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FAST AND ROBUST NUMERICAL SOLUTION OF THE RICHARDS
EQUATION IN HOMOGENEOUS SOIL∗
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Abstract. We derive and analyze a solver-friendly finite element discretization of a time discrete
Richards equation based on Kirchhoff transformation. It can be interpreted as a classical finite
element discretization in physical variables with nonstandard quadrature points. Our approach allows
for nonlinear outflow or seepage boundary conditions of Signorini type. We show convergence of the
saturation and, in the nondegenerate case, of the discrete physical pressure. The associated discrete
algebraic problems can be formulated as discrete convex minimization problems and, therefore, can
be solved efficiently by monotone multigrid methods. In numerical examples for two and three space
dimensions we observe L2-convergence rates of order O(h2) and H1-convergence rates of order O(h)
as well as robust convergence behavior of the multigrid method with respect to extreme choices of
soil parameters.
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1. Introduction. The Richards equation [7, 16, 33] models saturated-unsatur-
ated groundwater flow and reads

(1.1) n θ(p)t + div v(p) = 0 , v(p) = −Khkr(θ(p))∇(p − z)

in case of a homogeneous soil. Here, p is the water or capillary pressure on Ω× (0, T )
for a time T > 0 and a domain Ω ⊂ R

3 inhibited by the porous medium. It can
be heterogeneous in the sense that the porosity and the hydraulic conductivity n :
Ω → (0, 1) and Kh : Ω → R

+, respectively, may vary in space. The coordinate in
the direction of gravity is denoted by z. The saturation θ : R → [θm, θM ] with
θm, θM ∈ [0, 1] is an increasing function of p which is constant θ(p) = θM—the
case of full saturation and ellipticity of (1.1)—if p is sufficiently large. The relative
permeability kr : [θm, θM ] → [0, 1] is an increasing function of θ with kr(θM ) = 1. It
usually leads to a degeneracy in the elliptic-parabolic equation (1.1) by kr(θ) → 0 for
θ → θm or even by kr(θm) = 0 whereby it becomes an ODE.

The soil in (1.1) is homogeneous inasmuch θ(·) and kr(·) do not depend explicitly
on x ∈ Ω. Concrete forms of these parameter functions are given by Brooks and Corey
[14] and van Genuchten [37]. We use the former which are constituted by the bubbling
pressure pb < 0 and the pore size distribution factor λ > 0 as the soil parameters.

It is a longstanding problem that “most discretization approaches for Richards’
equation lead to nonlinear systems that are large and difficult to solve” [22] and that
“poor iterative solver performance . . . [is] often reported” [27]. Apart from the de-
generacy of (1.1) this stems from the fact that the parameter functions degenerate to
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land (Heiko.Berninger@unige.ch).
‡Institut für Mathematik, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany

(kornhuber@math.fu-berlin.de, sander@math.fu-berlin.de).

2576



FAST AND ROBUST SOLUTION OF THE RICHARDS EQUATION 2577

step functions for extreme soil parameters. Therefore, it is necessary for robustness
to refrain from linearizing the Richards equation (1.1) in the (iterative) solution pro-
cess. To the best of our knowledge there are no numerical approaches to the Richards
equation in the literature that meet this requirement. For example, although sev-
eral different discretizations are used in Wagner et al. [38], Fuhrmann [24], Schneid,
Knabner, and Radu [34], and Bastian et al. [6], all these authors apply Newton’s
method to the resulting finite-dimensional system.

In this paper we strive for robustness of the numerical solution with respect to soil
parameters appearing in saturation θ(p) and relative permeability kr(θ), respectively,
particularly of the algebraic solver for the arising large-scale, highly nonlinear spatial
problems. Following Alt and Luckhaus [1] and Visintin [2], our approach is based on a
Kirchhoff transformation of the physical pressure into a generalized pressure u = κ(p).
In this way the nonlinearity and the degeneracy are removed from the main part of
the differential operator. Incorporating Signorini-type boundary conditions occurring,
e.g., around seepage faces at the bank of a lake, the transformed problem can be
formulated in a weak sense as a variational inequality involving the monotonically
increasing nonlinearity u �→ θ(κ−1(u)).

By a time discretization in which only the gravitational term is treated explicitly,
one obtains elliptic variational inequalities that are equivalent to strictly convex min-
imization problems. The spatial discretization is carried out by piecewise linear finite
elements. Upwinding of the gravitational (i.e., convective) part guarantees stability
for sufficiently small time steps (see Berninger [9, sec. 4.2] and the careful discus-
sion in Forsyth and Kropinski [23]). We prove H1-convergence of the finite element
approximations uj to the generalized pressure.

The discretization in generalized variables uj can be reinterpreted as a standard
finite element discretization of the original Richards equation (1.1) in physical pres-
sure pj with numerical integration based on particular (solution dependent) quadra-
ture points. If the Richards equation is nondegenerate, we obtain H1-convergence of
κ−1(uj) and L2-convergence of its piecewise linear interpolation pj to the physical
solution of the time discrete problem. Similar convergence results are obtained for
the discrete saturation θ(κ−1(uj)).

