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NUMERICAL APPROXIMATION OF MULTI-PHASE
PENROSE–FIFE SYSTEMS

CARSTEN GRÄSER, MAX KAHNT, AND RALF KORNHUBER

Abstract. We consider a non-isothermal multi-phase field model. We subse-
quently discretize implicitly in time and with linear finite elements. The arising
algebraic problem is formulated in two variables where one is the multi-phase
field, and the other contains the inverse temperature field. We solve this saddle
point problem numerically by a non-smooth Schur–Newton approach using
truncated non-smooth Newton multigrid methods. An application in grain
growth as occurring in liquid phase crystallization of silicon is considered.

1. Introduction

The mathematical modelling of phase transitions has a long history and has
stimulated new developments in the field of variational inequalities and free bound-
ary value problems over more than three decades [3, 14, 31]. Particular attention
was paid to problems of Stefan-type [43] and their mathematical description by
phase field models [13]. In this approach, phase transitions are represented by an
order parameter that is strongly varying the (diffuse) interface. The evolution of
the order parameter is typically obtained from some gradient flow of a suitable
Ginzburg–Landau free energy that provides non-decreasing entropy (thermodynami-
cal consistency) and could be mass conserving (phase separation) or non-conserving
(phase transition). More recently Stinner et al. [42] extended well-established ther-
modynamically consistent, two-phase Penrose–Fife models [13] to multiple phases
(non-conserved) and components (conserved). Existence of solutions to the re-
sulting balance equations for the energy, order parameters, and concentrations of
components was studied in [41].

While the numerical analysis of two-phase Penrose–Fife models was based on
implicit time discretization [32], previous numerical computations with multiple
phases and components were typically based on an explicit approach [37]. In this
way, the solution of non-smooth, large-scale algebraic systems is avoided at the
expense of severe stability constraints on the time step.

In this paper, we consider a multi-phase extension of the classical Penrose–Fife
system [13, 32, 39]. Following Stinner et al. [42], this system is derived from a general
entropy functional that combines a Ginzburg–Landau energy with thermodynamic
entropy. We concentrate on a numerical approach based on semi-implicit time
discretization (with explicit treatment of concave terms [15, 23]) and first-order
Taylor approximation of nonlinearities associated with inverse temperature. Vari-
ational arguments are used to show existence and uniqueness of solutions of the
resulting spatial problems. Spatial discretization is performed by piecewise linear
finite elements with adaptive mesh refinement based on hierarchical a posteriori
error estimation [25, 22]. The resulting large-scale non-smooth algebraic systems
are solved by non-smooth Schur–Newton multigrid (NSNMG) methods [20, 24, 26]
exploiting again the saddle point structure of these problems. In our numerical
experiments, we observe optimal order of convergence of the spatial discretization
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and mesh-independent, fast convergence speed of NSNMG with nested iteration.
Furthermore, our computations suggest that non-decreasing entropy is preserved
under discretization. Application to a liquid phase crystallization (LPC) process
occurring in the fabrication of thin film silicon solar cells [36] underline the potential
of the presented solution approach.

2. Phase field modelling

2.1. Thermodynamical background. Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded
domain with Lipschitz boundary Γ = ∂Ω. Following [42], we consider the entropy
functional

S(e, φ) =
∫

Ω
s(e, φ)− ( ε2γ

2(φ,∇φ) + 1
εψ(φ)) dx,(1)

where the entropy density s depends on the internal energy density e and on the
multi-phase field φ = (φα)Mα=1, γ represents the surface gradient entropy, and ψ a
multi-well potential with M distinct minima. The components of φ describe relative
fractions of a given substance. Hence, it is natural to impose the algebraic constraint

(2)
M∑

α=1
φα = 1.

For a free energy density f = f(T, φ) we postulate the Gibbs relation [42, 1]

df = −sdT +
M∑

α=1
f,φα dφα(3)

with absolute temperature T > 0, and we set
(4) e = f + sT

along the definition of the Helmholtz energy in order to assess the entropy change
in terms of temperature. As a consequence, we have

(5) s = −f,T , ds = 1
T ( de− df) = 1

T de−
M∑

α=1

1
T f,φα dφα,

and therefore
(6) s,e = 1

T , s,φα = − 1
T f,φα α = 1, . . . ,M.

We assume that the free energy density f is obtained by interpolation of the
individual bulk free energies Lα T−TαTα

− cvT (log(T ) − 1) for each phase α. Here,
Lα ≥ 0 and Tα > 0 represent the latent heat and melting temperature of pure phase
α, respectively, and cv > 0 is the specific heat capacity. In the light of (2), this
leads to

(7) f(T, φ) =
M∑

α=1
Lα

T−Tα
Tα

φα − cvT (log(T )− 1),

and we have
(8) f,φα(T, φ) = Lα

T−Tα
Tα

.

Utilizing (4), (5), and the state equation (7), we can represent entropy s and
energy e in terms of temperature T and phase field φ according to
(9)

s(e, φ) = s̃(T, φ) = −
M∑

α=1
Lα

1
Tα
φα + cv log(T ), e = ẽ(T, φ) = −

M∑

α=1
Lαφα + cvT.
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Though our approach could be extended to anisotropic interfacial energies [23], we
choose
(10) γ(φ,∇φ) = |∇φ|
for simplicity. Finally, ψ stands for the classical multi-obstacle potential [9, 5]
(11) ψ(φ) = χG(φ) + 1

2φ
TKφ,

with χ denoting the characteristic function
(12) χA(x) = 0 if x ∈ A and χA(x) =∞ if x 6∈ A
and G the Gibbs simplex

(13) G = {v = (vα) ∈ RM |
M∑

α=1
vα = 1 and vα ≥ 0, α = 1, . . . ,M} ⊂ RM .

