the deomposition (3.5). Three di�erent sets of nodes are introdued Is, Im andIi. The sets Is and Im stand for the nodes assoiated with the verties on non-mortarand mortar side, respetively. The third set Ii ontains all remaining nodes. Now, weonsider a modi�ed basis � of Xh. We obtain � from the nodal basis � of Xh by a loalbasis transformation� := 0� �i�m�s 1A := 0� Id 0 00 Id MT0 0 Id 1A0� �i�m�s 1A =: B� :Assoiated with this new basis is the modi�ed sti�ness matrixA := 0� Id 0 00 Id MT0 0 Id 1A 0� Âii Âim ÂisÂmi Âmm 0Âsi 0 Âss 1A 0� Id 0 00 Id 00 M Id 1A = B bABT ; (3.6)where Âkl, k; l 2 fs;m; ig, are the blok sti�ness matries assoiated with the nodal basisfuntions. A straightforward omputation shows that A is given asA = 0� Âii Âim + ÂisM ÂisÂmi +MT Âsi Âmm +MT ÂssM MT ÂssÂsi ÂssM Âss 1A :In terms of the new modi�ed basis, the onvergene of our non linear blok Gau�{Seidelmethod is guaranteed, [14, 36℄. Moreover, the implementation is extremely easy to realize.In addition to the non linear blok Gau�{Seidel method, we have to arry out one pre-and one post proessing step. We modify the sti�ness matrix aording to (3.6) and theright hand side f̂ is replaed by f ,f := Bf̂ = 0� f̂îfm +MT f̂sf̂s 1A :



11Now, we an apply a non linear Gau�{Seidel method on the modi�ed system. Withineah step, we solve for eah index j 2 Ii [ Im a linear d� d systemuj = A�1jj (fj �Xk 6=j Ajkuk) ; (3.7)and for j 2 Is we solve for all vj nj � gj(vj � uj)TAjjuj � (vj � uj)T (fj �Xk 6=j Ajkuk); uj nj � gj : (3.8)The non linear blok Gau�{Seidel method gives a solution vetor u� with respet tothe modi�ed basis �. To obtain the nodal values of the displaements u�, we have toapply BT , i.e., u� = BTu�. The pre- and post proessing step require two additionalmultipliations by B and BT whih are of lower omplexity. We remark that the speialstruture of B yields that only a multipliation with the sparse mass matrix M has to bearried out. Additionally, the ation of B an be restrited to the interfae.However, we annot expet a better onvergene rate as in the linear ase whih is ofO(1�h2), where h is the meshsize. Thus from the numerial point of view, the non linearGau�{Seidel method does not �t our requirements. Figure 3.5 shows the onvergenerates of the non linear blok Gau�{Seidel method for a simple 3D example. After a fewre�nement steps, the onvergene rate is extremely lose to one. We note that due toroundo� errors, for more omplex examples in 3D no onvergene an be observed andthe method fails. These observations motivate the introdution of our new monotonemultigrid method.PSfrag replaements
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Fig. 3.5. Convergene rate of the non linear Gau�{Seidel method for a 3D ontat problem4. A monotone multigrid method. Monotone multigrid methods have been in-trodued and analyzed for variational inequalities in [26, 27, 28℄. Generalization to aone-sided Signorini problem are highly nontrivial and are studied in [29, 30, 31℄. Oneruial property is the fat that the disrete ontat ondition an be satis�ed loally pernode. In the previous setion, we have introdued a modi�ed basis suh that the multibody ontat problem has formally the same algebrai struture as a one-sided Signoriniproblem. The main idea of this setion is to apply monotone multigrid methods. Thesetehniques ombine multigrid methods with suesive energy minimization, yielding opti-mal iterative solvers for this type of non linear problem. The key property for the globalonvergene of monotone multigrid methods is the minimization of energy in eah loalorretion step.We assume that we have a nested sequene of triangulations T ik , i = 1; 2, k =0; 1; : : : ; L. Then the assoiated unonstrained produt spaes Xk are nested, i.e., Xk �Xk+1. Unfortunately the nononforming onstrained spaes Vk are not nested if thetriangulations are non-mathing. Thus the prolongation operator from Vk onto Vk+1annot be the identity. As a onsequene no energy minimization an be guaranteed andmonotone multigrid methods annot be applied diretly. In a �rst step, we onsider a