Our new approach pays off in two regards. First, the ill-conditioning inherent in
the degenerate problem is decoupled from the solution process and appears only in
the inverse Kirchhoff transformation u �→ p = κ−1(u) after u has been determined.
Second, the discretization is solver-friendly in the sense that there are fast and robust
monotone multigrid solvers [26, 30] at hand for the large-scale algebraic problems
occurring in each time step. Monotone multigrid methods are based on successive
minimization rather than linearization. Therefore, they perform robustly even for
nonsmooth nonlinearities. Moreover, these methods are fast in the sense that for
good initial iterates, as obtained from the preceding time step or by nested iteration,
they have a similar convergence speed as standard linear multigrid methods applied
to linear self-adjoint problems. This is confirmed by asymptotic logarithmic upper
bounds for the convergence rates established in [30].

By nonlinear domain decomposition techniques and monotone multigrid methods
as local solvers our approach has been extended to heterogeneous soils that consist of
different layers of homogeneous soil in the doctoral thesis of Berninger [9, Chapter 3].
For related work, we also refer to [11, 13] and [12].

Outline. In section 2 we first introduce the Brooks–Corey parameter functions
and the Kirchhoff transformation. Then we give a weak formulation of a Signorini-
type boundary value problem for the Richards equation as a variational inequality.
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In section 3 we present our implicit-explicit time discretization and show that the
resulting variational inequality is equivalent to a uniquely solvable convex minimiza-
tion problem.

In section 4 we introduce a finite element discretization of the convex minimization
problem that provides H1-convergence. We also give a reinterpretation as a standard
finite element discretization with numerical integration of the problem in physical
pressure. Convergence results for the discrete saturation and the discrete physical
pressure are derived.

Section 5 illustrates our theoretical reasoning by numerical experiments. First,
we investigate the spatial discretization error. Both for transformed and physical
variables we numerically obtain the order of convergence O(h2) in the L2-norm and
O(h) in the H1-norm. We both illustrate and analyze how the ill-conditioning of the
inverse Kirchhoff transformation affects the numerical calculations. Then we consider
a gravity dominated infiltration problem into almost dry soil in order to investigate
the stability constraint on the time step as resulting from our explicit upwind dis-
cretization of the convective gravitational term. Finally, we apply our discretization
to an infiltration problem for an almost dry dam in three space dimensions leading to
large-scale spatial problems for each time step. For all the large-scale, highly nonlinear
spatial problems occurring throughout the evolution we observe a similar convergence
speed of our algebraic monotone multigrid solver as for the linear Darcy flow arising
after full saturation. Moreover, fast convergence is preserved for a wide range of soil
parameters confirming the robustness of our approach.

2. Signorini-type problem and variational inequality for the Richards
equation. We give concrete forms of the parameter functions p �→ θ(p) and θ �→ kr(θ)
according to Brooks and Corey. Then we apply the Kirchhoff transformation to
the Richards equation and introduce our boundary value problem in a strong form.
Finally, we develop a weak formulation of a boundary value problem for the Richards
equation with nonlinear outflow conditions of Signorini-type.

2.1. Brooks–Corey parameter functions. Let the residual and the maximal
saturation θm, θM ∈ [0, 1], θm < θM , as well as the bubbling pressure pb < 0 and the
pore size distribution factor λ > 0 be given. Then, by Brooks and Corey [14] the
saturation θ is given by

(2.1) θ(p) =

⎧⎨
⎩θm + (θM − θm)

(
p
pb

)−λ

for p ≤ pb ,

θM for p ≥ pb ,

and (with results by Burdine [15]) the relative permeability kr reads

(2.2) kr(θ) =

(
θ − θm
θM − θm

)3+ 2
λ

, θ ∈ [θm, θM ] .

Typical shapes of these nonlinearities are depicted in Figures 2.1 and 2.2. Their
essential properties are collected in the following lemma.

Lemma 2.1. The Brooks–Corey functions θ and kr in (2.1) and (2.2) are non-
negative, bounded, monotonically increasing, and continuous.

2.2. Kirchhoff transformation. In the following we assume n = Kh = 1 for
simplicity and thus deal with the Richards equation in the form

(2.3) θ(p)t − div
(
kr(θ(p))∇ (p− z)

)
= 0 .
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Fig. 2.1. p �→ θ(p).
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Fig. 2.2. θ �→ kr(θ).

An essential well-known tool for our approach is Kirchhoff’s transformation; see, for
example, Alt, Luckhaus, and Visintin [2] or Eymard, Gutnic, and Hilhorst [21]. It is
defined by

(2.4) κ : p �→ u :=

∫ p

0

kr(θ(q)) dq ,

where u shall be called generalized pressure. If we take the chain rule

(2.5) ∇u = kr(θ(p))∇p

into account and define

(2.6) M(u) := θ(κ−1(u))

and ez := ∇z, the transformed Richards equation (2.3) reads

(2.7) M(u)t − div
(
∇u− kr(M(u))ez

)
= 0 .

