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Abstract

We investigate geodesic finite elements for functions with values in a
space of zero curvature, like a torus or the Mdbius strip. Unlike in the
general case, a closed-form expression for geodesic finite element functions
is then available. This simplifies computations, and allows us to prove op-
timal estimates for the interpolation error in 1d and 2d. We also show
the somewhat surprising result that the discretization by Kirchhoff trans-
formation of the Richards equation proposed in [2] is a discretization by
geodesic finite elements in the manifold R with a special metric.

1 Geodesic Finite Elements

Let © be an open and connected subset of R? with a Lipschitz boundary,
and let M be a smooth, connected, m-dimensional manifold. For some
smooth embedding of M into a Euclidean space R* we define the Sobolev
spaces

HP(Q, M) := {v e H?(Q,R") | v(z) € M a.e.},

and note that they are independent of the embedding [I]. Note that the
H?(Q, M) have the structure of nonlinear manifolds [4].

Let M be equipped with a Riemannian metric, which turns M into a
metric space with distance function dist : M x M — R. For the numeri-
cal treatment of partial differential equations for functions in H*(Q, M),
geodesic finite elements have been introduced in [5]. Let G be a conform-
ing grid of 2 with simplex elements only. Geodesic finite elements are
defined in two steps. The crucial first one is a generalization of linear
interpolation to functions from simplices to M. Let A C R4 be the
d-dimensional standard simplex.

Definition 1.1. Let M be a Riemannian manifold and dist(-,-) : M X
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M — R a distance function on M. For values vi,...,va+1 € M we call

T: A—->M
d+1
T(vi,...,va415W) :argminZwi dist (v, q)° (1)
qeEM i—1
simplicial geodesic interpolation between the values vi,...,vq+1 on M.
The interpolation function Y is well defined if the corner values v1, ..., vi4+1

are “close together” in a certain sense. A precise statement, which involves
the curvature of M, is given in [5].

In a second step, this interpolation scheme is used to construct global
finite element spaces.

Definition 1.2 (Geodesic Finite Elements). Let G be a simplicial grid on
Q, and let M be a Riemannian manifold. We call vy, : Q@ — M a geodesic
finite element function if it is continuous, and for each element T € G the
restriction vy |T is a geodesic simplicial interpolation in the sense that

”Uh|T($) = T(UTJ, <o UT d415 .FT(:C)),

where Fr : T — A is affine and the vr; are values in M.

A detailed investigation of these functions is given in [5]. In numerical
experiments, optimal discretization error behavior can be observed.

A disadvantage of the geodesic finite element method is the implicit
definition of the interpolation functions . This makes their handling
challenging both for theoretical investigations and for practical computa-
tions. In this article we study the special case that M is a manifold of
zero curvature. In this case, a closed-form expression for the interpola-
tion function Y is available. Consequently, the handling of geodesic finite
element functions is simplified considerably. It also follows that certain
nonlinear scaling techniques for PDEs can be interpreted as geodesic finite
elements.

Chapter [2| introduces spaces of zero curvature and derives the closed-
form expression for geodesic interpolation. In Chapter [3]we prove optimal
interpolation error bounds in various Sobolev norms if d < 2. In Chap-
ter [d] finally, we give a reinterpretation of a discretization of the Richards
equation based on Kirchhoff transformation introduced in [2]. We show
that the discretization there is actually a discretization by geodesic finite
elements with M = R and a special metric.

2 Spaces of Zero Curvature

Let M be a Riemannian manifold. We say that M has curvature zero if
all sectional curvaturesﬂ at a point x are zero for all x € M. Examples of
such manifolds are:

1. All one-dimensional manifolds.

1See [7] or any standard textbook on differential geometry for a definition.



2. The complete and connected spaces of zero curvature can be classi-
fied precisely:

Theorem 2.1 (Wolf [7], Thms. 2.4.9, 3.1.3). Let M be a Rieman-
nian manifold of dimension m. Then M is complete, connected and
of constant curvature zero if and only if it is isometric to a quotient
R™ /T, where I' is a discrete subgroup of the group of isometries of
R™, and acting without fixed points.

This includes the tori, the M6bius strip and the Klein bottle.
3. Let W be a connected open subset of R™, and let

¢: W > R™

be C*° and such that the tangent map Vo(z) : ToW — Ty R™ is
invertible for all x € W. At any x € W define a metric

ge(v,w) =" (Vo(x)" Vo(z)w for all v, w € T, W.

By the assumptions on ¢ the bilinear form g is indeed a metric. As
a special case of Theorem below, the manifold (W, g) has zero

curvature.

The characterizing property of zero-curvature spaces is that they are
locally isometric to Euclidean space. This is formalized by the following
theorem, which is a special case of Theorem 2.4.11 from [7].

Theorem 2.2. Let M be a Riemannian manifold. Then M is of constant
curvature zero if and only if for each © € M there are local coordinates on
a neighborhood of x in which the metric is given by the identity matrix.
These coordinate functions are isometries.

With this result we can derive an explicit formula for geodesic simpli-
cial interpolation in manifolds of zero curvature.

