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Abstract We discuss possible algorithms for interpolating data given on a set of
curves in a surface of IR3. We propose a set of basic assumptions to be satisfied
by the interpolation algorithms which lead to a set of models in terms of possibly
degenerate elliptic partial differential equations. The Absolutely Minimizing Lips-
chitz Extension model (AMLE) is singled out and studied in more detail. We study
the correctness of our numerical approach and we show experiments illustrating
the interpolation of data on some simple test surfaces like the sphere and the torus.
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1 Introduction

Our purpose in this paper will be to discuss possible algorithms for interpolating
data on surfaces embedded in IR3 starting from data given on a set of curves con-
tained in the surface. Following the approach in [14], where interpolation operators
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in the plane were considered, our approach to the problem will be based on a set of
axioms or formal requirements that an interpolation operator should satisfy. Then
we deduce that any operator which interpolates continuous data given on a set of
curves on the surface can be given as the viscosity solution of an elliptic partial
differential equation on the manifold, extending the corresponding results obtained
in the plane [14]. In the case of the plane, the main motivation comes from image
processing, where interpolation techniques have been proposed in the literature
for ‘perceptually motivated’ coding applications [13], or from data interpolation
for the encoding of DEM models from a sample of its level curves [19],[7]. An
additional motivation in the case of surfaces in IR3 comes from the interpolation of
climate maps of the surface of the sphere [28]. In that case the algorithms currently
used for interpolation are based on explicit representations of the surface based
on triangulations or grid points [28]. Our numerical approach will be based on an
implicit representation of the surface as a level set of the distance function to it
and the numerical methods developed in [10] for computing the solutions of par-
tial differential equations on implicit surfaces. Preliminary results were reported
in [26].

Let us briefly describe the plan of the paper. In Section 2 we introduce a formal
set of axioms which should be satisfied by any interpolation operator on a surface
in IR3 (of the type considered here) and derive the associated partial differen-
tial equation. In Section 3 we briefly discuss the so called AMLE interpolation, an
example particularly relevant in applications. In Section 4 we explain the numerical
approach used to solve the AMLE model. In Section 5 we display some numerical
results.

2 Axiomatic analysis of interpolation operators

Let (M, g) be a compact, connected smooth two-dimensional surface in IR3. As
usual, given a point ξ ∈ M, we denote by TξM the tangent plane to M at the
point ξ . Let C denote the family of continuous curves � : [a, b] → M which are
one-to-one in (a, b) and �(a) = �(b). Let D denote the family of open subsets
� of M such that the boundary of �, denoted by ∂� consists of a finite union of
curves in C. For each� ∈ D, let C(∂�) be the set of continuous functions defined
on ∂�.

D represents the set of domains � where we interpolate the data given on
∂�. This set of domains may be too general to be able to interpolate any data
ϕ ∈ C(∂�) to a continuous function inside �, and sometimes it is necessary to
assume that the domain � has a smooth boundary. Since this does not play an
essential role in the present section to identify the interpolation operators, and to
avoid any unnecessary complication, we shall use the set D defined above. When
given any explicit example of interpolation operator, the regularity of the domains
in D will be explicitly stated.

We shall consider an interpolation operator as a transformation E which asso-
ciates with each � ∈ D and each ϕ ∈ C(∂�) a unique function u = E(ϕ, ∂�)
defined on � satisfying the following set of assumptions:

– (A1) Boundary Values:

E(ϕ, ∂�)|∂� = ϕ for any � ∈ D and ϕ ∈ C(∂�).
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In other words, E(ϕ, ∂�) represents an interpolation or extension of ϕ into�.
– (A2) Comparison Principle:

E(ϕ, ∂�) ≤ E(ϕ̃, ∂�)

for any � ∈ D and any ϕ, ϕ̃ ∈ C(∂�) with ϕ ≤ ϕ̃.
– (A3) Stability Principle: Let �,�′ ∈ D, �′ ⊆ �. Then

E(E(ϕ, ∂�)|∂�′, ∂�′) = E(ϕ, ∂�)|�′

holds for any ϕ ∈ C(∂�). This principle means that no new application of the
interpolation can improve a given interpolant.

– (A4) Regularity Principle: Let ξ be a point on M, U ⊆ IR2 an open set
containing 0, and ψ : U → M be any coordinate system such that ψ(0) = ξ .
Let gij (x) and �kij (x) (indices i, j, k run from 1 to 2) denote, respectively, the
coefficients of the first fundamental form of M and the Christoffel symbol
computed in the coordinate system ψ . For simplicity we shall denote by G
the (symmetric) matrix (gij (0)) and by �k the matrix formed by the coeffi-
cients (�kij (0)), i, j, k = 1, 2. Let us denote by Br the geodesic ball of radius r
around ξ . Let SM(2) be the set of symmetric 2 × 2 matrices. Let A = (Aij ) be
a matrix such that GA ∈ SM(2), and p = (pi) ∈ IR2. We shall use Einstein’s
convention that repeated indices are summed, and we denote by (a, b) = aib

i .
We can now state the regularity principle. For any quadratic polynomial

Q : U → IR given by

Q(x) = 1

2
gij (0)A

i
lx
lxj + gij (0)p

ixj + c

= 1

2
(GAx, x)+ (Gp, x)+ c, (1)

the operator E should satisfy

lim
r→0

E(Q ◦ ψ−1|∂Br , ∂Br)(ξ)−Q ◦ ψ−1(ξ)

r2/2
= F(A, p, c, ξ,G, �k) (2)

whereF is a continuous function of its first argument. This requirement embod-
ies several properties. First, it expresses that the interpolant of a quadratic
polynomial near ξ may be locally expressed in terms of its elements A,p, c,
the point ξ , and the metric tensor and Christoffel symbols. Since any smooth
function u on U is given locally as a quadratic polynomial, this (together with
the comparison principle) implies that the operator depends only on the first
and second derivatives of u. Moreover, when combined with the comparison
principle it permits to prove that the interpolation operator is intrinsic and the
regularity principle also gives the transformation properties of F when we
change coordinates (see Theorem 1).
We could have written that the limit in (2) converges to a function F(B, q, c, ξ,
G, �k) where B = GA, q = Gp, but this would mean only an equivalent
change of notation. We prefer to use our notation since it will be more conve-
nient in the proof of Theorem 1. Some further clarifying remarks will be given
below.
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– (A5) Grey Scale Shift Invariance:

E(ϕ + c, ∂�) = E(ϕ, ∂�)+ c

for any � ∈ D, ϕ ∈ C(∂�), c ∈ IR.
– (A6) Linear Grey Scale Invariance:

E(λϕ, ∂�) = λE(ϕ, ∂�)

for any � ∈ D, ϕ ∈ C(∂�), and any λ ∈ IR.

Let us describe the operators satisfying the above set of assumptions. For that
let us introduce some more notation which will clarify the notation used in the
regularity principle. For any ξ ∈ M, we denote by TξM the tangent space to M at
the point ξ . By T ∗

ξ M we denote its dual space. The scalar product of two vectors
v,w ∈ TξM will be denoted by 〈v,w〉, and the action of a covector p∗ ∈ T ∗

ξ M,
on a vector v ∈ TξM, will be denoted by (p∗, v). If ψ : U → M is a coordinate
system such that ψ(0) = ξ , and gij (x) are the coefficients of the first fundamental
form of M inψ , we shall often write gij (ξ ′) instead of gij (x)where x ∈ U is such
thatψ(x) = ξ ′. Then, if v,w ∈ TξM, we have 〈v,w〉ξ = gij (ξ)v

iwj , where vi, wi

are the coordinates of v,w in the basis ∂
∂xi

|ξ of TξM. Using this basis for TξM
and the dual basis on T ∗

ξ M, if p∗ ∈ T ∗
ξ M, and v ∈ TξM, we have (p∗, v) = piv

i .
Notice that we may write (p∗, v) = gij (ξ)p

ivj where pi are the coordinates of
the vector p associated to the covector p∗. The relation between both coordinates
is given by

pi = gij (ξ)p
j , or pi = gij (ξ)pj , (3)

where gij (ξ) denotes the coefficients of the inverse matrix of gij (ξ). By a slight
abuse of notation, we shall write (3) as

p∗ = Gp or p = G−1p∗.

In this wayG : TξM → T ∗
ξ M. In the case thatψ is a geodesic coordinate system,

the matrixG is the identity matrix I = (δij ), and I maps vectors to covectors, i.e.,
I : TξM → T ∗

ξ M. We shall denote by I−1 the inverse of I , mapping covectors to
vectors.