Hence we obtain a semilinear equation from the quasilinear equation (2.3). In case
of the Brooks–Corey parametrization, M has unbounded derivatives and κ−1 is ill-
conditioned around a critical pressure uc; compare Figures 2.3 and 2.4.

Lemma 2.2. Let θ and kr satisfy the properties in Lemma 2.1. Then M defined
by (2.6) is nonnegative, bounded, monotonically increasing, and continuous. Further-
more, κ : R → R is monotonically increasing and in C1(R).

Let θ and kr be chosen according to (2.1) and (2.2). Then we have u = p for
p ≥ pb and p ≤ 0 ⇔ u ≤ 0. Furthermore, limp→−∞ κ(p) =: uc < 0 exists and, with
M(uc) := θm, the function M is defined on [uc,∞) and Hölder continuous.

Let kr ∈ L∞(θ(R)) in the nondegenerate case

(2.8) kr(·) ≥ c for a c > 0 .

Then both κ and κ−1 are Lipschitz continuous functions on R, and if, in addition,
θ is Lipschitz continuous on R (as in (2.1)), so is M .



2580 H. BERNINGER, R. KORNHUBER, AND O. SANDER

−4/3 −1 0 3
−3

−1

0

3

Fig. 2.3. u �→ κ−1(u).
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Fig. 2.4. u �→ M(u).

Now we give our minimal set of global assumptions for this paper, which by
Lemma 2.2 are satisfied in the Brooks–Corey case. However, all following considera-
tions apply analogously if [uc,∞) is replaced by R.

Assumption 2.3. Let kr : M(R) → R
+ be a bounded Borel function and M :

[uc,∞) → R, uc ∈ R, be bounded, monotonically increasing, and continuous.

2.3. Signorini-type boundary value problem. Let Ω ⊂ R
d be a bounded

Lipschitz domain. For a time t ∈ (0, T ] we assume that a decomposition of ∂Ω
into nonempty submanifolds γD(t), γN (t), and γS(t) as well as functions uD(t) ∈
H1/2(γD(t)) and fN(t) ∈ L2(γN (t)) are given. Then for u and the flux

v = −(∇u− kr(M(u))ez) = −kr(θ(p))∇ (p− z)

we consider the boundary conditions

u = uD(t) on γD(t) ,(2.9)

v · n = fN(t) on γN (t) ,(2.10)

u ≤ 0 , v · n ≥ 0 , u · (v · n) = 0 on γS(t) .(2.11)

The complementarity conditions (2.11) are sometimes called outflow conditions
[35] or seepage face conditions [8, 18]. They lead to a free boundary value problem as
they model possible unrestricted outflow on and close to seepage faces, which can be
found, e.g., at the bank around lakes or in dam problems; see, e.g., [17]. Since they are
known from Signorini problems [28], we call them Signorini-type boundary conditions
(cf. [36, 39]) and refer to the corresponding boundary value problem (2.7), (2.9)–(2.11)
as a Signorini-type problem for the (Kirchhoff-transformed) Richards equation.

2.4. Variational inequality. As a result of (2.11) we obtain a variational in-
equality on a convex subset of the space H1(Ω) as a weak formulation of (2.7), (2.9)–
(2.11). For a justification we refer to an equivalence result that holds for smooth
functions [9, Prop. 1.5.3].

We introduce some notation. Let γ ⊂ ∂Ω be a nonempty submanifold. We call
trγ : H1(Ω) → H1/2(γ) the corresponding trace operator. With the decomposition of
∂Ω and the functions uD(t) and fN (t) given above we set

(2.12) K(t) := {v ∈ H1(Ω) : v ≥ uc ∧ trγD(t)v = uD(t) ∧ trγS(t)v ≤ 0} ,
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which is a nonempty, closed, and convex subset of H1(Ω) if uD(t) is chosen to be
compatible with the other conditions constituting K(t); see [9, Prop. 1.5.5].

Given Assumption 2.3, we say that u ∈ L2(0, T ;H1(Ω)), with the property
M(u)t ∈ L2(Ω) a.e. on (0, T ], is a weak solution of (2.7), (2.9)–(2.11) at the time
t ∈ (0, T ] if

u(t) ∈ K(t) :

∫
Ω

M(u(t))t (v − u(t)) dx+

∫
Ω

∇u(t)∇(v − u(t)) dx

(2.13)

≥
∫
Ω

kr(M(u(t)))ez∇(v − u(t)) dx −
∫
γN (t)

fN (t) (v − u(t)) dσ ∀v ∈ K(t) .

It is possible to relate this variational inequality to a corresponding one given in
the physical pressure p(t) for the original Richards equation (2.3) with the boundary
values (2.9)–(2.11) retransformed in physical variables. More concretely, u(t) solves
(2.13) if p(t) solves the corresponding variational inequality, and, in case (2.8) and
γS(t) = ∅, both formulations are equivalent (see [9, sec. 1.5.4] or [10]).

