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Abstract

We investigate geodesic finite elements for functions with values in a
space of zero curvature, like a torus or the Möbius strip. Unlike in the
general case, a closed-form expression for geodesic finite element functions
is then available. This simplifies computations, and allows us to prove op-
timal estimates for the interpolation error in 1d and 2d. We also show
the somewhat surprising result that the discretization by Kirchhoff trans-
formation of the Richards equation proposed in [2] is a discretization by
geodesic finite elements in the manifold R with a special metric.

1 Geodesic Finite Elements

Let Ω be an open and connected subset of Rd with a Lipschitz boundary,
and let M be a smooth, connected, m-dimensional manifold. For some
smooth embedding of M into a Euclidean space Rk we define the Sobolev
spaces

Hp(Ω,M) := {v ∈ Hp(Ω,Rk) | v(x) ∈M a.e.},
and note that they are independent of the embedding [1]. Note that the
Hp(Ω,M) have the structure of nonlinear manifolds [4].

Let M be equipped with a Riemannian metric, which turns M into a
metric space with distance function dist : M ×M → R. For the numeri-
cal treatment of partial differential equations for functions in H1(Ω,M),
geodesic finite elements have been introduced in [5]. Let G be a conform-
ing grid of Ω with simplex elements only. Geodesic finite elements are
defined in two steps. The crucial first one is a generalization of linear
interpolation to functions from simplices to M . Let ∆ ⊂ Rd+1 be the
d-dimensional standard simplex.

Definition 1.1. Let M be a Riemannian manifold and dist(·, ·) : M ×
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M → R a distance function on M . For values v1, . . . , vd+1 ∈M we call

Υ : ∆→M

Υ(v1, . . . , vd+1;w) = arg min
q∈M

d+1∑
i=1

wi dist(vi, q)
2 (1)

simplicial geodesic interpolation between the values v1, . . . , vd+1 on M .

The interpolation function Υ is well defined if the corner values v1, . . . , vd+1

are “close together” in a certain sense. A precise statement, which involves
the curvature of M , is given in [5].

In a second step, this interpolation scheme is used to construct global
finite element spaces.

Definition 1.2 (Geodesic Finite Elements). Let G be a simplicial grid on
Ω, and let M be a Riemannian manifold. We call vh : Ω→M a geodesic
finite element function if it is continuous, and for each element T ∈ G the
restriction vh|T is a geodesic simplicial interpolation in the sense that

vh|T (x) = Υ
(
vT,1, . . . , vT,d+1;FT (x)

)
,

where FT : T → ∆ is affine and the vT,i are values in M .

A detailed investigation of these functions is given in [5]. In numerical
experiments, optimal discretization error behavior can be observed.

A disadvantage of the geodesic finite element method is the implicit
definition of the interpolation functions (1). This makes their handling
challenging both for theoretical investigations and for practical computa-
tions. In this article we study the special case that M is a manifold of
zero curvature. In this case, a closed-form expression for the interpola-
tion function Υ is available. Consequently, the handling of geodesic finite
element functions is simplified considerably. It also follows that certain
nonlinear scaling techniques for PDEs can be interpreted as geodesic finite
elements.

Chapter 2 introduces spaces of zero curvature and derives the closed-
form expression for geodesic interpolation. In Chapter 3 we prove optimal
interpolation error bounds in various Sobolev norms if d ≤ 2. In Chap-
ter 4, finally, we give a reinterpretation of a discretization of the Richards
equation based on Kirchhoff transformation introduced in [2]. We show
that the discretization there is actually a discretization by geodesic finite
elements with M = R and a special metric.

2 Spaces of Zero Curvature

Let M be a Riemannian manifold. We say that M has curvature zero if
all sectional curvatures1 at a point x are zero for all x ∈M . Examples of
such manifolds are:

1. All one-dimensional manifolds.

1See [7] or any standard textbook on differential geometry for a definition.
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2. The complete and connected spaces of zero curvature can be classi-
fied precisely:

Theorem 2.1 (Wolf [7], Thms. 2.4.9, 3.1.3). Let M be a Rieman-
nian manifold of dimension m. Then M is complete, connected and
of constant curvature zero if and only if it is isometric to a quotient
Rm/Γ, where Γ is a discrete subgroup of the group of isometries of
Rm, and acting without fixed points.