Let us now clarify the notation used in (1). If U ⊆ IR2, and ψ : U → M is
a coordinate system with ψ(0) = ξ , then ψ ◦ dψ(0)−1 : U ′ ⊆ TξM → M is a
new coordinate system. If we identify T0U with IR2 and {ei} denotes its canonical
basis, then e′i = dψ(0)ei satisfy 〈e′i , e′j 〉 = gij (ξ). From now on, we shall use this
identification, thus we shall interpret that any coordinate system around a point
ξ ∈ M is defined on a neighborhood of 0 in the tangent space TξM.

We shall also use this coordinate system to express a bilinear map Â : TξM ×
TξM → IR. Indeed, if (Aij ) is the matrix of Â in this basis, and v,w ∈ TξM, we
may write Â(v,w) = Aijv

jwi . If Aij = gik(ξ)Akj , then Aij determines a map,

called A : TξM → TξM such that Â(v,w) = 〈Av,w〉 = (GAv,w). Observe
that GA : TξM → T ∗

ξ M. Observe also that our notation Aij already indicates
that A = (Aij ) maps vectors to vectors, and this is the interpretation of the matrix
argument A in (2). We shall identify matrices with maps.
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As usual, we say that a linear map C : TξM → T ∗
ξ M is symmetric if

(Cv,w) = (Cw, v) for any v ∈ TξM, w ∈ TξM. From now on, we shall use the
notation

SM(2) := {A : TξM → T ∗
ξ M, A is symmetric}.

The above notation explains the use of gij (0) in formula (1). Thus we may write

Q(x) = 1

2
〈Ax, x〉 + 〈p, x〉 + c = 1

2
(GAx, x)+ (Gp, x)+ c.

Given a function u on M, let us denote by DMu and D2
Mu the gradient and

Hessian of u, respectively. In a coordinate system DMu is the covector ∂u
∂xi

, and

D2
Mu is the matrix ∂2u

∂xi∂xj
− �kij

∂u
∂xk

which acts on tangent vectors. Thus, with this
notation D2

Mu(ξ) : TξM × TξM → IR is a bilinear map, ξ ∈ M. Let us write
∇Mu the vector of coordinates gij ∂u

∂xj
. Then |∇Mu(ξ)|2ξ = 〈∇Mu(ξ),∇Mu(ξ)〉ξ .

To simplify our notation we shall writeDu and ∇u instead ofDMu, and ∇Mu. The
vector field ∇u satisfies 〈∇u, v〉ξ = du(v), v ∈ TξM, du being the differential
of u.

As usual,O(f )will denote any expression which is bounded byC|f | for some
constant C > 0.

The following results represent an extension of the results in [14], which, in
turn, were inspired by [2].

Proposition 1 Assume that E is an interpolation operator that satisfies (A2) and
(A4) . Let ϕ be a smooth function on a neighborhood of ξ ∈ M. Let ψ : U → M
be a coordinate system around ξ . Let Br be the geodesic ball of radius r around
ξ . Then

E(ϕ|∂Br , ∂Br)(ξ)− ϕ(ξ)

r2/2

→ F(G−1D2(ϕ ◦ ψ)(0),G−1D(ϕ ◦ ψ)(0), ϕ(ξ), ξ,G, �k) (4)

as r → 0.

Proof Let us consider the Taylor expansion of ϕ ◦ ψ around 0

ϕ ◦ ψ(x) = ϕ ◦ ψ(0)+ ∂(ϕ ◦ ψ)
∂xi

(0)xi + 1

2

∂2(ϕ ◦ ψ)
∂xi∂xj

(0)xixj +O(|x|3).

For each ε ∈ IR we define the quadratic polynomial

Qε(x) = ϕ ◦ ψ(0)+ ∂(ϕ ◦ ψ)
∂xi

(0)xi + 1

2

∂2(ϕ ◦ ψ)
∂xi∂xj

(0)xixj + ε

2
|x|2.

Let ε > 0. Then, in a neighborhood of 0, we have

Q−ε(x) ≤ ϕ ◦ ψ(x) ≤ Qε(x).

By choosing r small enough we have

Q−ε ◦ ψ−1(ζ ) ≤ ϕ(ζ ) ≤ Qε ◦ ψ−1(ζ ) (5)
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for all ζ ∈ Br .
Call Gε(r) : Br → IR the function obtained by interpolating Qε restricted to

∂Br ,

Gε(r) = E(Qε ◦ ψ−1|∂Br , ∂Br).
By the comparison principle it follows that

G−ε(r) ≤ E(ϕ|∂Br , ∂Br) ≤ Gε(r),

and, in particular, this holds at ξ ,

G−ε(r)(ξ) ≤ E(ϕ|∂Br , ∂Br)(ξ) ≤ Gε(r)(ξ).

Since Q−ε(ξ) = Qε(ξ) = ϕ(ξ), we subtract this quantity to obtain

G−ε(r)(ξ)−Q−ε(ξ) ≤ E(ϕ|∂Br , ∂Br)(ξ)− ϕ(ξ) ≤ Gε(r)(ξ)−Qε(ξ). (6)

Now, applying the regularity principle to the quadratic polynomials Qε and Q−ε ,
we obtain

lim
r→0

G−ε(r)(ξ)−Q−ε(ξ)
r2/2

= F(G−1D2(ϕ ◦ ψ)(0)− εI,G−1D(ϕ ◦ ψ)(0), ϕ(ξ), ξ,G, �k), (7)

and

lim
r→0

Gε(r)(ξ)−Qε(ξ)

r2/2

= F(G−1D2(ϕ ◦ ψ)(0)+ εI,G−1D(ϕ ◦ ψ)(0), ϕ(ξ), ξ,G, �k). (8)

We can therefore divide each member of inequalities (6) by r2/2, use (7), (8), to
obtain

F(G−1D2(ϕ ◦ ψ)(0)− εI,G−1D(ϕ ◦ ψ)(0), ϕ(ξ), ξ,G, �k)
≤ lim inf

r→0

E(ϕ|∂Br , ∂Br)(ξ)− ϕ(ξ)

r2/2

≤ lim sup
r→0

E(ϕ|∂Br , ∂Br)(ξ)− ϕ(ξ)

r2/2

≤ F(G−1D2(ϕ ◦ ψ)(0)+ εI,G−1D(ϕ ◦ ψ)(0), ϕ(ξ), ξ,G, �k).
Letting ε → 0, and using the continuity of F in its first argument, we obtain (4).

��
Remark 1 We clearly see from the proof of Proposition 1 that, due to the inter-
play between assumptions (A2) and (A4), (A4) could be weakened. Indeed, if we
assume that for any function Q given by its Taylor expansion in a neighborhood
of x = 0, the limit in (2) is a function which depends on DiQ(0), i ≥ 0, i.e., is
F({DiQ(0) : i ≥ 0}, ξ,G, �k), then the argument of Proposition 1 proves that F
only depends onQ(0), ∇Q(0) andD2Q(0), as in our statement of (A4). Thus, (A4)
is an expression of the property that the interpolant of a smooth function depends
regularly on the coefficients of its Taylor expansion. Its interplay with (A2), already
explained in the paragraph after (2), permits to prove that the underlying operator
is at most of second order.
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Lemma 1 Let ξ ∈ M, and ψ : U → M be a coordinate system around ξ . Let
G,�k be the metric coefficients and the Christoffel symbols of M in the coordinate
system ψ at the point ξ . Let A1, A2 : TξM → TξM be two matrices such that
GA1,GA2 are symmetric, p ∈ TξM, c ∈ IR. If GA1 ≤ GA2, then

F(A1, p, c, ξ,G, �
k) ≤ F(A2, p, c, ξ,G, �

k).

Proof Consider the quadratic polynomials Qi : TξM → IR defined in the coordi-
nate system ψ by

Qi(x) = 1

2
(GAix, x)+ (Gp, x)+ c, i = 1, 2.

Observe that Q1(x) ≤ Q2(x) for all x ∈ TξM and Q1(0) = Q2(0), hence, by the
comparison principle (A2) we have

E(Q1 ◦ ψ−1|∂Br , ∂Br)−Q1 ◦ ψ−1(ξ) ≤ E(Q2 ◦ ψ−1|∂Br , ∂Br)−Q2 ◦ ψ−1(ξ)

for r > 0 small enough. Dividing by r2/2, letting r → 0, and using the regularity
principle we get

F(A1, p, c, ξ,G, �
k) ≤ F(A2, p, c, ξ,G, �

k).

