
Automatic Construction of Boundary

Parametrizations for Geometric Multigrid Solvers

Oliver Sander∗, Rolf Krause∗

January 20, 2004

∗This work was supported by the DFG research center ‘Mathematics for key technologies’
(FZT 86) in Berlin

1



Abstract

We present an algorithm that constructs parametrizations of bound-

ary and interface surfaces automatically. Starting with high-resolution tri-

angulated surfaces describing the computational domains, we iteratively

simplify the surfaces yielding a coarse approximation of the boundaries

with the same topological type. While simplifying we construct a func-

tion that is defined on the coarse surface and whose image is the original

surface. This function allows access to the correct shape and surface nor-

mals of the original surface as well as to any kind of data defined on it.

Such information can be used by geometric multigrid solvers doing adap-

tive mesh refinement. Our algorithm runs stable on all types of input

surfaces, including those that describe domains consisting of several ma-

terials. We have used our method with success in different fields and we

discuss examples from structural mechanics and biomechanics.

2



Figure 1: Using parametrized boundaries increases the geometric accuracy of
local mesh refinements.

1 Introduction

The last decades have shown a demand for solving partial differential equations
with increasing precision. In many fields of applications, ranging from struc-
tural mechanics over computational fluid dynamics to medical computing, the
occurring problems are usually formulated as partial differential equations that
need to be solved numerically. Moreover, the geometries involved can be very
complex.

Even nowadays, numerical simulations involving complex geometries are very
time consuming. In particular, the demand on precision and thus on the size
of the computation has risen much faster than the hardware capabilities offered
by any type of computer. A great deal of emphasis has therefore been put on
the development of fast algorithms. For elliptic partial differential equations,
for example, multigrid and domain decomposition methods are widely used for
the fast iterative solution of the arising discrete systems. These methods are
of optimal and quasi-optimal complexity, respectively, see [9, 26, 41]. However,
even algorithms of optimal complexity do not guarantee an efficient method.
For example, in the case of linear finite elements in three space dimensions one
uniform refinement step only reduces the discretization error by a factor of 1/2
but increases the amount of memory needed by a factor of eight. Thus for
complicated geometries, uniform refinement is not applicable. To overcome this
difficulty, adaptive strategies can be used. Here, a sequence of discrete spaces
is constructed by means of suitable a posteriori error estimators, see [1] for an
overview. The spaces are designed to have good approximation properties while
having as small a dimension as possible. Often for elliptic partial differential
equations, this is achieved by refining those elements where some local error
indicator hints at high errors.

Using adaptive mesh refinement techniques on complicated domains has a
serious shortcoming, however. By definition, coarse base grids do only represent
an approximation to the true geometry. Smooth boundaries and geometric
details are sacrificed for the sake of computational speed. This is for example
the case in Figure 1, where a sphere is approximated by a polyhedron. Mesh
refinement techniques allow inserting an arbitrary number of additional vertices.
Thus, the discretization error is diminished. However, standard methods such

3



as edge bisection or red–green refinement do not change the geometry of the
domain. The corresponding boundary value problem is therewith solved on
a domain that differs considerably from the sphere, no matter how high the
resolution.

This problem can be solved using parametrized boundaries. By storing the
true boundary as a function on the discrete boundary, at each refinement step
it is possible to insert the new boundary vertices on the true surface. This
is available in many finite element software packages, as for example UG [4].
However, so far, such parametrizations had to be prescribed analytically and
entered by hand. Thus, only simple geometric shapes such as circles and ellipses
were available. For truly complicated geometries, as they occur for example in
hyperthermia treatment planning, no boundary parametrizations were possible,
even though the models are usually available in far higher resolution than the
final computational grid.

Our paper addresses this issue. In Section 2, we propose an algorithm that
automatically computes a coarse surface with a parametrized boundary taking
as input a high-resolution surface. This high-resolution surface might for exam-
ple be the output of a laser range scanner or the segmentation of a computer-
tomograph scan. Following the approach by Lee et al. [33] known from computer
graphics, we construct a coarse boundary surface by means of a surface simpli-
fication algorithm, and maintain a valid parametrization at each step.

In Section 3 we will show how this technique can be used to increase the
geometric accuracy of a standard multigrid solver. The method increases the
efficiency of the solver since it allows to compute on coarser base grids, refining
only where special error estimators decide that it is necessary. In particular,
this is superior to local mesh simplification as introduced by Zachow [45], where
the user has to choose the local levels of resolution. We give two examples from
structural mechanics and biomechanics and show how the use of parametrized
boundaries increases both overall precision and efficiency.

Let us finally mention two different approaches to multigrid methods for
domains with complicated boundaries. The first one is given in Hackbusch and
Sauter [25] and is based on the construction of a hierarchy of non-standard
finite element spaces. Here, we do not follow this approach, since our aim is
to construct a method using as many standard components as possible. The
second approach is using algebraic multigrid methods, see, e.g., Stüben [43],
Braess [7] for a survey or Feuchter et al. [18] for algebraic multigrid methods
on complicated domains. In case of algebraic multigrid methods, no hierarchy
of grids has to be constructed and stored, since the hierarchy of spaces used by
the algebraic multigrid method is constructed in a purely algebraic way. We
point out that the method presented here can also be used in combination with
algebraic multigrid methods. With respect to the nonlinear contact problem
given in Section 3 this requires an algebraic multigrid method for contact
problems, which can be found in [32].

4



2 The Construction Algorithm

In this section we describe our algorithm for the automatic construction of
parametrized boundary and interface surfaces. It is based on the successive
removal of vertices of the triangulated surface. The resulting holes are then
remeshed by a local Delaunay triangulation giving rise to a simplified surface
with less surface vertices. In contrast to pure simplification algorithms, see, e.g.,
[12, 22], following our approach the original shape of the surface is stored. More-
over, each point on the simplified surface can be bijectively mapped to a point
on the original surface by using a parametrization mapping constructed during
the simplification process. Proceeding in that way, the shape of the original
surface can be restored by repeated refinement of the simplified surface while
moving the nodes inserted during the refinement process onto their position
on the original surface. This simplification/refinement process is particularly
useful for adaptive finite element calculations involving complex geometries, see
Section 3 and, e.g., publications on medical computing [13, 42].

