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Abstract. We introduce and analyze nonsmooth Schur-Newton methods for
a class of nonsmooth saddle point problems. The method is able to solve
problems where the primal energy decomposes into a convex smooth part and
a convex separable but nonsmooth part. The method is based on nonsmooth
Newton techniques for an equivalent unconstrained dual problem. Using this
we show that it is globally convergent even for inexact evaluation of the linear
subproblems.

1. Introduction

We consider the iterative solution of large scale nonlinear saddle point problems

(1) u∗ ∈ R
n, w∗ ∈ R

m :

(
F BT

B −C

)(
u∗

w∗

)

∋

(
f
g

)

,

where B, C are suitable matrices, and the set-valued operator F = ∂J is the subd-
ifferential of a convex functional J = J0 + ϕ that decomposes in to a smooth part
J0 and a separable nonsmooth part ϕ. Such problems arise e.g. from discretiza-
tions of Cahn–Hilliard equations [3], optimal control problems for linear pdes, and
plasticity problems.

For discretized Cahn–Hilliard equations B is mass matrix, C a stiffness matrix,
and J is the discrete analogue of a functional

J (v) =

∫

Ω

γ(∇v)2dx+
(∫

Ω

v dx
)2

+

∫

Ω

Φ(v)dx

for some convex Φ : R → R ∪ {∞} and a positive 1-homogeneous convex function
γ : Rd → R. For an isotropic surface energy γ is a scaled euclidean norm. A
classical choice for Φ is the so called logarithmic potential

Φθ(v) =
θ

2

(

(1 + v) ln(1 + v) + (1 − v) ln(1 − v)
)

depending on the temperature θ ≥ 0. For θ → 0 this degenerates to the obstacle
potential

Φ0(v) = χ[−1,1](v) =

{

0 if v ∈ [−1, 1],

∞ else.

For problems where J0 is quadratic and ϕ is the indicator functional of a hy-
percube, like it is the case for the isotropic Cahn–Hilliard equation with obstacle
potential, the nonsmooth Schur–Newton method was introduced in [14] and ana-
lyzed in [16]. This method is essentially a nonsmooth Newton type method for a
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nonlinear Schur complement of (1). Global convergence can be shown by inter-
preting it as a descent method for an unconstrained dual problem. In numerical
examples the method exhibits mesh independent convergence rates.

In the present paper we generalize this approach such that the case of Cahn–
Hilliard equations with logarithmic potential [5, 8] and smooth anisotropy functions
can also be solved with the same efficiency.

The paper is organized as follows: In Section 2 we will introduce the full problem
and necessary assumptions and note some important properties. Sections 3 and 4
are devoted to the introduction of the dual problem and gradient related descent
directions. Finally we derive linearizations for the nonlinear Schur complement and
introduce the resulting Newton-type methods in Section 5 and 6.

2. Problem Formulation

Throughout the paper we will make the following assumptions.

(A1) J0 : Rn → R is strongly convex and continuously differentiable with Lips-
chitz continuous derivative. I.e., there are s.p.d. matrices HJ0

, HJ0
∈ Rn,n

such that

‖∇J0(x) −∇J0(y)‖ ≤ ‖x− y‖HJ0

∀x, y ∈ R
n,

〈∇J0(x) −∇J0(x), x − y〉 ≥ ‖x− y‖2H
J0

∀x, y ∈ R
n.

(A2) ϕ : Rn → R ∪ {∞} takes the form

ϕ(v) =

n∑

i=1

ϕi(vi).

Each ϕi : R → R ∪ {∞} is convex, lower semicontinuous on R, continuous
on its domain domϕi, and twice continuously differentiable on a finite
number of disjoint nonempty open intervals (aki , a

k+1
i ), aki ∈ R∪{−∞,+∞}

having the property

domϕi = {x : ϕi(x) < ∞} =
⋃mi

k=1
(ak−1

i , aki ) = (a0i , a
mi

i ).

The intervals are maximal in the sense that ϕi is not twice continuously
differentiable on (aki , a

k+2
i ). Furthermore, the limits

lim
ξրa

k+1

i

ϕ′′
i (ξ), lim

ξցak

i

ϕ′′
i (ξ)

exist in R ∪ {∞} for k = 0, . . . , (mi − 1).

(A3) B ∈ Rm,n, f ∈ Rn, and g ∈ Rm. C ∈ Rm,m is symmetric and positive
semidefinite.

Under these assumptions (1) is equivalent to finding a saddle point of the associated
Lagrange functional

L(u,w) = J(u)− 〈f, u〉+ 〈Bu− g, w〉 −
1

2
〈Cw,w〉 .

(A4) The saddle point problem (1) has a unique solution.
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Notice that the last assumption is necessary since there is no general existence
and uniqueness result for problem (1). In contrast to this, the existence, uniqueness,
and stability of solutions for minimization problems associated with J follows from
standard arguments:

Proposition 2.1. Assume that (A1) and (A2) hold. Then J is strongly convex,
proper, lower semicontinuous, and coercive. The subdifferential ∂J : Rn → 2R

n

has a single-valued, monotone inverse (∂J)−1 : Rn → Rn characterized by the
variational inequality

x ∈ R
n : 〈∇J0(x), v − x〉 + ϕ(v)− ϕ(x) ≥ 〈y, v − x〉 ∀v ∈ R

n(2)

for x = (∂J)−1(y). The operator (∂J)−1 is Lipschitz continuous with

‖(∂J)−1(y1)− (∂J)−1(y2)‖H
J0

≤ ‖y1 − y2‖H−1

J0

.

Proof. The properties of J follow directly from (A1) and (A2). Single-valuedness
of (∂J)−1 and equivalence to the variational inequality follows from standard ar-
guments, see, e.g., [7, Chapter II]. Lipschitz continuity can be shown adding the
variational inequalities for y1 and y2 and using the strong monotonicity of ∇J0. �

For the rest of the paper we assume the saddle point problem (1) satisfies (A1)–
(A4).

3. Dual problem

Before we discuss the iterative solution of this problem class we derive an equiv-
alent dual minimization problem.

Proposition 3.1. The saddle point problem (1) is equivalent to

w∗ ∈ R
m : H(w∗) = 0(3)

with the Lipschitz continuous, monotone operator H : Rm → Rm given by

H(w) = −BF−1(f −BTw) + Cw + g , w ∈ R
m .(4)

Proof. Due to the properties of J and F straightforward block elimination in (1)
provides the equivalence.

Since H consists of a sum and a composition of F−1 with affine functions the
Lipschitz continuity follows directly from the Lipschitz continuity of F−1. By the
convexity of J the operator F and thus F−1 is monotone. In combination with the
non-negativity of C this implies monotonicity of H . �

The operator H can be regarded as a nonlinear Schur complement. For a linear
saddle point problem (where F is a symmetric positive definite matrix) it reduces
to the classical linear Schur complement. In contrast to the linear case, the right
hand side f cannot be separated from the part depending on w in general. Note
that although the saddle point problem is set-valued, the operator H is single-
valued, because F−1 = (∂ϕ)−1 is single-valued or, equivalently, the minimization
of J(x) − 〈y, x〉 on Rn admits a unique solution.

Theorem 3.1. There is a Fréchet-differentiable, convex functional h : Rm → R

with the property ∇h = H and the representation

(5) h(w) = −L(F−1(f −BTw), w) , w ∈ R
m.
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Proof. By [7, Corollary 5.2, p. 22] the polar (or conjugate) functional

J∗(y) = sup
x∈Rn

(〈y, x〉 − J(x)) = − inf
x∈Rn

(J(x) − 〈y, x〉)

of J is convex and has the property ∂J∗ = (∂J)−1 = F−1. Since F−1(y) is single-
valued for all y ∈ Rn its polar J∗ can take only finite values and the domain of
the polar is R

n. Thus J∗ is continuous on the whole space R
n by [7, Corollary 2.3,

p. 12].
By [7, Proposition 5.3, p. 23] finiteness and continuity of J∗, and single-valuedness

of ∂J∗ imply Gâteaux-differentiability of J∗. The continuity of ∂J∗ = F−1 implies
that J∗ is even Fréchet-differentiable with ∇J∗ = F−1. Setting

h(w) = J∗(f −BTw) +
1

2
〈Cw,w〉 + 〈g, w〉(6)

we immediately get ∇h = H using the chain rule. Convexity of h directly follows
from convexity of J∗, and symmetry and positivity of C. Finally, inserting

J∗(y) = −
(
J(F−1(y))−

〈
y, F−1(y)

〉)

with y = f −BTw into (6) gives (5). �

As immediate consequence of Proposition 3.1 and Theorem 3.1 we get the equiv-
alence of (1) to an unconstrained dual problem.