3. Implicit-explicit time discretization and convex minimization. In the
following we give our implicit-explicit time discretization of the variational inequal-
ity (2.13). Our aim in this section is to derive an equivalent uniquely solvable convex
minimization problem from the resulting variational inequality.

3.1. Time discretization. Let 0 = t0 < t1 < · · · < tN = T be a partition of
[0, T ] with the time step sizes τn := tn − tn−1, n ∈ {1, . . . , N}, and set u0 = u(0) ∈
H1(Ω) as the given initial condition for (2.7). Without loss of generality we set
fN (t) = 0. Then, successively for n = 1, . . . , N , our time discretized version of (2.13)
reads

un ∈ K(tn) :

∫
Ω

M(un) (v − un) dx + τn

∫
Ω

∇un∇(v − un) dx

(3.1)

≥
∫
Ω

M(un−1) (v − un) dx + τn

∫
Ω

kr(M(un−1))ez∇(v − un) dx ∀v ∈ K(tn) .

We proceed with some notation and abbreviations. For a given n ∈ {1, . . . , N}
we set K := K(tn) and also γD := γD(tn), γS := γS(tn) and γN := γN (tn) as well as
uD := uD(tn), and we denote u = un. We abbreviate the norm in the Sobolev space
H1(Ω) by ‖ · ‖1 and define the subspace

H1
γD

(Ω) := {v ∈ H1(Ω) : trγDv = 0} .

The left-hand side in (3.1) is given by a continuous linear functional 	 on K ⊂ H1(Ω)
defined as

(3.2) 	(v) :=

∫
Ω

M(un−1) v dx + τn

∫
Ω

kr(M(un−1))ez∇v dx ∀v ∈ H1(Ω) .

Since γD ⊂ ∂Ω is a nonempty submanifold, the continuous symmetric bilinear form
a(·, ·) on H1(Ω) given by

(3.3) a(v, w) := τn

∫
Ω

∇v∇w dx ∀v, w ∈ H1(Ω)
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is coercive on H1
γD

(Ω). With this notation we can write (3.1) more compactly as the
variational inequality

(3.4) u ∈ K :

∫
Ω

M(u)(v − u) dx+ a(u, v − u)− 	(v − u) ≥ 0 ∀v ∈ K .

3.2. Convex minimization. The variational inequality (3.4) is equivalent to a
convex minimization problem. In what is to come we sketch the reasoning to derive
this fact and refer to [9, sec. 2.3.2–2.3.4] for proofs and further details. We start with
a primitive Φ : [uc,∞) → R of M defined as

(3.5) Φ(z) :=

∫ z

0

M(s) ds ∀z ∈ [uc,∞)

which gives rise to a functional φ : K → R by

(3.6) φ(v) :=

∫
Ω

Φ(v(x)) dx ∀v ∈ K .

Since M is monotonically increasing, Φ is convex, and since M is bounded, Φ is
Lipschitz continuous. Therefore, φ is a well-defined convex and Lipschitz continuous
functional with an affine lower bound

φ(v) ≥ −c1‖v‖1 − c2 ∀v ∈ K
for c1, c2 > 0. Furthermore, since M is continuous, Φ is differentiable with Φ′ = M .

Recall that for a function F : S → R on a subset S ⊂ V of a normed space V the
one-sided limit

∂vF (u) := lim
h↓0

F (u+ hv)− F (u)

h
, u, u+ hv ∈ S ,

if it exists, is the directional derivative of F at u in the direction of v ∈ V .
Since Φ is convex and differentiable, one can interchange differentiation with the

integral in (3.6) and obtain the following result.
Lemma 3.1. For any u, v ∈ K the directional derivative ∂v−uφ(u) exists and can

be written as

∂v−uφ(u) =

∫
Ω

Φ′(u(x))(v(x) − u(x)) dx =

∫
Ω

M(u(x))(v(x) − u(x)) dx .

It is well known that the quadratic functional J : H1
γD

(Ω) → R defined by

(3.7) J (v) :=
1

2
a(v, v)− 	(v) ∀v ∈ H1

γD
(Ω)

is strictly convex, continuous, and coercive. Moreover, J is Fréchet-differentiable in
u ∈ H1

γD
(Ω) with the derivative

J ′(u)(v) = ∂vJ (u) = a(u, v)− 	(v) ∀v ∈ H1
γD

(Ω) .

Consequently, the functional F : K → R defined by

(3.8) F (v) := φ(v) + J (v) ∀v ∈ K
(and extended by +∞ on H1

γD
(Ω)\K) is strictly convex, proper, continuous, and

coercive, and ∂v−uF (u) exists for any u, v ∈ K. Altogether, we conclude that (3.4)
has the form

u ∈ K : ∂v−uF (u) ≥ 0 ∀v ∈ K .