��
Lemma 2 Let U 1, U 2 be two neighborhoods of 0 in IR2 and let ψi : Ui → M
be two coordinate systems around the point ξ ∈ M, i.e., ψi(0) = ξ . Assume that
the change of coordinates � = ψ−1

1 ◦ ψ2 : U 2 → U 1 is a diffeomorphism. Let
G,� (resp.G,�) be the metric coefficients and the Christoffel symbols of M in the
coordinate system ψ1 (resp. ψ2) at the point ξ . LetQ : U 1 → IR be the quadratic
polynomial

Q(v) = 1

2
(GAv, v)+ (Gp, v)+ c (9)

Let Q(v̄) := (Q ◦�)(v̄). Then Q(v̄) = Q′(v̄)+O(|v̄|3) in a neighborhood of 0,
where Q′ is the quadratic polynomial

Q′(v̄) = 1

2
(GB−1ABv̄, v̄)+ 1

2
(�(BtGp)(v̄), v̄)

−1

2
(Bt�(Gp)(Bv̄), v̄)+ (BtGp, v̄)+ c, (10)

and B = D�(0).

Proof We assumed that U 1, U 2 are such that the change of coordinates � =
ψ−1

1 ◦ ψ2 : U 2 → U 1 is a diffeomorphism. Since

Q(v̄) := (Q ◦�)(v̄) = 1

2
(GA�(v̄),�(v̄))+ (Gp,�(v̄))+ c, (11)

expanding �(v̄) as a Taylor series around the point 0

�(v̄) = D�(0)v̄ + 1

2
D2�(0)(v̄, v̄)+O(|v̄|3),
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(where D2�(0)(v̄, v̄) denotes the vector whose coordinates are D2�i(0)(v̄, v̄),
�i being the coordinates of �, i = 1, 2) and plugging it into (11) we obtain

Q(v̄) = 1

2
(GAD�(0)v̄,D�(0)v̄)+ (Gp,D�(0)v̄)

+1

2
(Gp,D2�(0)(v̄, v̄))+ c +O(|v̄|3). (12)

Let Q′(v̄) be the quadratic polynomial appearing at the right hand side of (12). If
we denote B = D�(0), we may write

Q′(v̄) = 1

2
(GABv̄, Bv̄)+ (Gp,Bv̄)+ 1

2
(Gp,D2�(0)(v̄, v̄))+ c.

Let us write the map � in coordinates as ui = ui(ūk). We recall the following
transformation formulas for the metric coefficients [24]

gαβ
∂uβ

∂ūk
= ḡlk

∂ūl

∂uα
, (13)

or, in more compact notation,

BtG = GB−1, (14)

and the Christoffel symbols

∂2uβ

∂ūi∂ūj
= �

k

ij

∂uβ

∂ūk
− �

β

α′β ′
∂uα

′

∂ūi

∂uβ
′

∂ūj
. (15)

Observe that as a map B : TξM → TξM, while Bt : T ∗
ξ M → T ∗

ξ M.
If q is a covector of coordinates qk , let us denote by �(q) the bilinear map (or

matrix) whose coordinates are �kij qk . Now, we may compute

(Gp,D2�(0)(v̄, v̄)) = gαβp
α ∂2uβ

∂ūi∂ūj
v̄i v̄j

= gαβ
∂uβ

∂ūk
pα�

k

ij v̄
i v̄j − gαβp

α�
β

α′β ′
∂uα

′

∂ūi

∂uβ
′

∂ūj
v̄i v̄j .

Let us transform each of these expressions. The first term is

�
k

ij

∂uβ

∂ūk
gαβp

αv̄i v̄j = �ij (B
tGp)v̄i v̄j = (�(BtGp)(v̄), v̄).

Now, the second term is

gαβp
α�

β

α′β ′
∂uα

′

∂ūi

∂uβ
′

∂ūj
v̄i v̄j = �α′β ′(Gp)

∂uα
′

∂ūi

∂uβ
′

∂ūj
v̄i v̄j

= �α′β ′(Gp)(Bv̄)α(Bv̄)β

= (�(Gp)(Bv̄), Bv̄) = (Bt�(Gp)(Bv̄), v̄).

Collecting both expressions we have

(Gp,D2�(0)(v̄, v̄)) = (�(BtGp)(v̄), v̄)− (Bt�(Gp)(Bv̄), v̄). (16)
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Finally, let us observe that

(GABv̄, Bv̄) = (BtGABv̄, v̄) = (GB−1ABv̄, v̄) (17)

and

(Gp,Bv̄) = (BtGp, v̄). (18)

Thus, we may write

Q′(v̄) = 1

2
(GB−1ABv̄, v̄)+ 1

2
(�(BtGp)(v̄), v̄)

−1

2
(Bt�(Gp)(Bv̄), v̄)+ (BtGp, v̄)+ c.

��
Proposition 2 LetE be an interpolation operator on M satisfying the comparison
principle. Let ψ1 : U 1 → M be a coordinate systems around ξ ∈ M. LetG,� be
the metric coefficients and the Christoffel symbols of M in the coordinate system
ψ1 at the point ξ . For any symmetric matrix X = (Xij ), q ∈ T ∗

ξ M, and a ∈ IR,
let us define the function

H(X, q, a, ξ) = F(I−1X, I−1q, a, ξ, I, 0), (19)

that is, H is the function F obtained when using a geodesic coordinate system.
Then

F(A, p, a, ξ,G, �k) = H(Bt(GA− �(Gp))B,BtGp, c, ξ) (20)

for any matrix A such that GA ∈ SM(2), and any vector p, where BBt = G−1.
Moreover the function H satisfies

H(A′, p′, c, ξ) = H(RtA′R,Rtp′, c, ξ). (21)

for any matrix A′ ∈ SM(2), any covector p′, and any R : TξM → TξM rotation
matrix.

Our notationBBt = G−1 contains a slight abuse of notation, sinceB : TξM →
TξM and Bt : T ∗

ξ M → T ∗
ξ M. The correct notation should be BI−1Bt .

Proof We shall use the notation of Lemma 2. For any symmetric matrixX = (Xij ),
any q ∈ T ∗

ξ M, and a ∈ IR, let us define the function F1 by the identity

F1(X, q, a, ξ,G, �
k) = F(G−1X,G−1q, a, ξ,G, �k). (22)

Since Q ◦ ψ−1
1 = Q ◦ ψ−1

2 in U 1 ∩ U 2,

lim
r→0

E(Q ◦ ψ−1
1 |∂Br , ∂Br)(ξ)−Q ◦ ψ−1

1 (ξ)

r2/2
= F1(GA,Gp, c, ξ,G, �

k), (23)
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and

lim
r→0

E(Q ◦ ψ−1
2 |∂Br , ∂Br)(ξ)−Q ◦ ψ−1

2 (ξ)

r2/2

= F1(GB
−1AB + �(BtGp)− Bt�(Gp)B,BtGp, c, ξ,G, �

k
) (24)

we have

F1(GA,Gp, c, ξ,G, �
k)

= F1(GB
−1AB + �(BtGp)− Bt�(Gp)B,BtGp, c, ξ,G, �

k
) (25)

or, using (14),

F1(GA,Gp, c, ξ,G, �
k)

= F1(B
t (GA− �(Gp))B + �(BtGp), BtGp, c, ξ,G, �

k
). (26)

Now, for any symmetric matrix X = (Xij ), any q ∈ T ∗
ξ M, and a ∈ IR, let us

define the function F2 by the identity

F2(X, q, a, ξ,G, �
k) = F1(X + �(q), q, a, ξ,G, �k). (27)

In terms of F2, (26) can be written as

F2(GA− �(Gp),Gp, c, ξ,G, �k)

= F2(B
t (GA− �(Gp))B,BtGp, c, ξ,G, �

k
). (28)

By varying the quadratic polynomials, the above equation holds for any matrix
A = (Aij ) such that GA is symmetric, any invertible matrix B : TξM → TξM,
and any p ∈ TξM.

