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Abstract

We present an extension module for the Dune system. This module,
called dune-subgrid, allows to mark elements of another Dune hierar-
chical grid. The set of marked elements can then be accessed as a Dune

grid in its own right. dune-subgrid is free software and is available for
download [15]. We describe the functionality and use of dune-subgrid,
comment on its implementation, and give two example applications. First,
we show how dune-subgrid can be used for micro-FE simulations of tra-
becular bone. Then we present an algorithm that allows to use exact resid-
uals for the adaptive solution of the spatial problems of time-discretized
evolution equations.

1 Introduction

The Dune system is a set of C++ libraries for solving partial differential equa-
tions using grid-based numerical methods [12]. It is split up in several modules,
with different modules containing different aspects, such as grids, linear algebra,
or finite element discretizations. The modules are tied together by a powerful
build system, which tracks and resolves inter-module dependencies.

The set of modules is not fixed. A main rationale for the modular design
was to allow third-party users to extend Dune by implementing and providing
further modules. These can either provide additional functionality or alternative
implementations of existing one. One example is the dune-fem module, which
is maintained separately from the core Dune system, and which provides finite
element discretizations [13].

The central feature of Dune is a set of abstract interfaces to its compo-
nents. This is best exemplified by the dune-grid module. Based on a precise
mathematical definition of a grid [5], this module contains a set of C++ classes
which form a well-defined gateway to grid functionality. Using grids by means
of this interface gives the application writer an unseen amount of flexibility, as
the grid implementation can be changed with no effort at any point in the devel-
opment process. While dune-grid provides several implementations of the grid
interface itself, several legacy grid managers such as UG [3] and Alberta [20]
have also been adapted to be usable through the interface. The use of generic
programming techniques ensures a low run-time overhead of the interface.
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Figure 1: Functionality of SubGrid. Left: Host grid; center: host grid with
some elements marked. Right: marked elements as a separate grid.

The Dune grid interface was designed to support geometric multigrid and
locally adaptive algorithms, and hence its notion of a ‘grid’ directly contains a
hierarchical structure. A Dune grid consists of a finite set of level grids, which
are connected by a father relation. Each level grid in turn consists of an entity

complex together with a geometric realization. While the former represents the
combinatorial aspects of a grid, the latter specifies its shape by describing an
embedding into a Euclidean space.

Together with the father relation, the grid entities form a forest structure.
Under certain conditions on the geometric realizations, the leafs of this forest
form the leaf grid. This is the natural grid for nonhierarchical methods on a
locally adaptive grid. We refer the reader to [5] for a precise definition.

The abstract definition carries over directly into C++ classes [4]. The im-
plementation uses wrapper classes which delegate method calls to engine classes
provided as template parameters which do the actual work [22]. Access to the
entities is provided by STL-style iterators.

Actual grids that implement this interface can be provided in several ways.
The simplest way is to write a grid manager from scratch and make sure that
it is accessible via the grid interface methods. Such implementations are, e.g.,
the structured grid YaspGrid and the one-dimensional adaptive grid OneDGrid

provided in dune-grid. A second possibility is to write adapter code which
wraps existing legacy grid managers behind the interface. The well-known FE
codes UG [3] and Alberta [20] are made available this way [4]. A third way are
meta grids. These are implementations of the grid interface that are statically
parametrized with another Dune grid. They provide extensions and modifica-
tions of their parameter grid, or host grid. Meta grids are an extremely powerful
concept, and several such grids are already available [15].

The dune-subgrid module provides the meta grid SubGrid. Given a Dune

grid object, SubGrid allows to mark a subset of elements of this host grid and
treat the subset as a Dune grid in its own right (Fig. 1). Consequently, existing
algorithms can be made to run on subsets of grids with minimal effort. If the host
grid is hierarchical, so is the subgrid, and ancestor elements are set automatically
to ensure a consistent hierarchical grid. The subgrid can be adaptively refined
and then takes up more elements of the host grid. If the host grid does not
contain the necessary elements for this it is refined in turn. Hence the subgrid

2



can be used completely transparently.
Depending on the application several ways to implement such functionality

are conceivable. Therefore, SubGrid allows to exchange part of the internal
memory management using policy classes.

Computing on a subset of grid elements is not a new concept. We mention
the existing work on µFE simulations [21] and narrow band methods [11]. To
our knowledge, however, special purpose implementations were used there which
closely tied the host grid and subgrid implementations together. This is in
contrast to our approach, which allows to change the host grid implementation
at any time during development. The added flexibility opens the way to new
applications.

This paper is organized in four main chapters. Chapter 2 explains the use
and functionality of SubGrid, whereas Chapter 3 describes its implementation.
The last two chapters give two example applications. Chapter 4 shows how
SubGrid can be used to solve a large scale linear elasticity problem on segmented
image data of human trabecular bone. Finally, in Chapter 5, SubGrid is used to
keep an exact previous time step on an evolution problem on grids that change
with time.

2 Using the dune-subgrid Module

We begin by describing the use of SubGrid. Since descriptions of the Dune grid
interface are available elsewhere [4, 5, 12], we concentrate on the aspects that
are specific to SubGrid.

2.1 Subgrid Construction

Let HostGridType be a C++ type that implements the Dune grid interface
and hostgrid an object of type HostGridType. A subgrid object is created by
calling the constructor

SubGrid<dim,HostGridType,MapIndexStorage> subgrid(hostgrid);

The first template parameter specifies the dimension of the subgrid. Currently,
only subgrids with the same dimension as the host grid are supported. The third
template parameter selects one of two possible implementations of the subgrid
index sets (see Sec. 3.2).