We choose the negative definite interaction matrix
K = −I ∈ RM,M

leading to the concave contribution φTKφ = −|φ|2 to the multi-obstacle potential.
With these specifications the entropy functional takes the form

S(e, φ) = S0(e, φ)− χG(φ), S0(e, φ) =
∫

Ω
s(e, φ)− ε

2 |∇φ|2 − 1
2εφ

TKφdx(14)

where χG is the characteristic functional of
(15) G = {v ∈ H1(Ω)M | v(x) ∈ G a.e. in Ω}.
2.2. A multi-phase Penrose–Fife system. We postulate the continuity equation
(16) et = −∇ · J0(e, φ) + q(e, φ)
with the flux

J0(e, φ) = κ∇
(
∂

∂e
S

)
(e, φ),

mobility κ > 0, and a source term q(e, φ) to obtain

(17) et = −∇ ·
(
κ∇
(
∂

∂e
S

))
(e, φ) + q(e, φ).

We assume that the outward energy flux is proportional to the difference of
temperature T and a given boundary temperature TΓ or, more precisely, we prescribe
(18) J0 · n = hc(T − TΓ)
with convection coefficient hc > 0 and the outward normal n to Ω. It is also
convenient to introduce the inverse temperature

(19) θ = 1
T
, θΓ = 1

TΓ
.

Note that for given φ the variables e, T , and θ can be transformed into each other
due to strictly monotone relationships (9) and (19).

In order to provide non-decreasing entropy S(e, φ) in the course of phase evolution,
we set

(20) εβφt ∈
∂

∂φ
S0(e, φ)− ∂χG(φ),

with a kinetic coefficient β > 0 and the subdifferential ∂χG(φ) of the convex
functional χG . For the phase field we impose homogeneous Neumann boundary
conditions

(21) ∂

∂n
φα = 0, α = 1, . . . ,M.
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Utilizing (9), (10), (11), and the transformation (19), a weak formulation of the differ-
ential equations (17) and (20) with boundary conditions (18) and (21), respectively,
reads as follows.

Problem 2.1 (Multi-phase Penrose–Fife system with obstacle potential).
Find the phase field φ ∈ L2((0, t∗), H1(Ω)M ) ∩ H1((0, t∗), L2(Ω)M ) and positive
inverse temperature θ ∈ L2((0, t∗), H1(Ω)) ∩H1((0, t∗), L2(Ω)) such that

(22) φ(·, 0) = φ0, θ(·, 0) = θ0

holds with given initial conditions φ0 ∈ L2(Ω)M , θ0 ∈ L2(Ω), θ0 ≥ 0 a.e. in Ω and

(εβφt + L̃− θL+ 1
εKφ, v − φ) + ε(∇φ,∇(v − φ)) + χ(v)− χ(φ) ≥ 0(23a)

(
−LTφt − cv

1
θ2 θt − q, w

)
− (κ∇θ,∇w) +

(
hc

(
1
θ
− 1
θΓ

)
, w

)

Γ
= 0(23b)

holds for all v ∈ H1(Ω)M and w ∈ H1(Ω).

Here, (0, t∗) ∈ R is the considered time interval, L = (Lα)Mα=1, L̃ = (LαTα )Mα=1, and
(·, ·), (·, ·)Γ stand for the scalar product in L2(Ω), L2(Γ), respectively.

For existence and uniqueness results in the special case M = 2, we refer to [13,
Section 7.2], [32], and the references cited therein.

Proposition 2.1. The multi-phase Penrose–Fife system is thermodynamically
consistent in the sense that

(24) S(e(t), φ(t)) ≥ S(e(t0), φ(t0)) ∀t ∈ [t0, t∗] ⊂ (0, t∗]

holds for any solution (φ, θ) of Problem 2.1 with q = 0, hc = 0 satisfying φ ∈
C1([t0, t∗], H1(Ω)M ) for [t0, t∗] ⊂ (0, t∗].

Proof. Since φ ∈ G for almost all t and in view of (9) and (14) we can write

S(e, φ) = Ŝ(θ, φ) =
∫

Ω
−L̃Tφ+ cv log(θ)− ε

2 |∇φ|2 − 1
2εφ

TKφdx.(25)

Testing (23a) with v = φ(t− τ), dividing by τ > 0, and letting τ → 0 we get

0 ≤ εβ‖φt‖2 ≤ (−L̃+ θL− 1
εKφ, φt)− ε(∇φ,∇φt)

whereas testing (23b) with w = θ yields

0 ≤ (κ∇θ,∇θ) = (−LTφt − cv 1
θ2 θt, θ).

Adding both we get

0 ≤ (−L̃, φt)− ( cvθ , θt)− ε(∇φ,∇φt)− 1
ε (Kφ, φt) = 〈∇Ŝ(θ, φ)), (θt, φt)〉.

Now integrating over [t0, t] provides the assertion. �

2.3. Thin film approximation. We consider a domain of the form Ω = Ω′ ×
(0, H) ⊂ Rd, d ≥ 2, with a bounded Lipschitz domain Ω′ ⊂ Rd−1 and H > 0. We
assume that Ω is ”thin” in the sense that variations of φ, φ0, θ, θ0, and q normal to Ω′
as well as the flux J0 across ∂Ω′×(0, H) can be neglected and J0 ·n(·, 0) = J0 ·n(·, H)
holds a.e. in Ω′. Inserting these assumptions into (22), (23), we obtain the following
thin film approximation of Problem 2.1.