Now, we chooseψ1 as a geodesic coordinate system around ξ for whichG = I ,
and �k = 0. In this case, (14) can be written asG = BtIB = BtB. We may write
(28) as

F2(IA, Ip, c, ξ, I, 0) = F2(B
tIAB,Btp, c, ξ, BtB, �

k
), (29)

and this identity holds for any symmetric matrix IA, any vector p ∈ TξM, and
any invertible matrix B. Once again, we change variables and write A′ = BtIAB,
p′ = BtIp, B ′ = B−1. Then we write (29) as

F2(A
′, p′, c, ξ,G, �

k
) = F2(B

′tA′B ′, B ′tp′, c, ξ, I, 0), (30)

and this identity holds for any symmetric matrix A′ : TξM → T ∗
ξ M, any p′ ∈

T ∗
ξ M, and any invertible matrix B ′ : TξM → TξM, where G = (B ′t )−1B ′−1.

Now, for any symmetric matrix X = (Xij ), any q ∈ T ∗
ξ M, and scalar a, let us

define the function H by the identity

H(X, q, a, ξ) = F2(X, q, a, ξ, I, 0). (31)

Note that by (22), (27), and (31), we have

H(X, q, a, ξ) = F(I−1X, I−1q, a, ξ, I, 0)
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that is, H is the function F obtained when using a geodesic coordinate system.
Hence, (30) can be written as

F2(A
′, p′, c, ξ,G, �

k
) = H(B ′tA′B ′, B ′tp′, c, ξ), (32)

and using (22), (27), (31), we have formula (20). In particular, if we take ψ1 as a
geodesic coordinate system around ξ , and ψ2 to be a rotation R with respect to ψ1

so that B ′ = R, G = I , and �
k = 0 at the point ξ , then we may write (32) as

H(A′, p′, c, ξ) = H(RtA′R,Rtp′, c, ξ). (33)

where A′ is any matrix in SM(2), p′ ∈ T ∗
ξ M, and R is a rotation in TξM. ��

Before continuing, let us prepare some more notation. Let ξ ∈ M, and let
{e∗1, e∗2} denote a fixed orthonormal basis of T ∗

ξ M. Given q ∈ TξM∗, q �= 0, let
|q|2 = (I−1q, q), and let Rq be the rotation in TξM such that Rtqq = |q|e∗1. Let

ν = I−1q

|q| , and ν⊥ the counterclockwise rotation of ν of π
2 degrees. Then we may

writeRtq(x) = (ν⊗e∗1)(x)+(ν⊥ ⊗e∗2)(x) (where (a⊗b)(x) = (a, x)b, a ∈ TξM,
b, x ∈ T ∗

ξ M), and for any A : TξM → T ∗
ξ M the matrix of RtqARq in the basis

{ν, ν⊥} is

RtqARq =
(
A(ν, ν) A(ν, ν⊥)
A(ν⊥, ν) A(ν⊥, ν⊥)

)
.

Since A(ν, ν⊥) = A(ν⊥, ν) we see that RtqARq only depends on the three scalars
A(ν, ν), A(ν, ν⊥), A(ν⊥, ν⊥). Note that these quantities are intrinsic, i.e., they do
not depend on the coordinate system.

Proposition 3 Assume that the interpolation operator E satisfies (A2), (A4),
(A5). Then there is a functionH : SM(2)×IR×M → IR such thatH(A, q, c, ξ) =
H(RtqARq, |q|, ξ) for any A ∈ SM(2), q ∈ T ∗

ξ M, q �= 0, c ∈ IR, ξ ∈ M. More-
over, H is a continuous and nondecreasing function of A.

Proof Let ξ ∈ M and let Q(x) = 1
2 (GAx, x) + (Gp, x) + c in the coordinate

system ψ around ξ . Let α ∈ IR. Since, by (A5), E(Q ◦ ψ−1 + α, ∂Br) − α =
E(Q ◦ ψ−1, ∂Br), substracting Q(ξ) at both sides, dividing by r2

2 , and letting
r → 0+, using Proposition 2 we obtain

F(A, p, c + α, ξ,G, �k) = F(A, p, c, ξ,G, �k).

Since this holds for anyα ∈ IRwe deduce thatF does not depend on c. This implies
that H also does not depend on c. From now on, we shall write H(A, q, ξ).

Let A ∈ SM(2), q ∈ IR2, q �= 0, representing a covector, and ξ ∈ M. Using
(21) we have

H(A, q, ξ) = H(RtqARq, R
t
qq, ξ) = H(RtqARq, |q|e∗1, ξ)

=: H(RtqARq, |q|, ξ)
The last assertion of the proposition is a consequence of the continuity of F in its
first argument stated in (A4) and of Lemma 1. ��
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Remark 2 As an alternative, we could have restricted the regularity principle to geo-
desic coordinate systems, and, by means of the comparison principle and Lemma
2, we could have deduced the existence of the limit in (2) and proved it to be
equal to the right hand side of (2). In any case, the computations in Proposition 2
connecting the functions F and H are unavoidable since Proposition 1, written in
terms of F , is used in the proof of Theorem 1.

From now on we shall write H(A(ν, ν), A(ν, ν⊥), A(ν⊥, ν⊥), |p|, ξ) instead
of H(RtpARp, |p|, ξ).
Definition 1 Let H : SM(2) × IR × M → IR. We shall say that H(A, s, ξ)
is elliptic if H is a nondecreasing function of A. If A =

(
a b
b c

)
and we define

H(a, b, c, s, ξ) = H(A, s, ξ), we shall also say that H(a, b, c, s, ξ) is elliptic.

We now come to the central theorem of this section. It shows that the interpo-
lation functions u = E(ϕ, ∂�) are solutions of a partial differential equation. For
simplicity of notation let us introduce the terms:

�1(u, ξ) = D2
Mu

( ∇u
|∇u|ξ ,

∇u
|∇u|ξ

)
(ξ)

�2(u, ξ) = D2
Mu

( ∇u
|∇u|ξ ,

∇u⊥

|∇u|ξ

)
(ξ)

�3(u, ξ) = D2
Mu

( ∇u⊥

|∇u|ξ ,
∇u⊥

|∇u|ξ

)
(ξ)

Theorem 1 Assume that the interpolation operator E satisfies (A1), (A2), (A3),
(A4), and (A5). Let H be the elliptic function given in Proposition 3. Set � ∈ D,
θ ∈ C(∂�), and u = E(θ, ∂�). Then u is a viscosity solution of

H (
�1(u, ξ),�2(u, ξ),�3(u, ξ), |∇u|ξ , ξ

) = 0 in �, (34)

satisfying the boundary data u|∂� = θ , that is, for any ϕ ∈ C∞(�) with bounded
derivatives such that u−ϕ has a local maximum (minimum) at ξ0, and ∇ϕ(ξ0) �= 0,
we get

H (
�1(ϕ, ξ0),�2(ϕ, ξ0),�3(ϕ, ξ0), |∇ϕ|ξ0 , ξ0

) ≥ 0 (35)

(respectively, ≤ 0).

Proof By (A1), u = E(θ, ∂�) assumes the prescribed boundary values. Let ϕ ∈
C∞(�) and suppose that u − ϕ has a local maximum at ξ0, and ∇ϕ(ξ0) �= 0. As
usual, Br will be the geodesic ball of radius r around ξ0. Then for some r > 0

u(ξ) ≤ ϕ(ξ)+ u(ξ0)− ϕ(ξ0) in ∂Br .

Using the comparison principle, we have

E(u|∂Br , ∂Br) ≤ E((ϕ + u(ξ0)− ϕ(ξ0))|∂Br , ∂Br)
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and, subtracting u(ξ0) on both sides,

E(u|∂Br , ∂Br)(ξ0)− u(ξ0)

≤ E((ϕ + u(ξ0)− ϕ(ξ0))|∂Br , ∂Br)(ξ0)− u(ξ0).

By the stability principle (A3), the left hand side above is 0. We have

0 ≤ E
(
(ϕ + u(ξ0)− ϕ(ξ0))|∂Br , ∂Br

)
(ξ0)− u(ξ0).

Grey scale shift invariance (A5) enables us write this as

0 ≤ E(ϕ|∂Br , ∂Br)(ξ0)− ϕ(ξ0).