Our method originates in computer graphics, where it can be used for a
variety of problems, such as surface remeshing and texture map generation [35].
Constructing a parametrization function by surface simplification has first been
proposed by Lee et al. [33]. Other techniques have also been used, such as the
automatic embedding of an explicitly described topological triangulation into
the original surface by Praun et al. [37]. Eck et al. [16] use an approach based
on Voronoi diagrams to partition their input surfaces into parameter patches.
A completely different approach to multiresolution surface representations uses
subdivision surfaces. Here, surfaces are stored as a coarse base grid together
with interpolation rules and possibly detail offsets. Subdivision surfaces are
a powerful technique that have been used successfully for such varied tasks
as geometry compression [34], multiresolution editing [47], and level-of-detail
rendering [38]. We refer the reader to [34, 46] for introductions to this topic.

Let S0 be a triangulated surface. Intuitively, a triangulated surface is the
union of a finite set of triangles in R3, together with a discrete topology. We will
formalize this notion in Section 2.1. Our aim is to construct a second surface S
consisting of less triangles and a continuous mapping φ : S → R3 such that

φ(S) = S0

and φ is injective. We call S the simplified surface and φ the parametrization
of S0 with respect to S. Following this notation, the simplified surface S can
be regarded as the parameter domain of the parametrization function φ.

With such a pair (S, φ) available we can use standard refinement schemes but
interpret them as refinements of the parameter domain S. The finite element
computation will then be done on a grid whose boundaries have been subjected
to the function φ. This assures that the boundaries of a repeatedly refined grid
converge to the original boundaries of the model. Additionally, we can access
other features of S0, such as the surface normals, as functions on S.

The simplification algorithm consists of two steps. We first construct the
base domain surface S and an initial valid parametrization function φ by means

5



of a simplification algorithm. Then, as φ is not unique, we try to modify it such
as to obtain refined surfaces of optimal quality. These somewhat vague notions
will be formalized and explained in detail in Section 2.5.

2.1 Triangulated Surfaces

Our algorithm for constructing parametrizations is based on a simplification
algorithm for triangular surfaces. We therefore formalize the notion of such
surfaces. Unlike a surface in the differential geometry sense, a triangulated
surface is a discrete combinatorial entity with an embedding into Euclidean
space. This will allow us later on to speak of, for example, vertices and neighbors
of vertices of a surface. Many concepts from the differential geometry case, such
as the open neighborhood of a point, transfer easily to the discrete setting. We
will define them when needed, and refer the more interested reader to [17] for
details.

Definition 2.1 Consider a finite set of vertices V , a set E of two-subsets of V ,
and a set T of three-subsets of V . We call the triple K = (V, E, T ) a triangulated
surface if the following conditions hold:

1. For any given triangle t ∈ T , the three subsets of t of size two are contained
in E.

2. Every edge e ∈ E is contained in at least one triangle and every vertex
v ∈ V is incident to at least one edge.

The elements of E are called edges, those of T are called triangles.

So far this is an entirely combinatorial construction. We furnish it with geomet-
rical meaning by assigning to each vertex v a position p ∈ R

3. This definition
neatly separates the combinatorial and geometric aspects of triangulated sur-
faces. All information about adjacency is contained in the abstract simplicial
complex K, which in turn does not depend on the surrounding space. If we
consider the union of the convex hulls

⋃

α∈T

conv α ⊂ R
3

of all faces of T , we arrive at a surface in the classical sense, in particular,
a finite union of compact C0-manifolds. We call it the straight-line geometric
realization. Throughout this article, we sometimes use the term ‘triangulated
surface’ when in fact the straight-line geometric realization of a triangulated
surface is meant. The exact meaning will be clear from the context.

Two more concepts will be useful when dealing with triangulated surfaces.

Definition 2.2 Given a triangulated surface K = (V, E, T ), the star St v of a
vertex v ∈ V is the set of all edges and triangles that contain v. The link Lk v
of v is the set of all subfaces of the star of v that do not contain v [17].

6



Thus, the term star formalizes the notion of the open neighborhood of a vertex
v in a strictly combinatorial setting. Equivalently, the link of a vertex can be
seen as the boundary of that neighborhood.

2.2 Surface Simplification

We now describe our algorithm that constructs a coarse surface and a parame-
trization function φ. Given a high-resolution surface S0 describing the bound-
aries of a computational domain, we initialize the algorithm by defining the
embedding function φ0 on all S0. If S0 ↪→ R3 is the straight-line geometric
realization of an abstract simplicial complex and x ∈ R3 is a point on S0, then
φ0(x) = x. The algorithm then constructs a sequence of triangulated surfaces
Si and functions φi : Si → R3 such that Si contains less triangles than S i−1

and φi(Si) = S0 for all 0 ≤ i ≤ N .
For the construction of the surfaces S i, we use a surface simplification al-

gorithm. This algorithm, which we will describe in the following text, is based
on the framework presented by Kobbelt et al. [31]. It has a good asymptotic
time complexity. Denoting by n the number of surface vertices, it needs only
O(n log n) steps to remove a constant fracture of the vertices. However, the
overhead for maintaining a consistent parametrization at each step increases
the constant in the O-notation somewhat. The space requirements remain lin-
ear in the number of surface vertices.

2.2.1 Geometric Operations

A surface simplification algorithm generally consists of two main parts. The
first is a geometric operation that allows the controlled local reduction of surface
complexity. Several of those operations have been proposed in the literature,
such as half-edge contraction [31] and pair contraction [22, 27]. We chose point
removal since it doesn’t lead to newly created vertices, it is easily extendable to
non-manifold surfaces and it is easy to ensure the preservation of topology. Point
removal works by removing a single vertex together with all triangles adjacent
to it from the surface. The procedure leaves a hole which, when dealing with
manifolds, is bounded by a simple polygonal loop. We flatten out this loop into
the plane by using the polar map described in [15]. The flattened polygon is
then triangulated with a constrained Delaunay triangulation algorithm which
effectively patches the hole left in the surface.