This includes the tori, the Möbius strip and the Klein bottle.

3. Let W be a connected open subset of Rm, and let

φ : W → Rm

be C∞ and such that the tangent map ∇φ(x) : TxW → Tφ(x)Rm is
invertible for all x ∈W . At any x ∈W define a metric

gx(v, w) = vT (∇φ(x))T∇φ(x)w for all v, w ∈ TxW.

By the assumptions on φ the bilinear form g is indeed a metric. As
a special case of Theorem 2.2 below, the manifold (W, g) has zero
curvature.

The characterizing property of zero-curvature spaces is that they are
locally isometric to Euclidean space. This is formalized by the following
theorem, which is a special case of Theorem 2.4.11 from [7].

Theorem 2.2. Let M be a Riemannian manifold. Then M is of constant
curvature zero if and only if for each x ∈M there are local coordinates on
a neighborhood of x in which the metric is given by the identity matrix.
These coordinate functions are isometries.

With this result we can derive an explicit formula for geodesic simpli-
cial interpolation in manifolds of zero curvature.

Lemma 2.1. Let M be an m-dimensional Riemannian manifold of zero
curvature, and let W ⊂M be open and such that there exists an isometry
φ : W → Rm. Let v1, . . . , vd+1 ∈W . Then

Υ(v1, . . . , vd+1;w) = φ−1
( d+1∑
i=1

wiφ(vi)
)
. (2)

Proof. The inverse φ−1 exists because φ is an isometry [7]. We use the
following short result. Let P and U be two sets, h : P → U a bijection,
and H : U → R. Then

u∗ = arg min
u∈U

H(u)

is equivalent to

p∗ = h−1(u∗) = h−1(arg min
u∈U

H(u)) = arg min
p∈P

H(h(p)).
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Setting P = W and U = φ(W ) ⊂ Rm we can now simply compute

Υ(v1, . . . , vd+1;w) = arg min
p∈M

d+1∑
i=1

wi dist(vi, p)
2

= arg min
p∈M

d+1∑
i=1

wi|φ(pi)− φ(p)|2

= φ−1
(

arg min
u∈Rm

d+1∑
i=1

wi|φ(pi)− u|2
)
,

for all w ∈ ∆. The last minimization problem is nothing but linear inter-
polation in Rm, and the assertion is shown.

Hence if an isometric coordinate function φ is known then the mini-
mization problem (1) can be replaced by the much simpler formula (2).
The computation of derivatives of Υ simplifies correspondingly. In partic-
ular, the indirect method of computing derivatives through the implicit
function theorem [5, Chap. 5] becomes unnecessary. We note that in appli-
cations, suitable isometries are frequently available (see, e.g., Chapter 4).

3 Interpolation Error

In this chapter we prove optimal bounds for the interpolation error. We
restrict our attention to one- and two-dimensional domains, in order to
be able to work with the standard interpolation operator.

Let d ∈ {1, 2}. By the Sobolev embedding theorems functions in
H2(Ω,M) are continuous and we can define the interpolation operator

Ih : H2(Ω,M)→ VMh (G)

(Ihu)(x) = u(x) for all vertices x of G, (3)

where VMh (G) is the set of all geodesic finite element functions on G with
values in M . When applying Ih to a function u we assume that the values
of u at the vertices of G are such that the function Ihu is unique. Precise
conditions can be inferred from Lemma 3.2 in [5].

Interpolation errors will be estimated in terms of a generalization of the
H2 half norm suitable for functions with values in a Riemannian manifold.

Definition 3.1. Let f : Ω → M be C2. For a given coordinate system
around f(x) ∈ M denote by fα the local coordinates and by Γγαβ the
Christoffel symbols of M . For a point x ∈ Ω we define (using the Einstein
summation convention)

αx[f ]γij := ∂2
ijf

γ(x) + Γγαβ∂if
α(x)∂jf

β(x)

the second fundamental form of f at x.

The second fundamental form is a bilinear form on TxΩ with values in
Tf(x)M [1].
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Lemma 3.1. Let g be the metric of M with components gij. The term

|α[f ]|2Ω :=

∫
Ω

|αx[f ]|2 dx with |αx[f ]|2 = gklαx[f ]kijαx[f ]lij

is invariant under coordinate transformations of M . It is nonnegative,
and zero only if f is totally geodesic.