The new subgrid object does not contain any elements of the host grid. To
start adding elements first call

subgrid.createBegin();

This initializes the internal data structures. Previous element marks are deleted.
To actually add elements there are the following methods:1

1We abbreviate the method signatures for increased legibility. The precise definitions can
be found in the html class documentation provided with the module.
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void insert (const HostGrid::Codim<0>::Entity &e)

Adds the host grid element e to the subgrid. If the element is not on the
coarsest grid level, all its ancestor elements and their direct sons are added
as well. That way, consistency of the grid data structure is ensured.

void insertPartial (const HostGrid::Codim<0>::Entity &e)

Adds the given element and all its ancestors to the subgrid. However,
unlike insert, it does not add the direct sons of the ancestors. While this
violates the Dune grid specification (element children have to form a logical
partition of their father [5, Def. 11.1]), it leads to consistent subgrid level
grids and can be useful in certain applications (see Sec. 4).

void insertRaw (const HostGrid::Codim<0>::Entity &e)

This method adds only the given element to the subgrid. Ancestors are
not inserted automatically. This allows to speed up the construction by
inserting ancestors once by hand instead of multiple times automatically
if they are known in advance. Omitting ancestors leads to an inconsistent
subgrid state and undefined behavior.

template<class Container>

void insertSet (const Container &idContainer)

This adds all host grid elements to the subgrid whose ids [4, Sec. 3.2] are
contained in idContainer. This is a lot faster than entering them one by
one. For each element, all ancestors and their direct children are entered
as well.

void insertLevel(int level)

Inserts all level grids whose levels are less than or equal to the given level.

void insertLeaf()

Inserts the entire host grid hierarchy into the subgrid.

After you have inserted the elements you call

subgrid.createEnd();

This finishes off the subgrid creation. You are now ready to use SubGrid as you
would any other Dune grid.

2.2 Grid Adaptation

SubGrid provides the same interface for adaptation as other Dune grids. A
SubGrid is refined by adding more elements from the host grid. If necessary,
the host grid is refined as well to make this possible. Three things happen when
the method adapt() is called for a subgrid:

1. If a subgrid element is marked for refinement and the corresponding host
grid element is not a leaf element, then the host grid children are added
to the subgrid.
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2. If a subgrid element is marked for refinement and the corresponding host
grid element is a leaf element, then this host grid element is refined and
its newly created children are added to the subgrid.

3. If a subgrid element is marked for coarsening it is simply marked as not
part of the subgrid. The corresponding host grid element is not touched.

In order to allow preserving grid functions while adapting grids the Dune

grid interface has the methods preAdapt() and postAdapt(). These set cer-
tain element marks that signal where data needs to be projected to coarser or
finer levels when the grid changes. The two methods on the subgrid call the
corresponding methods of the host grid if the latter is refined as a consequence
of subgrid refinement. This case can be detected using the method

bool hostGridAdapted()

Returns true if preAdapt()/adapt()/postAdapt()was called for the host
grid during the last call to the corresponding subgrid method.

A subgrid’s leaf grid will in general be nonconforming and contain hanging
nodes even if the host grid itself is conforming. Control over the nonconformity
is possible by

void setMaxLevelDifference(int maxLevelDifference)

Sets the maximal level difference of leaf elements sharing a node. The
default value is 1 ensuring that only first-order hanging nodes appear. This
is implemented by refining additional elements if necessary.

No coarsening is applied to the host grid automatically to prevent loss of
data for functions attached to it. However, if there are no functions attached to
the host grid it can be useful to have a minimal host grid for the given subgrid.
This is achieved by a call to

void shrinkHostGrid(int maxAdaptations, bool recreateSubgrid)

Coarsens the host grid as much as possible without influencing the subgrid,
and without removing more than maxAdaptations levels. This change
corrupts the subgrid data structure, which the method has to recreate from
scratch after having modified the host grid. If the subgrid is to be discarded
anyways this behavior can be switched off by setting recreateSubgrid to
false. Note that subgrid indices may have changed after a call to this
method.

2.3 Data Transfer Between Subgrid and Host Grid

Applications that only involve computations on the SubGrid can be imple-
mented using the Dune interface and the methods described above. However,
sometimes you may also want to do computations both on the subgrid and on
the host grid (see Sec. 5). Then you need to be able to transfer data from the
host grid to the subgrid and back. SubGrid provides several methods for this:
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template <int codim>

HostGrid::Codim<codim>::Entity&

getHostEntity (const SubGrid::Codim<codim>::Entity &e)

Given a SubGrid entity this method provides you with the corresponding
host grid entity. You can then use this entity, e.g., to access host grid index
sets.

template <int codim>

SubGrid::Codim<codim>::Entity&

getSubGridEntity(const HostGrid::Codim<codim>::Entity &e)

This is the other way around. For a given host grid entity you get the
corresponding subgrid entity. If the entity is not present in the subgrid a
Dune::GridError exception is thrown.

To check beforehand whether a given host grid entity exists in the subgrid there
is the following method:

bool contains(const HostGrid::Codim<codim>::Entity &e)

Returns true if the given host grid entity exists in the subgrid.

The transfer of entire grid functions is facilitated by the method

template<class ElementTransfer>

void transfer(ElementTransfer &elementTransfer)

Provides the possibility to transfer data between the subgrid leaf view and
the host grid leaf view. The class ElementTransfer has to be written by
the user and is expected to provide the actual transfer functionality for
pairs of elements. When transfer is called, the following three things
happen:

1. First elementTransfer.pre() is called.

2. Then elementTransfer.transfer(se,he) is called for each subgrid
leaf element se and host grid leaf element he such that he is a de-
scendant of the host grid element corresponding to se or the host grid
element corresponding to se itself.