2.2.2 Quality Measures

The second important ingredient is a scalar oracle that makes it possible to
rank the different possible simplification steps according to the error they would
introduce. Again, many different strategies have been described [31, 40]. We
combine the following aspects:

• Geometric Error: In order to make sure that our simplified surface
approximates the original surface well, we monitor a modified Hausdorff

7



distance between different simplification stages. The Hausdorff distance
defines a metric on subsets of R3 (see Alt [2] for a definition). Leading
to good results [28], it is, however, quite costly to compute. We therefore
use a compromise. We define the geometric cost of removing a vertex v as
the Hausdorff distance between the retriangulation of Lk v and the image
of φ restricted on it. The retriangulation of Lk v consists only of very few
triangles, and so the distance can be computed more efficiently.

• Triangle Aspect Ratio: Our aim is to construct simplified surfaces that
allow mesh generators to create tetrahedral meshes of high numerical qual-
ity. One commonly accepted measure for this quality is the element aspect
ratio ρ, which is defined as the ratio R/r between circumsphere radius R
and insphere radius r. This ratio ρ should be bounded from above. The
aspect ratio of any tetrahedron is always bounded from below by the trian-
gle aspect ratios of its four triangular faces. Therefore, the triangle aspect
ratio ρ∆ = R∆/r∆ of the triangles in any boundary surface should stay
below a reasonable limit. In our algorithm, we favour reduction steps that
remove triangles with a high aspect ratio as well as steps that introduce
triangles with a low aspect ratio.

• Intersections: Surfaces used for mesh generation divide space into com-
partments. Therefore it is of paramount importance that the surfaces do
not self-intersect. Surfaces that contain self-intersections (or boundaries,
for that matter) do not unambiguously separate space into regions and
are therefore unsuitable as input for a mesh generator. To guarantee the
absence of intersections we check which potential simplification operations
generate intersecting triangles. Those that do are ranked as inadmissible.

• Long Edges: Many mesh generators have difficulties dealing with bound-
ary surfaces with widely varying edge lengths. We therefore also limit the
maximal length of the edges that are introduced into the surface.

2.2.3 Storing the Parametrization Function

The main goal of our procedure is to construct the parametrization φ of the
original surface while we simplify it. Since the image of φ is piecewise linear,
the function can be viewed as a graph G embedded without intersections in the
coarse surface. Thus, G is a finite set of vertices on S and a set of paths on S that
connect pairs of vertices. Different paths can only intersect at their endpoints
and are shortest connections on S, i.e., they are line segments on each triangle
of S. The graph G that represents the parametrization function φ is isomorphic
to the edge graph of the original surface S0. Since all faces of G are triangles, the
restriction of G to a base grid triangle has only triangular or quadrangular faces
(triangle stumps). For each vertex of G, we store its parameter position x, i.e.,
its barycentric coordinates on a base grid triangle j, as well as its image position
φ(x) in R3. The function φ can then be evaluated at any point on any triangle
by a simple point location algorithm. For each point x on a base grid triangle,

8



��� � �������	





��
�� ��

���


��

��  �


��

��
��

��
��


��

�� ��

��

������ 

!
!  !

Figure 2: The polar map: The star is first cut along pp1 and flattened out into
the complex plane. The conformal map z → za, a = 2π/Θ, then stretches it
out so that it covers one full circle.

this algorithm returns the graph face x is in so that the return value φ(x) can
be computed using linear interpolation. For the point location, we chose the
randomized version of the algorithm proposed by Brown and Faigle [10] for its
robustness against finite precision arithmetic and its ease of implementation.
Since the Brown-Faigle algorithm only works on triangulations, we complete
the graph G to a triangulation on each base grid triangle before querying φ for
the first time.

2.2.4 The Simplification Algorithm

Remember from Section 2.2 that we initialize the algorithm by defining the
embedding function φ0 on the input surface S0. The graph that implements
the identity function is a single triangle on each base grid triangle. We then
compute the error function for each vertex and place all vertices in a priority
queue. This queue always yields the current best vertex to remove.

Assume now that v is the current best vertex. We first take St v, the star of
v, and flatten it out into the plane. For this we use the polar map introduced
in [15]. The polar map bijectively maps St v onto a star-shaped polygon in C

and we identify C with R2. Unlike other schemes it has the advantage that
it always exists and is conformal, i.e., angle-preserving. This property holds
independently of the sum of the interior angles at v.

The outer boundary of the flattened set of triangles forms a plane star-shaped
polygon. In order to obtain a retriangulation, we use a special variant of the
constrained Delaunay triangulation. We regard the set of all edges that separate
the current polygon into a smaller polygon and a triangle and that are admissible
in the Delaunay sense [17]. Of those edges, we do a greedy step and take the
one that yields the triangle with the smallest aspect ratio when reinserted into
the surface. We add this edge into the triangulation and iteratively repeat the
above steps on the remaining polygon until we are left with a triangle. Even
though this algorithm has a bad asymptotic run-time behaviour, it is usable

9



Figure 3: The flattened star of a vertex is merged into a single polygon.

+ =

Figure 4: The polygon is cut along the new triangulation.

without any difficulties, since the average number of polygon corners is a small
constant.

Given the star of v and the new triangulation, we have to transfer the
parametrization defined on St v. For that we merge the graphs defined on the tri-
angles of St v into a single one defined on the polygon bounded by the flattened
Lk v (Figure 3). This polygon implements that part of the parametrization
function φ that had formerly been implemented by the triangles in St v. We
then repartition the graph according to the new triangulation obtained above
(Figure 4). This leaves us with a set of triangles that can be inserted into the
base grid.

There are two problems which can occur at this point. The first one is the
following. The polar map which maps St v onto a plane polygon is a bijection.
However, it does not map straight lines onto straight lines. Therefore, the
unfolding of the plane graphs on St v may contain triangles that are ‘flipped
over’. As a remedy, we decided to reposition the graph vertices on the polygon
according to Floater’s shape-preserving mapping [19], if such flips occur. This
guarantees an intersection-free embedding of the graph into the polygon.