Problem 2.2 (Thin film multi-phase Penrose–Fife system).
Find the phase field φ ∈ L2((0, t∗), H1(Ω′)M ) ∩H1((0, t∗), L2(Ω′)M ) and positive
inverse temperature θ ∈ L2((0, t∗), H1(Ω′)) ∩H1((0, t∗), L2(Ω′)) such that

(26) φ(·, 0) = φ0, θ(·, 0) = θ0
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holds with given initial conditions φ0 ∈ L2(Ω)M , θ0 ∈ L2(Ω), θ0 ≥ 0 a.e. in Ω and

(εβφt + L̃− θL+ 1
εKφ, v − φ) + ε(∇φ,∇(v − φ)) + χ(v)− χ(φ) ≥ 0(27a)

(
−LTφt − cv

1
θ2 θt + h′c

1
θ − h′c 1

θΓ
− q, w

)
− (κ∇θ,∇w) = 0(27b)

and h′c = 2hc
H for all v ∈ H1(Ω′)M and w ∈ H1(Ω′).

Here, (·, ·) = (·, ·)Ω′ stands for the scalar product in L2(Ω′) for ease of notation.
Note that Problem 2.2 is essentially a d− 1 analogue of Problem 2.1 with similar
mathematical properties. For example, thermodynamic consistency in the sense of
Proposition 2.1 is still valid and all considerations concerning discretization and
algebraic solution of discretized problems to be reported below carry over from
Problem 2.1 to its thin film approximation. For this reason, in the remainder we
consider the more general equation

(−LTφt − cv
1
θ2 θt + hΩ

1
θ − q′, w)− (κ∇θ,∇w) + (hΓ( 1

θ − 1
θΓ

), w)Γ = 0(28)

with coefficients hΩ, hΓ ≥ 0, of which exactly one is zero to recover Problems 2.1
resp. 2.2. Specifically, choose hΩ = 0, hΓ = hc, and q′ = q to obtain (23b) and
hΩ = h′c, hΓ = 0, and q′ = q + h′c

1
θΓ

to obtain (27b).

3. Discretization

In this section we present a discretization of Problem 2.1 and Problem 2.2 using
the general equation (28) by Euler-type discretizations in time and finite elements
in space. Since efficient approximation of the phase field φ requires time-dependent,
locally refined spatial grids, it is convenient to use Rothe’s method [11], i.e., the
variational problem (23) is first discretized in time and the resulting spatial problems
are then discretized in space, independently from each other.

3.1. Implicit time discretization. In the light of well-known stiffness of the
non-linear parabolic system of equations, we use a semi-implicit Euler method.
More precisely, after approximating the time derivatives φt, θt by backward finite
differences with step size τ > 0, the concave term 1

εKφ is taken explicitly [15, 23],
and the nonlinearities 1/θ, 1/θ2 are approximated by first-order Taylor expansion
(cf., e.g., [16, Section 6.4])

1
θ(t)

.= 2
θ(t−τ) −

θ(t)
(θ(t−τ))2 ,

1
θ(t)2

.= 3
θ(t−τ)2 − 2θ(t)

θ(t−τ)3 .

In particular, this leads to
1

θ(t)2 θt(t)
.= 1
θ(t)2

θ(t)−θ(t−τ)
τ = 1

τ

(
1
θ(t) −

θ(t−τ)
θ(t)2

)
.= 1
τ

(
θ(t)

θ(t−τ)2 − 1
θ(t−τ)

)
.

For simplicity, we utilize the uniform time step size τ = t∗/n∗ with given n∗ ∈ N,
and denote approximations of φ(tn), θ(tn) at tn = nτ , n = 1, . . . , n∗ by φn, θn,
respectively. The spatial problem to be solved in the n-th time step then reads as
follows.

Problem 3.1 (Spatial multi-phase Penrose–Fife system with obstacle potential).
Find the phase field φn ∈ H1(Ω)M and positive inverse temperature θn ∈ H1(Ω)
such that

a(φn, v − φn) + χG(v)− χG(φn) + b(v − φn, θn) ≥ `n1 (v − φn)(29a)
b(φn, w)− cn(θn, w) = `n2 (w)(29b)
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holds with the bilinear forms

a(v, v′) = ε(βv, v′) + ετ (∇v,∇v′) ,(30a)

cn(w,w′) = τ
(
cv+τhΩ
(θn−1)2w,w

′
)

+ τ2
(

hΓ
(θn−1)2w,w

′
)

Γ
+ τ2 (κ∇w,∇w′) ,(30b)

b(v, w) = −τ(LT v, w),(30c)

and the linear functionals

`n1 (v) = (εβφn−1 − τL̃− τ
εKφ

n−1, v),(31a)

`n2 (w) = (τ2q′ − τLTφn−1 − τ cv+2τhΩ
θn−1 , w)− τ2hΓ

(
2

θn−1 − 1
θΓ
, w
)

Γ
(31b)

defined for all v, v′ ∈ H1(Ω)M and w,w′ ∈ H1(Ω).

It turns out that the system (29) can be regarded as optimality conditions for a
Lagrange-functional.

Proposition 3.1. Problem 3.1 is equivalent to find φn ∈ H1(Ω)M and θn ∈ H1(Ω)
such that

(32) Ln(φn, w) ≤ Ln(φn, θn) ≤ Ln(v, θn) ∀ v ∈ H1(Ω)M , w ∈ H1(Ω),

with the Lagrangian Ln given by

Ln(v, w) = J n(v) + b(v, w)− `n2 (w)− 1
2c
n(w,w)(33)

denoting J n(v) = 1
2a(v, v)− `n1 (v) + χG(v).

Theorem 3.1. Let φn−1 ∈ G, θn−1 ∈ H1(Ω) and θn−1 ≥ c a.e. in Ω with a positive
constant c. Then the spatial Problem 3.1 admits a unique solution.