3. Finally elementTransfer.post() is called.

This mechanism allows, e.g., to interpolate discrete functions on the subgrid
onto the host grid or to restrict functionals on host grid function spaces to
subgrid function spaces. The helper classes SubGridP1Interpolator and
SubGridP1Restrictor provide this functionality for vectors representing
piecewise linear finite element functions and functionals on the space of
these functions.

3 Implementation

The implementation of the SubGrid class is based on a set of std::vector<bool>
containers. There is a container for each codimension and grid level. An in-
dex created from the geometry type and level index of each host grid entity is
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used to index these containers. The i-th entry of such a vector is true if the
corresponding host grid entity is contained in the subgrid. Only elements, i.e.,
entities of codimension 0 are explicitly marked during subgrid creation. The
subentities of the marked elements are added automatically by the createEnd

method.

3.1 Iterators

Many calls to subgrid methods can simply be forwarded to the host grid.
The SubGridLevelIterator traversing the entities of a fixed codimension in
a subgrid level uses a host grid level iterator to iterate over the entire host
grid level, stopping only at those entities contained in the subgrid. Similarly
the SubGridHierarchicIterator uses a HierarchicIterator of the host grid
stopping only at the descendant elements contained in the subgrid.

The SubGridLeafIterator traversing the entities of a fixed codimension on
the subgrid leaf also uses the LevelIterator of the host grid. It loops over all
host grid levels from 0 to the maximal level number of the subgrid and stops at
the entities that are leafs in the subgrid. Information whether a given subgrid
entity is a leaf of the subgrid and whether the SubGridLeafIterator should
stop there is provided by the SubGridIndexStorage class described in the next
section.

3.2 Index Sets

Implementing Leaf- and LevelIndexSets is nontrivial for SubGrid. Remember
that sequences of indices have to be consecutive and start at 0 [4, Sec. 3.2].
The subgrid entities do not form any simple pattern within the host grid, and
hence the subgrid indices cannot be computed from the host grid index and
local information alone. Subgrid indices are therefore computed all at once by
the createEnd method and stored in a dedicated data structure. There are two
different implementations for this structure, which can be selected by a template
parameter.

The SubGridMapIndexStorage stores a std::map for each codimension map-
ping global ids of entities in the subgrid to objects of type SubGridMultilevel-
Index. Since copies of entities on different levels have the same global id these
objects store the minimal and maximal level an entity appears on. Furthermore
they store the leaf index if an entity with the respective global id is contained
in the leaf grid. If this is not the case the leaf index is set to −1. Depending
on whether minimal and maximal level coincide either the index for a single
level or a pointer to a list of indices for a range of levels is stored. The method
isLeaf returns true if a leaf index is stored in the SubGridMapIndexStorage

object. A leaf iterator stops at an entity if it has a leaf index and if its level
is the maximal level it appears on. This is because copies of an entity with
positive codimension may all be leaf, but the iterator should stop only at the
one with the highest level.
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The SubGridVectorIndexStorage stores a vector of level indices for each
host grid level and geometry type. These indices are not used if the correspond-
ing entity is not contained in the subgrid. To store leaf indices in a memory
efficient way the subgrid leaf entities are divided in two categories:

1. Leaf entities that are copies of subgrid leaf entities on lower grid levels,

2. Leaf entities that do not have copies on lower grid levels.

The level indices are distributed such that first the leaf entities of Category 1 are
counted, then the leaf entities of Category 2, and finally the non-leaf entities.
In order to determine the leaf index of a given subgrid entity it is first decided
whether the entity belongs to Category 1 by checking if its level index is smaller
than the number of Category 1 leaf entities. If this is the case the leaf index
is looked up in a vector storing the leaf indices indexed with the subgrid level
index explicitly for each level and geometry type. Otherwise, the leaf index is
just the level index plus a fixed offset which is the difference of the number of
leaf entities on lower levels and the number of Category 1 leaf entities on the
entity’s level. While leaf indices are needed for all copies of leaf entities the leaf
iterator should only traverse the copies of leaf entities with the highest level. To
store this information an additional std::vector<bool> for each subgrid level
and geometry type indexed with the subgrid level index is used.

3.3 Leaf Intersection Iterators

A correct implementation of leaf intersection iterators is another challenge in
SubGrid. Remember that a subgrid leaf grid may be nonconforming even though
the underlying host grid is not. Therefore, while each subgrid level intersection
is also an intersection within the host grid, a subgrid leaf intersection may not
be, and SubGrid cannot simply forward calls to host grid intersections but has
to compute and maintain data structures for subgrid leaf intersections including
all information on geometry.

For efficiency reasons leaf intersections are not computed one-by-one as the
iterator advances. Instead, each time the iterator reaches a new element face,
all intersections of this face are precomputed and stored in a list. The iterator
then traverses this list before moving to the next element face. Intersections of
a given face are precomputed by traversing the refinement hierarchy to find the
second elements of the intersections.

We explain this in some more detail. Internally, the SubGridLeafInter-

sectionIterator keeps a HostGridLevelIntersectionIterator and iterates
over all host grid level intersections of an element. Let is be the current
host grid level intersection, inside the element we constructed the HostGrid-

LevelIntersectionIterator from, and outside the second element of the
HostGridLevelIntersectionIterator. At each such intersection is one of
the following cases happens:

• If is is a level boundary intersection of the host grid, then is is a leaf
boundary intersection of the subgrid.
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• If outside is contained in the subgrid and is leaf there, then is is a subgrid
leaf intersection.

• If outside is contained in the subgrid but is not leaf there, then inside

has one or more subgrid leaf intersections with descendants of outside.
Hence we traverse these leaf descendants and collect all intersections with
inside in a list.