The second possible problem is also due to properties of the polar map. The
polygon yielded by it is not necessarily convex. In rare cases it can therefore
occur that an edge of the graph on the polygon is partly outside the bounding
polygon. If that happens, it is impossible to consistently repartition the graph
on any retriangulation of the polygon. In those cases, we move the concave
corner away from the coordinate center far enough to make it convex.

10



2.3 Preservation of Topology

When constructing a low-resolution triangulated surface S as the parameter
domain of another surface S0, it is essential that both surfaces have the same
topological type. This is because identical topological type is a necessary condi-
tion for the existence of a continuous bijection between embeddings in R3 of S
and S0. Therefore, any geometrical operation that is used to construct S from
S0 has to leave the topological type unchanged.

Equivalence of topology of abstract simplicial complexes is a global prop-
erty. It is defined combinatorially by introducing normal forms and by asking
that they be trivially isomorphic (cf., e.g., [36]). However, in order to guar-
antee topology preservation while simplifying a surface, we have to find some
local conditions. These will depend on the particular geometrical reduction
operation used. Edelsbrunner [17] has stated such conditions for surface sim-
plification with edge contraction. We found the following simple condition for
point removal algorithms to work well in practice and we state its correctness
as a conjecture.

Conjecture 2.1 Let K = (V, F ) be a two-dimensional abstract simplicial com-
plex. Remove a vertex v together with its star St v from K and choose a retri-
angulation of the resulting hole. That retriangulation will add one-faces to the
complex which are not part of Lk v. Call the set of those one-faces E. Then the
following holds:

If no e ∈ E is a one-face in F \ St v then K′ = (V \ {v}, F \ St v) together
with the retriangulation is of the same topological type as K.

More details can be found in [40].

2.4 Handling Non-Manifold Surfaces

When working with triangulated surfaces for finite element solvers it is impor-
tant that the simplification algorithm can handle surfaces that are not manifolds.
When models are considered that consist of more than a single material, the
interface surfaces contain points that do not have neighborhoods homeomor-
phic to a disk. Those are the lines where more than two materials meet. Many
simplification algorithms neglect the systematic treatment of such cases. How-
ever, for our algorithm to be truly applicable, multi-domain models have to be
handled.

In order to properly define the term manifold for triangulated surfaces we
first state what we mean by a path on a surface.

Definition 2.3 A path P on a surface S is an alternating sequence of vertices
and edges, say x0, e1, x1, e2, . . . , xl, where ei = {xi−1, xi}. The length of P is l,
the number of edges in the path. If xi 6= xj ∀i 6= j we call P a simple path. If
x0 = xl, we call the path a cycle, and if in addition all its edges and all vertices
x1, . . . , xl−1 are distinct, we call it a simple cycle.

11



Figure 5: Removal of a vertex on a feature line of third order. The three adjacent
half-stars are separately mapped to the plane and retriangulated. The result
still contains the feature line.

We can now define the manifoldness of a vertex v by looking only at its link.
Note that we arrive at a strictly combinatorial definition of manifoldness!

Definition 2.4 A vertex v is called a manifold vertex if its link forms a simple
cycle. The vertex v is called a boundary vertex, if its link forms a simple path.
In all other cases, v is called a non-manifold vertex.

If a triangulated surface S contains only manifold vertices, it is called a
manifold surface, or simply a manifold. If it contains boundary vertices as well
as manifold vertices, it is called a manifold with boundary. In all other cases,
it is called a non-manifold.

This is equivalent to saying that a geometric realization of a triangulated
surface S is a manifold in the standard sense.

In order to simplify and parametrize triangulated surfaces that are not mani-
fold everywhere, we have implemented a strategy inspired by the handling of
feature edges in [33]. By looking at all triangles touching a given vertex, we put
that vertex into one of three categories:

• Regular Vertices: The vertices are manifold and can be removed as
described in Section 2.2.4.

• Feature Line Vertices: This is the important case for non-manifold
handling. The vertices in this class sit on a path where three or more
sheets touch. We can handle them in the following manner (Figure 5). The
neighborhood of those vertices is equivalent to a collection of n half-disks
which are glued together at two edges. All quality measures described
in Section 2.2.2 are therefore computed per half-disk, and the arithmetic

12



mean of all of them is taken as the priority of the vertex. The point removal
follows along the same lines. We map each half-disk onto the positive
half-plane using a modified polar map, and retriangulate each polygon
separately. The result is a consistent retriangulation of the neighborhood
of the removed vertex, with the two feature edges now replaced by a single
one.

• Feature Vertices: These vertices have a neighborhood that is more com-
plex than the ones described above. They usually represent essential fea-
tures of the geometry and should therefore remain in the surface.

2.5 Parametrization Smoothing

The parametrization function φ as it has been introduced in the first part of
Section 2 is not unique. It is therefore reasonable to ask whether the particular
choice of φ has any impact on the quality of the computational grid. That
this is indeed the case can be seen by refining a base grid using a function φ
as yielded by the algorithm described above. This algorithm does not pay any
attention to the properties of φ other than that it be a bijection. Thus, it comes
as no surprise that performing four uniform refinement steps one the base grid
grid in Figure 7, left, results in a grid of extremely poor quality (see Figure 7,
center). We will now shortly describe an algorithm that considerably improves
the quality of the refined grids.

The straight line geometric realization of our base grid is a finite union of
two-dimensional C0-manifolds embedded in R3. Since it is compact, it can be
covered by a finite set of coordinate patches. For each patch U there exists
a homeomorphism θ : U → R2 such that V = θ(U) is a simply connected
open subset of R2. The functions θ are called coordinate functions. For any U ,
the parametrization function φ restricted to U can also be seen as a function
φ′ = φ ◦ θ−1 defined on V ⊂ R2.