Dividing by r2/2 and letting r → 0, using Proposition 1, we get

0 ≤ F(G−1D2(ϕ ◦ ψ−1)(0),G−1D(ϕ ◦ ψ−1)(0), ϕ(ξ), ξ,G, �k). (36)

Now, using Proposition 2, and writing Dϕ instead of D(ϕ ◦ ψ−1)(0) to simplify
the notation, we may write

F(G−1D2ϕ,G−1Dϕ, ϕ(ξ), ξ,G, �k)=H(Bt(D2ϕ−�(Dϕ))B,BtDϕ, ϕ(ξ), ξ),
where B is defined by the identity G−1 = BI−1Bt . Now, we compute

|BtDϕ|2 = (I−1BtDϕ,BtDϕ) = (BI−1BtG∇ϕ,G∇ϕ)
= (G∇ϕ,∇ϕ) = |∇ϕ|2ξ

and

Bt(D2ϕ − �(Dϕ))B
(I−1BtDϕ

|BtDϕ| ,
I−1BtDϕ

|BtDϕ|
)

= 1

|∇ϕ|2ξ
(D2ϕ − �(Dϕ))(BI−1BtDϕ,BI−1BtDϕ)

= (D2ϕ − �(Dϕ))

( ∇ϕ
|∇ϕ|ξ ,

∇ϕ
|∇ϕ|ξ

)

= D2
Mϕ

( ∇ϕ
|∇ϕ|ξ ,

∇ϕ
|∇ϕ|ξ

)

and similarly for �2 and �3. Collecting all these facts we obtain (35). Similarly,
if u− ϕ has a local minimum at ξ0, and ∇ϕ(ξ0) �= 0, we obtain (the quantities are
computed at ξ = ξ0)

H (
�1(ϕ, ξ0),�2(ϕ, ξ0),�3(ϕ, ξ0), |∇ϕ|ξ0 , ξ0

) ≤ 0

Since this holds for all ξ0 ∈ �, u is a viscosity solution of (34). ��
Lemma 3 Assume that the interpolation operator E satisfies (A1)− (A5). If, in
addition, it satisfies (A6), then

H(λa, λb, λc, |λp|ξ , ξ) = λH(a, b, c, |p|ξ , ξ), (37)

for any a, b, c ∈ IR, ξ ∈ M, p ∈ TξM, λ > 0.
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Proof Let ξ ∈ M, ψ be a coordinate system around ξ , and let Q be a quadratic
polynomial in the coordinate system ψ

Q(x) = 1

2
(GAx, x)+ (Gp, x)+ c.

Since linear grey scale invariance is assumed to hold, we have

E(λQ ◦ ψ−1|∂Br , ∂Br)(ξ)− λQ(ξ) = λE(Q ◦ ψ−1|∂Br , ∂Br)(ξ)− λQ(ξ)

for any λ ∈ IR. We divide by r2/2 and apply the regularity principle, to obtain
(37). ��

Let us finish this Section with some complementary information about H. For
simplicity, in the next proposition we shall not denote the argument ξ of H.

Proposition 4 i) If H does not depend upon its first or its third argument, then
it also does not depend on its second argument. In other terms

If H(α, β, γ, s) = Ĥ(β, γ, s), then H = Ĥ(γ, s)
If H(α, β, γ, s) = Ĥ(α, β, s), then H = Ĥ(α, s)

where α, β, γ, s ∈ IR.
ii) If H is differentiable at (0, 0, 0, 0) then H may be written as H(A, s) =

tr(BA)+ ds where B is a nonnegative matrix with constant coefficients and
d is a real constant.

Proof i) Assume that H(α, β, γ, s) = Ĥ(β, γ, s). Choose two numbers λ ∈ IR
and ε ∈ IR+ and a symmetric matrix A = (aij )

2
i,j=1. Let us define the matrix

B = (bij )
2
i,j=1 ∈ SM(2) by

B =
(
a11 − λ2

ε2 a12 − λ

a12 − λ a22 − ε

)
.

We have

(A− B)(x, x) = λ2

ε2
(x1)2 + 2λx1x2 + ε(x2)2 = (

λ

ε
x1 + εx2)2 ≥ 0.

Thus, A ≥ B, which, using the ellipticity of H implies

Ĥ(b12 + λ, b22 + ε, s) = Ĥ(a12, a22, s) = H(A, s) ≥ H(B, s)
= Ĥ(b12, b22, s)

for all ε > 0 and λ ∈ IR. Letting ε → 0, we obtain

Ĥ(b12 + λ, b22, s) ≥ Ĥ(b12, b22, s), for all λ ∈ IR.

Thus Ĥ does not depend on its first argument, i.e., H = Ĥ(γ, s).
ii) Let α, β, γ ∈ IR and ε > 0. Since H is differentiable at (0, 0, 0, 0) then

H(εα, εβ, εγ, εs) = H(0, 0, 0, 0)+ ε〈∇H(0, 0, 0, 0), (α, β, γ, s)〉 + o(ε).
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Since H(0, 0, 0, 0) = 0 and H(εα, εβ, εγ, εs) = εH(α, β, γ, s), dividing the
above identity by ε and letting ε → 0 leads us to

H(α, β, γ, s) = aα + 2bβ + cγ + ds

where we have set (a, 2b, c, d) = ∇H(0, 0, 0, 0). Observe that this expression can
be written as tr(BA)+ ds where

B =
(
a b
b c

)
, and A =

(
α β
β γ

)
.

Since H is an increasing function of A, the matrix B must be nonnegative. ��
Thus if we assume that H is differentiable at (0, 0, 0, 0) then we may rewrite

Equation (34) as

a�1(u, ξ)+ 2b�2(u, ξ)+ c�3(u, ξ)+ d|∇u|ξ = 0, (38)

where a, c ≥ 0 and ac − b2 ≥ 0, which is the same as saying that the matrix B
above is nonnegative.

If we take a = c = 1, b = d = 0 we recover the Laplace-Beltrami operator.
If we choose a = 1, b = c = d = 0 we obtain the extension to two-dimensional
manifolds of the so-called infinity Laplacian. In next section we shall discuss in
detail this particular instance of equation (38), which has been proved to be relevant
in some applications to image processing [14],[11],[1],[7].

3 Absolutely minimizing Lipschitz extensions

Let� ∈ D. For reasons that will become apparent when we discuss the mathemat-
ical results available we shall assume that � may be mapped diffeomorphically to
a subset of the plane. Let ψ : U ⊆ IR2 → � be such a mapping and θ ∈ C(∂�).
Let us consider the problem

D2
Mu

( ∇u
|∇u|ξ ,

∇u
|∇u|ξ

)
= 0 in � (39)

coupled with the boundary condition

u|∂� = θ. (40)

We consider equation (39) in the viscosity sense.Again, for convenience of notation,
let us write

D
2,ψ
ij u(x) = ∂2(u ◦ ψ)

∂xi∂xj
(x)− �kij (x)

∂(u ◦ ψ)
∂xk

(x),

∂ψα u(x) = ∂(u ◦ ψ)
∂xα

(x), x ∈ U.
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Definition 2 An upper (resp. lower) semicontinuous function u in � is called a
viscosity subsolution (supersolution) of (39) if for any ϕ ∈ C2(�) and any ξ0 local
maximum (minimum) of u− ϕ in � such that ∇ϕ(ξ0) �= 0 we have

1

|∇ϕ(ξ0)|2ξ0

D
2,ψ
ij (ϕ ◦ ψ)(x0)g

iα(x0)g
jβ(x0)∂

ψ
α ϕ(x0)∂

ψ

β ϕ(x0) ≥ 0 (≤ 0)

where ψ(x0) = ξ0. A function u ∈ C(�) is a viscosity solution of (39) if u is a
viscosity sub- and supersolution.

The above definition immediately contains the fact that viscosity solutions of (39)
are equivalent to viscosity solutions of

D2
Mu (∇u,∇u) = 0 in �. (41)

Since� can be mapped into the plane by ψ , the above definition also contains the
fact that we may work in a domain of IR2 and after simplifying our notation by
writing u instead of u ◦ ψ , consider our equation as

(
∂2u

∂xi∂xj
− �kij (x)

∂u
∂xk

)
giα(x)gjβ(x) ∂u

∂xα
∂u
∂xβ

= 0 in U . (42)

Following the notation in [23], (42) may be written as

− ∂

∂xi

(
gαβ(x)

∂u

∂xα

∂u

∂xβ

)
gik(x)

∂u

∂xk
= 0 in U , (43)

or, in a more compact notation,

− ∂

∂xi
(G−1(x)∇u · ∇u) ·G−1(x)∇u = 0 in U . (44)

When M = IRN this PDE is called the infinity Laplace equation. It was intro-
duced by G. Aronsson in [4,5] as the Euler-Lagrange equation for the problem of
Absolutely Minimizing Lipschitz Extensions (or AMLE). It was later studied by
Battacharya-DiBenedetto-Manfredi [9] as limit of solutions ofp-Laplace equations
as p → ∞, and R. Jensen [22] who, basing its proof on the above approximation,
proved the uniqueness of viscosity solutions of (41). A more direct proof based on
the theory of viscosity solutions is due to Barles-Busca [8]. For a thorough survey
with simplified arguments we refer to [6]. The extension to more general equations
which include the case of variable coefficients was initiated by P. Juutinen [23]
who also considered the case of obstacle problems. Let us consider the existence,
uniqueness and comparison principle in this more general formulation.