• If outside exists but is not contained in the subgrid, then either is is a
boundary intersection or there is a single intersection of inside with the
first ancestor anc of outside that is contained in the subgrid. We find it
by following ancestor faces of the face of is until we arrive at the level of
anc.

Each step produces a list of intersections, possibly containing only one or
zero elements. The SubGridLeafIntersectionIterator then steps through
this list. Once the list is exhausted the HostGridLevelIterator is incremented
and the process is repeated.

This algorithm for the construction of subgrid leaf intersections is prob-
lematic because the Dune grid interface does not directly support hierarchical
iteration over faces. We simulate a hierarchical face iterator using a combination
of a hierarchical element iterator, a level intersection iterator, and a primitive
that checks whether a given face is father of a given other face. However, such
a simulation is slow. Also, with only the Dune grid interface methods avail-
able, the is-father primitive has, to a certain extent, to depend on geometrical
information, and may in theory fail for host grids with certain exotic refinement
rules.

3.4 Grid Adaptation

The concept of adaptive refinement for SubGrid is simple. If a subgrid leaf
element is not leaf within the host grid, then refinement means adding the host
grid children to the subgrid. If, on the other hand, it is leaf, the host grid has
to be refined appropriately to allow subgrid refinement.

The main difficulty of the SubGrid adaptivity mechanism is to comply with
an additional restriction. It has been pointed out that an adaptively refined
subgrid may be nonconforming even though the host grid is not. Since some
finite element codes can only handle simple cases of grid nonconformity, the
SubGrid implementation allows the user to limit the degree of nonconformity
with the setMaxLevelDifference method (see Sec. 2.2).

If subgrid leaf elements are marked for refinement or coarsening this infor-
mation is stored in std::vector<bool> containers for each subgrid level. This
raw information is used by the preAdapt method to determine which host grid
elements need to be refined to allow the requested subgrid refinement. Let
Lmax

∆ be the parameter set by the setMaxLevelDifference method. Calling
preAdapt on SubGrid performs the following steps:
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1. For each subgrid node p the maximal level lrawp of the adjacent elements
after the (hypothetic) requested refinement and coarsening is determined.

2. For each subgrid leaf element e the maximal level

lrawe = max{lrawp : p is adjacent to e}

of adjacent nodes after the (hypothetic) requested adaptation is deter-
mined. If lrawe − le ≥ Lmax

∆ where le is the level of e and e is marked for
coarsening, the coarsening mark for e is unset. If even lrawe − le > Lmax

∆

the refinement mark for e is set. This loop is organized such that elements
with higher levels are processed first. If refinement marks have been set
automatically, then adjacent coarsening marks are reevaluated to see if
lrawe − le ≥ Lmax

∆ still holds.

3. Remove coarsening marks for all subgrid elements e having siblings that
are not marked for coarsening. If subgrid elements are marked for refine-
ment and the corresponding host grid elements are leaf elements mark
these host grid elements for refinement.

4. Call preAdapt for the host grid if necessary.

Step 2 ensures that the levels of leaf elements sharing a node will at most differ
by Lmax

∆ . For the default value Lmax
∆ = 1 this guarantees that only first order

hanging nodes appear.
The adapt method refines the subgrid, and also the host grid if necessary.

This refinement of the host grid changes the host grid’s level indices, which
in turn invalidates the subgrid data structures. Hence before calling adapt on
the host grid all subgrid elements not scheduled for coarsening are stored in
a std::map together with their refinement marks. Then the adapt method
of the host grid is called. Finally the subgrid is recreated containing all host
grid elements whose ids were stored in the std::map and the children of those
marked for refinement. The vector for refinement marks is then used to store
the information if an element was refined.

The postAdapt method resets the refinement marks and calls the postAdapt
method of the host grid if necessary.

3.5 Implementation Efficiency

Implementing a subgrid using arrays of boolean values needs an amount of
storage that is linear in the number of host grid elements. This is not optimal if
only a small fraction of the host grid elements is included in the subgrid. Also,
iteration over all subgrid elements is linear in the number of host grid elements.
On the other hand, the constant is very low. An alternative implementation
would use arrays of EntityPointers to the host grid entities in the subgrid.
Here, both space and iteration complexity would be linear in only the number
of subgrid elements. However, this way the number of bits used per subgrid
entity is much higher. Both implementations are reasonable and the best choice
depends on the application.
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Figure 2: The domain Ω and its discretization Ωh.

4 Micro-FE Models of Trabecular Bone

It is an important problem in biomechanics to determine macroscopical ma-
terial properties of bone from its microscopical properties and structure. In
the interior of long bones there is a sponge-like structure of trabeculae on a
scale of about 0.1mm. While numerous averaged macroscopical material laws
exist for trabecular bone tissue, the availability of large computer power and
of micro-computer-tomograph (µCT) scanners has made it possible to perform
finite element computations directly on the trabecular structure. Due to the
enormous geometrical complexity, this is a very memory-intensive problem. In
particular, it has proven infeasible to approximate larger specimen of trabecu-
lar bone by unstructured tetrahedral grids. Instead, µFE models use the voxel
structure of the segmented image CT data as the grid [21]. The uniform struc-
ture of these grids can be captured by a memory-efficient special-purpose grid
implementation. Still, at the time of writing larger problems of this type fill
supercomputers [6].

The dune-subgrid module provides a way to implement µFE computations
memory-efficiently without having to implement a special purpose grid manager.
Indeed, the voxel structure used for these computations is a subset of elements
of a uniform grid. As such, it can be implemented using a SubGrid parametrized
with a Dune implementation of a uniform grid. Then, since SubGrid imple-
ments the Dune grid interface, existing code for the assembly and solution of
mechanics problems can be applied.