This case has been intensively studied in the literature. We would like the
parametrization function φ|U to be as free of distortion as possible. Different
definitions of distortion of a function are possible, see for example [40]. One of
the most intuitive ones would lead to choosing φ to be an isometry. This, how-
ever, is impossible in the general case, as was shown by Gauss in his celebrated
Theorema Egregium [20]. Note, however, that if θ is an isometry, then finding
a suitable φ′ is equivalent to finding a suitable φ.

For the case that the image of φ′ is the embedding of a triangulated surface,
Floater [19] suggested a compromise. He showed that it is always possible to
construct a map P : S → V , not necessarily unique, that fulfills the following
reproduction property. He calls a mapping P shape-preserving if it fulfills the
following condition:

Definition 2.5 Let S be a triangulated surface with n interior nodes x1, . . . ,xn

and N − n boundary nodes xn+1, . . . ,xN and let P be a parametrization of
S over a convex polygon V with the boundary points vn+1, . . . ,vN such that

13



Figure 6: The edge relaxation procedure stretches out the plane graph rep-
resenting the parametrization function φ evenly across both triangles. The
triangulations on the two triangles on the far left actually do match.

P(xi) = vi, n+1 ≤ i ≤ N . Then P is called shape-preserving if the following
condition holds:

If S is planar and if the mapping from xn+1, . . . ,xN to vn+1, . . . ,vN is an
affine one, then P is an affine mapping of S.

This type of mapping is widely used in surface parametrization algorithms [23,
24]. For details on its construction see Floater’s article [19].

We experimentally observe that iteratively rearranging φ on different coordi-
nate patches according to Floater’s algorithm will increase the overall quality of
the parametrization. For the coordinate patches U we choose the quadrangles
formed by pairs of triangles T1, T2 that share a common edge. That way, an
isometric coordinate function θ : T1 ∪ T2 → R2 can always be found.

We then consider the two triangles as a single quadrangle. In many cases,
this quadrangle is convex. If it is not, there will be exactly one inward corner,
and it will be one of the endpoints of the common edge E. We take this endpoint
and move it along the continuation of E away from the other endpoint until the
corner is convex.

Floater’s parametrization scheme is now applied to the new quadrangle.
This moves the preimages of the vertices of S0. Some of them wander from
one triangle onto the other. The quadrangle is then recut into the original two
triangles. The whole procedure is visualized in Figure 6.

In order to improve the quality of φ on all S we apply this procedure suc-
cessively to all adjacent triangle pairs. After repeating this a few times the
parametrization function converges to a stable limit of greatly improved qual-
ity, as can be seen from Figure 7.

14



Figure 7: The edge relaxation algorithm significantly increases the quality of the
refined mesh. The figure shows a base grid (left) and a refined surface without
(center) and with (right) smoothing.

3 Application to Multigrid Methods

In this section we apply the surface parametrization developed in Section 2
within the context of finite element methods. Particularly, we combine our
parametrization with adaptive multigrid methods on unstructured tetrahedral
grids and discuss the resulting iterative scheme.

For the numerical simulation of problems involving complex geometries in,
e.g., biomechanics or continuum mechanics, two main goals have to be achieved.
These are accuracy and efficiency. Accuracy can be provided by constructing a
suitable finite–dimensional space, which in the context of finite element meth-
ods is done by choosing a suitable grid and appropriate ansatz functions. For
well–chosen spaces, the larger the number of unknowns, the better the discrete
approximation. On the other hand, particularly for problems in three space
dimensions, a large number of unknowns also requires a high computational
effort for solving the arising systems of equations. Thus, to obtain an efficient
numerical method it is desirable to use grids with as few unknowns as possible.
To achieve this, in case of local errors as may be caused by, e.g., corners in
the domain or local surface loads at contact interfaces, it is reasonable to use
meshes with varying meshsize. Using a posteriori error estimators, (see [44]
for an overview) these grids can be constructed by successively refining a given
coarse grid.

Often, local refinement techniques are used in combination with multigrid
methods. For linear elliptic partial differential equations, multigrid methods
are well known to be of optimal complexity for the solution of the arising linear
systems of equations, see [9, 26]. In contrast, using direct solvers leads to a
computational complexity of O(n(d+1)/2), n the number of unknowns and d
the spatial dimension. Thus, in three space dimensions multigrid methods are
clearly superior to direct solvers in terms of computational effort. Multigrid
methods require a hierarchy of nested grids, which in the context of adaptive
refinement is provided by the successive refinement process. Unfortunately, in

15



case of complicated geometries this procedure cannot be applied without any
modifications.

For the representation of complicated geometries, a large number of elements
(tetrahedrons, hexahedrons, prisms, pyramids) are necessary, whereas multigrid
methods require a coarse grid having as few unknowns as possible. Such a coarse
grid can be constructed by first simplifying a given complicated surface and
then using a mesh generator [40]. Then, a mesh hierarchy can be established
by successively subdividing elements of the coarse grid. As can be seen in
Figures 1, 8, and 11, during this process shape information of the original
surface is lost, if standard subdivision techniques are applied. This motivates
combining adaptive multigrid techniques with the parametrization proposed in
the previous section. Starting from a coarse approximation of the geometry
under consideration, a sequence of meshes is constructed by successively refining
the coarse grid locally on the basis of an a posteriori estimate of the local
errors. Additionally, the new nodes on the boundary are moved to their original
position, which is provided by our parametrization. Proceeding in that way, we
can meet the requirement of accuracy and efficiency by applying a multigrid
method on the resulting hierarchy of grids.

In the following, we present some numerical results illustrating the applica-
tion of the boundary parametrization for a linear elasticity problem in structural
mechanics and a nonlinear contact problem in biomechanics. The numerical ex-
periments have been carried out in the framework of the finite element toolbox
UG [4]. For the nonlinear contact problem considered in Section 3.2, we use the
monotone multigrid for contact problems developed and implemented in [32].
All results have been visualized using Amira [3].