Proof. Under the given assumptions `n1 and `n2 are bounded linear functionals and
a(·, ·) is symmetric and coercive. Since G is closed and convex the functional Ln(·, w)
is strictly convex, coercive, and lower semi-continuous for all fixed w ∈ H1(Ω) and
we can define the dual functional

h(w) = − inf
v∈H1(Ω)M

Ln(v, w) = (J n)∗(`n1 − b(·, w)) + 1
2c
n(w,w) + `n2 (w).

Here, (J n)∗ is the convex and continuous polar of J n. Notice that h is also convex
and continuous because cn(·, ·) is symmetric and positive-definite.

By integrability of (θn−1)2 there must be a subset Ω′ ⊂ Ω with positive measure
and a constant c2 > 0 such that θn−1 ≤ c on Ω′. As a consequence we get

cn(w,w) ≥ cvτ
c22
‖w‖2L2(Ω′) + τ2κ‖∇w‖2

and thus coercivity of cn(·, ·). Hence, h is coercive, continuous, and strictly convex
and thus has a unique minimizer. Existence and uniqueness now follows from the
fact that (φn, θn) is a solution of Problem 3.1, if and only if θn is a minimizer of h
and φn = arg min v∈H1(Ω)M Ln(v, θn). �

In general it is not clear that uniform positivity of inverse temperature is preserved
by solving Problem 3.1. We refer, however, to [32] for such kind of results in the
scalar case M = 2.

3.2. Adaptive finite element discretization. We will now consider the adaptive
finite element discretization of the spatial Problem 3.1 for an individual fixed time
step. In order to improve readability we will from now on drop all superscripts (·)n
that identify the current time step. We will designate quantities from the previous
time step by the superscript (·)old whenever necessary.
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3.2.1. Finite element discretization. In the following, we assume that T is a simplicial
grid that is either conforming or obtained via local hanging node refinement of a
conforming initial grid. We will discretize the spatial Problem 3.1 with respect to
the conforming first order finite element space

S = S(T ) =
{
v ∈ C(Ω)

∣∣∣ v|τ is affine ∀e ∈ T
}
⊂ H1(Ω).(34)

Notice that S has a uniquely defined nodal basis {λp | p ∈ N} satisfying λp(q) = δpq
for all p, q ∈ N where N is the set of non-hanging nodes of T . If the grid is
obtained by uniform or local hanging node refinement, the non-conforming mesh
hierarchy induces a natural hierarchy of subspaces of S that can be used in geometric
multigrid methods. For a detailed discussion of finite element spaces on hierarchies
of non-conforming, locally refined grids we refer to [20, 25].

Note that linearity implies that the Gibbs constraint can be evaluated node-wise,
i.e.,
(35) G ∩ SM = {v ∈ SM | v(p) ∈ G ∀p ∈ N}.
Problem 3.2 (Discrete spatial multi-phase Penrose–Fife system).
Find the phase field φT ∈ SM and positive inverse temperature θT ∈ S such that

a(φT , v − φT ) + χG(v)− χG(φT ) + b(v − φT , θT ) ≥ `1(v − φT ),(36a)
b(φT , w)− c(θT , w) = `2(w)(36b)

holds for all v ∈ SM and w ∈ S.

Here, `1, `2, and c(·, ·) are defined as in (31) and (30) but with φn−1 and θn−1

replaced by its finite element approximations φold and θold and, for stability reasons,
q′ replaced by its interpolation in S. Notice that φold and θold are finite element
functions on a grid T old. In case of adaptive refinement, T old is usually different
from T . See [25] for a detailed discussion.

In analogy to its continuous counterpart, Problem 3.2 can be written as a non-
linear, non-smooth saddle point problem.

Proposition 3.2. Problem 3.2 is equivalent to find φT ∈ SM and θT ∈ S such that
(37) L(φT , w) ≤ L(φT , θT ) ≤ L(v, θT ) ∀ v ∈ SM , w ∈ S,
with the Lagrangian L given according to (33).

Existence and uniqueness is also inherited from the continuous case.

Theorem 3.2. Let φold ∈ G, θold ∈ H1(Ω) and θold ≥ c a.e. in Ω with a positive
constant c. Then the spatial Problem 3.2 admits a unique solution.

Proof. The proof can be carried out using the same arguments as in the proof of
Theorem 3.1. �

3.2.2. Hierarchical a posteriori error estimation. As the phase field φ is expected
to strongly vary across phase boundaries, spatial adaptivity based on a posteriori
error estimates is mandatory. Similarly, the consumption of heat by phase changes
may lead to strongly varying θ. Hierarchical error estimates rely on the solution
of local defect problems. While originally introduced for linear elliptic problems
[12, 17, 29, 44] this technique was successfully extended to non-linear problems [4],
constrained minimization [30, 33, 35, 40, 45] and non-smooth saddle point problems
[22, 25, 20].

Following [20, 22, 25], we now derive an a posteriori error estimate by suitable
approximation of the defect problem associated with the defect Lagrangian

D(eφ, eθ) = L(φT + eφ, θT + eθ).
7



In the first step the defect problem is discretized with respect to a larger finite
element space QM ×Q, where Q = S(T ′) is defined analogously to (34) for the grid
T ′ obtained by uniform refinement of T . Note that we have Q = S ⊕ V with V
denoting the incremental space

V = span{λ′p | p ∈ E} ⊂ span{λ′p | p ∈ N ′} = S ′.
Here, N ′ denotes the set of non-hanging nodes in T ′, {λ′p | p ∈ N ′} the nodal basis
of S ′, and E = N ′ \N is the set of all edge mid points in T that are non-hanging in
T ′.