Let Ω be a domain in R
d. The boundary ∂Ω is supposed to consist of two

disjoint subsets ΓD and ΓN such that ΓD ∪ ΓN = ∂Ω. We do not assume that
Ω is connected but that the intersections of ΓD with each connected component
of Ω have positive (d − 1)-dimensional measure. Let H

1
D(Ω) be the set of all

d-valued L2-functions with weak first derivatives in L2 and that are zero in the
sense of traces on ΓD. We consider the weak boundary value problem of linear
elasticity

u ∈ H
1
D(Ω) : a(u,v) = l(v), for all v ∈ H

1
D(Ω), (1)

with

a(v,w) =

∫

Ω

ε(v) : C : ε(w) dx and l(v) =

∫

Ω

fv dx,
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where ε is the linearized strain tensor, C the forth-order Hooke tensor, and
f : Ω → R

d a prescribed volume force.
Let

B =

d∏

i=1

[ai, bi]

be a bounded rectangular domain such that Ω ⊂ B. Pick n = (n1, . . . , nd) ∈ N
d

and let α be a d-dimensional multiindex. We introduce a uniform grid on B
consisting of

∏
i ni elements Bh

α of equal size. The domain Ω will be discretized
by the subset of all elements Bh

α that intersect Ω (Fig. 2). This defines our
discrete domain

Ωh =
⋃

Bh
α∩Ω6=∅

Bh
α,

and a corresponding grid G. Assuming for simplicity that ΓD is resolved by
∂Ωh, we introduce a discretization of Problem (1). Let Vh,D(Ωh) be the space
of d-valued first-order Lagrangian finite elements on G that are zero on ΓD. The
weak formulation of the discrete problem is

uh ∈ Vh,D(Ωh) : a(uh,vh) = l(vh), for all v ∈ Vh,D(Ωh), (2)

where, in an abuse of notation, we have used a(·, ·), l(·) to denote the natural
extensions of the forms a(·, ·) and l(·) to H

1
D(Ωh). It is well known that Prob-

lem (2) has a unique solution [10]. The effect of the approximation of domains
by sets of voxels has been studied by Babuška and Chleboun [1].

4.1 Implementation using dune-subgrid

Implementing Problem (2) is easy using the dune-subgrid module. Given the
numbers (n1, . . . , nd) in an array n and the bounding box bounds ai, bi, 1 ≤ i ≤
d, in an array bbox, the C++ line

YaspGrid<d> hostgrid(bbox, n, [...]);

constructs a uniform grid on B with a single grid level. Note that this is a
dedicated implementation of a structured grid and hence it is space-optimal.
The subgrid Ωh is implemented by constructing

SubGrid<d, YaspGrid<d> > subgrid(hostgrid);

and marking the elements Bh
α using the insert()-method described in Sec. 2.1.

With the bone geometry available as a segmented image data field this amounts
to a simple loop over all host grid elements. Then, stiffness matrix and right
hand side vector for the discrete problem (2) can be assembled using any linear
elasticity assembler for Dune, as for example the one in the dune-disc module.
The resulting system can be solved, e.g., with an algebraic multigrid solver.

We demonstrate this with a numerical example. Our data set is a section of
the left human tibia obtained by a micro-CT scan with a voxel size of 82µm in
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Figure 3: Horizontal cut through the radius data set, and a vertical cut with an
illustration of the boundary conditions.
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Figure 4: Algebraic multigrid: Relative correction as an estimate for the error.

each direction and a resolution of 449×422×110 voxels. In this image, 4 563 234
voxels are marked as ‘bone’ (22 %) (Fig. 3).

We model the bone as a linear elastic material of St. Venant–Kirchhoff type
with E = 17GPa and ν = 0.3. The specimen is clamped at the lower cut
and subjected to a uniform displacement in the negative z-direction of 0.27mm
on the upper cut. This corresponds to a compression of 3% (Fig. 3, right).
Starting from zero, we solve the problem using a conjugate-gradient algorithm
preconditioned by a V (4, 4)-cycle of the algebraic multigrid algorithm supplied
with the dune-istl module [7]. This AMG is of agglomeration type and we
have set the average size of the aggregates to 10 and the target coarse problem
size to 100.

Fig. 4 shows the energy norm of the relative correction for each iteration.
Note that the relative correction is an estimate of the error. The convergence
rate is approximately 0.94, which makes the algorithm usable in practice. The
implementation consumed about 14.5GB of memory and about 100 seconds per
iteration on an Intel Xeon processor with 2.33GHz clock speed. Much time is
saved in the setup phase by modifying the linear elasticity assembler to compute
the element stiffness matrix only once, as it is identical for all elements.
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Note that our goal was not to obtain the best convergence rates but to have
a solver that is simple to implement and memory-efficient. Even more memory
could be saved by providing a special purpose implementation for the fine-grid
stiffness matrix that would make use of the voxel structure of the problem.
Provided this special matrix implemented the dune-istl matrix interface it
could be used as a direct replacement for the block compressed-row-storage
implementation used here.

4.2 Geometric Multigrid

We have seen in the previous section how the discrete problem (2) can be solved
with an out-of-the-box AMG solver. However, it is also possible to solve the
problem using a geometric multigrid method. While this may not be quite as
evident, the implementation is nevertheless very simple. In fact, it appears natu-
rally when a standard geometric multigrid implementation is used together with
a hierarchical subgrid. We will see that for our example, the geometric multigrid
does not converge faster than the algebraic one. However, grid-independent con-
vergence rates can actually be proven for geometric multigrid [19]. Also, there
are less parameters that need tuning.