The next result provides the link to convex minimization.
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Lemma 3.2. Let V be a real vector space, let K ⊂ V be a convex set, and let
F : K → R be a convex functional whose directional derivative ∂v−uF (u) exists for all
u, v ∈ K. Then

u ∈ K : ∂v−uF (u) ≥ 0 ∀v ∈ K

is equivalent to

u ∈ K : F (u) ≤ F (v) ∀v ∈ K .

Now we can apply a well-known existence and uniqueness result for convex min-
imization problems (see, e.g., [20, p. 35]) to obtain the main result of this section.

Theorem 3.3. Let K ⊂ H1(Ω), a(·, ·), and 	(·) be defined as in (2.12), (3.3),
and (3.2), respectively. Then, with Assumption 2.3, the variational inequality (3.4)
has a unique solution. More specifically, it is equivalent to the minimization problem

(3.9) u ∈ K : J (u) + φ(u) ≤ J (v) + φ(v) ∀v ∈ K

with J and φ as defined in (3.7) and (3.6), respectively.
Theorem 3.3 can be generalized to the case of nonnegative and bounded porosity

n(·) and hydraulic conductivity Kh(·) satisfying

(3.10) c ≤ Kh(·) ≤ C with some c, C > 0 .

4. Finite element discretization. In this section we present a finite element
discretization of (3.9), which extends the results in [29, pp. 36–43] to our more general
boundary conditions. We give a reinterpretation as a certain finite element discretiza-
tion of the problem in physical variables, thus making clear that our discretization
in the transformed variables is not artificial. We obtain convergence of the discrete
generalized solutions uj to the continuous solution in the H1-norm, which entails
H1-convergence of the corresponding saturation M(uj) and L2-convergence of its
piecewise linear interpolation. In the nondegenerate case (2.8) we can also prove H1-
convergence of the retransformed pressure κ−1(uj) as well as L2-convergence of its
piecewise linear interpolation.

4.1. Discretized problem in generalized variables. For the sake of presen-
tation we consider the case of a polygonal domain Ω ⊂ R

2. Let Tj , j ∈ N0, be a
conforming triangulation of Ω. The set of all vertices of the triangles in Tj is denoted
by Nj . We require that each intersection point of two closures of γD, γN , and γS is
contained in Nj and define ND

j := Nj ∩ γD and NS
j := Nj ∩ γS .

We choose the finite element space Sj ⊂ H1(Ω) as the subspace of all continuous
functions in H1(Ω), which are linear on each triangle t ∈ Tj . Analogously, we define

SD
j ⊂ H1

γD
(Ω). The nodal basis function corresponding to q ∈ Nj is denoted by λ

(j)
q .

For the finite dimensional analogue of K we assume that uD is continuous in each
q ∈ ND

j , j ∈ N0, so that writing uD(q) makes sense in these nodes. Then we define
the nonempty, closed, and convex set Kj ⊂ Sj by
(4.1)
Kj :=

{
v ∈ Sj : v(q) ≥ uc ∀q ∈ Nj ∧ v(q) = uD(q)∀q ∈ ND

j ∧ v(q) ≤ 0 ∀q ∈ NS
j

}
.

We discretize the convex functional in (3.6) by Sj-interpolation of the integrand
Φ(v) arriving at φj : Sj → R ∪ {+∞} given by

(4.2) φj(v) :=
∑
q∈Nj

Φ(v(q))hq ∀v ∈ Sj , hq :=

∫
Ω

λ(j)
q (x) dx .
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The properties of φj are inherited by φ. Concretely, φj , j ≥ 0, are convex,
proper, Lipschitz continuous, lower semicontinuous, and admit affine lower bounds.
The constants are independent of j ≥ 0. Moreover, for vj ∈ Sj , j ≥ 0, and v ∈ H1(Ω)
we have

vj ⇀ v, j → ∞ =⇒ lim inf
j→∞

φj(vj) ≥ φ(v) ,

where vj ⇀ v denotes the weak convergence of vj to v in H1(Ω).
With the definitions from above, our discrete version of (3.9) reads

(4.3) uj ∈ Kj : J (uj) + φj(uj) ≤ J (v) + φj(v) ∀v ∈ Kj .

Since Kj , J , and φj have the same properties as K, J , and φ in Theorem 3.3, now
in the subspace Sj of the Hilbert space H1(Ω), we obtain the following result.

Theorem 4.1. The discrete minimization problem (4.3) has a unique solution.
In order to ensure stability of the explicit time discretization of the convective

gravity term, we use a standard upwind technique based on artificial viscosity. See [9,
sec. 4.2] for details. This does not affect the properties of J that are relevant for our
analysis. The stability properties of the resulting discretization will be illustrated by
numerical experiments to be reported in subsection 5.2.