Let us finally remark that, when applying boundary parameterizations, us-
ing standard a posteriori error estimators are not sufficient. This is due to
discretization errors caused by the approximation of the boundary. Since the
boundary of the domain is not assumed to be resolved by the coarse grid, addi-
tional effort has to be spent to also estimate the geometric error. We refer the
reader to [14] for the construction and analysis of an a posteriori error estimator
that includes control of the boundary approximation. However, this error esti-
mator requires local meshes which resolve the original boundary. In three space
dimensions, this is possible in principle but requires a lot of implementational
effort.

3.1 Structural Mechanics

Our first example is a problem in linear elasticity. The geometry under con-
sideration is the crank shaft depicted in the right picture of Figure 8. In the
middle of the crank shaft, where the connecting rods are mounted, Dirichlet
boundary data corresponding to a uniform displacement in vertical direction
are prescribed. On the circular areas at both ends of the crank shaft, homoge-
neous Dirichlet boundary conditions are applied. The original surface consists of
13,133 vertices. We do not use the original geometry for our numerical compu-
tation. Instead, by applying the simplification algorithm described in Section 2,

16



Figure 8: Crank shaft: Coarse grid (left) and adaptively refined grid (right).

the number of surface vertices is reduced to 897. The corresponding simpli-
fied surface can be seen on the left side of Figure 8. Using the mesh generator
provided by Amira, a grid is created which serves as coarse grid for an adap-
tive linear multigrid method. As described above, the grids of the multigrid
hierarchy are constructed successively by adaptive refinement.

The adaptive refinement process is controlled using a standard residual based
a posteriori error estimator. During the refinement process, the newly inserted
boundary nodes are moved to their original position on the original boundary
which is provided by our parametrization. The adaptive refinement process
is stopped, if the estimated discretization error is below 5%. On the coars-

level # vertices # dof # iterations

0 897 2 691 –
1 3 903 11 709 14
2 7 763 23 289 20
3 26 094 78 282 26
4 37 017 111 051 29
5 69 415 208 245 26
6 89 669 269 007 25

Table 1: Number of iterations

est level, the discrete problem is solved up to machine precision by Gaussian
elimination. On subsequent levels, k ≥ 1, we use a conjugate gradient method
preconditioned by a linear multigrid W(3, 3)–cycle to solve the arising system of
linear equations. The iterate uν

l on level l is accepted, if the stopping criterion

‖f l − Alu
ν
l ‖2,≤ 10−6 (1)

is satisfied, where ‖f l−Alu
ν
l ‖2 is the Euclidean norm of the residual f l−Alu

ν
l

17



Figure 9: Final grid and coarse grid (left) and isosurface of the norm of the
displacements on level 5 for |u5| = 0.0815 (right).

of the ν-th iteration step on level l. Here, f l and Al are the right hand side
and the stiffness matrix on level l, respectively.

We use nested iteration, i.e., the initial iterates on level l, l > 0, are given
by u0

l = Il
l−1u

νl−1

l−1 for l = 0, . . . , 6. Here, I l
l−1 is the natural injection from the

finite element space on level l − 1 into the finite element space on level l and
u

νl−1

l−1 is the final iterate on level l − 1.
In Table 1, the number of nodes and the degrees of freedom on the levels l =

0, . . . , 6 and the number of iterations necessary to fulfill the stopping criterion (1)
are shown. As can be seen, the number of iterations necessary to achieve the
prescribed tolerance does not increase with the number of degrees of freedom.

The resulting displacement field can be seen in the right picture of Figure 8.
Here, light color reflects large displacements and dark color small displacements.
In the right picture of Figure 9 the isosurface of the norm of the solution u5 on
level 5 for |u5| = 0.0815 is shown.

3.2 Biomechanics

In our second example, we consider a nonlinear contact problem in biomechanics.
The geometry under consideration can be seen in Figure 10 and consists of a
skull and a mandible. On the upper part of the skull and on the lower part of
the mandible Dirichlet boundary conditions corresponding to a displacement in
direction towards the grey block between the teeth, see Figure 11, are applied.
This grey block is assumed to be a rigid obstacle, thus leading to a Signorini-type
contact problem. Linear elastic behavior of the material is assumed. Again, the
original surface is simplified applying the algorithm given ins Section 2. For the
resulting simplified surface see the left picture of Figure 11. By means of the
Amira mesh generator, a coarse grid is created. Again, the grids of the multigrid
hierarchy are constructed successively by adaptive refinement controlled by a

18



Figure 10: Original surfaces of skull and mandible

standard residual error estimator. On each level, a nonlinear contact problem is
solved by means of a W(3, 3)–cycle of the non-linear monotone multigrid method
for contact problems developed in [32]. On the coarse grid, we use a non-linear
algebraic monotone multigrid method as non-linear coarse grid solver. For this
example, the refinement process is stopped after 5 refinement steps. As can
be seen in the right picture of Figure 11, the refinement is highly local and is
restricted to the vicinity of the contact area. Near the contact area, the original
geometry is restored completely. In contrast, on the upper part of the skull the
grid remains coarse. Again, light color reflects large displacements and dark
color reflects small displacements.

Figure 11: Biting skull: Coarse grid (left) and adaptively refined grid (right).

Unfortunately, on this example, the geometric multigrid algorithm achieves
only fairly poor convergence rates. This effect, due to deteriorating mesh quality
at the boundaries, will be discussed in the following section. The development

19



of grid improvement techniques is the topic of current research.

3.3 Preserving the Quality of the Elements

In the preceding section we have shown that multigrid techniques can be com-
bined successfully with the parametrizations developed in Section 2. We now
discuss shortly the main difficulty associated with this approach which is the
possibly deteriorating quality of elements near the boundary.

The shape of the elements is of great importance for the quality of the
numerical approximation. On the one hand, the standard discretization error
estimates for finite element spaces rely on the shape regularity of the mesh,
see, e.g., [8, 11]. On the other hand, the convergence of the multigrid method
does also depend on the shape regularity. In particular, in case of geometric
multigrid methods there arise even more constraints with respect to grid quality
than do appear in case of a single grid method. This is due to standard multigrid
methods being based on a sequence of nested grids, all of which have to be of
suitable quality.