To obtain suitable coarse grid spaces for a geometric multigrid method we
first construct a sequence of coarser grids. Assume that n1 = . . . = nd = 2J for
some J ∈ N, let hj = 2J−jh for j ∈ {0, . . . , J} and set

Bhj

α =

d∏

i=1

[ai + αih
j
i , ai + (αi + 1)hj

i ].

We define the coarse grid domains by setting

Ωhj =
⋃

Bhj
α ∩Ω6=∅

Bhj

α .

The individual Bhj

α induce a natural grid on Ωhj . Note that Ωhj ⊂ Ωhk if j > k,
but Ωhj 6= Ωhk in general. Due to this fact the canonical finite element spaces
Vhj = Vhj ,D(Ωhj ) are not nested.

To define a nested hierarchy of spaces let {λj} be the nodal basis of Vhj
. It

consists of all functions λp,i = λpei, with λp the scalar hat function of vertex p

and ei the i-th canonical basis vector of R
d. We now introduce the truncated

nodal basis {λ̃j} by setting

λ̃
j
p,i = λ

j
p,i|ΩhJ

∈ VhJ ,

for all 0 ≤ j ≤ J , and the truncated coarse grid spaces Ṽhj = span{λ̃j}. Note

that ṼhJ = VhJ and Ṽhj = Vhj |ΩJ
h
. Hence these spaces form a conforming

hierarchy in the sense that

Ṽhj ⊂ Ṽhk , ∀j < k.
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Figure 5: Relative corrections per iteration for the geometric multigrid. The
red line gives the relative corrections of the AMG for comparison.

To obtain the algebraic formulation of the problem we introduce the fine
grid stiffness matrix

(
AJ

pq

)
ik

= a(λJ
p,i, λ

J
q,k) =

∫

Ω
hJ

ε(λJ
p,i) : C : ε(λJ

q,k) dx

and corresponding right hand side

(bp)i =

∫

Ω
hJ

fλ
J
p,i dx.

Let Nhj be the set of vertices of the grid covering Ωhj and mj = |Nhj |. Then
AJ is a dmJ × dmJ matrix. The algebraic coarse grid problems are constructed
by defining the prolongation operators P j→j+1 ∈ R

dmj+1×dmj

P j→j+1
pq = Idd λj

q(xp) ∀p ∈ Nhj+1 , q ∈ Nhj (3)

and setting
Aj = (P j→j+1)T Aj+1P j→j+1.

The reader may note the close relationship to truncated multigrid methods
[18]. Multigrid convergence can be established using the framework laid out in
[19].

To implement this algorithm using the dune-subgridmodule we note that a
standard geometric multigrid algorithm degenerates gracefully to the algorithm
described above provided the subgrid is setup correctly. Indeed, a standard
assembler for a prolongation operator may loop over the vertices of all children
of an element and collect the entries λj

q(xp) used in (3). If an element is not

entirely covered by its children, the truncated prolongation operator P j→j+1

appears naturally.
We demonstrate the applicability of the geometric multigrid method with

the same tibia data set used above. To enable the construction of a suitable grid
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hierarchy we enlarged the data set to 448 × 448 × 128 voxels by cropping and
padding with zeros. We construct a YaspGrid consisting of 7 × 7 × 2 elements
and refine it six times. This yields a grid hierarchy of seven levels and a fine grid
of 448 × 448 × 128 elements. We instantiate a SubGrid of this YaspGrid and
mark all elements which intersect Ω using the method insertPartial() (see
Sec. 2.1). This leads precisely to a hierarchy of grids and corresponding domains
Ωhj as described in the previous section. Note, however, that the resulting
hierarchical grid is strictly speaking not a grid in the Dune sense, because child
elements may not form logical partitions of their fathers. However, the multigrid
algorithm only uses the level grids, which are intact.

We solve the Problem (2) using a conjugate gradient algorithm precondi-
tioned by a V (4, 4) cycle of the geometric multigrid. A plot of the estimated
error history can be seen in Fig. 5. The convergence rate is slightly worse than
the rate of the algebraic multigrid, but we point out again that, unlike for the
AMG, for a geometric multigrid method grid independent convergence rates can
be established theoretically [19]. The computation consumed roughly 16GB of
memory and 105 seconds per iteration. The increase in memory requirements
is due to the coarse subgrid levels which are not needed by the AMG.

5 Implicit Time Integration with a Correct Resid-

ual

The numerical solution of evolution problems in function spaces is often tackled
by Rothe’s method: First discretize the continuous evolution problem in time,
then discretize each arising stationary problem in space. The advantage of this
is that the grid can be chosen adaptively at each time step [8].

We now consider a (possibly degenerate) parabolic or hyperbolic partial
differential equation on a domain Ω, which is discretized in time with an implicit
Euler method. At each time step k, a weak spatial problem

a(uk, v) = l(uk−1, v) ∀v ∈ H1(Ω) (4)

has to be solved for the new solution uk. In (4), the forms a(·, ·) and l(·, ·) depend
linearly on their second arguments, but possibly nonlinearly on their first ones.
Note in particular that l depends on the solution uk−1 at the previous time step.

The evaluation of l(·, ·) typically involves integrals over Ω of expressions
depending both on uk−1 and v. The function uk−1 is a finite element function
with respect to Gk−1, the grid at time step k− 1. The test function v, however,
is a finite element function with respect to the grid Gk at time step k. In an
adaptive method Gk 6= Gk−1, and hence, conceptually, we have to work with
two different grids at the same time.

There are several ways to deal with this problem in an implementation:

1. Use two separate grid objects. This appears straightforward, however, it
is actually quite difficult to relate functions on two unrelated grids of the
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Figure 6: The hierarchical host grid (solid lines) and the subgrid (dashed) during
one time step using Rothe’s method. Computation is done on the subgrid while
the host grid stays fine enough to include both the current grid and the grid of
the last time step. Left: the host grid is the grid Gk−1 of the last time step,
computation starts using a subgrid G0

k containing the coarsest level of Gk−1.