12loal projetion operator �l(�) from Xl onto Vl�l(vl) := vl � dXi=1 Xp2PC;hs R�C [vl℄ � ei  p d�R�C �sp d� �spei :We note that �l(�) restrited to Vl is the identity. This operator has been introdued inthe salar ase in [41℄. Due to the biorthogonality (2.7), it is a projetion. This an beeasily seen by onsidering �l(�l(vl)) and using �l(�spei) = 0. Based on this projetionis a modi�ed transfer operator (I l+1l )mod from Vl onto Vl+1 whih has been introduedand analyzed in [41℄. Its algebrai representation is de�ned in terms of the weighted massmatrix Ml+1 on Level l + 1(I l+1l )mod := 0� Id 0 00 Id 00 Ml+1 0 1A I l+1l =:Wl+1I l+1l ;where I l+1l is the transfer operator from Xl onto Xl+1 with respet to the standard nodalbasis �l and �l+1. We note that the unonstrained produt spaes Xl are nested andthat I l+1l is the algebrai representation of the natural embedding operator. Now, theappliation of the modi�ed transfer operator is of optimal omplexity. Compared withthe standard transfer operator, one additional multipliation with the sparse mass matrixMl+1 has to be arried out. Let us onsider the operator (I l+1l )mod in more detail to seewhy it does not �t our requirements. Observing that the algebrai representation of thelinear funtional �l(�) is Wl, we �nd for vl+1 := (I l+1l )modvlJ(vl+1) = J(�l+1(vl)) :From this equality, we annot dedue that J(vl+1) � J(vl). To guarantee J(vl+1) � J(vl)for all vl 2 Vl, we have to de�ne vl+1 in terms of an a-orthogonal projetion operator.The appliation of whih requires the solution of a global linear equation system withondition number O(h�2l+1). On the other hand if we work with a prolongation operatorwhih does not satisfy J(vl+1) � J(vl), the monotoniity is violated, and we annotguarantee the onvergene of our method. From the numerial point of view, the solutionof the global system is too expensive. Thus, we propose a di�erent approah and introduea nested sequene of new spaes eV0 � : : : � eVL. We start by de�ning eVL := VL. Let�lp;i := �lpei be the standard nodal basis of Vl, then we de�ne the new basis funtions bywl := �lp;ifor k = 1; : : : ; (L� l)wl+k := �l+k(wl+k�1)e�lp;i := wL : (4.1)It is easy to see that fe�lp;igp;i forms a set of linear independent funtions. As a onse-quene, we get dim Vl = dim eVl. Moreover by onstrution, we have�L(e�lp;i) = �L(�L(wL�1)) = �L(wL�1) = e�lp;iand thus e�lp;i 2 VL. Considering the de�nition in more detail, we �nd a multipliativestruture e�lp;i = �L Æ�L�1 Æ : : :�l+1 �lp;i = �L Æ�L�1 Æ : : :�l �lp;i ;where �lp;i := �lpei denotes the standard nodal hat funtions on Level l assoiated withthe nodes on the mortar side.
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Mortar Non−mortar

Level 1

Level 0

Level 2

Level 3

Level 4Fig. 4.1. Multipliative struture of the modi�ed basis funtions e�lp;iFigure 4.1 illustrates the multilevel struture of e�lp;i. On the non-mortar side orre-tions are added in a multipliative way. A di�erent possibility would be to use an additivedeomposition. Sine multigrid methods are multipliative Shwarz variants, we prefer(4.1). To de�ne the linear part of our multigrid method, we start with the onstrution ofthe prolongation operator Zl from eVl + Sl onto eVl+1 + Sl+1. The algebrai presentationof e�lp;i in the nodal basis is given byWLILL�1WL�1IL�1L�2 : : : I l+1l Wl�lp;iand of e�l+1p;i by WLILL�1WL�1IL�1L�2 : : : I l+2l+1Wl+1�l+1p;i :The last two equalities show that the prolongation from eVl onto eVl+1 is given byI l+1l Wl = 0� (I l+1l )ii (I l+1l )im + (I l+1l )isMl 00 (I l+1l )mm 00 0 0 1A :We point out that the prolongation operator I l+1l Wl is the algebrai representation of thenatural embedding of eVl in eVl+1. Figure 4.2 illustrates the prolongation operator.
Coordinate vector on level l Coordinate vector on level l+1Fig. 4.2. Prolongation operator from eVl onto eVl+1, L := l+ 1For simpliity, we restrit ourselves to a funtion in eVl being zero at all interiorverties. The support of suh a funtion is marked by the shadowed region. Then, thefuntion as an element in eVl is uniquely de�ned by its values at the verties on the mortarside whih are marked by �lled irles in the left piture of Figure 4.2. The values onthe mortar side are extended to the non-mortar side in the de�ned multipliative waysuh that the onstraints at the interfae on Level L are satis�ed. The verties on thenon-mortar side on Level l are marked by empty irles and on Level L := l+1 by emptysquares. Now, we interpret the funtion as an element in eVl+1. In the right piture, therelevant verties to speify the funtion are shown by �lled irles. The values at the�lled irles in the interior of the non-mortar subdomain are obtained by the values atthe empty irles and the standard prolongation. We note that the values at the emptysquares do not ontribute.