For this reason, often so called red–green refinement techniques are used.
These refinement techniques preserve the shape properties of the coarse grid,
see, e.g., [5, 6]. However, using red–green refinement, newly inserted boundary
vertices remain on the surface of the initial grid, see Figure 1. For the numer-
ical examples presented above, we use red–green refinement, but we move the
newly inserted boundary vertices to their original positions which is provided
by the parametrization. This can lead to elements having negative volume or
to extremely flat elements, so-called ‘slivers’. For an example, we consider the
case of a locally non-convex boundary. As can be seen in in Figure 12, moving
newly inserted vertices to their original positions on the surface can result in
elements with negative volume.

�

�

�

Figure 12: Refinement at a concave surface (dotted) leads to a badly shaped
element (a, b, c). If the surface was even more concave, a would pass beyond b
and c, leading to an element with negative volume.

To overcome this difficulty, grid improvement techniques can be used. Since
geometric multigrid methods rely on a hierarchy of nested grids, we can only
consider mesh improvement algorithms which preserve the discrete topology.

20



Grid smoothing algorithms that preserve the discrete topology usually work by
solving either a global nonlinear problem [39] or a sequence of local nonlinear
problems [21, 29, 30]. In both cases, the aim is to improve the quality of the
mesh under consideration by moving interior vertices.

For our numerical computations, we use local strategies. After refinement
of the mesh the smoothing and untangling techniques from [21] are applied.
Since for our examples, these techniques do not always lead to a mesh without
elements with negative volumes, we additionally used the following simple re-
covering technique to obtain positive volume for all elements of the mesh. Let
T be a tetrahedron created by red–green refinement of its father element T ′ and
let x1, . . . , x4 denote the vertices of T . We assume T ′ to have positive volume.
Let us further assume that T has one vertex x ∈ {x1, . . . , x4} on the surface of
the domain. Since we use red–green refinement, during the refinement process
the boundary vertex x is constructed by subdividing an edge (x′

left, x
′

right) ⊂ T ′

of the father element T ′, i.e., we have x = 1/2 · (x′

left + x′

right). After refine-

ment, the boundary vertex x is moved to its original position v = φ(x) which
is provided by our parametrization φ. This can cause the element T to have a
negative volume. In this case, we choose some 0 < λ < 1 such that the convex
combination v = λx+(1−λ)φ(x) yields an element with positive volume. This
works since the choice λ = 0 corresponds to standard red–green refinement and
the determinant is a continuous function.

4 Conclusion

We have presented an algorithm for the automatic construction of boundary and
interface parametrizations for finite element grids. This algorithm is an adap-
tion of the MAPS-algorithm [33] known from computer graphics. It consists of
constructing a coarse boundary surface S by simplifying a high-resolution sur-
face and keeping the original surface as the image of a parametrization function
φ defined on S. This function allows access to the correct shape and surface nor-
mals of the original surface as well as to any kind of data defined on it. Unlike
standard simplification schemes, our algorithm correctly handles nonmanifold
surfaces. It can thus deal with surfaces that describe several domains. We have
shown that these boundary parametrizations can be used effectively by adaptive
multigrid solvers. They lead to an increase in efficiency, since computations can
be started on coarser grids without sacrificing geometric accuracy. The changing
boundary frequently causes a decrease in the quality of the three-dimensional
grid. This problem is a topic of ongoing research, however, even simple heuris-
tics for improving grid quality render the system quite well usable. We showed
this giving two examples from structural mechanics and biomechanics.

21



References

[1] Mark Ainsworth and John Tinsley Oden. A Posterior Error Estimation in
Finite Element Analysis. Wiley, 2000.

[2] Hans Wilhelm Alt. Lineare Funktionalanalysis. Springer Verlag, 1985.

[3] Amira. Amira visualization and modeling system .
http://www.AmiraVis.com, 2003.

[4] Peter Bastian, Klaus Birken, Klaus Johannsen, Stefan Lang, Nicolas Neuß,
Henrik Rentz–Reichert, and Christian Wieners. UG – a flexible software
toolbox for solving partial differential equations. Computing and Visual-
ization in Science, 1:27–40, 1997.

[5] Jürgen Bey. Tetrahedral grid refinement. Computing, 55:355–378, 1995.

[6] Folkmar Bornemann, Bodo Erdmann, and Ralf Kornhuber. Adaptive
multilevel–methods in three space dimensions. Int. J. Numer. Methods
in Engng., 36:3187–3203, 1993.

[7] D. Braess. Towards algebraic multigrid for elliptic problems of second order.
Computing, 55:379–393, 1995.

[8] Dietrich Braess. Finite Elements. Cambridge University Press, 2001.

[9] James Bramble. Multigrid methods, volume 294 of Pitman Research Notes
in Mathematics Series. Longman Scientific, 1993.

[10] Peter J.C. Brown and Christopher T. Faigle. A robust efficient algorithm for
point location in triangulations. Technical report, Cambridge University,
February 1997.

[11] Philippe G. Ciarlet. Mathematical Elasticity; Volume 1: Three–
Dimensional Elasticity, volume 20 of Studies in Mathematics and its Ap-
plications. North–Holland, Amsterdam, 1988.

[12] P. Cignoni, C. Montani, and R. Scopigno. A comparison of mesh simplifi-
cation algorithms. Computers and Graphics, 22(1):37–54, 1998.

[13] Peter Deuflhard and Martin Seebass. Adaptive multilevel FEM as decisive
tools in the clinical cancer therapy hyperthermia. In Proc. Eleventh Inter-
national Conference on: Domain Decomposition Methods in Sciences and
Engineering, pages 403–414, 1999.

[14] Willy Dörfler and Martin Rumpf. An adaptive strategy for elliptic problems
including a posteriori controlled boundary approximation. Mathematics of
Computation, 67(224):1361–1382, 1998.

[15] Tom Duchamp, A. Certain, Antony DeRose, and Werner Stuetzle. Hierar-
chical computation of PL harmonic embeddings. Technical report, Univer-
sity of Washington, July 1997.