Center: the subgrid has been refined adaptively jk times to a G
jk

k , and the host
grid along with it where necessary. Right: after the time step is completed the
host grid is shrunk as to comprise only the new grid Gk = G

jk

k .

same domain Ω. Also, having two grid objects at the same time may use
a lot of memory.

2. Use a grid object only for Gk and store nodal function values and co-
ordinates of uk−1 only. This avoids the need for two full grid objects.
However, a certain amount of error is introduced because it is not possible
to reconstruct uk−1 from its nodal values alone.

3. Start the adaptivity loop for Gk from the old grid G0
k = Gk−1, instead

of from a very coarse grid. After the i-th cycle of the adaptivity loop
project uk−1 from Gi

k onto the new grid Gi+1

k . This approach is also
not satisfactory for the following reasons. First, the projections of uk−1

again introduce some error. Also, since we start the adaptive cycle at
a partially refined grid G0

k = Gk−1, we need a coarsening indicator in
addition to the refinement indicator. Finally, since we do not expect the
number of degrees of freedom to vary much from one time step to the
next, the adaptive loop will solve a sequence of large problems. This is
more expensive than starting the adaptive loop on a very coarse grid at
each new time step and refining successively.

This last approach appears to be the most frequently used in the literature.

5.1 Rothe’s Method using dune-subgrid

We now present a new algorithm that solves (4) on adaptively refined grids with
an exact l. The algorithm uses dune-subgrid and does not have the drawbacks
of the methods described above.

Suppose that uk−1 is a function represented on a grid Gk−1. Then the
solution uk of the next time step on the grid Gk 6= Gk−1 can be found in the
following way:

1. Start with a coarse subgrid G0
k contained in the host grid Gk−1 (Fig. 6,

left). Set i = 0.
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2. Solve (4) on the subgrid Gi
k. When uk−1 needs to be evaluated do this

on the host grid and transfer it to Gi
k. This is easy since data transfer

methods from the host grid to the subgrid are provided (Sec. 2.3).

3. Estimate the discretization error. If it is below the tolerance go to Step 5.

4. Adaptively refine the subgrid Gi
k to obtain Gi+1

k . Adapt uk−1 if the host
grid is refined during subgrid adaptation (Fig. 6, center). Since this is a
projection onto a finer grid no information is lost. Increment i and go
back to Step 2.

5. Shrink the host grid to the current subgrid and transfer the solution uk

to the host grid (Fig. 6, right).

Throughout the refinement loop, the host grid is fine enough to include the grids
from the last and the current time step. The shrinking of the host grid in Step 5
keeps the host grid from growing further and further during the evolution. Since
the host grid is alway finer than Gk−1 the exact representation of uk−1 on the
host grid is possible. The right hand side l(·, ·) of (4) can therefore be evaluated
exactly.

Since a SubGrid uses less memory than a comparable regular adaptive grid
implementation, our approach is less memory-intensive than using two grid ob-
jects together. Run-time overhead comes from having to iterate over a finer grid
than Gk to assemble l(·, ·) and from the SubGrid interface itself. Measurements
quantifying these effects are given at the end of this chapter.

5.2 Adaptive Solution of the Heat Equation

To demonstrate the advantages of the presented algorithm we now consider the
heat equation as the simplest parabolic equation.2 On the domain Ω = [−1, 1]2

consider

∂

∂t
u − ∆u = 0 in [0, T ]× Ω,

u(0, ·) = u0 in Ω, (5)

∂

∂ν
u = 0 in [0, T ]× ∂Ω,

with a piecewise constant initial value u0 as depicted in Fig. 7.
After deriving a weak formulation and discretizing in time with the implicit

Euler method we obtain a sequence of stationary problems

uk ∈ H1(Ω) : (uk, v) + τ(∇uk,∇v) = (uk−1, v) ∀v ∈ H1(Ω), (6)

with u0 = u0 and τ the time step size. We use (·, ·) to denote the L2 scalar
product. These problems are discretized with piecewise linear finite elements,

2The presented technique has also been successfully applied to degenerate nonsmooth non-
linear problems like the Allen–Cahn and the Cahn–Hilliard equations [16, 17].
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Figure 7: Initial value u0 for the test evolution (5).

and the first L2 scalar product is replaced by a lumped scalar product. We
use an ALUSimplexGrid [9] as the host grid. This grid manager implements
simplex grids with nonconforming red refinement. The coarse grid is a uniform
simplicial grid on 17 × 17 vertices. The algebraic problems on each grid are
solved using a multigrid algorithm with Gauß–Seidel smoothing.

Discretization errors are measured with a hierarchic error estimator [2]. For
the larger space we choose the space of first-order finite element functions on
a grid that has been refined once uniformly. The local contributions ηe of the
estimator are used as refinement indicators for a marking strategy selecting
all contributions larger than σ times the average of the ηe. For the presented
computations we set σ = 0.7.

By testing the continuous variational equation (6) with a constant function
it is easy to see that the global energy

E(k) =

∫

Ω

uk dx

is conserved if the right hand side l(uk−1, v) = (uk−1, v) is integrated exactly.
This is only done by the expensive Algorithm 1 (p. 16) and the subgrid-based
algorithm. On the other hand, it is interesting to see how the computational
effort of the subgrid-based algorithm compares to the commonly used method
based on grid coarsening (Algorithm 3, p. 17). Since this is not the place to
discuss efficient coarsening strategies we only use a rough estimation of the
computational effort of Algorithm 3.