In the second step, the discrete defect problem is localized by ignoring the
coupling between S and V and also the coupling between λ′p for all p ∈ E . Denoting
Dp(r, s) = D(rλ′p, sλ′p), this results in the local saddle point problems

(eφ,p, eθ,p) ∈ RM × R : Dp(eφ,p, s) ≤ Dp(eφ,p, eθ,p) ≤ Dp(r, eθ,p) ∀(r, s) ∈ RM × R
for all p ∈ E that give rise to the hierarchical a posteriori error estimate

(38) η =
(∑

p∈E
η2
p

) 1
2
, η2

p =
∥∥eφ,pλ′p

∥∥2
φ

+
∥∥eθ,pλ′p

∥∥2
θ
, p ∈ E

with the problem-dependent norms
‖v‖2φ = a(v, v), ‖w‖2θ = c(w,w)(39)

on VM , V, respectively.

3.2.3. Adaptive mesh refinement. The initial grid for adaptive refinement should be
sufficiently fine to detect basic features of the unknown spatial approximation and
sufficiently coarse for efficiency of the overall adaptive procedure. The construction
of such a grid starts with the grid T old from the preceding time step. In the first
time step, we select a suitable, uniformly refined grid T old.

We begin by coarsening T old. To this end, we keep all simplices from the grid
T old from the preceding time step that were obtained by at most jmin refinements.
In addition, we keep all simplices τ such that φold exhibits strong local variation on
τ that is not visible after coarsening, i.e., such that
‖|∇(Iτφold)|‖L∞(τ) ≥ Tolderefine and ‖|∇(Iτ ′φold)|‖L∞(τ ′) < Tolderefine

holds with τ ′ denoting the simplex resulting from coarsening of τ and Iτ and Iτ ′
are the linear interpolation operators to τ and τ ′, respectively. This set of simplices
is completed by additional local refinements. Possible additional refinement is used
to uniformly bound the ratio of diameters of adjacent simplices.

Adaptive mesh refinement of the resulting initial grid T is based on the local
error indicators ηp defined in (38). In each step, the indicators ηpi , i = 1, . . . , |E|, are
arranged with decreasing value, to determine the minimal number i0 of indicators
such that

(40)
i0∑

i=1
η2
pi > ρη

2

holds with a given parameter ρ ∈ [0, 1]. Then all simplices τ ∈ T with the property
pi ∈ τ for some pi with i ≤ i0 are marked for refinement [18]. Each marked simplex
is partitioned by (red) refinement [8, 10]. Again, possible additional refinement is
used to uniformly bound the ratio of diameters of adjacent simplices. The refinement
process is stopped, if the estimated relative error is less than a given tolerance
Toladapt > 0, i.e., if

(41) η < Toladapt ·
(
‖φT ‖2φ + ‖θT ‖2θ

) 1
2

.
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4. Algebraic solution

4.1. Matrix notation. For the presentation of the algebraic solver for the iterative
solution of Problem 3.2 we first formulate this problem in terms of coefficient vectors
and matrices. To this end let N = dimS and introduce an enumeration of the
nodes N = {p1, . . . , pN}. To simplify notation, we use the abbreviated notation
λk = λpk for the nodal basis λ1, . . . , λN of S and introduce the basis λ1, . . . , λMN

of SM where λπ(i,k) = biλk, bi ∈ RM is the i-th Euclidean basis vector, and
π : {1, . . . , N} × {1, . . . ,M} is the bijective index map given by

π(k, i) = i+M(k − 1).
For v ∈ SM , w ∈ S we then get associated coefficient vectors V ∈ RMN ,W ∈ RN

v =
∑MN
i=1 Viλ

i, w =
∑N
i=1Wiλi.

Using the matrices A ∈ RMN,MN , B ∈ RN,MN , C ∈ RN,N and vectors F ∈
RMN , G ∈ RN given by
Aij = a(λj , λi), Bij = b(λj , λi), Cij = c(λj , λi), Fi = `1(λi), Gi = `2(λi),

and the characteristic functional ϕ = χGN : RMN →∞ of
GN = {V ∈ RMN | (Vπ(k,i))i=1,...,M ∈ G ∀k} = {V ∈ RMN | ∑MN

i=1 Viλ
i ∈ G}

Problem 3.2 can be written as:
Problem 4.1 (Algebraic variational inequality).
Find coefficient vectors Φ ∈ RMN and Θ ∈ RN of φT and θT , respectively, such
that

〈AΦ, V − Φ〉+ ϕ(V )− ϕ(Φ) + 〈BTΘ, V − Φ〉 ≥ 〈F, V − Φ〉,(42a)
BΦ− CΘ = G(42b)

holds for all V ∈ RMN .
Problem 4.1 can equivalently be written in operator notation as a non-linear

saddle point problem using in turn the subdifferential of ϕ.
Problem 4.2 (Discrete saddle point problem).
Find coefficient vectors Φ ∈ RMN and Θ ∈ RN of φT and θT , respectively, such that(

A+ ∂ϕ BT

B −C

)(
Φ
Θ

)
3
(
F
G

)
.(43)

For later reference we note that the Lagrangian for this saddle point problem is
given by the following discrete analogue

L(V,W ) = J(v) + 〈BV −G,W 〉 − 1
2 〈CW,W 〉

of Ln where J(V ) = 1
2 〈AV, V 〉 − 〈F, V 〉+ ϕ(V ) is the analogue of J n.

4.2. Non-smooth Schur–Newton multigrid methods. In the context of non-
smooth Schur–Newton methods as introduced in [20, 24], it is shown that problems
of the form of Problem 4.2 can equivalently be formulated as the following dual
minimization problem.
Problem 4.3 (Dual minimization problem).
Find Θ ∈ RN such that

h(Θ) ≤ h(W ) ∀W ∈ RN

where h : RN → R is the dual functional
h(W ) = − inf

V ∈RMN
L(V,W ) = −L(Φ(W ),W )
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and Φ(W ) = (A+ ∂ϕ)−1(F −BTW ).