14 The prolongation from Sl onto eVl+1+Sl+1 is standard. We note that Sl 6� Sl+1 butSl � Sl+1 + eVl+1. Using the fat that the prolongation Zl is a linear mapping, we getZl := 0� (I l+1l )ii (I l+1l )im + (I l+1l )isMl (I l+1l )is0 (I l+1l )mm 00 0 (I l+1l )ss 1A : (4.2)We remark that the prolongation Zl is the algebrai representation of the natural embed-ding eVl + Sl � eVl+1 + Sl+1.In a seond step, we have to take are of the non linearity assoiated with the nodalbasis funtions of SL. Unfortunately for l < L, the standard nodal basis funtions of Slare not suitable in the non linear multigrid ontext. To see this, let us onsider a simpletwo dimensional example of a urvilinear ontat boundary as is depited in Figure 4.3.Let r be a node on Level L� 1 and let p 6= q be the neighboring nodes of r on Level L.
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Fig. 4.3. Coarse grid orretion at urvilinear boundaryWe assume that we have di�erent outer normals np 6= nq and that we have ontatat p and q. Then, any oarse grid orretion �r � �L�1r , �r 2 R2 , has to satisfy �r � np =�r �nq = 0 and thus �r = 0. Using standard nodal basis funtions, there is no oarse gridorretion assoiated with the node r on Level L�1. As a onsequene the low frequenypart of the error in tangential diretion at the node r annot be handled appropriately.The additional onstraints at the nodes p and q result in a redution of the dimensionof the oarse spae, and the approximation property is lost. Working with the standardnodal basis of Sl and satisfying the onstraints on Level L, we annot guarantee anymorethe optimality of the multigrid method.Therefore, we are interested in oarse searh diretions whih aelerate the onver-gene speed by generating some low-frequeny sliding along the ontat boundary anddo not violate the non penetration ondition on the �nest Level L. Suh type of searhdiretions an be obtained by suitable modi�ations of the standard oarse grid funtions.We refer to [31, 30℄ for the introdution of a so alled trunated oarse grid funtion. Weemphasize that the partiular shape of the trunated oarse grid funtions depends onthe atual guess of the ontat zone. Let us �rst onsider the two level situation. Asbefore in the linear setting, we introdue a modi�ed oarse spae ~SL�1, set ~SL := SL anddenote by �Lp;i := �Lp ei the standard nodal basis of SL. Then, we de�ne the trunatedbasis funtions by ~�L�1p;i := �L�1p;i � Xq2JL(�L�1p;i (q) � nq) �Lq nq ; (4.3)where JL is the set of nodes on Level L being in ontat after the leading Gaus�{Seidelsteps on Level L. We remark that we suppress for simpliity an additional index indiatingthe iteration step.Figure 4.4 illustrates the shape of a trunated oarse grid funtion for given ontatnodes. The given ontat nodes are marked by �lled irles. In the left piture, the
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Fig. 4.4. Two level (left) and multilevel (right) trunated oarse grid funtiontwo level situation is shown, and in the right piture, a multilevel situation is given. Byonstrution, it is easy to see that ~�L�1p;i (q) � nq = 0 for all q 2 JL. The onstrutionof the trunated oarse grid funtions guarantees that for eah node being in ontatwith respet to the azual iterate on the �nest grid, the onstraints are automatiallysatis�ed, and no orretion in normal diretion ours. As a onsequene, we do notobtain additional onstraints, and the dimension of the modi�ed oarse grid spaes ~SL�1is not redued in tangential diretion.