Assume that Gk 6= Gk−1, as will frequently be the case. Then the coarsening-
based algorithm will solve at least two large spatial problems at time step k.
Indeed, starting on G0

k = Gk−1, Algorithm 3 will at least solve Problem (6)
there, estimate the error, and adapt the grid to obtain a grid G1

k of similar size.
Then it will solve (6) on G1

k, and estimate the error again. In the best case the
solution is accepted now. If not, further refinement/coarsening cycles have to
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follow. Assuming that the problems at consecutive time steps have a compara-
ble size the computational effort will at least be twice the effort of solving the
problem on Gk−1. The actual effort may be even higher, because frequently
more than one grid adaptation step will be necessary, and for nonlinear prob-
lems nested iteration is often used to compute reasonable initial iterates for a
nonlinear iterative solver. Hence additional problems on coarser grid are solved.

The subgrid-based algorithm solves only a single problem of about the size
of Gk−1 and a sequence of coarser problems on Gi

k, 0 ≤ i < jk. Hence the
subgrid-based algorithm is more efficient than the coarsening-based one if the
time needed for the entire refinement loop is less than the time needed to solve
two problems of about the size of Gk−1. We measured this for a test evolution
of the heat equation with the initial value u0 as in Fig. 7 and a time step of
τ = 10−3. The first time step was discretized with a grid hierarchy consisting
of 6 levels and 217841 vertices. The left picture in Fig. 8 plots the CPU time
needed to solve Problem (6) by the subgrid-based algorithm for each time step.
While the dashed line represents the time for the entire refinement loop the
solid line represents only the time spend for assembling and solving the problem
on the final grid Gk in each time step k. The computational amount rapidly
decreases with time due to the smoothing property of the heat equation. Also,
the computations on the final grid consume a significant amount of the overall
time in each time step. To examine this further the right picture shows the CPU
time for the entire refinement loop divided by the time needed to assemble and
solve Problem (6) on the final grid Gk. We stated above that the subgrid-
based algorithm is more efficient than the coarsening-based one if this value
stays below two. Except for a single outlier this is indeed the case. Thus the
presented approach outperforms Algorithm 3 even in the most optimistic case
described above. The flat line beginning in time step 25 marks the regime where
the solution is smooth enough to be represented on the coarsest mesh. Since
there Gk = Gk−1 the part has to be omitted from the comparison. For nonlinear
problems the fraction of the time spent on the final grid will in general be even
larger increasing the performance benefit of the presented approach.

To investigate the run-time overhead of the SubGrid interface we also com-
pared timings of an ALUSimplexGrid with timings of the SubGrid set to be
identical to the host grid. We computed the stiffness and mass matrix as well
as the multigrid transfer operators for a grid hierarchy of six levels with 217 841
degrees of freedom on the final level, resulting as the final adaptive grid G1 of
the first time step. The measurements of these computations showed that the
overhead of the subgrid interface is about 37% for these computations.

To see the cost of the exact integration of (uk−1, v) we also measured the
CPU time for the computation of the residual on the hostgrid and its restriction
to the subgrid. We found that this took about 7.7% of the time for the entire
refinement loop in the second time step. The assembly time is dominated by
having to iterate over the host grid leaf level. Hence it remains large regardless
of how coarse the subgrid is.
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Figure 8: CPU time for assembling, solution and error estimation over time
step. a) All levels and last level; b) All levels relative to last level.

6 Conclusions and Outlook

We have presented a Dune meta grid that allows to do computations on subsets
of elements of other Dune grids. This gives new flexibility to users of the Dune

grid interface.
Two examples applications were described to show the benefits of this ap-

proach. They demonstrated that the use of dune-subgrid makes treating cer-
tain problems easy, which otherwise would have needed involved special-purpose
coding. This exemplifies the Dune spirit of having code consist of modular,
reusable components. However, the list of possible applications does not end
here. Together with a structured grid implementation, SubGrid can facilitate
the implementation of narrow-band methods as presented in [11]. Being able
to have two refinement states of a single coarse grid (such as in Sec. 5) has also
been used in implementations of unfitted discontinuous galerkin methods such
as [14]. We suspect that this short list of possible applications is not complete.

Several extensions to our implementation are conceivable. While support for
parallel grids has not been implemented yet, there are no structural obstacles
that prevent doing so. Very interesting, but unfortunately more difficult, is
the possibility to select subgrids of lower dimension than the grid itself. This
would allow to handle mortar methods, problems with an additional PDE on
the domain boundary, and the simulation of material cracks or blood vessels,
which are sometimes modelled as ensembles of lower-dimensional entities of a
given grid. However, the Dune interface distinguishes elements from entities of
lower dimension in that they have more methods. Therefore, SubGrid would
have to provide all methods of an element without being able to use the full
element interface of the host grid.

Some further variants of subgrids are also interesting. As discussed in
Sec. 3.5, it would be possible to implement a subgrid as an array of pointers
to grid entities instead of a bit field. This would make subgrids that only com-
prise a small fraction of the host grid more efficient. Also, in some applications
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one is interested not only in working on a subset of elements but in partitioning
the entire host grid into a set of disjoint subdomains. While this can be done
using a set of subgrids, a dedicated grid implementation would be more efficient.

While these extensions could in principle be realized by generalizing and
modularizing the existing code of SubGrid, we propose to realize them as sep-
arate meta grid implementations in order to keep the code complexity at a
reasonable level. The list of extension modules for Dune is growing [15] and we
hope to see such grids there some day.
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[16] C. Gräser and R. Kornhuber. Adaptive multigrid methods for Cahn–
Hilliard equations with logarithmic potential. 2009. in preparation.
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