Proof. Invariance can be seen by direct computation. A function f is
totally geodesic if and only if αx[f ] = 0 for all x ∈ Ω [1]. Hence the
second assertion follows.

The definition of |α[·]|Ω is extended to functions in H2 by considering
the partial derivatives in a weak sense.

We can now state our main result. Remember that a triangle grid G
is called quasi-uniform if there is a number η > 0 such that every triangle
T of G contains a circle of radius ρT with ρT ≥ hT /(2η), where hT is the
diameter of T [3].

Theorem 3.1. Let G be a quasi-uniform simplex grid of Ω, d ∈ {1, 2},
and let Ih be the interpolation by geodesic finite elements defined in (3).
Assume that for each element T ∈ G, the image u(T ) ⊂M is contained in
an isometric coordinate patch. Then, for each u ∈ H2(Ω,M), 0 ≤ m ≤ 2
we have

‖dist(u, Ihu)‖m ≤ Ch2−m|α[u]|Ω,
with a constant C depending only on Ω and η.

The proof is a modification of the proof for standard finite elements
given in [3]. Its main ingredient is the following local approximation result.

Lemma 3.2. Let Tref be the one- or two-dimensional reference simplex.
For M a Riemannian manifold of zero curvature let u : Tref → M be in
H2(Tref,M), and such that u(Tref) is contained in a set U for which an
isometric coordinate map φ exists. Let uh be the geodesic interpolation
function that coincides with u at the corners of Tref. Then there is a
positive number c such that

‖dist(u, uh)‖2 ≤ c|α[u]|Tref
.

Proof. The coordinate function φ is an isometry, and hence

‖dist(u, uh)‖2 = ‖φ ◦ u− φ ◦ uh‖2.

Since uh is a geodesic interpolation function we can use Lemma 2.1 and
obtain that (φ ◦ uh)(w) =

∑d+1
i=1 wiφ(ui), the linear interpolation in coor-

dinates between the values φ(ui) at the corners of Tref. Hence we can use
Hilfssatz 6.2 from [3] and get

‖dist(u, uh)‖2 ≤ c|φ ◦ u|2 = c

√∫
Tref

|D2(φ ◦ u)|2 dx,

where D2 is the matrix with entries ∂2
ij . Since, in the chart φ, the metric

is the identity (Thm. 2.2), the Christoffel symbols vanish, and this is the
coordinate expression for |α[u]|Tref

. This proves the assertion.
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Now we can prove the main approximation result.

of Theorem 3.1. It is sufficient to show for each triangle Tj of G the in-
equality

‖dist(u, Ihu)‖m,Tj ≤ Ch
2−m|α[u]|Tj

for u ∈ H2(Tj ,M).

Write T = Tj for simplicity and let F : Tref → T , F(ξ) = Bξ+d be affine.
Note that from Lemma 3.2 follows in particular that |dist(u, uh)|l,Tref

≤
c|α[u]|Tref

for all 0 ≤ l ≤ 2, where |·|l is the l-th order Sobolev half norm.
Use this and the integral transformation formula ([3, Formula 6.6]) to get

|dist(u, Ihu)|l,T ≤ C‖B
−1‖l · |detB|1/2

∣∣ dist(F−1 ◦ u, Ih(F−1 ◦ u))
∣∣
m,Tref

≤ C‖B−1‖l · |detB|1/2
∣∣α[F−1 ◦ u]

∣∣
Tref

≤ C‖B−1‖l · |detB|1/2 · ‖B‖2 · |detB|−1/2|α[u]|T
≤ C(‖B‖ · ‖B−1‖)l‖B‖2−l · |α[u]|T .

Because of quasi-uniformity we have ‖B‖ · ‖B−1‖ ≤ (2 +
√

2)η and ‖B‖ ≤
4h (cf. [3]). Together we obtain

|dist(u, Ihu)|l,T ≤ Ch
2−l|α[u]|T .

Squaring both sides and taking the sum over l from 0 to m yields the
assertion.

4 Nonlinear Scaling and the Richards Equa-
tion

As an application of the theory presented above we give a reinterpretation
of a special discretization for the Richards equation in terms of geodesic
finite elements. This is a surprising result, as the Richards equation is not
usually associated with differential geometry. Similar results can be shown
for nonlinear scaling techniques such as the one proposed by Weiser [6].