Corollary 3.1. The set-valued saddle point problem (1) is equivalent to the dual
unconstrained convex minimization problem

w∗ ∈ R
m : h(w∗) ≤ h(w) ∀w ∈ R

m.(7)

The equivalence in Corollary 3.1 does especially imply, that the minimization
problem (7) has a unique solution due to assumption (A4). Note that if C is even
positive definite, then h is strongly convex which would already guarantee (A4).
However, the latter need not be the case, and h is in general not even strictly convex
so that we have to require uniqueness separately.

Corollary 3.1 offers the possibility to treat the nonsmooth saddle point problem
(1) as a smooth unconstrained minimization problem or as an operator equation
with a Lipschitz continuous monotone operator. This simplification comes at the
price of the fact that the functional h and the operator H = ∇h might be expensive
to evaluate, since both involve the evaluation of F−1 = (∂J)−1 and thus the solution
of an unconstrained minimization problem for the nonsmooth functional J .

4. Descent Methods for the Dual Problem

Once we have reformulated the saddle point problem (1) as the dual minimiza-
tion problem (7), descent methods for unconstrained minimization of differentiable
functionals can be applied.

Since the operator F−1 involved in h and H = ∇h is in general not directly
available, it is complicated and expensive to use iterative methods based on local
properties or substeps as e.g. the Gauß–Seidel or Jacobi method for the solution of
(7). For this reason we consider gradient-related algorithms based on global descent
directions.

Although there are numerous convergence results (see, e.g., the classic text book
by Ortega and Rheinboldt [21]) for this class of methods none of them fits exactly
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to the proposed problem. Thus we present modified variants for the presented
problem and refer to [12] for proofs of those variants.

Throughout this section we assume that h is given by (5). However we will only
need that h : Rm → R is a convex and continuously differentiable functions with
Lipschitz continuous derivative ∇h and a unique minimizer w∗.

The results are presented in terms of the norm ‖·‖M ,

‖x‖2M = 〈Mx, x〉 , x ∈ R
m ,

induced by a symmetric positive definite matrix M ∈ Rm,m. Elements x′ of the
dual space (Rm)′ are represented by x ∈ Rm using x′ = 〈x, ·〉 with the Euclidean
inner product 〈·, ·〉, thus the dual space (Rm, ‖·‖M )′ is identified with (Rm, ‖·‖M−1).

Gradient related descent methods are of the form

wν+1 = wν + ρνd
ν , ν = 1, . . .(8)

for a given initial iterative w0. In each step, first a search direction dν is chosen
according to the current iterate wν . Then, a step size ρν is fixed depending on wν

and dν , i.e.,

dν = d(ν, wν), ρν = ρ(ν, wν , dν) , ν = 0, 1, . . .(9)

with suitable mappings d and ρ. Since it will turn out that monotonicity of the
iterated is the crucial property for convergence we consider the extended algorithm

wν+ 1
2 = wν + ρνd

ν ,(10)

wν+1 = wν+ 1
2 + C(wν+ 1

2 )(11)

with an operator C having the property h(w + C(w)) ≤ h(w).

4.1. Convergence Analysis. In order to obtain a convergent method the descent
directions should allow for sufficient descent of h and the step sizes must realize the
descent.

Definition 4.1. The map d : N × Rm → Rm is said to generate gradient-related
directions (or descent directions) if for any sequence wν ⊂ Rm the directions dν =
d(ν, wν) satisfy

∇h(wν) = 0 ⇐⇒ dν = 0, ∀ν ∈ N(12)

and

−〈∇h(wν), dν〉 ≥ cD ‖∇h(wν )‖M−1 ‖dν‖M , ∀ν ∈ N(13)

with a constant cD > 0 (or cD = 0) independent of ν.

Note that the preconditioned gradients d(ν, wν) = −M−1∇h(wν ) are gradient-
related since (13) is satisfied with equality and cD = 1. In all other cases the
Cauchy–Schwarz inequality implies cd < 1.

Definition 4.2. Let d : N × Rm → Rm generate descent directions. Then ρ :
N × Rm × Rm → R is said to generate efficient step sizes, if for any sequence
wν ⊂ R

m and dν = d(ν, wν) the step sizes ρν = ρ(ν, wν , dν) satisfy

dν 6= 0 ⇒ h(wν + ρνd
ν) ≤ h(wν)− cS

(
〈∇h(wν), dν〉

‖dν‖M

)2

∀ν ∈ N

(14)

with a constant cS > 0 independent of ν.
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The combination of gradient-related descent directions and efficient step sizes
leads to a globally convergent method. Although this is a standard result that
(with small modifications) can be found in many textbooks (see, e.g., [9, 21, 30]),
we give a proof here since these variant do for example not include the monotone
correction C.

Theorem 4.1. Assume that d and ρ generate gradient-related directions and effi-
cient step sizes, respectively. Then the iterates wν generated by (9), (10), and (11)
converge to w∗ for an arbitrary initial iterate w0 ∈ Rm.

Proof. See [12]. �

The proof is based on a finite dimensional compactness argument that allows to
deduce convergence from the existence of a unique minimizer. Under the stronger
assumption that h is strongly convex, i.e., if there is a µ > 0 such that

h(λx+ (1 − λ)y) ≤ λh(x) + (1− λ)h(y)− λ(1 − λ)
µ

2
‖x− y‖2M ∀λ ∈ [0, 1],

we get R-linear convergence.

Theorem 4.2. Assume that the conditions of Theorem 4.1 hold and that h is
strongly convex with a constant µ > 0. Then the iterates wν generated by (9), (10),
and (11) satisfy the error estimate

‖wν − w∗‖2M ≤ qν
2

µ

(
h(w0)− h(w∗)

)
(15)

with q = (1− 2cSc
2
Dµ) < 1.

Proof. See [12]. �

4.2. Inexact Evaluation of Descent Directions. We now consider inexact search
directions d̃ν obtained if the exact evaluation dν = d(ν, wν) is replaced by some ap-
proximation

d̃ν = d̃(ν, wν) ≈ d(ν, wν).(16)

Proposition 4.1. Let d generate gradient-related directions that satisfy (13) with
the constant cD > 0, and let d̃ generate descent directions. Assume that there is a
constant c < cD/2 such that the approximations d̃ν = d̃(ν, wν) satisfy at least one
of the accuracy conditions

‖dν − d̃ν‖M ≤ c‖d̃ν‖M ∀ν ∈ N,(17)

‖dν − d̃ν‖M ≤ c‖dν‖M ∀ν ∈ N,(18)

for all sequences wν . Then the approximation d̃ does also generate gradient-related
directions that satisfy (13) with the constant c̃D = cD − 2c > 0.

Proof. See [12]. �

Since the constant cD needed to check the accuracy conditions in Proposition 4.1
with c < cD/2 is in general not known, we replace them by the asymptotic criteria

lim
ν→∞

‖dν − d̃ν‖M

‖d̃ν‖M
= 0 and lim

ν→∞

‖dν − d̃ν‖M
‖dν‖M

= 0,(19)

respectively. They imply that the criteria in Proposition 4.1 with c < cD/2 hold
for sufficiently large ν with arbitrarily small c. To see that the whole sequence
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d̃ν is gradient-related assume that (17) or (18) is satisfied for ν > ν0. Hence by
Proposition 4.1 the estimate (13) holds for ν > ν0 with c̃D. Then it also holds for
all ν with the constant

˜̃cD = min

{

c̃D,min

{

−
〈∇h(wν), dν〉

‖∇h(wν )‖M−1 ‖dν‖M
: ν ≤ ν0

}}

> 0.

Furthermore, the constants c̃D, ˜̃cD in estimate (13) for d̃ν tend to the constant cD
for the exact directions dν in this case.

4.3. Step Size Rules. There is a multitude of algorithms for the selection of
efficient step sizes available from textbooks and surveys like [6, 20, 21, 24]. The
most common choice is the step size rule by Armijo [1] (see also [6, 21]) which tracks
the actual decrease of the functional h and leads to efficient step sizes. Another
option are so-called approximate “exact step sizes”. In contrast to the Armijo rule
this approach does only depend on a single parameter. Furthermore it turned out
to be more robust for the presented applications.