Theorem 2 ([23], Corollary 4.31) Suppose that u, v are locally bounded, u is
an upper semi-continuous viscosity subsolution, and v is a lower semicontinuous
viscosity supersolution of (43) in U . If

lim sup
x→z

u(x) ≤ lim inf
x→z

v(x) (45)

for all z ∈ ∂U and if both sides of (45) are not simultaneously ∞ or −∞, then
u ≤ v in U .
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For simplicity, let us denote

F(x,∇u) = G−1(x)∇u · ∇u.
Given an open and bounded set D, we denote by C0(D) the space of continuous
functions in D vanishing at the boundary of D.

Definition 3 A function u ∈ W 1,∞
loc (U) is called an F -absolute minimizer in U if

‖F(x,∇u(x))‖L∞(D) ≤ ‖F(x,∇v(x))‖L∞(D)

whenever D ⊂⊂ U is open and v ∈ W 1,∞(D) is such that u− v ∈ C0(D).

Theorem 3 ([23], Corollary 4.33) If h ∈ C(∂U), there exists a unique viscosity
solution u ∈ C(U) of (43) in U such that u|∂U = h. Furthermore u ∈ W 1,∞

loc (U)
and is also an F -absolute minimizer.

Let us mention that, as it is proved by M.G. Crandall [15], any locally Lipschitz
continuous function which is an F -absolute minimizer is a viscosity solution of
(43). Since � is mapped into U by ψ , Theorem 3 is translated into the following
existence result.

Corollary 1 If θ ∈ C(∂�), then there exists a unique viscosity solution u ∈ C(�)
of (41) such that u|∂� = θ .

This result enables us to define the following interpolation operator. Given
θ ∈ C(∂�), let E(θ, ∂�) be the viscosity solution of (41) with boundary data θ .

The operatorE satisfies the requirements set forth in Section 2. This is obvious
for (A1), (A5), and (A6). The requirement (A3) follows directly from the definition
ofAMLE. The comparison principle (A2) is contained in the statement of Theorem
2. The regularity principle (A4) will be proved in our next theorem.

Theorem 4 The operator E satisfies the regularity principle.

Proof Let ξ ∈ M and ψ1 : U → M be a geodesic coordinate system around ξ .
Let

Q(x) = 1

2
(Ax, x)+ (p, x)+ c

be a quadratic polynomial in the coordinate system ψ1, thus A is a symmetric
matrix, p ∈ IR2, and c ∈ IR. Assume that p �= 0. Without loss of generality, we
may assume in the computations below that c = 0.

Let us choose the coordinate system ψ1 such that p points in the direction of
the first basis vector of TξM. Let ν = p

|p|ξ , where |p|ξ = 〈p, p〉1/2 = (p, p)1/2

since G(ξ) = I in the coordinate system ψ1. Since DQ(0) = p, in the canonical
basis {ν, ν⊥}, the matrix A can be written

A =
(
a b
b c

)
, a = D2Q(0)

(
DQ

|DQ| (0),
DQ

|DQ| (0)
)
, and p = (|p|ξ , 0).

Let us define

Qε(x) = (Ax, x)− ε(x1)2

2
+ (p, x), x = (x1, x2). (46)
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Observe that on the boundary of Br := B(0, r) ⊆ U , r > 0, we may write

Qε(x) = a

2
r2 − ε

2
(x1)2 + bx1x2 + c − a

2
(x2)2 + (p, x). (47)

We look for a supersolution S of (41) such that S ≥ Qε on ∂B(0, r) for r > 0
small enough. We claim that

S(x) = a

2
r2 − ε

2
(x1)2 + bx1x2 + c − a

2
(x2)2 + |p|ξ x1.

is a supersolution of (41). According to (47), S ≥ Qε on ∂Br . Since in local
coordinates the AMLE equation can be written as

D2
MS(∇S,∇S) = gimgjn

(
∂2S

∂xi∂xj
− �kij

∂S

∂xk

)
∂S

∂xm

∂S

∂xn
,

and we have chosen a normal coordinate system for which�kij (0) = 0, gij (0) = δij ,
at the origin the equation simplifies to

D2
MS(0)(∇S(0),∇S(0)) = ∂2S(0)

∂xi∂xj

∂S(0)

∂xi

∂S(0)

∂xj
.

After some computations we obtain

D2
MS(∇S,∇S)(0) = −ε|p|2ξ < 0.

Since the coefficients of the PDE and the function S are smooth, we also have

D2
MS(∇S,∇S) < 0,

in Br for r > 0 small enough.
Then, according to Theorem 2, we have

E(Qε, ∂Br) ≤ S in Br

and

sup
Br

|E(Qε, ∂Br)− E(Q, ∂Br)| ≤ sup
Br

|Qε −Q| ≤ ε

2
r2.

Then, by choosing r > 0 even smaller we have

E(Q, ∂Br)(0)−Q(0) ≤ ε

2
r2 + E(Qε, ∂Br)(0)−Q(0)

≤ ε

2
r2 + S(0)

ε

2
r2 + a

2
r2.

Now, dividing by r2/2 and letting r → 0 and ε → 0 in this order we get

lim sup
r→0

E(Q, ∂Br)(0)−Q(0)

r2/2
≤ a.
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In the same manner, but working with Q−ε instead of Qε , we prove that

lim inf
r→0

E(Q, ∂Br)(0)−Q(0)

r2/2
≥ a.

Thus, the regularity axiom (A2) holds with

F(A, p) = a = A(ν, ν),

the other coordinates of F being omitted.
Let ψ2 : U 2 → M be an arbitrary coordinate system around the point ξ , and

letQψ2 : U 2 → IR be the quadratic polynomial in the coordinate system ψ2 given
by

Qψ2(x) = 1

2
(GÃx, x)+ (Gp, x)+ c,

where Ã is a 2 × 2 matrix such that GÃ is symmetric, p ∈ IR2, c ∈ IR. Let
� = ψ−1

2 ◦ ψ1, and Q(x̄) = Qψ2(�(x̄)), x̄ ∈ U . Then, by Lemma 2 (with ψ2
playing the role of ψ1 and viceversa) , we may write

Q(x̄) = 1

2
(Bt (GÃ− �(Gp))Bx̄, x̄)+ (BtGp, x̄)+ c +O(|x̄|3)

where we have set B = D�(0). Now, proceeding as in Proposition 1, we deduce
that

lim
r→0

E(Qψ2 ◦ ψ−1
2 , ∂Br)(0)−Q(0)

r2/2
= Bt(GÃ− �(p))B

( BtGp
|BtGp| ,

BtGp

|BtGp|
)

where |BtGp|2 = (BtGp,BtGp) = (BBtGp,Gp) = (G−1Gp,Gp) = (Gp, p) =
|p|2ξ (since BBt = G−1). Hence

lim
r→0

E(Qψ2 ◦ ψ−1
2 , ∂Br)(0)−Q(0)

r2/2
= (GÃ− �(p))

( p

|p|ξ ,
p

|p|ξ
)
.

��

4 Numerical approach

In order to solve the partial differential equation (41) on a two-dimensional manifold
we use the method introduced in [10]. In short, the idea is to extend the PDE defined
on a hypersurface to an associated PDE defined on a neighborhood of M in the
surrounding space and to solve it there. Now, we are in Euclidean space and the
equation can be discretized using standard finite difference schemes on cartesian
grids, thus we can avoid the use of approximating the surface by a triangulated
surface. Also, even though we are solving an equation in a space with a dimension
higher than the original problem, the asymptotic complexity does not change since
we only compute the solution on a narrow band around M.
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Fig. 1 TheAMLE equation on the hypersurface M is solved using an associated equation defined
on a neighborhood V of M. On V ⊂ IR3, this associated equation can be solved using finite
differences on a cartesian grid. We have written � and �̃ instead of ∂� and ∂̃�

To make things precise, let�be a domain in a smooth compact two-dimensional
manifold M isometrically embedded in IR3, let θ ∈ C(∂�). To guarantee the con-
vergence of our numerical algorithm and to be able to use the results of [18] we
shall assume that � together with its boundary can be mapped diffeomorphically
to a domain of class C2 in IR2. We are looking for solutions of the boundary value
problem

D2
Mu (∇u,∇u) = 0 in �,

u|∂� = θ in ∂�.
(48)

Introducing the signed distance function � : IR3 → IR to M, for δ > 0 small
enough, we define an open neighborhood V of M by setting

V = {x ∈ IR3 : −δ < �(x) < δ}.
Let �̃, respectively ∂̃�, be the subset of V obtained by prolongation of�, respec-
tively ∂�, along the gradient vector field of�. That is, if, for each x ∈ �we define
X(t, x) to be the solution of

X′(t) = ∇�(X(t))
X(0) = x.