Proposition 4.1. Problems 4.2 and 4.3 are equivalent in the sense that (Φ,Θ)
solves Problem 4.2 if and only if Θ solves Problem 4.3 and Φ = Φ(Θ). Furthermore,
the dual functional h : RN → R is convex and continuously differentiable with
Lipschitz-continuous derivative

∇h(W ) = −BΦ(W ) + CW +G

= −B(A+ ∂ϕ)−1(F −BTW ) + CW +G.

The proof of Proposition 4.1 can be done analogously to the proof of [21, Theo-
rem 2.1]. This proof also shows that h can be written as

h(W ) = J∗(F −BTW ) + 1
2 〈CW,W 〉+ 〈G,W 〉

where J∗ : RMN → R is the polar (or conjugate) functional of J which is convex
itself. This especially shows that h is a strongly convex functional because C is
positive definite due to coercivity of the associated bilinear form c(·, ·) (cf. proof of
Theorem 3.1).

As a consequence of Proposition 4.1 we can apply gradient-related descent methods
of the form

Θν+1 = Θν + ρνD
ν(44)

where Dν ∈ RN is a decent direction and ρν a step size. The non-smooth Schur–
Newton method as introduced in [21, 20, 24] is such a descent method where Dν is
taken to be

Dν = −S−1
ν ∇h(Θν)(45)

and Sν ∈ RN,N is a generalized linearization of the non-smooth, non-linear but
Lipschitz continuous Schur complement operator −∇h at Θν .

The derivation of Sν essentially amounts in deriving a generalized linearization
for the operator (A+ ∂ϕ)−1 at Y = F −BTΘν . For simple component-wise bound
constraints is has been shown in [21] that such a linearization is given by (AW(X))+.
Here, AW(X) is the restriction of A to W(X) × W(X), W(X) is the maximal
subspace such that J is locally smooth in

(X +W(X)) ∩ UX
for some neighborhood UX of X = (A+ ∂ϕ)−1(Y ), and (·)+ is the Moore–Penrose
inverse or, equivalently, the inverse of AW(X) :W(X)→W(X).

For the simplex constraints in the present problem we will use exactly the same
approach. In the following we will outline the construction of AW(X) for local
simplex constraints following [28]. To this end we identify vectors V ∈ RMNwith
block-structured vectors V̂ ∈ (RM )N such that Vπ(k,i) = (V̂k)i.

Due to the product structure
GN = {V ∈ RMN | V̂ ∈ GN}

of the feasible set GN we can determine the subspaceW(X) in each block individually.
Hence W(X) takes the form

W(X) =
{
V ∈ RMN | V̂ ∈

N∏

k=1
W(X̂k)

}

where W(X̂k) is the maximal subspace where χG is locally smooth near X̂k. As
outlined in [28] the local subspace W(ξ) is given by

W(ξ) = span{bi − bj ∈ RM | 1 ≤ i < j ≤M, ξi > 0, ξj > 0}
10



for ξ ∈ RM . Since W(X) is a product space the orthogonal projection PW(X) :
RMN →W(X) is given by a block diagonal matrix where the k-th diagonal block
is the orthogonal projection PW(X̂k) : RM →W(X̂k). For an explicit representation
of PW(X̂k) ∈ RM,M we refer to [28]. Using PW(X) we now get

AW(X) = PW(X)APW(X).

Assuming a chain rule we find that a generalized linearization of the non-linear
Schur complement operator −∇h at Θν is given by

Sν = B
(
AW(Φ(Θν))

)+
BT + C.(46)

As a consequence of convexity of h we can show global convergence.

Theorem 4.1. Assume that the step sizes ρν are efficient (cf. [38, 21]), then the
iterates produced by the descent method (44) with Schur–Newton directions (45) for
Sν given by (46) converges to the solution Θ of Problem 4.3 for any initial guess
Θ0 ∈ RN .

Proof. Notice that the Sν are uniformly bounded from above and below. Hence
global convergence follows from [21, Theorem 4.2]. �

Efficient step sizes ρν as required in Theorem 4.1 can be obtained by classical
step size rules like, e.g., the Armijo rule or bisection. Notice that it is not necessary
to evaluate S−1

ν exactly in (45) because global convergence is preserved as long as
it is evaluated exactly enough. Since the dual functional h is strongly convex, one
can also show global linear convergence with a rate depending on the bounds for Sν
and the step size rule. For further details we refer to [21].

During each iteration of the algorithm two types of subproblems have to be solved.
The evaluation of −∇h(Θν) requires to compute Φ(Θν) = (A+ ∂ϕ)−1(F −BTΘν).
This is equivalent to minimizing J(·)+〈BTΘν , ·〉, i.e., a convex minimization problem
for a quadratic functional with local simplex constraints. If the used step size rule
requires several trial steps further problems of this type have to be solved for each
evaluation of h or ∇h. These convex minimization problem can efficiently be solved
using non-linear multigrid methods [34, 28]. More precisely the TNNMG method
for simplex-constrained problems as proposed in [28] allows to solve these problems
with an effective complexity of O(M2N). This method was used in all numerical
examples presented below.

The second type of subproblems are the linear problems (45) for the symmetric
positive definite operators Sν . Since each Sν is a linear Schur complement this is
equivalent to solving the linear saddle point problem

(
AW(Φ(Θν)) (BPW(Φ(Θν)))T
BPW(Φ(Θν)) −C

)(
Ṽ ν

Dν

)
=
(

0
∇h(Θν)

)

whose solution is unique in (kerPW(Φ(Θν)))⊥ × RN . In the numerical examples
presented below we used a linear multigrid method with a Vanka-type smoother
to solve these problems. Notice that there is no convergence proof for this linear
iterative method. To increase its robustness it can be used as preconditioner for a
GMRes iteration.