Proposition 4.2. Let d : N×Rm → Rm generate descent directions. For a sequence
wν ⊂ Rm and directions dν = d(ν, wν) assume that a fixed parameter ǫ ∈ [0, 1) is
given. Then any step rule ρ that satisfies ρν = ρ(ν, wν , dν) ≥ 0 and

〈

∇h(wν + ρνd
ν), dν

〉

∈ [ǫ 〈∇h(wν ), dν〉 , 0]

generates efficient step sizes that satisfy (14) with

cS =
1− ǫ2

2L
.

Proof. See [12]. �

Now we can obtain a sequence of efficient step sizes either by computing the first

zero of ρ 7→
〈

∇h(wν + ρdν), dν
〉

exactly (ǫ = 0) or by approximating it with fixed

0 ≤ ǫ < 1. The latter can be done for example using the bisection method which
requires one evaluation of ∇h per bisection step.

Observe that for this rule and the Armijo rule a sequence of evaluations of either
h or ∇h is required. In view of Theorem 3.1 this will involve one solution of the
minimization problem associated with F−1 per evaluation of h or ∇h, which can
be very expensive. In order to mitigate this disadvantage we will now present a
method that allows to decide a priori if we can choose ρν = 1 for a given wν and
ν or if some kind of line search is needed. While (13) does only give information
about the angle between ∇h(wν) and d(ν, wν) we will need the stronger condition
that d(ν, wν ) → 0 implies ∇h(wν) → 0.

Let α−1 > 0 and σ ∈ (0, 1) and define for wν , dν ∈ Rm the sequence

αν =

{

‖dν‖M if ‖dν‖M ≤ σαν−1,

αν−1 else.
(20)

For a step size rule ρ that generates efficient step sizes we will switch off the step
rule if the norm of the direction decreases by the factor σ in the following sense:

ρ̃ν =

{

1 if ‖dν‖M ≤ σαν−1,

ρ(ν, wν , dν) else.
(21)
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Note that the sequence ρ̃ν can easily be computed in practice. If ‖dν‖M ≤ σαν−1

is not true, the step size ρ̃ν is computed using the step size rule ρ. If the criterion is
satisfied for some ν, the step size ρ̃ν′ = 1 is used and the new bound αν = ‖dν‖M is
computed. Thus the criterion for the ν-th step is checked with the bound αν−1 =

‖dν
′

‖M where ν′ is the last iteration step that satisfied the criterion.
It is also possible to simplify the criterion for the selection of ρ̃ν = 1 to the

stronger criterion

‖dν‖M ≤ σmin
µ<ν

‖dµ‖M ,

and the convergence proof of the following theorem remains essentially the same.

Theorem 4.3. Assume that d and ρ generate gradient-related directions and ef-
ficient step sizes, respectively. Furthermore, assume that d(ν, vν) → 0 implies
∇h(vν) → 0 for any sequence vν . If ρ̃ν is computed by (20) and (21) for some
α−1 > 0 and σ ∈ (0, 1) and dν = d(ν, wν ), then the iterates wν obtained by

wν+ 1
2 = wν + ρ̃νd

ν ,

wν+1 = wν+ 1
2 + C(wν+ 1

2 ),

converge to w∗ for an arbitrary initial iterate w0 ∈ Rm.

In contrast to the previous results Theorem 4.3 is a not a standard result. How-
ever we skip the technical proof for ease of presentation here.

Proof. See [12].
�

We will see that an important example for directions satisfying the extra as-
sumption of Theorem 4.3 is given by

d(ν, wν) = −S−1
ν ∇h(wν )

with symmetric positive definite matrices Sν that are bounded uniformly from above
and below with respect to ν. If such directions are evaluated inexactly one does in
general not know a priori if the inexact directions satisfy

d̃(ν, vν) → 0 ⇒ ∇h(wν) → 0.

In this case the following generalization of Theorem 4.3 can be used.

Corollary 4.1. Let d and ρ satisfy the assumptions of Theorem 4.3 and let d̃ satisfy
the assumptions of Proposition 4.1 with the accuracy condition (17), i.e.,

‖dν − d̃ν‖M ≤ c‖d̃ν‖M ∀ν ∈ N.

If ρ̃ν is computed by (20) and (21) for some α−1 > 0 and some σ ∈ (0, 1) with dν

replaced by d̃ν = d̃(ν, wν), then the iterates wν obtained by

wν+ 1
2 = wν + ρ̃ν d̃

ν ,

wν+1 = wν+ 1
2 + C(wν+ 1

2 ),

converge to w∗ for an arbitrary initial iterate w0 ∈ Rm.

Proof. See [12]. �

Notice that the above result does no longer hold if d̃ does only satisfy the second
accuracy condition (18) of Proposition 4.1.
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5. Derivatives of the Nonlinear Schur Complement

The convergence speed of gradient-related descent algorithms depends heavily
on the selection of the descent directions dν . If h is C2 the directions

dν = −(∇2h(wν))−1∇h(wν )(22)

lead to a damped Newton method for the operator H = ∇h. If H is not dif-
ferentiable but Lipschitz continuous we want to define directions similar to (22),
replacing (∇2h(wν)) by symmetric positive definite matrices S(wν) ∈ R

m,m that
represent generalized linearizations of H at wν .

In the following h and H = ∇h are given as in Theorem 3.1. For the special case
of a quadratic obstacle problem with additional linear constraint such linearizations
S(wν) were introduced by Gräser and Kornhuber [16]. There the piecewise linearity
of H in that case was used. Here we will generalize this approach using piecewise
smoothness of H instead.

5.1. Derivatives of F−1. Since H is a composition and sum of affine functions
with F−1 the crucial part in the derivation of linearizations of H are linearizations
of F−1. In order to derive such linearizations for F−1 we first look at the functionals
ϕi.

Lemma 5.1. The limits

ϕ′
i,−(x) := lim

ξրx
ϕ′
i(ξ), ϕ′′

i,−(x) := lim
ξրx

ϕ′′
i (ξ) ∀x ∈ (a0i , a

mi

i ],

ϕ′
i,+(x) := lim

ξցx
ϕ′
i(ξ), ϕ′′

i,+(x) := lim
ξցx

ϕ′′
i (ξ) ∀x ∈ [a0i , a

mi

i ).

exist in R ∪ {−∞,∞}.

Proof. The existence of the limits for x ∈ (aki , a
k+1
i ) and of the limits of ϕ′′

i at the
aki is guaranteed by (A2). We only have to show the existence of the limits of ϕ′

i

for x = aki . First we note that ϕ′
i is monotone. Furthermore, it is bounded on

each interval (ak−1
i , aki ) with k < mi since ϕi cannot be convex on (ak−1

i , ak+1
i )

otherwise. Thus limξրak

i

ϕ′
i(ξ) exists and is finite for k < mi and either finite or ∞

for k = mi. Limits from above can be shown analogously. �

For simplicity we will use the notation ϕ′′
i (x) also if the one sided directional

derivatives ϕ′′
i,−(x) and ϕ′′

i,+(x) do not coincide. In this case ϕ′′
i (x) denotes the

maximum of both.
In principle the linearization of F−1 will be defined piecewise and the components

i where ϕi lacks regularity need special care. To do so we introduce the inactive
sets

I(v) := {i : ∂ϕi(vi) is single-valued}.

For convenience we also define the corresponding active sets

A(v) := {1, . . . , n} \ I(v).

It will be convenient to introduce the following notion of truncated matrices and
vectors.



10 GRÄSER

Definition 5.1. Let I,J ⊂ N be index sets, x ∈ Rn a vector, and M ∈ Rm,n a
matrix. Then define the truncated matrix MI,J ∈ Rm,n and the truncated vector
xI ∈ Rn by

(MI,J )
ij
:=

{

Mij if i ∈ I and j ∈ J ,

0 else,
(xI)i :=

{

xi if i ∈ I,

0 else.

Furthermore, define the abbreviation MI := MI,I.

In order to extract a decomposition of Rn into nontrivial subsets where F−1 is
smooth we have to distinguish different active configurations. Since the functions
ϕi may have multiple points aki where they are not smooth, an active configuration
is not completely determined by the active set itself. To distinguish different con-
figurations we also have to take the values at the active component into account.
The equivalence classes

[c] := {v ∈ domϕ : A(v) = A(c), vi = ci ∀i ∈ A(c)}

defined for c ∈ domϕ containing all vectors with the same active configuration
provide exactly this distinction. Hence we can address an active configuration by
[c] for one representative. By definition x and y have the same active configuration
if and only if [x] = [y] and hence the representative is obviously not unique. The
set of all possible active configurations is given by

A := {[c] : c ∈ domϕ}.