Fig. 4.5. Loal box onstraints ~Kl(p) on Level l (left) and ~Kl�1(p) Level l� 1 (right)Unfortunately, it is not suÆient to onstrut oarse grid funtions satisfying theonstraints for all p being at the atual iterate in ontat. To guarantee that a newiterate is in the onvex set KL, it is not suÆient to verify one onstraint per node onLevel l < L. Additionally, we have to satisfy all onstraints on Level L being not at theatual iterate in ontat. Using uniform re�nement, we obtain O(2(d�1)(L�l)) onstraintsfor eah node p on Level l. As a onsequene, the optimal omplexity of the algorithm islost and a logarithm ours. To avoid this, we use modi�ed onvex sets. In a �rst step,we introdue onvex sets depending on the atual iterate. We de�ne for a given onvexset Dl on Level l < L and a given vetor zl, the onvex set Pl(zl;Dl) := fvljvl+zl 2 Dlg.Moreover, we de�ne the restrition of a given onvex set Dl on Level l � L in terms of loalbox onstraints suh that Dl�1 := RlDl � Dl, see [28, 31℄. More preisely, the onstraintsfor Dl�1 are only assoiated with the nodes on Level l � 1. Let Dl be the atual onvexset de�ned by loal box onstraints Blp := [�p;l1 ; �p;l1 ℄ � : : : � [�p;ld ; �p;ld ℄, �p;li 2 [�1; 0℄,�p;li 2 [0;1℄, 1 � i � d, for eah node p on the non-mortar side on Level l. Then, wede�ne RlDl by loal box onstraints Bl�1p := [�p;l�11 ; �p;l�11 ℄� : : :� [�p;l�1d ; �p;l�1d ℄ for eahnode p on the non-mortar side on Level l � 1. We set�p;l�1i := maxq2Jp(�q;li ) ; �p;l�1i := minq2Jp(�q;li ) ;where Jp is set of nodes q on Level l suh that q and p are verties of one boundaryfae on Level l. On the �nest Level L, we de�ne for a given zL 2 KL the onvex setPL(zL 2 KL) by loal box onstraints BLp with�p;Li := �1 ; �p;Li := d�1(gp � zL(p) � np)=(np)i :if (np)i > 0 and �p;Li := d�1(gp � zL(p) � np)=(np)i ; �p;Li :=1 ;
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2PSfrag replaements BLFig. 4.6. Constrution of box onstraints on Level Lif (np)i < 0 and �p;Li := �1 ; �p;Li :=1 if (np)i = 0, see Figure 4.6.For more sophistiated strategies, we refer to [31, 28℄. It an be easily seen thatzL + wL 2 KL for wL 2 PL(zL;KL). We note that in general PL(zL;KL) is a truesubset of fwL jwL + zL 2 KLg. Now, we are ready to de�ne our trunated oarse basisreursively. We start with ~�L := �L and set~�l := (I ll+1)ssPl+1~�l+1; l = L� 1; L� 2; : : : ; 0 ;where Pl+1 is a dnl+1s � dnl+1s blok matrix depending on the atual iterate. Here, nl+1sstands for the number of verties on Level l+1 on the non-mortar side. The d� d blokmatries are assoiated with the nodes p on Level l+1 on the non-mortar side. On Levell + 1 = L, they are given by Id� !pnpnTpand we set !p = 1 if zL(p) � np = gp and !p = 0 otherwise. On the lower levels l+1 < L,the trunation strategy is slightly di�erent. Here, trunation is not restrited to onediretion. For a given zl 2 Dl, trunation is applied whenever zl(p) touhes the boundaryof the loal box onstraint. We setId� dXi=1 !p;iep;ieTp;i ;where !p;i = 1, if the loal orretion at the node p is on the boundary of the onvex setBl+1p in diretion ei and !p;i = 0 otherwise. The trunations strategies being di�erentreets the fat that only on the �nest grid we have to take are of the normal diretions.We note that Pl+1 is the identity if the atual iterate is in the interior of the (restrited)onvex set. Combining this non linear restrition operator with our linear one given bythe transposed of the prolongation (4.2), we de�ne~ZTl := 0� (I ll+1)ii 0 0(I ll+1)mi +MTl (I ll+1)si (I ll+1)mm 0(I ll+1)si 0 (I ll+1)ssPl+11A :In terms of this new non linear restrition operator, we formulate our iterative shemeun+1L := MG(L;AL; fL;unL;KL;m1;m2) as V-yle multigrid method with m1 pre- andm2 postsmoothing steps. The start iterate u0L is given. We denote by GS(A; d;v;D; k)the k-th iterate of the non linear Gau�{Seidel method applied to the start iterate v withmatrix A, right hand side d and onstraint set D.Monotone multigrid algorithm: MG(l; ~Al; dl;vl; ~Dl;m1;m2)Presmoothing: z1l := GS( ~Al; dl;vl; ~Dl;m1)