(49)

Since d
dt
�(X(t, x)) = ∇�(X(t, x)) · X′(t, x) = |∇�(X(t, x))|2 = 1, we have

�(X(t, x)) = t , and

�̃ = {X(t, x) : |t | < δ, x ∈ �}
∂̃� = {X(t, x) : |t | < δ, x ∈ ∂�}.

We shall refer to ∂̃� as the lateral boundary of �̃. We also extend the boundary
data θ to ∂̃� by setting

θ̃ (y) = θ(x)
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where y = X(t, x), x ∈ ∂�, |t | < δ.
For each x ∈ V , we define by P(x) the projection operator from IR3 onto the

tangent plane to the manifold Mt defined by the equation � = t at the point x
where t = �(x). We may write P(x) as

P(x) = I − ∇�(x)⊗ ∇�(x).
As proposed in [10], the solutions of (48) are computed by solving the associated
boundary value problem

〈PD(P∇U)P∇U,P∇U〉 = 0 on �̃,
U = θ̃ on ∂̃�,

(50)

This formulation is based on the following well-known facts ([25], p. 38) which
we state without proof as a Lemma.

Lemma 4 (i) If U : V → IR, and u : M → IR are related by U |M = u, then
∇u(x) = P∇U(x) for any x ∈ M.

(ii) Let X, Y : V → IR3 be two arbitrary smooth tangent vector fields on M.
Then

PDX(Y ) = ∇Y (X)

at any point of M.

Statement (ii) can be justified by proving that the map X → PDX satisfies
the axioms that define a connection on M. The following simple Lemma justifies
the use of (50). The proof is included for the sake of completeness.

Lemma 5 Let � : V → IR be twice differentiable and φ = �|M. Then

〈PD(P∇�)P∇�,P∇�〉(x) = D2
Mφ(∇φ,∇φ)(x) (51)

for all x ∈ M.

Proof This is merely an application of Lemma 4. In fact, for any point x ∈ M ⊂ V
we have

D2
Mφ(∇φ,∇φ)(x) = (D2

Mφ(∇φ),∇φ)(x)
= 〈∇∇φ∇φ,∇φ〉(x)
= 〈PD(P∇�)(∇φ),∇φ〉(x) by Lemma 4.(ii)

= 〈PD(P∇�)(P∇�), P∇�〉(x) by Lemma 4.(i)

��
Remark 3 As an illustration, let us write the PDE in (50) in the simple case where
M is the plane of IR3 given by x3 = 0. Then P = I − e3 ⊗ e3, e3 = (0, 0, 1), and
the PDE in (50) is

2∑
i,j=1

∂2u

∂xi∂xj

∂u

∂xi

∂u

∂xj
= 0.

In other words, this PDE is the AMLE on each plane x3 = λ, λ ∈ (−δ, δ).
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Definition 4 Let �λ = {x ∈ �̃ : �(x) = λ}, λ ∈ (−δ, δ). Let v : �̃ → IR be
such that v|�λ is upper (lower) semicontinuous on �λ for each λ. We say that v is
a viscosity subsolution (supersolution) of (50) if for any ϕ ∈ C2(�̃) and any x0

local maximum (minimum) of v − ϕ in �̃ we have

〈PD(P∇ϕ)P∇ϕ, P∇ϕ〉(x0) ≥ 0 (≤ 0).

A viscosity solution is a viscosity sub and supersolution.

Let us denote by USC(�̃) (resp. LSC(�̃)) the set of upper (resp. lower) semi-
continuous functions in �̃.

Proposition 5 Let Mλ = {x ∈ V : �(x) = λ}, �λ = {x ∈ �̃ : �(x) = λ},
λ ∈ (−δ, δ). Let uλ be the viscosity solution of

D2
Mλ
u (∇u,∇u) = 0 in �λ

u|∂�λ = θ̃ |∂�λ
(52)

given by Corollary 1. Let U(x) = uλ(x), x ∈ �λ, |λ| < δ. Then U is a viscosity
solution of (50). Conversely, if U ∈ USC(�̃) (resp. U ∈ LSC(�̃)) is a viscosity
subsolution (supersolution) of (50), then for each λ ∈ (−δ, δ), uλ = U |�λ is a
viscosity subsolution (supersolution) of (52). In particular, viscosity solutions of
(50) which are continuous in �̃ ∪ ∂̃� are unique.

Proof Assume that for each λ ∈ (−δ, δ), uλ is a viscosity solution of (52) and let
U be the function defined in the statement. Let ϕ ∈ C2(�̃) be such that U − ϕ has
a maximum at x0 ∈ �̃. Let λ = �(x0). Then x0 is also a maximum of uλ − ϕ in
�λ. Then

D2
Mλ
ϕ(∇ϕ,∇ϕ)(x0) ≥ 0.

By Lemma 5 we have

〈PD(P∇ϕ)P∇ϕ, P∇ϕ〉(x0) ≥ 0.

We have proved that U is a viscosity subsolution of (50). Similarly, we prove that
U is a viscosity supersolution of (50).

LetU ∈ USC(�̃) be a viscosity subsolution of (50). Let us fix λ ∈ (−δ, δ), and
let uλ = U |�λ . Let ϕ ∈ C2(�λ) be such that uλ − ϕ has a strict global maximum
at the point x0 ∈ �λ. Let � ∈ C2(�̃) be such that �|�λ = ϕ. Let xε ∈ �̃ be a
maximum of

U −�− 1

ε
d(x,Mλ)

2,

where d(x,Mλ) denotes the signed distance from x to Mλ. As ε → 0, we have
d(xε,Mλ) → 0. Let x1 ∈ Mλ be such that xε → x1. We deduce that x1 is a
maximum of uλ − ϕ, hence x1 = x0. Since PDd(x,Mλ)

2 = 0, we have

〈PD(P∇�)P∇�,P∇�〉(xε) ≥ 0.
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Letting ε → 0, we obtain

〈PD(P∇�)P∇�,P∇�〉(x0) ≥ 0.

Now, by Lemma 5 we have

D2
Mλ
ϕ(∇ϕ,∇ϕ)(x0) ≥ 0.

��
Let us observe that the PDE (50) holds in �̃, that ∂�̃ = ∂̃� ∪�δ ∪�−δ , and

there is no boundary condition in �δ ∪�−δ . There is no reason for the solution of
(50) to satisfy Neumann boundary conditions neither on �δ or �−δ . If that would
be the case, we could argue that these Neumann boundary conditions would be
satisfied at any �t for any t ∈ (−δ, δ) and, as a consequence we would have that

∇U · ∇� = 0 (53)

holds in �̃. Then we would conclude that

U(X(t, x)) = u(x) (54)

for any x ∈ �, and t ∈ (−δ, δ). But, if U satisfies (54), then on each Mλ the
function uλ = U |Mλ

satisfies

D2
Mλ
uλ(∇Mλ

uλ,∇Mλ
uλ) = D2

M′u(∇M′u,∇M′u) (55)

where M′ is the manifold M with the metric induced on M by the inverse of the
map X(λ, ·) : M → Mλ. We see that there is no reason why the right hand side
of (55) is null in general (it may happen to be null in some case, like the sphere
where the metric in M′ is a multiple of the metric in M).

Since boundary conditions are needed at the computational level we approxi-
mate (50) by adding a vanishing viscosity term so that the modified equation can be
solved numerically. To be able to use available results, we propose to approximate
(50) by

g(P∇U)〈PD(P∇U)P∇U,P∇U〉 + ε�U = 0 on �̃′,

U = θ̃ ′ on ∂�̃′,
(56)

for some function g. We choose as domain �̃′ a smooth domain contained in �̃
and containing {x ∈ �̃ : |�(x)| ≤ δ

2 }. We take the function θ̃ ′ to be an extension
of θ̃ restricted to {x ∈ ∂̃� : |�(x)| ≤ δ

2 }. The function g has to be chosen so
that, as ε → 0, the solution Uε of (56) when restricted to M converges to the
solution of (48). We used Dirichlet boundary conditions to be able to use available
results (when passing to the limit as ε → 0+, these boundary conditions are lost
at the top and bottom parts of the boundary). If we take g(P∇U) = 1

1+|P∇U |2 , then
(56) satisfies the assumptions of [20], Theorem 15.18. We obtain the following
existence result.