By Assumption (A2) the set A is finite and domϕ can be decomposed according
to

domϕ =
⋃

[c]∈A

[c].

Since F has a single-valued inverse we have domϕ ⊃ F−1(Rn) and thus Rn =
F (domϕ) can be decomposed according to

R
n =

⋃

[c]∈A

F ([c]), F ([c]) =
⋃

x∈[c]

F (x) = {y : F−1(y) ∈ [c]}

using the images of [c] under F . Note that in general domϕ ⊃ F−1(Rn) is a real
inclusion and equality does not hold. This is due to the possibility of ϕ′

i(xi) → ∞
for xi → ami

i . In this case F (x) is even empty for all x ∈ domϕ with xi = ami

i .
We will define the linearization of F−1 piecewise on sets where the operator is

smooth. Thus we do not only need to handle the active components but also the
“smoothness intervals” (ak−1

i , aki ) the inactive components are contained in. To this
end it is convenient to first define the set E of all multi-indices needed to identify
these intervals by

E := {η ∈ N
n : 1 ≤ ηi ≤ mi}.

Now we can define the sets of all vectors corresponding to an active configuration
[c] ∈ A and the open and closed smoothness intervals η ∈ E by

[c]η := {x ∈ [c] : xi ∈ (aηi−1
i , aηi

i ) for i ∈ I(c)},

[[c]]η := {x ∈ [c] : xi ∈ [aηi−1
i , aηi

i ] for i ∈ I(c)}.

Both sets are (n− |A(c)|)-dimensional hypercubes since all active components i ∈
A(c) are fixed, while the others can take values in a nontrivial interval. The set
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[[c]]η is in general only a subset of [c]η since domϕi may not contain a0i and ami

i .

These sets provide a decomposition of [c] in the sense that

[c] =
⋃

η∈E

[[c]]η, [c] =
⋃

η∈E

[c]η.

Note that these decompositions are not disjoint in general.
If a linearization of F−1 is to be defined piecewise it is important that the sets

where it is defined do not degenerate to lower-dimensional objects or, equivalently,
that active configurations are stable in a certain sense. This is provided by the
following lemma that guarantees that each set F ([[c]]η) is contained in the closure
of an open set.

Lemma 5.2. Let [c] ∈ A with F (c) 6= ∅ and η ∈ E. Then

F ([[c]]η) ⊂ F ([c]η)◦ ⊂ intF ([[c]]η) 6= ∅

holds for the open set

F ([c]η)
◦ :=

{

y ∈ F ([c]η) :
{ y ∈ (∇J0(F

−1(y)))i + int ∂ϕi(F
−1(y)i) ∀i ∈ A(c),

F−1(y)i ∈ (aηi−1
i , aηi

i ) ∀i ∈ I(c)

}

.

Proof. Let [c] ∈ A with F (c) 6= ∅ and η ∈ E . Since ∂ϕi(ci) is set-valued for i ∈ A(c),
an element of F ([c]η)

◦ can easily be constructed, which shows that F ([c]η)
◦ 6= ∅.

Next we show that F ([c]η)
◦ is open.

Let y ∈ F ([c]η)
◦, x = F−1(y) be fixed and x′ = F−1(y′) for some y′ with

‖y − y′‖∞ < ǫ. By (A2) and continuity of F−1 we instantly get

x′
i ∈ (aηi−1

i , aηi

i )

and thus A(x′) ⊂ A(x) if ǫ is small enough.
To show A(x′) ⊃ A(x) assume that x′

I(x) is known and fixed. Then x′
A(x) is the

unique solution of

F (x′
I(x) + x′

A(x))i ∋ y′i ∀i ∈ A(x).(23)

By continuity of F−1 and ∇J0 the residual defined by r(b, v) := b−∇J0(v) satisfies
∥
∥
∥r(y, x) − r(y′, x′

I(x) + xA(x))
∥
∥
∥
∞

< max
{

dist
(
∂Px,i, r(y, x)i

)
: i ∈ A(x)

}

for the border ∂Px,i of the set Px,i = ∂ϕi(xi) if ǫ is small enough. In this case
we have r(y′, x′

I(x) + xA(x)) ∈ int ∂ϕi(xi). Hence x′
A(x) = xA(x) solves (23) which

yields A(x′) = A(x). Thus x′ ∈ [c]η and even more y′ ∈ F ([c]η)
◦. Since y was

arbitrary, F ([c]η)
◦ must be open and we have F ([c]η)

◦ ⊂ intF ([[c]]η).
Now let y ∈ F ([[c]]η) \ F ([c])◦η with x = F−1(y) be fixed. Then it is easy to give

a sequence xk ∈ [c]η with xk → x. For the sequence

yk = ∇J0(x
k) + (y −∇J0(x) + zk)A(c) + (∂ϕ(xk))I(c)

with

zki =
ǫ

k







1 if i ∈ A(c) and (y −∇J0(x))i = min ∂ϕi(ci),

−1 if i ∈ A(c) and (y −∇J0(x))i = max ∂ϕi(ci),

0 else
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and ǫ small enough we have

(yk −∇J0(x
k))i =

{

(y −∇J0(x) + zk)i ∈ int ∂ϕi(ci) if i ∈ A(c),

∂ϕi(x
k) if i ∈ I(c)

and hence xk = F−1(yk) and yk ∈ F ([c])◦η. Since ∇J0 is continuous and ϕi is

continuously differentiable on (aηi−1
i , aηi+1

i ) for i ∈ I(c) we have

yk → ∇J0(x) + (y −∇J0(x))A(c) + (∂ϕ(x))I(c) = y,

which proves the assertion. �

Since [c] decomposes into the sets [[c]]η, Lemma 5.2 implies

F ([c]) ⊂ intF ([c]).

While this lemma shows that the sets F ([c]) do not degenerate it does not give
insight into their structure. The following remark sheds some light on the geometry
of these sets.

Remark 5.1. Define the points where ϕi is not differentiable by

{ã0i , . . . , ã
m̃i

i } := {a : ∂ϕi(a) is set-valued} ⊂ {a0i , . . . , a
mi

i }.

Then the configuration [c′] without active component, i.e. A(c′) = ∅, is clearly given
by the open set

[c′] =

n∏

i=1

m̃i⋃

k=1

(ãk−1
i , ãki ) =

⋃

(k1,...,kn)
1≤ki≤m̃i

n∏

i=1

(ãki−1
i , ãki

i )

and a representative is, e.g., given by c′i =
1
2 (ã

0
i + ã1i ). Note that [c′] is the union

of n-dimensional open hypercubes Q(k1,...,kn). If the arguments of Lemma 5.2 are
applied with the indicator functions of these hypercubes instead of ϕ it can be seen
that ∇J0(Q(k1,...,kn)) ⊂ int∇J0(Q(k1,...,kn)). Hence the images of the hypercubes
under ∇J0 do not degenerate in the sense that all points are limits of sequences in
their interior.

If at least one component of c is active the set [c] is the union of hypercubes Q
with dimension less then n, and hence no longer open in Rn. To be precise the
length of these hypercubes in any direction ei with i ∈ A(c) is zero. However, the
set (∂ϕ([c]))A(c) is a hypercube that has nonzero lengths exactly in the directions ei
with i ∈ A(c).

Figure 1 and Figure 2 show an example of the decomposition of domϕ and R2

into the sets [c] ∈ A and F ([c]), respectively. For simplicity it is assumed that all
aki differ from 0, such that ci = 0 means that the i-th component is not active.
While the sets [c] are 1-dimensional edges or 0-dimensional vertices if one or two
components of c are active, the corresponding images F ([c]) of all such sets have
a nontrivial interior. Note that F ([c]) has a curved boundary in general but edges
parallel to the i-th axis if ci = ãki for some k. For example the set F ([(0, 0)]) of all
F (x) such that ϕi is smooth at xi for all i might have all edges curved. Conversely,
the set F ([(a11, 0)]) of all F (x) such that the first component is fixed to the kink
a11 (and thus active) has two straight edges parallel to the first axis. In case of a
quadratic function J0 all F ([c]), [c] ∈ A, are (possibly unbounded) parallelepipeds.
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[(a21, 0)]

[(a01, a
1
2)] [(a21, a

1
2)][(a11, a

1
2)][(0, a12)]

[(a01, a
0
2)] [(0, a02)] [(a

1
1, a

0
2)] [(0, a

0
2)]

[(a01, 0)]

[(a21, a
0
2)]

[(a11, 0)]

[(0, 0)] [(0, 0)]

[(0, a12)]

Figure 1. Decomposition of domϕ ⊂ R2 into the sets [c], c ∈ A ⊂ R2.