Lemma 2.1. Let M be an m-dimensional Riemannian manifold of zero
curvature, and let W C M be open and such that there exists an isometry
¢: W = R™. Let v1,...,va41 € W. Then

d+1

Yo, ..., va51;w) = ¢*1(Zwi¢(w)). (2)

Proof. The inverse ¢~ ! exists because ¢ is an isometry [7]. We use the
following short result. Let P and U be two sets, h : P — U a bijection,
and H : U — R. Then
u* = arg min H (u)
uelU
is equivalent to

p" =h'(u*) = h ' (argmin H(u)) = arg min H (h(p)).

uelU peEP



Setting P =W and U = ¢(W) C R™ we can now simply compute

d+1
. . 2
T(vi,...,V441;w) = arg min E w; dist(vs, p)
pEM i—1
d+1

_ 3 . ) — 2
= arpger]gm;sz(pz) #(p)|

d+1
=~ (argmin 3 wilo(p) —ul?),

for all w € A. The last minimization problem is nothing but linear inter-
polation in R™, and the assertion is shown. O

Hence if an isometric coordinate function ¢ is known then the mini-
mization problem can be replaced by the much simpler formula .
The computation of derivatives of T simplifies correspondingly. In partic-
ular, the indirect method of computing derivatives through the implicit
function theorem [5, Chap. 5] becomes unnecessary. We note that in appli-
cations, suitable isometries are frequently available (see, e.g., Chapter [4)).

3 Interpolation Error

In this chapter we prove optimal bounds for the interpolation error. We
restrict our attention to one- and two-dimensional domains, in order to
be able to work with the standard interpolation operator.

Let d € {1,2}. By the Sobolev embedding theorems functions in
H?(92, M) are continuous and we can define the interpolation operator

I« H(Q,M) = VM(G)
(Inu)(z) = u(z) for all vertices x of G, 3)

where V;M (G) is the set of all geodesic finite element functions on G with
values in M. When applying I;, to a function u we assume that the values
of u at the vertices of G are such that the function Iu is unique. Precise
conditions can be inferred from Lemma 3.2 in [5].

Interpolation errors will be estimated in terms of a generalization of the
H? half norm suitable for functions with values in a Riemannian manifold.

Definition 3.1. Let f : Q — M be C%. For a given coordinate system
around f(z) € M denote by f* the local coordinates and by I‘Zﬁ the
Christoffel symbols of M. For a point x € Q we define (using the Einstein
summation convention,)

aalf1]; = 057 (@) + 1750 (2)0; 7 ()

the second fundamental form of f at x.

The second fundamental form is a bilinear form on 7,2 with values in
Ty@M [l



Lemma 3.1. Let g be the metric of M with components gi;. The term
/118, = / lowlf)*de with |aw[f]|* = gaa [ liex(f1i;
Q

is tnvariant under coordinate transformations of M. It is nonnegative,
and zero only if f is totally geodesic.

Proof. Invariance can be seen by direct computation. A function f is
totally geodesic if and only if ag[f] = 0 for all z € Q [1]. Hence the
second assertion follows. O

The definition of |a[]|, is extended to functions in H? by considering
the partial derivatives in a weak sense.

We can now state our main result. Remember that a triangle grid G
is called quasi-uniform if there is a number n > 0 such that every triangle
T of G contains a circle of radius pr with pr > hr/(2n), where hr is the
diameter of T [3].

Theorem 3.1. Let G be a quasi-uniform simplex grid of Q, d € {1,2},
and let Iy, be the interpolation by geodesic finite elements defined in .
Assume that for each element T € G, the image uw(T) C M is contained in
an isometric coordinate patch. Then, for each uw € H*(Q, M), 0 < m < 2
we have

Idist(a, Zur) . < CH*"Jafullg

with a constant C depending only on 2 and 7.

The proof is a modification of the proof for standard finite elements
given in [3]. Its main ingredient is the following local approximation result.

Lemma 3.2. Let T,ef be the one- or two-dimensional reference simplex.
For M a Riemannian manifold of zero curvature let w : Trep — M be in
H?(Tyes, M), and such that uw(Trey) is contained in a set U for which an
isometric coordinate map ¢ exists. Let up be the geodesic interpolation
function that coincides with u at the corners of Tye. Then there is a

positive number ¢ such that
([ dist (u, un)l2 < clafully, .
Proof. The coordinate function ¢ is an isometry, and hence
[[dist (u, un)ll2 = [[¢ 0 u— ¢ o unlla.

Since uy, is a geodesic interpolation function we can use Lemma m and
obtain that (¢ o up)(w) = Zfl;rll w;i@(u;), the linear interpolation in coor-
dinates between the values ¢(u;) at the corners of Ty.;. Hence we can use
Hilfssatz 6.2 from [3] and get

Tyet

[[dist(u, un)ll2 < ¢l o ul, = C\// |D2(¢ o w)| da,

where D? is the matrix with entries 8%-. Since, in the chart ¢, the metric
is the identity (Thm., the Christoffel symbols vanish, and this is the
coordinate expression for |a[u]|,, . This proves the assertion. O



Now we can prove the main approximation result.

of Theorem[3.1] 1t is sufficient to show for each triangle T} of G the in-
equality

IIdist (u, Inw)||m,7; < Chz_m|oz[u]|Tj for u € H*(Ty, M).