5. Numerical experiments

All our computations are based on a non-dimensionalized version of the Penrose–
Fife systems stated in Problem 2.1 and Problem 2.2, respectively, as obtained by
setting

(47) θ = Tref
T
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instead of (19). While the order parameter φ1 is representing the liquid fraction,
the order parameters φ2, . . . , φM are associated with certain solid states, as, e.g.,
crystalline structures, of the given material. With this in mind, the positive
reference value Tref ∈ R is chosen to be the melting temperature and we set
Tref = T1 = · · · = TM = 1. Accordingly we set L1 = 0 and L2 = · · · = LM > 0 in
all our computational examples.

Efficient step sizes ρν for the Schur–Newton iteration (44) as required in Theo-
rem 4.1 are determined by bisection. The iteration is stopped, once the criterion

‖θν+1−θν‖θ
‖θν‖θ ≤ Tolcorrection(48)

is satisfied. We use Tolcorrection = 10−11 in all our computations.
For each time step a grid hierarchy is obtained either by uniform refinement or

according to the adaptive coarsening and refinement strategy described in Subsec-
tion 3.2.3.

The initial iterate for the algebraic Schur–Newton solver is derived by nested
iteration, i.e., on each refinement level an initial iterate is obtained by nodal
interpolation of the final iterate from the preceding one. On the first refinement
level, the initial iterate is obtained by nodal interpolation of the final approximation
in the preceding time step. For the first time step, the continuous initial conditions
are interpolated to the initial grid T old.

All numerical experiments were conducted using the DUNE (Distributed and
Unified Numerics Environment) framework and the DUNE-modules dune-subgrid
and dune-tnnmg (cf. [6, 7, 27]).

5.1. Experimental order of convergence. In order to numerically assess the
spatial discretization error of the finite element discretization stated in Problem 3.2,
we consider the multi-phase Penrose–Fife Problem 2.1, with Ω = (0, 2)2 ⊂ R2,
M = 5 phases of which only the liquid and one solid phase is present, and the
following parameters

ε = 6 · 10−2, cv = 1, q = 0, hc = 0,
κ = 1, β = 1, L1 = 0, Lα = 2, α = 2, . . . ,M.

We select the initial temperature θ0 = 0.5. The initial phase field φ0 is given by

φ0
2(x) =





1 if d(x) < 0.5
| 12 cos(5π(d(x)− 0.5)) + 0.5| if 0.5 ≤ d(x) < 0.7
0 else

where d(x) stands for the Euclidean distance from x to (1, 1), φ0
1(x) = 1− φ0

2(x, t),
and φ0

α = 0 for α = 3, 4, 5, as depicted in Figure 1. We select the uniform time step
size τ = 5 · 10−4. A sequence T0, . . . , T10 of grids is obtained by uniform refinement
of T0 consisting of a partition of Ω into two triangles.

Figure 2 shows the approximate discretization error in the first time step plotted
over the mesh size hj , j = 2, . . . , 9. The exact error is approximated by eφ = φT −φ∗
and eθ = θT − θ∗, with approximations φ∗ and θ∗ obtained from T10. Our results
suggest optimal order O(h) of the discretization error ‖e‖ = ‖eφ‖φ + ‖eθ‖θ.

We next investigate the convergence properties of the non-smooth Schur–Newton
method as applied to the discrete saddle point problem in the first time step. Figure 3
depicts the number νmax of iteration steps needed until the stopping criterion (48)
is satisfied plotted over N = dimSj , where Sj is the finite element space associated
with Tj . The results indicate mesh independence of the Schur–Newton iteration.
While up to νmax = 17 iteration steps are required on coarser levels, only νmax ≤ 7
steps are needed once the diffuse interface is properly resolved by sufficiently fine
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Figure 1. Initial phase field: A circular solid phase (orange) in a
liquid environment (teal).

2−9 21mesh size h10−7

10−1
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‖eφ‖φ
‖eθ‖θ
‖e‖

Figure 2. Discretization error ‖e‖ = ‖eφ‖φ + ‖eθ‖θ and its com-
ponents ‖eφ‖φ and ‖eθ‖θ over mesh size.

grids. This is in accordance with previous computations with multi-component
Cahn–Hilliard systems [24].

We also computed the approximate solution for the first 500 time steps utilizing
the grid T7 obtained by seven uniform refinements to illustrate the evolution of the
approximate entropy as depicted in Figure 4.

5.2. Evolution of energy and entropy. In order to illustrate the equilibration
of energy in terms of latent heat and temperature and the evolution of entropy, we
consider the multi-phase Penrose–Fife Problem 2.1 on the unit square Ω = (0, 1)2 ⊂
R2 with M = 5 phases of which only the liquid and one solid phase are present, and
the parameters

ε = 8 · 10−2, cv = 1, q = 0, hc = 0,
κ = 1, β = 1, L1 = 0, Lα = 2, α = 2, . . . , 5.
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Figure 3. Number of Schur–Newton iterations νmax needed to
solve Problem 3.2 over N .
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Figure 4. Approximate entropy over time steps.

We choose an initial configuration with two phases (liquid and solid) and a planar
interface according to

φ0
2(x1, x2) =





1 if x1 > x? + 0.1,
10(x1 − x?) if x? + 0.1 ≥ x1 > x?