F ([(a1
1
, 0)])

F ([(0, 0)])

F ([(a0
1
, a0

2
)])

F ([(a0
1
, 0)])

F ([(a1
1
, a0

2
)])

F ([(0, a0
2
)])

F ([(a2
1
, a0

2
)])

F ([(0, 0)])
F ([(a2

1
, 0)])

F ([(a1
1
, a1

2
)])

F ([(0, a1
2
)])F ([(0, a1

2
)]) F ([(a2

1
, a1

2
)])

F ([(a0
1
, a1

2
)])

F ([(0, a0
2
)])

Figure 2. Decomposition of R2 into the sets F ([c]), c ∈ A ⊂ R2.

The essence of Lemma 5.2 is that the subsets in the following decomposition

R
n =

⋃

[c]∈A

F ([c]) =
⋃

[c]∈A

⋃

η∈E

F ([[c]]η)

of Rn are non-degenerate. Since F−1 is smooth on each of these subsets F ([[c]]η)
this allows us to define a piecewise linearization on these sets. We will only state
the main result here. For the technical details we refer to [12].

Theorem 5.1. Let J0 be twice continuously differentiable. Then an element of the
generalized derivative in the sense of Clarke at y = F (x) is given by the Moore–
Penrose pseudoinverse (∂2J(x)I′(x))

+ of the reduced Hessian

∂2J(x)I′x :=
(

∇2J0(x) + ϕ′′(x)
)

I′(x)
(24)

with the reduced inactive set

I ′(v) :=
{
i ∈ I(v) : max{ϕ′′

i,−(vi), ϕ
′′
i,+(vi)} < ∞

}
.
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I.e., we have
(

∂2J(x)I′(x)

)+

∈ ∂B(F
−1)(y) ⊂ ∂C(F

−1)(y).(25)

where ∂B and ∂C denote the B-subdifferential (cf. [25, 31]) and the generalized
Jacobian in the sense of Clarke (cf. [4]), respectively.

Furthermore, F−1 is differentiable on each set F ([c]η)
◦ with [c] ∈ A and η ∈ E

and the derivative is given by the matrix (∂2J(x)I′(x))
+.

Proof. See [12].
�

Theorem 5.2. Let J0 be twice continuously differentiable and let all ϕ′′
i be uni-

formly bounded from above by a constant cϕ′′ where ∂ϕi is single-valued. Then
there is a constant c > 0 such that F−1 is strongly monotone with respect to the
semi-norm introduced by cII0

, i.e.
〈
F−1(u)− F−1(v), u− v

〉
≥ c 〈u− v, u− v〉I0

∀u, v ∈ R
n,(26)

where I0 is the smallest inactive set, i.e.

I0 :=
⋂

y∈Rn

I ′(F−1(y)) = N \ {i ∈ N : ∃ξ ∈ R : ∂ϕi(ξ) is set-valued} .

Proof. See [12]. �

By Rademacher’s theorem (see, e.g., [19]) ∇J0 is in general only differentiable on
a set D∇J0

such that Rn\D∇J0
has measure zero under the assumptions (A1)–(A4).

If this is the case we make the following additional assumption.

(A5) For all x ∈ Rn the matrix ∂2J0(x) ∈ Rn,n is symmetric and positive defi-
nite. It coincides with the classical Hessian ∇2J0 if x ∈ D∇J0

.

Normally one would chose ∂2J0 to be some generalized linearization of ∇J0. If ∇J0
is not differentiable everywhere we can still define

(

∂2J(x)I′(x)

)+

=
(

∂2J0(x) + ϕ′′(x)
)+

I′(x)

and use this as generalized linearization of ∇J0 at x = F−1(y), analogously to (24).

5.2. Derivatives of H. If F−1 is a continuously differentiable operator we can
easily derive a linearization of the nonlinear Schur complement

H(w) = −BF−1(f −BTw) + Cw + g

using the chain rule. The result is

∇H(w) = B∇(F−1)(f −BTw)BT + C.

If F itself is also differentiable we have ∇(F−1)(y) = (∇F )(F−1(y))−1 and ∇H(w)
as given above is just the Schur complement of the linear saddle point problem

u ∈ R
n, w ∈ R

m :

(
(∇F )(F−1(f −BTw0)) BT

B −C

)(
u
w

)

=

(
f
g

)

,

which is the linearization of the nonlinear saddle point problem (1) at (u0, w0)
T

with u0 = F−1(f −BT (w0)).
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In the general case these derivatives do not exist. While F is not even a single-
valued operator we know from Propositions 2.1 and 3.1 that F−1 and H are Lip-
schitz continuous. Thus one could in principle select elements of the generalized
Jacobian in the sense of Clarke [4]

∂CH(w) = co ∂BH(w).

However, it will be complicated to compute elements of this set since the generalized
Jacobian ∂C does not satisfy the chain rule in general. Nevertheless we use a chain
rule to obtain a generalized linearization S(w) of H at w which is not necessarily
an element of ∂CH(w). Based on the linearization of F−1 derived in the previous
subsection this approach results in

S(w) := B
(

∂2J(u)I′(u)

)+

BT + C

as linearization of H at w with u = F−1(f −BTw).

Proposition 5.1. Let J0 be twice continuously differentiable and let rankB = n.
Then

S(w) ∈ ∂BH(w) ⊂ ∂CH(w) ∀w ∈ R
m.

Proof. If rankB = n the mapping defined by G(w) = f − BTw is surjective. In
the proof of Theorem 5.1 the generalized derivative of F−1 was derived as a limit
of classical derivatives that are defined on disjoint open sets F ([c]η)

◦ where F−1 is
differentiable. Furthermore, the space Rn can be decomposed according to

R
n =

⋃

[c]∈A,η∈E

F ([c]η)◦ =
⋃

[c]∈A,η∈E

F ([c]η)◦.

Since F−1 is differentiable on F ([c]η)
◦ this is also true for F−1 ◦ G and H on

G−1(F ([c]η)
◦). By the classical chain rule we have ∇H(w) = S(w) at w ∈

G−1(F ([c]η)
◦). Now let

w ∈ R :=
⋃

[c]∈A,η∈E

G−1(F ([c]η)◦).

Having only a finite number of sets F ([c]η)
◦ we can, without loss of generality,

assume that there is a sequence wk → w with wk ∈ G−1(F ([c]η)
◦) for a single fixed

set F ([c]η)
◦. Then we have S(w) = limk→∞ S(wk) ∈ ∂BH(w).

To complete the proof we assume that there is a w ∈ Rm \ R. Then there is
an open ball Bǫ(w) such that Bǫ(w) ∩ G−1(F ([c]η)

◦) = ∅ for all c, η. By the open
mapping theorem (see, e.g., [33]) G(Bǫ(w)) is also open. Thus it must intersect at
least one F ([c]η)

◦ which contradicts the assumption and shows that Rm = R. �

Remark 5.2. While Proposition 5.1 seems to give a reasonable characterization of
S(w), the assumption rankB = n is quite restrictive for the following reason. If the
saddle point problem arises from a minimization problem with linear constraints we
have C = 0 in general, and a well posed problem will have m ≤ n linear constraints
only. Combined with rankB = n this results in B to be a regular square matrix and
hence the solution u = B−1g is completely determined by the linear constraint.

The following example shows that the assertion of Proposition 5.1 is in general
not valid if rankB < n.
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Example 5.1. For K = {x ∈ R2 : xi ≥ 0, i = 1, 2} consider the saddle point
problem

(
F BT

B −C

)(
u
w

)

=





(
1 0
0 1

)

+ ∂χK

(
−1
1

)

(
−1 1

)
−1









u1

u2

w



 ∋





0
0
0



 =

(
f
g

)

.

Then we have (F−1(y))i = max{0, yi} and thus the nonlinear Schur complement is

H(w) = max{0, w} −max{0,−w}+ w = 2w.

Hence ∇H(w) = 2 and ∂CH(w) = ∂BH(w) = {2}. On the other hand we have
S(w) = 2 for w 6= 0 but S(0) = 1.

This problem occurs since the line f − BTw crosses three domains where F−1

is smooth. While these domains have a nonempty interior themselves the line in-
tersects the one leading to F−1(y) = 0 only at the single point y = 0 of its border.
Thus the preimage of this domain under f − BT (·) collapses to the single point
w = 0.