The discretization presented in the preceding two sections is solver-friendly in
the sense that the resulting spatial problems can be solved by monotone multigrid
methods [26, 30]. These methods can be regarded as multilevel descent methods and
thus rely on convex minimization rather than linearization. Asymptotic logarithmic
bounds for the convergence rates are available and fast and robust convergence has
been observed for model problems [30]. The convergence behavior for a problem
in three space dimensions and a wide range of soil parameters will be reported in
section 5.3.

4.2. Interpretation in physical space: Discrete Kirchhoff transforma-
tion. Now we give a reinterpretation of (4.3) in terms of discrete physical variables.
It turns out that (4.3) can be understood as a finite element discretization of problem
(2.3), written in physical variables, where a particular quadrature rule with quadra-
ture points for kr(θ(p)) depending on kr ◦ θ is applied.

By Lemma 3.2 the discrete minimization problem (4.3) is equivalent to the vari-
ational inequality
(4.4)

uj ∈ Kj :
∑
q∈Nj

M(uj(q)) (v(q) − uj(q))hq + a(uj , v − uj)− 	(v − uj) ≥ 0 ∀v ∈ Kj ,

which can be regarded as the corresponding discretization of the original variational
inequality (3.4).

It is clear that in case of uj(q) = uc for a q ∈ Nj we have κ
−1(uj(q)) = −∞, which

is a physically unrealistic situation. Note that the somewhat unnatural condition
v ≥ uc instead of v > uc in (2.12) and, correspondingly, in (4.1) is necessary to
guarantee the existence of a solution to the minimization problem by the closedness
of the convex sets K and Kj , respectively, and does not occur in the original physical
problem. Therefore, we assume

(4.5) uj(q) > uc ∀q ∈ Nj

from now on, which entails real-valuedness of κ−1(uj) and allows the following defi-
nition.
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Definition 4.2. Let ISj : H1(Ω) ∩ C(Ω) → Sj be the piecewise linear interpo-

lation operator defined by (ISjv)(q) = v(q) ∀q ∈ Nj for v ∈ H1(Ω) ∩ C(Ω). With
assumption (4.5) we call

ISjκ : Sj → Sj

the discrete Kirchhoff transformation on Sj and

pj := ISjκ
−1(uj)

the discrete physical pressure corresponding to problem (4.3).
We are now going to investigate what kind of discretization of the untransformed

problem corresponds to the discrete pressure variable pj. To this end we impose the
condition

κ ∈ C1(R)

on the Kirchhoff transformation (2.4) which means that kr ◦ θ is continuous. The
latter is satisfied for the Brooks–Corey parameter functions in (2.1) and (2.2).

First, by (2.6) we clearly have

M(uj(q)) = θ(pj(q)) ∀q ∈ Nj .

Accordingly, the linear term 	(·) arising from the solution of the previous time step
on the right-hand side in (2.13) is retransformed in discrete physical variables. The
remaining problem is to see how the bilinear form

(4.6) a(uj , w) =

∫
Ω

∇uj∇w dx , w = v − uj , v ∈ Kj ,

looks in physical variables. For the continuous problem (2.3) the reformulation is
provided by the chain rule (2.5) in a weak sense; consult [9, sec. 1.5.4] or [10]. For
the discrete problem we need a discrete counterpart of (2.5) and argue as follows with
the help of the mean value theorem.

First, we consider the integral in (4.6) only on a triangle t ∈ Tj . Recall that the
transformation from the reference triangle

(4.7) T ⊂ R
2 with the vertices a = (0, 0) , b = (1, 0) , c = (0, 1)

onto the triangle t is given by an affine map

Gt : ξ �→ x = Btξ + bt

acting on R
2 with a nonsingular matrix Bt ∈ R

2×2 and a vector bt ∈ R
2. Transformed

functions on the reference element shall be denoted by

v̂(ξ) := v(Gt(ξ)) = v(x) ∀x ∈ t , ∀v ∈ H1(Ω) ∩ C(Ω) .

By the chain rule we can write

∇ξ v̂(ξ) = ∇x v(x)Bt , ∀x = Gt(ξ) ∈ t , ∀v ∈ H1(Ω) ∩ C(Ω) .

Without loss of generality we assume ûj(b) �= ûj(a). Then, with the Eucledian norm
| · | in R

2 and (4.7), the first component in ∇ξ ûj is given by

(
∇ξ ûj

)
1
=

ûj(b)− ûj(a)

|b − a| =
κ(p̂j(b))− κ(p̂j(a))

p̂j(b)− p̂j(a)
· p̂j(b)− p̂j(a)

|b− a| .
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The range of the affine function p̂j on the edge between a and b is the interval with
the endpoints p̂j(a) and p̂j(b). Since κ is bijective and continuously differentiable on
this interval, there exists a unique point ξ̄1 on the edge between a and b with the
property

(4.8)
(
∇ξ ûj

)
1
= κ′(p̂j(ξ̄1))

p̂j(b)− p̂j(a)

|b − a| = kr(θ(p̂j(ξ̄1)))
(
∇x p̂j

)
1
.