22



[16] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael
Lounsbery, and Werner Stuetzle. Multiresolution analysis of arbitrary
meshes. Computer Graphics, 29(Annual Conference Series):173–182, 1995.
URL citeseer.nj.nec.com/eck95multiresolution.html.

[17] Herbert Edelsbrunner. Geometry and Topology for Mesh Generation. Cam-
bridge University Press, 2001.

[18] D. Feuchter, I. Heppner, S.A. Sauter, and G. Wittum. Bridging the gap
between geometric and algebraic multi-grid methods. Computing and Vi-
sualization in Science, 6(1):1–13, 2003.

[19] Michael S. Floater. Parametrization and smooth approximations of surface
triangulations. Computer Aided Geometric Design, 14:231–250, 1997.

[20] Theodore Frankel. The Geometry of Physics. Cambridge University Press,
1997.

[21] Lori Freitag. Users Manual for Opt-MS: Local Methods for Simplicial Mesh
Smoothing and Untangling. Argonne National Laboratory, Illinois, March
1999.

[22] Michael Garland and Paul Heckbert. Surface simplification using quadric
error metrics. In Proceedings of SIGGRAPH, pages 209–218, 1997.

[23] Igor Guskov, Andrei Khodakovsky, Peter Schröder, and Wim Sweldens.
Hybrid meshes. under revision, 2002.

[24] Igor Guskov, Kiril Vidimče, Wim Sweldens, and Peter Schröder. Normal
meshes. In Proceedings of SIGGRAPH, 2000.

[25] W. Hackbusch and S.A. Sauter. Composite finite elements for problems
containing small geometric details: Part II: Implementation and numerical
results. Computing and Visualization in Science, 1(1):15–25, 1997.

[26] Wolfgang Hackbusch. Multigrid Methods and Applications, volume 4 of
Computational Mathematics. Springer–Verlag, Berlin, 1985.

[27] Hugues Hoppe. Progressive meshes. Computer Graphics, 30(Annual Con-
ference Series):99–108, 1996.

[28] Reinhard Klein, Gunther Liebich, and Wolfgang Straßer. Mesh reduction
with error control. In Roni Yagel and Gregory M. Nielson., editors, IEEE
Visualization ’96, pages 311–318, 1996.

[29] Patrick M. Knupp. Achieving finite element mesh quality via optimization
of the Jacobian matrix norm and associated quantities. I: A framework for
surface mesh optimization. Int. J. Numer. Methods Eng. 48, 48(3):401–420,
2000.

23



[30] Patrick M. Knupp. Achieving finite element mesh quality via optimization
of the Jacobian matrix norm and associated quantities. II: A framework
for volume mesh optimization and the condition number of the Jacobian
matrix. Int. J. Numer. Methods Eng. 48, 48(8):1165–1185, 2000.

[31] Leif Kobbelt, Swen Campagna, and Hans-Peter Seidel. A general frame-
work for mesh decimation. In Graphics Interface Proceedings, pages 43–50,
1998.

[32] Rolf Krause. Monotone Multigrid Methods for Signorini’s Problem
with Friction. PhD thesis, FU Berlin, 2000. http://www.diss.fu-
berlin.de/2001/240/indexe.html.

[33] Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and
David Dobkin. MAPS: Multiresolution adaptive parametrization of sur-
faces. In Proceedings of SIGGRAPH, pages 95–104, 1998.

[34] John Michael Lounsbery. Multiresolution Analysis for Surfaces of Arbitrary
Topological Type. PhD thesis, University of Washington, Seattle, 1993.

[35] Makoto Maruya. Generating a texture map from object-surface texture
data. Computer Graphics Forum, 14(3):397–406, 1995.

[36] Colm Ó’Dúnlaing, Colum Watt, and David Wilkins. Homeomorphism of
2-complexes is equivalent to graph isomorphism. International Journal of
Computational Geometry and Applications, 10(5):453–476, 2000.

[37] Emil Praun, Wim Sweldens, and Peter Schröder. Consistent mesh
parametrizations. In Proceedings of SIGGRAPH, 2001.

[38] Kari Pulli and Mark Segal. Fast Rendering of Subdivision Surfaces. In Ren-
dering Techniques ’96 (Proceedings of the Seventh Eurographics Workshop
on Rendering), pages 61–70, New York, NY, 1996. Springer-Verlag/Wien.

[39] Martin Rumpf. A variational approach to optimal meshes. Numer. Math.,
72(4):523–540, 1996.

[40] Oliver Sander. Constructing boundary and interface parametrizations for
finite element solvers. Master’s thesis, Institute of Computer Science, Freie
Universität Berlin, 2001.

[41] F. Smith, Petter Bjørstad, and William Gropp. Domain Decomposi-
tion: Parallel Multilevel Methods for Elliptic Partial Differential Equations.
Cambridge University Press, 1996.

[42] Detlev Stalling, Martin Seebass, Malte Zöckler, and Hans-Christian Hege.
Hyperthermia treatment planning with HyperPlan – User’s Manual. Tech-
nical Report ZR 00-27, Konrad-Zuse-Zentrum für Informationstechnik, Oc-
tober 2000.

24



[43] K. Stüben. A review of algebraic multigrid. J. Comput. Appl. Math., 128
(1-2), 2001.

[44] Rüdiger Verführt. A review of a posteriori error estimation and adaptive
mesh-refinement techniques. Series Advances in Numerical Mathematics.
Wiley-Teubner, Chichester: John Wiley & Sons. Stuttgart: B. G. Teubner,
1996.

[45] Stefan Zachow. 3D-Osteotomieplanung in der Mund-, Kiefer- und
Gesichtschirurgie unter Berücksichtigung der räumlichen Weichgewe-
beanordnung. Work in progress, Zuse Institute Berlin (ZIB), 2003.

[46] Denis Zorin and Peter Schröder. Subdivision for modeling and animation.
SIGGRAPH Course Notes, 2000.

[47] Denis Zorin, Peter Schröder, and Wim Sweldens. Interactive multireso-
lution mesh editing. Computer Graphics, 31(Annual Conference Series):
259–268, 1997.

25