17Coarse grid orretion:~Al�1 := ~ZTl ~Al ~Zldl�1 := ~ZTl (dl � ~Alz1l )~Dl�1 := RlPl(z1l ; ~Dl)if l > 1, ql�1 := MG(l � 1; ~Al�1; dl�1;0; ~Dl�1;m1;m2)else q0 := GS(0; ~A0; d0;0; ~D0;1)Prolongation: z2l := z1l + ~Zlql�1Postsmoothing: MG(l; ~Al; dl;vl; ~Dl;m1;m2) := GS( ~Al; dl; z2l ; ~Dl;m2).On the oarsest level, the resulting onstrained problem is solved up to a given toler-ane by suitably many steps of the non linear Gau�{Seidel method. This is denoted bythe �tiious iteration number 1. In ase of a oarse grid with many degrees of freedom,an equally modi�ed algebrai multigrid method an be applied. For a numerial result,we refer to the 3D example in Setion 5. We remark that the restrition ~Zl depends onz1l , see also [31℄. In our implementation, the oarse grid matries are only loally reassem-bled if a hange of phase ours. The de�nition of Rl guarantees that the prolongatedorretion is in Pl(z1l ; ~Dl) and thus z2l 2 Dl.Our de�nition of the trunated searh diretions give rise to loal orretions whih areadmissible with respet to the atual guess of the ontat boundary. The orrespondingnon linear W-yle multigrid algorithm is straightforward.Theorem 4.1. Under suitable assumptions, our monotone multigrid algorithm isglobally onvergent. Moreover, the disrete ontat boundary is identi�ed after a �nitenumber of iteration steps.In [30, 31℄, the global onvergene of a trunated monotone multigrid method for aone-sided Signorini problem has been shown. Moreover, under some stability assumption,it is also shown that in this ase the disrete ontat boundary is deteted after a �nitenumber of iteration step. Due to the deomposition (3.5), these results do also apply forour monotone method. We refer to [31, Theorem 3.9℄ for details.5. Numerial Results in 2D and 3D. In this setion, we present numerial re-sults in 2D and 3D illustrating the performane of our new method for elasti ontatproblems. Moreover, we ompare our new non linear method with a standard linear multi-grid method. To this end, the boundary stresses omputed by means of our monotonemultigrid method are taken as boundary data for the standard linear multigrid method.As it turns out, the onvergene rates of our new non linear and of the linear multigridmethod are almost the same. With respet to exeution time, there is no signi�antdi�erene between our non linear multigrid method applied to a ontat problem andthe standard multigrid method applied to the orresponding linear problem with knownboundary stresses. Our non linear method has been implemented in the framework ofthe �nite element toolbox UG, see [2℄. The implementation of the non linear method isbased on the abstrat obstale problem lass developed in [31℄ in the ontext of one-sidedontat problems.The �rst example to be onsidered is a fritionless Hertzian ontat problem of a diswith a plane in 2D. The problem data is taken from [9℄ where a penalty method is appliedto the ontat problem. For this example, the boundary stresses are given analytially,see [18℄, and we an ompare the omputed boundary stresses with the analytial ones.On top of the dis, Dirihlet boundary onditions are applied orresponding to a pointload of F = 100N . The oarse grid, see the left piture of Figure 5.1, has been generatedusing a grid generator. During the adaptive re�nement proess, new boundary nodes aremoved to their position on the boundary of the dis.The plane is modeled by a retangle with homogeneous Dirihlet boundary onditions
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0:90:70:50:30:1Fig. 5.1. 2D example: Coarse grid and omparison of non linear and linear methodon the left and the right side. Homogeneous Neumann boundary onditions are appliedelsewhere. We use di�erent materials for the plane and the dis and take E = 106 and� = 0:45 for the plane and E = 7000 and � = 0:3 for the dis. On eah level, the arisingdisrete system is solved up to a given tolerane of "TOL = 10�11, e.g., the iterationproess on Level l is stopped ifa(unl � un�1l ;unl � un�1l )1=2 � "TOL : (5.1)We denote the �nal iterate by unll . To measure the performane of our new monotonemultigrid method, the omputed boundary stresses are taken as boundary data for astandard linear multigrid method. In both ases, we hose u0l = 0 on eah Level l, use(5.1) as stopping riteria and apply a W(3; 3){yle. The asymptoti linear onvergenerates are de�ned by �2l = a(unll � unl�1l ;unll � unl�1l )a(unl�1l � unl�2l ;unl�1l � unl�2l ) :We emphasize, that the iteration proess of our monotone multigrid method takes areof the non linearity at the ontat boundary. Due to the modi�ations, we observe aninrease of about 10 % of the pu time on eah level. The asymptoti onvergene ratesof our non linear (rosses) and of the linear (diamonds) multigrid method vs. the numberof unknowns are given in the right piture of Figure 5.1. We observe level independentonvergene rates. Moreover, the asymptoti onvergene rates are for both methods arethe same. # iterationsLevel l nl monotone standard # ontat nodes0 186 4 4 11 654 20 20 32 1.336 22 22 33 2.874 22 21 74 7.794 21 21 135 22.132 22 22 276 65.208 23 23 537 178.598 24 24 1058 412.430 24 24 2099 811.030 24 24 417Table 5.12D example: Non linear method for unknown ontat boundary vs. linear method for known ontatboundary data for the Hertzian ontat problem