Analogously, we can find a point ξ̄2 on the edge of T between the vertices a and c with
the corresponding property. Altogether, with the transformation onto the reference
triangle, the reformulation in physical variables and the transformation back onto t,
we obtain

(4.9) ∇uj = Dt(pj)∇pj on t

with the diagonal matrix

Dt(pj) =

(
kr(θ(pj(x̄1))) 0

0 kr(θ(pj(x̄2)))

)

and points

(4.10) x̄1 = Gt(ξ̄1) and x̄2 = Gt(ξ̄2)

situated on edges of t.
Since pj is affine and κ : R → (uc,∞) is bijective, the points x̄1 and x̄2 are

uniquely defined by the properties (4.8) and (4.10). Therefore, one can interpret
(4.9) as the discrete counterpart of the chain rule (2.5) for the discrete Kirchhoff
transformation in Sj .

Now we introduce the nonlinear form

(4.11) b(pj , v) :=
∑
t∈Tj

∫
t

Dt(pj)∇pj∇v dx , pj , v ∈ Sj .

Then, with discrete Dirichlet boundary data pD on ND
j and the closed and convex

set

K0
j :=

{
v ∈ Sj : v(q) = pD(q) ∀q ∈ ND

j ∧ v(q) ≤ 0 ∀q ∈ NS
j

}
we consider the discrete problem

(4.12) pj ∈ K0
j :

∑
q∈Nj

θ(pj(q)) (v(q)−pj(q))hq+b(pj, v−pj)−	(v−pj) ≥ 0 ∀v ∈ K0
j

in physical variables. Note that in case of γS = ∅ we have

Kj − uj =
{
v ∈ Sj : v(q) ≥ −ε ∀q ∈ Nj ∧ v(q) = 0 ∀q ∈ ND

j

}
with an ε > 0 due to (4.5), so that by linearity the corresponding set of test functions
v−uj in (4.4) can be chosen as the space SD

j which is equal to K0
j − pj. On the other

hand, with the assumption kr(θ(R)) ⊂ (0, 1] we have p ≤ κ(p) ∀p ∈ R and, therefore,

Kj − uj ⊂ K0
j − pj .

In general, these sets of test functions in (4.4) and (4.12), respectively, are not equal.
However, with these ingredients one can prove the following discrete counterpart of
Theorem 1.5.18 in [9], with arguments as given there for the continuous case.



FAST AND ROBUST SOLUTION OF THE RICHARDS EQUATION 2587

Theorem 4.3. Let θ : R → R and let kr : θ(R) → (0, 1] be bounded, monoton-
ically increasing, and continuous, while κ : R → R is defined by (2.4). In addition,
let pD = κ−1(uD) on ND

j . Then uj = ISjκ(pj) solves (4.4) if pj solves (4.12). Con-

versely, pj = ISjκ
−1(uj) solves (4.12) if uj solves (4.4) with (4.5) in case of γS = ∅.

If (2.8) and γS = ∅ hold, then (4.4) and (4.12) are equivalent in the sense that uj

satisfies (4.4) if and only if pj = ISjκ
−1(uj) satisfies (4.12).

Our discretization (4.12) of problem (3.4), retransformed in physical variables,
involves a quadrature formula with special quadrature points for the term

(4.13)

∫
Ω

kr(θ(p))∇p∇(v − p) dx

which is given by (4.11). This quadrature is uniquely defined by the given functions kr
and θ. Even though one would not use it in practical calculations, one would certainly
be forced to use some quadrature for (4.13). At the end of this section we will prove
that the quadrature (4.11) is as good as any appropriately chosen quadrature in the
sense that it leads to a convergent discretization; see Theorem 4.10.

4.3. Convergence of the generalized pressure. Now we address the conver-
gence of our finite element solutions from (4.3) to the solution of the continuous prob-
lem (3.9). The derivation of the results is based on the arguments in [29, pp. 38–42]
for the case of homogeneous Dirichlet boundary conditions on all of ∂Ω. Therefore, we
only state the assumptions used for the inhomogeneous case and refer to [9, sec. 2.5.2]
for details.

Assumption 4.4. Let the sequence of triangulations (Tj)j≥0 be shape regular with

(4.14) hj := max
t∈Tj

diam t → 0 for j → ∞ .

Let uD = trγDw for a w ∈ H1(Ω) ∩ C(Ω) satisfying

(4.15) wj := ISjw → w for j → ∞ in H1(Ω) .

For the sets C∞
γD

(Ω) :=
{
v ∈ C∞(Ω) : v = 0 in a neighborhood of γD

}
and KγD :=

K − w = {v ∈ H1
γD

(Ω) : v ≥ uc − w ∧ trγSv ≤ −trγSw} we require that

(4.16) C∞
γD

(Ω) ∩ KγD is dense in KγD .

By Ciarlet [19, pp. 122–124] one could replace (4.15) by w ∈ H2(Ω) or a corre-
sponding condition for d > 2. Assumption (4.16) holds for γS = ∅ if γD is sufficiently
smooth and, given that [uc,∞) is replaced by R in Assumption 2.3, it is also true for
γS = ∂Ω; consult [25, pp. 36–39,61].