6. Schur Nonsmooth Newton Methods

We now consider the algorithms obtained if a linearization of the nonlinear Schur
complement is used as preconditioner for search directions

dν = −S(wν)−1∇h(wν)(27)

in the general descent algorithms given by (8), or (10) and (11). Convergence will
follow from the convergence results for gradient-related descent methods.

6.1. Algorithms and Convergence. Before showing convergence of the algo-
rithms we consider the solvability of the system

S(wν)dν = −∇h(wν).

We immediately get

〈S(w)x, y〉 =

〈(

∂2J(u)I′(u)

)+

BTx,BT y

〉

+ 〈Cx, y〉 , x, y ∈ R
m,

for u = F−1(f−BTw). Hence by (A1)–(A3) and (A5) the matrix S(w) is symmetric
and positive semidefinite. However we have no guarantee that it is invertible.

Even if this matrix is invertible it will often not be possible to solve the above
system directly, and the application of iterative schemes does in general involve

multiplications by
[
∂2J0(u) + ϕ′′(u)

]+

I′(u)
. While this is in principle possible the

possibly large derivatives ϕ′′
i might prevent convergence. In order to overcome this

problem we reduce the inactive set further to

I ′′(v) := {i ∈ I ′(v) : ϕ′′
i (vi) < (Cϕ)i,i}

for a positive definite diagonal matrix Cϕ ∈ Rm,m. The induced truncated lin-
earization of H at w with u = F−1(f −BTw) is given by

S′(w) := B
(

∂2J(u)I′′(u)

)+

BT + C.

Note that replacing I ′(v) by I ′′(v) does essentially mean to set very small deriva-
tives of F−1to zero. This additional truncation of the matrix ensures that the
diagonal elements of ∂2J(u)I′′(u) remain bounded independently of ϕ′′(u).
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Independently of this truncation the matrix S′(w) may not be invertible. In
the most extreme case S′(w) = 0 if all components are active while the system
results from a constraint minimization problem, i.e. I ′′(u) = {1, . . . , n} and C = 0.
Although this does not happen in many application problems, it is not uncommon
that S′(w) has a nontrivial kernel.

Since the kernel of
[
∂2J0(u) + ϕ′′(u)

]

I′′(u)
and thus the kernel of S′(w) with

u = F−1(f − BTw) depends only on I ′′(u), the same is true for the orthogonal
projection Pker(S′(w)) : Rm → ker(S′(w)). Hence for a fixed symmetric positive

definite matrix C̃ we can define the symmetric positive semidefinite matrix

C̃(I ′′(u)) := PT
ker(S′(w))C̃Pker(S′(w)) ∈ R

m,m,

and introduce the regularized linearization of H given by

S′′(w) := S′(w) + C̃(I ′′(u)).

If vw,1, . . . , vw,l is an orthonormal basis of ker(S′(w)) then it is easy to see that

Pker(S′(w)) and C̃(I ′′(u)) are given by

Pker(S′(w)) =

l∑

i=1

vw,iv
T
w,i, C̃(I ′′(u)) =

l∑

i,j=1

〈vw,i, vw,j〉C̃ vw,iv
T
w,j.

Lemma 6.1. S′′(w) is symmetric and positive definite for all w ∈ Rm.

Proof. Let x1, x2 ∈ Rm and x•
i = Pker(S′(w))xi, x

◦
i = xi − x•

i . Then symmetry and
definiteness follow from

〈S′′(w)x1, x2〉 = 〈S′(w)x◦
1 , x

◦
2〉+

〈

C̃x•
1, x

•
2

〉

.

�

Theorem 6.1. The directions generated by d(ν, w) = −S′′(w)−1∇h(w) are gradient-
related and guarantee ∇h(vν) → 0 for any sequence vν ∈ Rm with d(ν, vν) → 0.

Proof. The equivalence d(ν, w) = 0 ⇔ ∇h(w) = 0 in (12) follows from the fact
that each S′′(w) is regular. To prove the estimate (13) let w ∈ Rm and define the
reduced space

VI := span{ei : i ∈ I} = {v ∈ R
n : v = vI}(28)

for any index set I. For u = F−1(f −BTw) we then have
〈
∂2J(u)I′′(u)v, v

〉
≤

〈
HJ0

v, v
〉
+ 〈Cϕv, v〉

≤ λmax(HJ0
+ Cϕ) 〈v, v〉 ∀v ∈ VI′′(u),

and
〈
∂2J(u)I′′(u)v, v

〉
≥

〈
HJ0

v, v
〉

≥ λmin(HJ0
) 〈v, v〉 ∀v ∈ VI′′(u).

Since the eigenvalues of ∂2J(u) = ∂2J0(u)+ϕ′′(u) restricted to the indices in I ′′(u)
are bounded, the same is true for the restricted inverse. Thus the following estimate
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holds for all v ∈ Rn

λmax(HJ0
+ Cϕ)

−1
〈
II′′(u)v, v

〉
≤

〈(

∂2J(u)I′′(u)

)+

v, v

〉

≤ λmin(HJ0
)−1

〈
II′′(u)v, v

〉

≤ λmin(HJ0
)−1 〈v, v〉 .

Using these estimates for S′′(w) we get for v ∈ Rm

min

{
1

λmax(HJ0
+ Cϕ)

, 1

}〈(

BII′′(u)B
T + C + C̃(I ′′(u))

)

v, v
〉

≤ 〈S′′(w)v, v〉 ≤ max

{
1

λmin(HJ0
)
, 1

}〈(

BBT + C + C̃(I ′′(u))
)

v, v
〉

.

Recalling that

ker(II′′(u)) = ker
(

∂2J(u)I′′(u)

)+

it is clear that the matrix on the left of the inequality is regular. Hence the matrices
S′′(w) are bounded

γI′′(u) 〈v, v〉 ≤ 〈S′′(w)v, v〉 ≤ ΓI′′(u) 〈v, v〉

with constants γI′′(u),ΓI′′(u) > 0 depending only on the inactive set I ′′(u). Using
this we get

〈
y, S′′(w)−1y

〉
≥ γI′′(u)‖S

′′(w)−1y‖2 ≥
γI′′(u)

ΓI′′(u)
‖S′′(w)−1y‖‖v‖,

and thus (13) with

cD = min
J⊂{1,...,n}

γJ
ΓJ

.

Finally we note that we get ∇h(vν) → 0 from

‖∇h(vν)‖ ≤ ‖S′′(vν)‖ ‖d(ν, vν)‖ ≤ max
J⊂{1,...,n}

ΓJ ‖d(ν, vν)‖

for any sequence vν with d(ν, vν) → 0. �

While this proof allows to apply the generic convergence results to the descent
method obtained using the directions dν = −S′′(wν)−1∇h(wν) for the whole prob-
lem class, it is suboptimal in the following sense:

Since all estimates are derived for the Euclidean norm, the constant cD incorpo-
rates the condition number of ∇2J0(u), which may be large for discretized partial
differential equations. For special cases it may be possible to derive much better
estimates if a suitable norm for w is used. However, such improvements would only
be visible in the convergence result of Theorem 4.2, since the more general result
in Theorem 4.1 uses a compactness argument that does not give bounds.

Corollary 6.1. Let w0 ∈ Rm. Then the sequence wν defined by

dν = −S′′(wν)−1∇h(wν ),

wν+ 1
2 = wν + ρνdν ,

wν+1 = wν+ 1
2 + C(wν+ 1

2 )
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converges to the solution w∗ of (7) if the step size rule ρν = ρ(ν, wν , dν) generates
efficient step sizes.

The same is true if dν is replaced by descent directions d̃ν such that ‖dν − d̃ν‖
satisfies the accuracy condition (17) of Proposition 4.1 and if ρν is replaced by ρ̃ν

in the sense of Theorem 4.3.

Proof. From Theorem 6.1 and Proposition 4.1 it follows that we have gradient-
related descent directions. Thus we can apply Theorem 4.1 if ρν = ρ(ν, wν , dν) is
chosen. If ρν is replaced by ρ̃ν in the sense of Theorem 4.3 we only have to note
that d(ν, vν) → 0 implies ∇h(vν) → 0, by Theorem 6.1. �

The algorithm in Corollary 6.1 is essentially an inexact damped Newton-type
method for the operator H = ∇h. For C = 0 it takes the form

wν+1 = wν − ρνS′′(wν )−1H(wν)

with ρν = ρ(ν, wν ,−S′′(wν)−1∇h(wν )). Since S′′(w) plays the role of a generalized
linearization of the nonsmooth nonlinear Schur complement H at w we call this a
“Schur Nonsmooth Newton method”.