Write T' = T} for simplicity and let F : Trer — T, F(£) = B +d be affine.
Note that from Lemma [3.2] follows in particular that |dist(u, “h)|l,Tmf <
clafu]l, , for all 0 <1 <2, where ||, is the I-th order Sobolev half norm.
Use this and the integral transformation formula ([3| Formula 6.6]) to get

|dist(u, Inu)], 7 < CB|" - |det B|'/?| dist(F " 0w, In(F " o u))]
<CIB7H" - |det B|'?|a[F ! o4
< CIB7H|' - |det B[V - ||B|)* - |det B|~|alu]|,
<CUBI- 1B N'IBIP - |afullp

m,Tref

Tret

Because of quasi-uniformity we have || B||-[|[B™'|| < (2++v/2)n and ||B|| <
4h (cf. [3]). Together we obtain

|dist(u, [pu)], p < Ch*alu]|,-

Squaring both sides and taking the sum over [ from 0 to m yields the
assertion. (I

4 Nonlinear Scaling and the Richards Equa-
tion

As an application of the theory presented above we give a reinterpretation
of a special discretization for the Richards equation in terms of geodesic
finite elements. This is a surprising result, as the Richards equation is not
usually associated with differential geometry. Similar results can be shown
for nonlinear scaling techniques such as the one proposed by Weiser [6].
Let Q be a domain in R%. The Richards equation models the evolution
of a scalar pressure p in a saturated—unsaturated flow in a porous mediunﬂ

%G(p) —div (kr(6(p))Vp) = 0.

The two equations of state 6,kr : R — R are both continuous and mono-
tonically increasing. Implicit time discretization leads to spatial problems

0(p") — div (ke(8(p™))Vp") =0(p" ")  onQ, (4)

with n the time step number and 7 the time step size.

2An additional term modelling the effect of gravity has been omitted for simplicity. This
does not change the argument.



Let G be a grid of Q and let V}, be the space of scalar, conforming,
first-order finite elements for G. Berninger et al. [2] proposed the following
discretization of . Inserting the Kirchhoff transformation

prru=n(p)= [ "k (6(e)) dg

0

turns into a semilinear problem
9(/@_1(un)) —TAu" = Q(H_l(un_l)) (5)

for a “generalized pressure” u'. Equation is equivalent to a convex
minimization problem [2, Thm. 3.3]. Berninger et al. discretized it using
first-order finite elements and solved the algebraic system with a monotone
multigrid solver. For a discrete solution wup of , a discrete physical
pressure p;, was then recovered by applying the inverse discrete Kirchhoff
transformation

]thIhOl’iilOuhGVh, (6)

where I}, is the projection onto V}, by pointwise interpolation. Numerical
tests showed optimal convergence orders both in the physical and the
generalized pressure [2].

Note that the function p; from @ is not simply the finite element
solution of . Berninger et al. showed, however, that p, could be inter-
preted as a solution of if was discretized with a solution-dependent
quadrature rule [2], Sec. 4.2].

‘We now propose a different interpretation of the solution of a Kirchhoff-
transformed problem . Instead of using the inverse discrete Kirchhoff
transform, we recover a physical pressure function with the inverse Kirch-
hoff transform

ph=k "oup ¢ Vi,
omitting the subsequent interpolation I;,. Due to the nonlinear nature
of K, the set Vi p = /fl(Vh) of functions obtained by inverse Kirchhoff
transformation from first-order finite element functions is not a regular
finite element space, because it does not consist of piecewise linear func-
tions. In fact, under the usual pointwise rules for addition and scalar
multiplication it does not even form a vector space.

However, Vi 5 can be interpreted as a geodesic finite element space.
Consider R as a manifold and equip it with the Riemannian metric

go(v,w) =" (&' (2))*w,  z€R, wv,weTR~R,

which is well-defined, because k is differentiable. Since R is one-dimensional
it follows that (R, g) has zero curvature. A more instructive way to see this

uses Theorem The function & is a diffeomorphism from R to (uc, 00),

where u. = limp—,_o k(p) > —00 is the so-called critical pressure. Hence,

k defines coordinates on the manifold R, and we can interpret the gen-

eralized pressure u as a special coordinate on the manifold of physical

pressures R. In these coordinates the metric g is the identity

gz (v, w) = () "0) T (K ()2 () 'w) = vw, reR, v,weTRxR

and (R, g) has curvature zero.



Since (R, g) has curvature zero we can invoke Lemma to see that
geodesic simplicial interpolation in the manifold (R, (x')?) between d + 1
values p1,...,Ppd+1 is given by

d+1 d+1

pr(w) = Kﬁl(zwm(pi)) = Kﬁl(zwiui) = Hil(uh(w)),

for coordinates w on the standard simplex. This is precisely the construc-
tion of functions in Vi, from [2] described above. We have shown the
following result.

Theorem 4.1. The space Vi1, is the geodesic finite element space for the
manifold R with metric g = (x')*.

This results provides a new view point on nonlinear scaling techniques.
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