Theorem 5 There exists a solution Uε ∈ C(�̃′)∩C2(�̃′) of the Dirichlet problem
(56).
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Proof Let us observe that, since the constant function ‖θ̃ ′‖∞ is a solution of (56)
with boundary data ‖θ̃ ′‖∞, using the comparison principle ([20], Theorem 10.1),
we have

−‖θ̃ ′‖∞ ≤ Uε ≤ ‖θ̃ ′‖∞.

Let

U ∗(x) = lim sup
ε→0,y→x,y∈�̃′

Uε(y)

U∗(x) = lim inf
ε→0,y→x,y∈�̃′

Uε(y)

Then by the standard theory of viscosity solutions we know that U ∗ is a viscosity
subsolution of

−〈PD(P∇U)P∇U,P∇U〉 = 0 on �̃′,

min(−〈PD(P∇U)P∇U,P∇U〉, U − θ̃ ′) = 0 on ∂�̃′,
(57)

and U∗ is a viscosity supersolution of

−〈PD(P∇U)P∇U,P∇U〉 = 0 on �̃′,

max(−〈PD(P∇U)P∇U,P∇U〉, U − θ̃ ′) = 0 on ∂�̃′,
(58)

Before continuing, let us write the first equation of (57) as

−∂Pij (x)
∂xk

ujPir (x)urPks(x)us − Pij (x)
∂uj

∂xk
Pir (x)urPks(x)us = 0,

where ui = ∂u
∂xi

. We define

F(x, p,X) = −∂Pij (x)
∂xk

pjPir (x)prPks(x)ps − Pij (x)XkjPir (x)prPks(x)ps.

Let us recall the following result proved by F. Da Lio [18]. For that, let d(y) a
smooth function agreeing in a neighborhood of ∂�̃′ with the signed distance func-
tion to ∂�̃′ which is positive in �̃′ and negative in IR3 \�̃′, and let n(y) = −∇d(y)
in a neighborhood of ∂�̃′, i.e., n(y) is an extension of the outer unit normal to ∂�̃′

to a neighborhood of it. Then, Proposition 2.1 in [18] proves that, if x0 ∈ ∂�̃′ and
U ∗(x) > θ̃ ′(x0), then

lim inf
y→x0,α↓0

F
(
y,

−n(y)+ o(1)

α
,− 1

α2
n(y)⊗ n(y)+ o(1)

α2

)
≤ 0, (59)

for some constant C > 0, where o(1) → 0 as α → 0.
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Now, let x0 ∈ ∂̃�, |�(x0)| < δ
2 . Then P(x0)n(x0) = n(x0), and, for y near x0,

we have (P (y)n(y), n(y)) ≥ 1
2 ; hence

F
(
y,

−n(y)+ o(1)

α
,− 1

α2
n(y)⊗ n(y)+ o(1)

α2

)

= ∂Pij

∂xk

(nj + o(1)

α

)
Pir

(nr + o(1)

α

)
Pks

(ns + o(1)

α

)

+Pij
(n⊗ n

α2
+ o(1)

α2

)
kj
Pir

(nr + o(1)

α

)
Pks

(ns + o(1)

α

)

≥ − C

α3
+ 1

4α4
+ o(1)

α4
,

where all the above terms are evaluated at the point y. Thus

lim inf
y→x0,α↓0

F
(
y,

−n(y)+ o(1)

α
,− 1

α2
n(y)⊗ n(y)+ o(1)

α2

)
> 0, (60)

and, as a consequence of [18], Proposition 2.1, we obtain that U ∗(x0) ≤ θ̃ ′(x0).
Similarly, since

lim sup
y→x0,α↓0

F
(
y,
n(y)+ o(1)

α
,

1

α2
n(y)⊗ n(y)+ o(1)

α2

)
< 0, (61)

again, by Proposition 2.1 in [18], we obtain that U∗(x0) ≥ θ̃ ′(x0). Hence

U ∗(x0) ≤ θ̃ ′(x0) ≤ U∗(x0).

It follows that U ∗ = U∗ = θ̃ ′ on the set of points x ∈ ∂̃� for which |�(x)| < δ
2 .

In particular U ∗|M = U∗|M = θ on ∂�. Since U ∗ is an upper semicontinuous
viscosity subsolution of (50), then, by Proposition 5, we conclude that U ∗|M is an
upper semicontinuous subsolution of (48). In the same way U∗|M is a lower semi-
continuous supersolution of (48). Using Theorem 2 (or the uniqueness result of
Barles-Busca [8]), we conclude that U ∗|M = U∗|M on �. Let us call u = U ∗|M.
Then u is the viscosity solution of (48). ��
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Remark 4 The same argument proves that U ∗ = U∗ on {x ∈ �̃ : |�(x)| ≤ δ
2 },

hence Uε converges to a continuous function in {x ∈ �̃ : |�(x)| ≤ δ
2 }.

Remark 5 In a recent paper, J.B. Greer [21] has taken equation (53) as a basic
requirement to be satisfied by the extension of the solution of the PDE on the
manifold to its neighborhood, and this lead him to the use of a modified projection
matrix instead of P .

5 Numerical experiments

In this section we display two experiments showing the potential applications of
model (48) to interpolate data given on a set of curves or points on a surface. The
first experiment displays the interpolation of an image on a torus from a subset
of its level lines. This may be useful in the context of inpainting the appearance
of digitized historical monuments or sculptures. Our second experiment displays
the reconstruction of some digital elevation data on a sphere knowing them on a
family of curves and points. This method is potentially useful in the interpolation of
missing parts in digital elevation models given either on a flat terrain or on a sphere
[1]; and in the interpolation of climate maps on the earth surface [28]. Even if most
of the interpolation (or PDE based) algorithms on surfaces which are currently
used are based on triangulated representations of the surface, recently, numerical
methods based on implicit representations (in fixed grids) using distance functions
have been developed for processing and solving PDEs in surfaces [10],[21]. The
algorithms proposed here could be implemented using both approaches, and our
implementation follows the second one which is described in Section 4.

Our first example is the interpolation of an image from a subset of its level lines.
We take the bitmap of a photo, displayed in Fig. 2.a, quantize it at intervals of thirty
and extract the boundary of the level sets. The resulting lines can be seen in Fig. 2.b.
We map them canonically on a torus (Fig. 2.c), and perform the interpolation as
described in Sec. 4. The results of the interpolation are shown in Fig. 2.d and 2.e,
on the torus and pulled-back onto a rectangle, respectively. The quality of the inter-
polation is better than the quantized image. But, since we did not apply a mirror
symmetry before mapping the image to the torus, some black regions appeared at
the bottom of the image, due to the interpolation with the corresponding regions
at the top of it. This example shows that (48) can be used to interpolate data given
on a set of curves.

In our second example we display the reconstruction of a digital elevation
model given on a sphere. Consider the level lines of a bitmap encoding the ter-
rain elevation of some mountainous rectangular area. We map two copies onto
the unit sphere in the following way. Let I be the bitmap considered as a rect-
angle embedded in IR3. Take two disjoint copies of I and glue them together at
the edges. The resulting object is homeomorphic to the unit sphere S2. We use the
technique described in [27] to automatically construct a suitable homeomorphism
h between the two spaces and use h to map the bitmaps onto S2. This yields a
continuous set of level lines on the unit sphere (Fig. 3.a). Note that the mountain
tops appear as point data. We interpolate again with the absolutely minimizing
Lipschitz extension operator which, as shown in [22], can interpolate data given
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Fig. 2 From left to right and top to bottom: a) the original image, b) the level lines of the image
in a) computed at multiples of 30 with the gray level on it, c) the same level lines mapped on a
torus, d) the result of the AMLE interpolation on the torus (applied to the data given in c)), e) the
result d) mapped onto a rectangle.

on a set of curves and/or points. The results are visualized as a grey level encoding
in Fig. 3.b, and as an actual elevation in Fig. 3.c.
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Fig. 3 Interpolation of a digital elevation model from a set of level lines mapped onto the unit
sphere. From top to bottom: a) the data on the sphere, b) its AMLE interpolation, c) the same
result displayed as a graph on the sphere.
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