Lemma 6.2. Let J0 be twice continuously differentiable and let all ϕ′′
i be uniformly

bounded from above by a constant cϕ′′ , whenever ∂ϕi is single-valued. Then h is
strongly convex if S(w) is symmetric positive definite for all w ∈ Rm.

Proof. Let w1, w2 ∈ Rn and xi = f − BTwi. By Theorem 5.2 we have for some
c > 0

〈H(w1)−H(w2), w1 − w2〉

=
〈
F−1(x1)− F−1(x2), x1 − x2

〉
+ 〈w1 − w2, w1 − w2〉C

≥ c 〈x1 − x2, x1 − x2〉I0
+ 〈w1 − w2, w1 − w2〉C

= 〈w1 − w2, w1 − w2〉BcII0
BT+C .

Now let x ∈ domϕ such that I(x) = I0 and y ∈ F (x). Then the kernels of
(∂2J(u)I0

)+ and cII0
coincide. Thus the reduced Schur complement

BcII0
BT + C

must also be positive definite because S(w) is. Hence ∇h = H is strongly monotone
and h is strongly convex. �

Corollary 6.2. Let J0, ϕ, S(w), and ρ satisfy the assumptions of Lemma 6.2 and
Corollary 6.1, and let (Cϕ)i > cϕ′′ . Then S(w) = S′(w) = S′′(w) holds true and
the method in Corollary 6.1 converges R-linearly.

The same is true if dν is replaced by descent directions d̃ν such that ‖dν − d̃ν‖
satisfies the accuracy condition (17) of Proposition 4.1.

Proof. Combine Theorem 6.1, Lemma 6.2 and Theorem 4.2. �

In general one would expect local superlinear convergence of a Newton-type
method. Unfortunately our preconditioners S′′(w) are in general not contained in
∂CH(w) for the following reasons:

• As shown by Example 5.1 we may have S′(w) /∈ ∂CH(w) if rankB 6= n due
to the lack of a chain rule.
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• If ∇J0 is not differentiable it may not be possible to choose ∂2J0(w) ∈
∂C(∇J0(w)). Even if this is possible the lack of a chain rule may lead to
S′(w) /∈ ∂CH(w).

• In case of unbounded second derivatives of ϕ additional truncation is in-
troduced.

• S′(w) may not be invertible and thus needs to be regularized.

In all of the above cases the classical convergence analysis of semismooth Newton
methods as introduced by Kummer [18], Pang [23], Qi and Sun [26] cannot be
applied. The remaining case is considered in the following proposition.

Proposition 6.1. Let J0, ϕ, and S(w) satisfy the assumptions of Lemma 6.2 and
let (Cϕ)i > cϕ′′ and rankB = n. Then S(w) = S′(w) = S′′(w) holds true and the
sequence wν defined by

wν+1 = wν − S′′(wν)−1∇h(wν)(29)

converges superlinearly to the solution w∗ of (7) if ‖w0 − w∗‖ is small enough.

Proof. See [12]. �

This result is unsatisfactory not only because of the restrictive assumptions (cf.
Remark 5.2). It also does not give any information on the domain of convergence.

Proposition 6.2. Let the assumptions of Proposition 6.1 be satisfied and assume
that the solution w∗ of (3) satisfies the non-degeneracy condition

∃η∗ ∈ E : f −BTw∗ ∈ F ([u∗, η∗])◦(30)

with u∗ = F−1(f −BTw∗). Then (29) reduces to a classical Newton method for H
in the open neighborhood

U := (f −BT (·))−1(F ([u∗, η∗])◦).

Analogously the method of Corollary 6.1 with C = 0 reduces to a damped classical
Newton method on U .

Proof. We only have to note that F−1 is differentiable on F ([u∗, η∗])◦ and that
f −BT (·) is continuous. �

In view of Proposition 6.2 the result of Proposition 6.1 is almost useless. Pro-
vided that the non-degeneracy condition on w∗ holds, one can simply apply the
convergence theory for classical smooth Newton methods in a small neighborhood
U ′ contained in U . Since Proposition 6.1 does not ensure that the domain of
convergence is larger than U ′ it does not give any additional information. If the
inactive set I(u∗) of w∗ and the set F ([u∗, η∗])◦ are not known, then there is no
hope that the local result can be applied. Moreover the determination of I(u∗) and
F ([u∗, η∗])◦ is generally not a simpler task then solving the original problem.

6.2. Computational Aspects. As already mentioned the terms h and ∇h = H
are in general not explicitly available. In order to obtain an efficient method it is
crucial to have fast iterative schemes to evaluate these quantities.
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Before dealing with this problem we note that for C = 0 the Schur Nonsmooth
Newton method in Corollary 6.1 can equivalently written as

uν = F−1(f −BTwν),(31)

wν+1 = wν + ρν S′′(wν)−1(Buν − Cwν − g)
︸ ︷︷ ︸

=:dν

(32)

with ρν = ρ(ν, wν , dν). This is a preconditioned Uzawa method for the original
saddle point problem (1). If F is a linear operator it reduces to the classical Uzawa
method and S′′(w) reduces to the linear Schur complement. In this case the pre-
conditioned method obviously terminates within one step. If F is associated with a
quadratic obstacle problem and the preconditioner is omitted standard convergence
results for Uzawa methods can be applied yielding even an a priori fixed interval of
allowed step sizes [10, 11].

The first substep amounts to the evaluation of F−1, which is equivalent to the
solution of the minimization problem

uν = argmin
u∈Rn

(
J(u)−

〈
f − BTwν , u

〉)
.

However such problems can efficiently solved using the truncated nonsmooth Newton
multigrid (TNNMG) method. The TNNMG method was introduced in [15] for
quadratic obstacle problems and later generalized to energy functionals of the above
type [12, 13, 17] The the assumptions for this method are a subset of tmethod has
recently been

The evaluation of F−1 is also needed if h or ∇h have to be evaluated in order
to compute ρν using a step size rule. This leads to multiple evaluations of F−1 per
iteration step in general. If this is expensive it may be advantageous to adaptively
switch off the step rule using the criterion (21) of Theorem 4.3. In view of the
interpretation of the method as a Newton-type method one can hope that the
norms of the directions decrease for good initial iterates. In this case the step rule
will not be switched on only one evaluation of F−1 remains. However, the adaptive
criterion (21) ensures that the method does still converge globally if this is not the
case.

The second substep (32) involves the evaluation of S′′(wν )−1. It can be written
as the linear saddle point problem

uν ∈ R
n, dν ∈ R

m :

(
Aν (Bν)T

Bν −Cν

)(
uν

dν

)

=

(
0
gν

)

(33)

with

Aν =
(

∂2J0(u) + ϕ′′(u)
)

I′′(uν)
,

Bν = BN,I′′(uν),

Cν = C + C̃(I ′′(uν)),

gν = ∇h(wν) = g + Cwν −Buν ,

for an auxiliary variable uν . Since Aν represents a linearization of F = ∂J on the
reduced space

VI′′(uν) = span{ei : i ∈ I ′′(uν)} = R
n/ kerAν ,(34)
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this system can be regarded as a regularized linearization of the saddle point prob-
lem (1) on the reduced space VI′′(uν) × Rm. By construction the linear Schur
complement of (33) is given by

S′′(wν ) = B(Aν)+BT + C + C̃(I ′′(uν)) = Bν(Aν)+(Bν)T + C + C̃(I ′′(uν)).

Proposition 6.3. The linear saddle point problem (33) has a unique solution
(uν , dν) ∈ VI′′(uν) × Rm given by dν = −S′′(wν)−1gν and uν = −(Aν)+(Bν)Tdν .
The solutions of (33) in Rn × Rm are given by (uν + vν , dν) ∈ Rn × Rm with
vν ∈ V ⊥

I′′(uν) = {v ∈ Rn : v = vI′′(uν)} = kerAν .

Proof. Replace Aν by Aν + I− II′′(uν) and the right hand side of the first equation

by v with v ∈ V ⊥
I′′(uν). Then a simple block elimination yields that (uν + v, dν) ∈

Rn×Rm with (uν , dν) as given above is the unique solution of this modified system.
Now the identity

(MI)
+ =

(

(MI + I − II)
−1

)

I
=

(

(MI)
+
)

I

for the pseudoinverse together with the invariance of the original system under
modifications uν + v with v ∈ kerAν provide the assertion. �

In view of this result the solution of (33) can either be obtained by considering
the system on the subspace VI′′(uν) × Rm = (Rn/ kerAν)× Rm only or by adding
the orthogonal projection onto the kernel given by PkerAν = I−II′′(uν) = IN\I′′(uν)

to Aν in order to make the part of uν in V ⊥
I′′(uν) unique.