Let Ω be a domain in Rd. The Richards equation models the evolution
of a scalar pressure p in a saturated–unsaturated flow in a porous medium2

∂

∂t
θ(p)− div

(
kr(θ(p))∇p

)
= 0.

The two equations of state θ, kr : R→ R are both continuous and mono-
tonically increasing. Implicit time discretization leads to spatial problems

θ(pn)− τ div
(

kr(θ(pn))∇pn
)

= θ(pn−1) on Ω, (4)

with n the time step number and τ the time step size.

2An additional term modelling the effect of gravity has been omitted for simplicity. This
does not change the argument.
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Let G be a grid of Ω and let Vh be the space of scalar, conforming,
first-order finite elements for G. Berninger et al. [2] proposed the following
discretization of (4). Inserting the Kirchhoff transformation

p 7→ u = κ(p) :=

∫ p

0

kr(θ(q)) dq

turns (4) into a semilinear problem

θ(κ−1(un))− τ∆un = θ(κ−1(un−1)) (5)

for a “generalized pressure” un. Equation (5) is equivalent to a convex
minimization problem [2, Thm. 3.3]. Berninger et al. discretized it using
first-order finite elements and solved the algebraic system with a monotone
multigrid solver. For a discrete solution uh of (5), a discrete physical
pressure ph was then recovered by applying the inverse discrete Kirchhoff
transformation

p̃h = Ih ◦ κ−1 ◦ uh ∈ Vh, (6)

where Ih is the projection onto Vh by pointwise interpolation. Numerical
tests showed optimal convergence orders both in the physical and the
generalized pressure [2].

Note that the function p̃h from (6) is not simply the finite element
solution of (4). Berninger et al. showed, however, that p̃h could be inter-
preted as a solution of (4) if (4) was discretized with a solution-dependent
quadrature rule [2, Sec. 4.2].

We now propose a different interpretation of the solution of a Kirchhoff-
transformed problem (5). Instead of using the inverse discrete Kirchhoff
transform, we recover a physical pressure function with the inverse Kirch-
hoff transform

ph = κ−1 ◦ uh /∈ Vh,
omitting the subsequent interpolation Ih. Due to the nonlinear nature
of κ, the set Vκ,h := κ−1(Vh) of functions obtained by inverse Kirchhoff
transformation from first-order finite element functions is not a regular
finite element space, because it does not consist of piecewise linear func-
tions. In fact, under the usual pointwise rules for addition and scalar
multiplication it does not even form a vector space.

However, Vκ,h can be interpreted as a geodesic finite element space.
Consider R as a manifold and equip it with the Riemannian metric

gx(v, w) = vT (κ′(x))2w, x ∈ R, v, w ∈ TxR ≈ R,

which is well-defined, because κ is differentiable. Since R is one-dimensional
it follows that (R, g) has zero curvature. A more instructive way to see this
uses Theorem 2.2: The function κ is a diffeomorphism from R to (uc,∞),
where uc = limp→−∞ κ(p) > −∞ is the so-called critical pressure. Hence,
κ defines coordinates on the manifold R, and we can interpret the gen-
eralized pressure u as a special coordinate on the manifold of physical
pressures R. In these coordinates the metric g is the identity

gx(v, w) = ((κ′)−1v)T (κ′(x))2((κ′)−1w) = vw, x ∈ R, v, w ∈ TxR ≈ R.

and (R, g) has curvature zero.
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Since (R, g) has curvature zero we can invoke Lemma 2.1 to see that
geodesic simplicial interpolation in the manifold (R, (κ′)2) between d+ 1
values p1, . . . , pd+1 is given by

ph(w) = κ−1
( d+1∑
i=1

wiκ(pi)
)

= κ−1
( d+1∑
i=1

wiui
)

= κ−1(uh(w)),

for coordinates w on the standard simplex. This is precisely the construc-
tion of functions in Vκ,h from [2] described above. We have shown the
following result.

Theorem 4.1. The space Vκ,h is the geodesic finite element space for the
manifold R with metric g = (κ′)2.

This results provides a new view point on nonlinear scaling techniques.
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