19Table 5.1 shows the number of required iterations nl on eah Level l for both methods.As an be seen, the number of iterations is bounded independently of the re�nement level.For almost all re�nement levels, the numbers are the same.
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0 10:5Fig. 5.2. Hertzian ontat problem (2D): Maximal ontat stresses on Level 0; : : : ; 7 (left) andboundary stresses on Level 9 (right)The �nal approximation of the boundary stresses on Level L = 9 an be seen in theright piture of Figure 5.2. Here, the approximation of the ontat stresses obtained usingour new monotone method is plotted. We note that the horizontal line is the omputedtangential stresses. The use of vetor valued dual Lagrange multipliers to approximate thestresses yields very aurate results. In partiular, the tangential stress is an additionalunknown. Thus, our approah an be easily generalized to multi body ontat problemsinluding frition. In the left piture of Figure 5.2, the maximal boundary stresses om-puted on eah level and the theoretial value (horizontal line with squares) of the maximalboundary stresses is depited. On Level 3, the error of the maximal boundary stress withrespet to the analytial solution is 0:016% and on Level 4 only 0:002%. This orrespondsto 7 and 13 nodes being in ontat with the plane, see Table 5.1.

Fig. 5.3. 3D example: Corse grid (left) and re�ned grid (right)In 3D, we reonsider the example given in Setion 3. The geometry onsists of tworollers and a bar and is depited in Figure 3.1. Inhomogeneous Dirihlet boundary ondi-tions are applied on the upper and lower part of the upper and lower roller, respetively,pressing the two rollers against the bar. Homogeneous Neumann boundary onditions areapplied elsewhere. In a �rst step, we apply our new monotone method for elasti ontat.In ontrast to the Dirihlet{Neumann method, see Figure 3.2, no osillation ours. Thisis due to the fat that our method is monotone and global onvergene is guaranteed.The �nal approximation of the geometry using adaptive re�nement an be seen in theright piture of Figure 5.3. In the left piture of Figure 5.3, the oarse grid is shown.In Table 5.2, we ompare the performane of our new non linear method with astandard multigrid method applied to the linear problem. The required iteration numbersneeded to ahieve the given tolerane "TOL = 10�7 are reported. For both methods,
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