While there are general methods to solve the nonlinear convex minimization
problems associated with F−1 the situation looks different for the linear saddle point
problem. Since the problem is linear and symmetric it is possible to use a direct
solver or Krylov methods like GMRES [27] or MINRES [22]. Due to the indefinite
matrix there is no general multigrid method. However, there are multigrid methods
that work well in special cases. Some of those methods require the saddle point
problem to be related to a quadratic minimization problem with linear constraints,
i.e. Cν = 0. Since this does not hold in general for the subproblems (33) we note
that they can also be reformulated in the following way.

Proposition 6.4. The linear saddle point problem (33) is equivalent to the saddle
point problem

uν ∈ R
n, dν0 ∈ R

m, dν ∈ R
m :





Aν 0 (Bν)T

0 Cν −Cν

Bν −Cν 0









uν

dν0
dν



 =





0
0
gν



(35)

in the sense that (uν , dν0 , d
ν) is a solution of (35) iff (uν , dν) is a solution of (33)

and Cdν0 = Cdν . The solutions of (35) are unique in VI′′(uν) × (Rm/ kerC) × R
m

and the Schur complement is given by S′′(wν).

Again we can construct a system that is uniquely solvable in Rn ×Rm ×Rm by
adding PkerAν to Aν and PkerCν to the appearance of Cν on the diagonal of (35)
without changing the part of the solution in VI′′(uν) × (Rm/ kerC)× Rm.

One class of multigrid methods for systems of the form (35) uses the smoother by
Braess and Sarazin [2]. Each application of this smoother incorporates the solution
of a linear problem for (Bν−Cν)((Bν )T −Cν)T . While this reduces to a discretized
second order elliptic problem for the Stokes problem it is not appropriate if Bν or
Cν themselves result from a second order differential operator.
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Another approach is to construct a smoother by successively solutving small
local saddle point problems that couple only a few primal and dual unknowns in
a so-called patch. Such smoothers were introduced by Vanka [32] for the Navier–
Stokes equations. For the case of a parallel solution of the local problems, i.e. block
Jacobi patch smoothers, convergence results were established by Zulehner [34, 35],
Schöberl and Zulehner [28], and Simon and Zulehner [29].

References

[1] L. Armijo. Minimization of functions having Lipschitz–continuous first partial
derivatives. Pazific J. Math., 204:126–136, 1966.

[2] D. Braess and R. Sarazin. An efficient smoother for the Stokes problem. Appl.
Numer. Math., 23(1):3–19, 1997.

[3] J. W. Cahn and J. E. Hilliard. Free energy of a non-uniform system i. interfacial
free energy. Jnl. of Chemical Physic, 28:258–267, 1958.

[4] F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley, New York, 1983.
[5] M. I. M Copetti and C. M. Elliott. Numerical analysis of the Cahn-Hilliard

equation with a logarithmic free energy. Numerische Mathematik, 63:39–65,
1992.

[6] P. Deuflhard. Newton Methods for Nonlinear Problems. Number 35 in Springer
Series in Computational Mathematics. Springer, Berlin Heidelberg New York,
1. edition, 2004.

[7] I. Ekeland and R. Temam. Convex Analysis. North-Holland, 1976.
[8] C. M. Elliott. The Cahn-Hilliard model for the kinetics of phase separation. In

J. F. Rodrigues, editor, Mathematical Models for Phase Change Problems, vol-
ume 88 of International Series of Numerical Mathematics. Birkhäuser, Basel,
1989.

[9] C. Geiger and C. Kanzow. Numerische Verfahren zur Lösung unrestringierter
Optimierungsaufgaben. Springer, Berlin Heidelberg New York, 1999.

[10] R. Glowinski, J. L. Lions, and R. Trémolières. Numerical Analysis of Varia-
tional Inequalities. Number 8 in Studies in Mathematics and its Applications.
North-Holland Publishing Company, Amsterdam New York Oxford, 1981.

[11] C. Gräser. Analysis und Approximation der Cahn-Hilliard Gleichung mit Hin-
dernispotential. Diplomarbeit, Freie Universität Berlin, 2004.

[12] C. Gräser. Convex Minimization and Phase Field Models. PhD thesis, Freie
Universität Berlin, 2011.

[13] C. Gräser. Truncated nonsmooth Newton multigrid methods for anisotropic
convex minimization problems. in preparation, Matheon Berlin, 2013.

[14] C. Gräser and R. Kornhuber. On preconditioned Uzawa-type iterations for a
saddle point problem with inequality constraints. In O. B. Widlund and D. E.
Keyes, editors, Domain Decomposition Methods in Science and Engineering
XVI, pages 91–102, Heidelberg, 2006. Springer.

[15] C. Gräser and R. Kornhuber. Multigrid methods for obstacle problems. J.
Comp. Math., 27(1):1–44, 2009.

[16] C. Gräser and R. Kornhuber. Nonsmooth Newton methods for set-valued
saddle point problems. SIAM J. Numer. Anal., 47(2):1251–1273, 2009.

[17] C. Gräser, U. Sack, and O. Sander. Truncated nonsmooth Newton multigrid
methods for convex minimization problems. In M. Bercovier, M. Gander,



24 GRÄSER

R. Kornhuber, and O. Widlund, editors, Domain Decomposition Methods in
Science and Engineering XVIII, LNCSE, pages 129–136. Springer, 2009.

[18] B. Kummer. Newton’s method based on generalized derivatives for nonsmooth
functions: Convergence analysis. In W. Oettli and D. Pallaschke, editors,
Advances in optimization (Lambrecht, 1991), pages 171–194, Berlin, 1992.
Springer.

[19] A. Nekvinda and L. Zajíček. A simple proof of the Rademacher theorem.
Časopis Pěst. Mat, 113(4):337–341, 1988.

[20] J. Nocedal. Theory of algorithms for unconstrained optimization. Acta Nu-
merica, 1:199–242, 1992.

[21] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations
in Several Variables. Academic Press, New York, 1970.

[22] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM J. Numerical Analysis, 12:617–629, 1975.

[23] J. S. Pang. Newton’s method for b-differentiable equations. Mathematics of
Operations Research, 15(2):311–341, 1990.

[24] M. J. D. Powell. Direct search algorithms for optimization calculations. Acta
Numerica, 7:287–336, 1998.

[25] L. Qi. Convergence analysis of some algorithms for solving nonsmooth equa-
tions. Mathematics of Operations Research, 18(1):227–244, 1993.

[26] L. Qi and J. Sun. A nonsmooth version of Newtons’s method. Mathematical
Programming, 58:353–367, 1993.

[27] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp., 7:856–869,
1986.

[28] J. Schöberl and W. Zulehner. On Schwarz-type smoothers for saddle point
problems. Numer. Math., 95(2):377–399, 2003.

[29] R. Simon and W. Zulehner. On Schwarz-type smoothers for saddle point prob-
lems with applications to PDE-constrained optimization problems. Numer.
Math., 111:445–468, 2009.

[30] P. Spellucci. Numerische Verfahren der nichtlinearen Optimierung.
Birkhäuser, Basel Berlin, 1993.

[31] M. Ulbrich. Nonsmooth Newon-like Methods for Variational Inequalities and
Constrained Optimization Problems in Function Spaces. Habilitationsschrift,
Technische Universität München, 2002.

[32] S. P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in
primitive variables. J. Comput. Phys., 65:138–158, 1986.

[33] D. Werner. Funktionalanalysis. Springer, Berlin Heidelberg New York, 3.
edition, 2000.

[34] W. Zulehner. A class of smoothers for saddle point problems. Computing, 65
(3):227–246, 2000.

[35] W. Zulehner. Analysis of iterative methods for saddle point problems: A
unified approach. Math. Comput., 71(238):479–505, 2002.

Carsten Gräser, Freie Universität Berlin, Institut für Mathematik, Arnimallee 6,

D - 14195 Berlin, Germany

E-mail address: graeser@mi.fu-berlin.de


	1. Introduction
	2. Problem Formulation
	3. Dual problem
	4. Descent Methods for the Dual Problem
	4.1. Convergence Analysis
	4.2. Inexact Evaluation of Descent Directions
	4.3. Step Size Rules

	5. Derivatives of the Nonlinear Schur Complement
	5.1. Derivatives of F-1
	5.2. Derivatives of H

	6. Schur Nonsmooth Newton Methods
	6.1. Algorithms and Convergence
	6.2. Computational Aspects

	References