0 if x? ≥ x1,

,

φ0
1 = 1 − φ0

2, and φ0
α = 0, α = 3, 4, 5. The parameter x? and constant initial

temperature θ0 = θ? will be fixed later.
We select the time step size τ = 5 ·10−3. The grid T is obtained by eight uniform

refinements of an initial partition of Ω into two triangles.
The evolution of temperature is illustrated in terms of its maximal variation

θnd = max
x∈Ω

θn(x)−min
x∈Ω

θn(x), n = 1, . . . , 500,

and the average
θnm = 1

2 (max
x∈Ω

θn(x) + min
x∈Ω

θn(x)), n = 1, . . . , 500,

of its extremal values. The parameter x? and constant initial temperature θ0 = θ?

are set to x? = 0.8 and θ? = 0.2−1 in our first experiment and to x? = 0.2
and θ? = 1.5−1 in our second experiment. The corresponding two evolutions are
illustrated in Figure 5 and Figure 6, respectively. Both figures show several time
steps of the phase field in the left picture. As the solution is constant in vertical
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Figure 5. Solidification induced by latent heat. Left: Evolution
of phases by means of approximations at the time steps 0, 40,
80, 120, 160, 500. Right: Evolution of inverse temperature θ and
approximate entropy S.
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Figure 6. Melting induced by latent heat. Left: Evolution of
phases by means of approximations at the time steps 0, 40, 80,
120, 160, 500. Right: Evolution of inverse temperature θ and
approximate entropy S.

direction only a cut-out is shown. The picture on the right shows the evolution
of temperature in terms of θnm and θnd and of the entropy S = Ŝ(θn, φn) (cf. (25))
approximated by numerical quadrature.

In the first experiment we observe a growth of the initial solid grain that slows
down continuously due to intrinsic specimen heating by solidification. Conversely,
the shrinking of the initial grain observed in the second experiment slows down due
to intrinsic cooling by melting. In both experiments, absorption or release of latent
heat is driving the approximate temperature 1

θn towards the melting temperature
T = 1 at equilibrium. Both cases exhibit a monotonically increasing entropy.

6. A liquid phase crystallization process

Liquid phase crystallization (LPC) is an emerging technology to produce silicon
thin film solar cells with advanced photoelectronic properties that enable high
efficiency devices. In an LPC process, silicon is deposited on a substrate and then is
swept over with a heat source for local melting and subsequent recrystallization to
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Figure 7. Adaptively refined grid for time step 5 (left) and 100 (right).

coarser, photoelectronically beneficial structures. Optimization of parameters like
speed, shape or intensity of the heat source for various semi-conducting materials is
in the subject of current experimental research, cf., e.g., [2, 19, 36].

Mathematical modelling of LPC processes can be performed in the framework
of multi-phase field models presented in Section 2. To this end, we consider the
thin-film approximation Problem 2.2 on Ω = (0, 2)2 with M = 5 phases with φα,
α = 2, . . .M , representing different crystal structures and the parameters

ε = 5 · 10−2, cv = 1, TΓ = 0.1, Tα = 1, α = 2, . . . ,M,

h′c = 5 · 102, κ = 1, L1 = 0, Lα = 1, α = 2, . . . ,M.

In order to prescribe a slower solid–solid interface evolution in comparison
to solid–liquid interfaces, we now choose a solution-dependent kinetic coefficient
β = (βα(φ,∇φ))Nα=1 according to

βα(φ1, . . . , φM ,∇φ1, . . . ,∇φM ) =
{

100 |φ1∇φα − φα∇φ1| < 10−5,

1 else.

As a consequence the consistency result of Proposition 2.1 can no longer be
applied here. The heat source is represented by

q(θ, x, t) = qmax(θ) · exp
(
− |x1−qp(t)|

2q2
w

)
,

qmax(θ) = 1
θhq(1−

θq
θ ) + h′c( 1

θ − TΓ)

and we select the parameters

qp(t) = 0.9 + 1.5t, qw = 0.2, θq = 1
8 hq = 5 · 102.

Observe that the heat source peaks at x1 = qp(t) and is moving across the device
from left to right with constant speed. The initial temperature is given by θ0 =
10 = 1

T 0 = 1
0.1 and the initial phase configuration φ0 is depicted in the upper left

picture of Figure 8 with teal color representing the liquid phase. Note that we start
with a liquid phase here, in contrast to physical reality.

We select the time step size τ = 2 · 10−3. In each time step, we construct a
sequence of locally refined meshes T0, . . . , TJ using the adaptive refinement algorithm
described in Subsection 3.2.3. The derefinement and refinement parameters are
selected as follows

jmin = 2, Tolderefine = 10−6, ρ = 0.9, Toladapt = 8 · 10−3.
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Figure 8. Initial distribution of phases and temperature (top left)
and approximate distribution of phases and temperature for the
time steps 5, 10, 20, 100, 250.
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Figure 9. Robustness of Schur–Newton convergence. Left: νmax
corresponding to the final mesh over time steps. Right: νmax
corresponding to different adaptively refined meshes over degrees
of freedom N for the fixed time step 5.

In the first time step, we start with an initial grid T old obtained by eight uniform
refinements of an initial partition of Ω into two triangles. The final mesh T for time
steps 5 and 100 is depicted in Figure 7. In both cases, the mesh is obtained by 6
adaptive refinement steps after coarsening.

Figure 8 shows the (approximate) evolution of phases and temperature. For
each of the time steps 0, 5, 10, 20, 100, 250 the left picture depicts the liquid
and the different crystalline phases while the right picture shows the temperature
distribution. The liquid phase adapts to the shape of the heat source in course of
the evolution. As the heat source travels on, the right hand crystalline phases start
melting, while recrystallization occurs on the left solid–liquid interfaces, because
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the local temperature drops below melting temperature. Note that recrystallization
leads to coarser grain structures which is a characteristic feature of LPC.

To briefly highlight the efficiency of the Schur–Newton method with nested
iteration, the number of Schur–Newton steps νmax required on the finest mesh is
plotted over the time step in the left of Figure 9. We observe that this number does
not exceed 3 in any time step. Mesh independence is illustrated by the number of
Schur–Newton steps over N = dimSj in time step 5.
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and M. Neytcheva, editors, Numerical Mathematics and Advanced Applications
2009, pages 397–405. Springer, 2010.
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