With Assumption 4.4 one can prove the consistency of the discrete functionals φj .
Concretely, for v ∈ w + C∞(Ω) and vj = ISjv, j ≥ 0, one has

vj → v in H1(Ω) and φj(vj) → φ(v) for j → ∞ .

Together with the properties of φj named in subsection 4.1 one can now prove the
following theorem.

Theorem 4.5. Let Assumptions 2.3 and 4.4 with possibly discontinuous M be
given. Then the solutions uj of the discrete minimization problem (4.3) converge to
the solution u of (3.9) in the sense that

uj → u in H1(Ω) and φj(uj) → φ(u) for j → ∞ .
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Theorem 4.5 also holds in the case (3.10) of space-dependent hydraulic conduc-
tivity Kh(·) and in case of a positive and bounded porosity n(·) in (1.1) if the dis-
cretization of the resulting φ in (3.6) is adapted accordingly in (4.2).

4.4. Convergence of the saturation and the physical pressure. The last
part of this section is devoted to what can be inferred from Theorem 4.5 on the
behavior of the saturation M(uj) and the physical pressure κ−1(uj) as well as their
piecewise linear interpolations, discrete saturation θj(pj) := ISjθ(pj) = ISjM(uj),
and discrete pressure pj = ISjκ

−1(uj), for j → ∞.
The L2-convergence results for the saturation hold in quite general situations

including the Brooks–Corey model. For the physical variables we obtain only conver-
gence results in case of uniformly bounded pj , j ≥ 0, which is reasonable in realistic
situations and is guaranteed in case of nondegeneracy (2.8). Although we prove only
L2-convergence of ISjM(uj) and pj for j → ∞, we show H1-convergence for the
iterates M(uj) and κ−1(uj), which can also be evaluated on a discrete level.

Recall that the real functions M and κ−1 induce superposition operators by com-
position M ◦ u and κ−1 ◦ u. In order to deduce M(uj) → M(u) in L2(Ω) by uj → u
for j → ∞ with the help of Theorem 4.5, we note the following lemma (cf. [3] and [9,
pp. 90/91]). In particular, the second assertion holds for the Brooks–Corey case.

Lemma 4.6. Let Ω ⊂ R
d be bounded. If M : R → R is continuous and bounded,

it induces a continuous superposition operator on L2(Ω). If M : R → R is α-Hölder
continuous w.r.t. α ∈ (0, 1], it induces an α-Hölder continuous superposition operator
on L2(Ω).

The situation is more convenient in the nondegenerate case (2.8) since here the
convergence properties of the generalized pressure are inherited by the saturation and
the retransformed pressure.

Theorem 4.7. In the nondegenerate case (2.8) and with Assumptions 2.3 and 4.4
we have the convergence

M(uj) → M(u) and κ−1(uj) → κ−1(u) in H1(Ω) for j → ∞ .

For the proof we can use the following result. Remarkably, its converse is also
true for d ≥ 2 even without imposing continuity of the superposition operator [31].

Lemma 4.8. If f : R → R is Lipschitz continuous, then the corresponding super-
position operator acts on H1(Ω) and is continuous.

With respect to discrete solutions, one will certainly be interested in the conver-
gence behavior of the Sj-interpolations of M(uj) and κ−1(uj), in particular, since the
latter is the discrete physical pressure from the finite element discretization (4.12).

Lemma 4.9. Let f : R → R be α-Hölder continuous w.r.t. α ∈ (0, 1]. Then, for
uj ∈ Sj, j ≥ 0, with uj → u in H1(Ω) for j → ∞, we have

(4.17) f(uj)− ISjf(uj) → 0 in L2(Ω) for j → ∞ .

Proof. For any point x contained in a triangle t ∈ Tj with the vertices q1, q2, q3
there are ϑi ∈ [0, 1], i = 1, 2, 3, with

∑3
i=1 ϑi = 1 such that

ISjf(uj)(x) =

3∑
i=1

ϑi f(uj(qi)) .

Therefore, using binomial formulas and the Hölder continuity of f with the Hölder
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constant Cα, we can estimate

|f(uj(x))− ISjf(uj)(x)|2 ≤
(

3∑
i=1

ϑi |f(uj(x)) − f(uj(qi))|
)2

≤ 3
3∑

i=1

|f(uj(x)) − f(uj(qi))|2

≤ 3C2
α

3∑
i=1

|uj(x)− uj(qi)|2α .(4.18)

Using the mean value theorem

|uj(x)− uj(qi)| ≤ |∇uj ||x− qi|

on the triangle t (with the Euclidean norm | · | on R
d) while considering that |∇uj | is

constant on t, we can go on estimating the last term in (4.18) to obtain

|f(uj(x)) − ISjf(uj)(x)|2 ≤ 9C2
α |∇uj |2α h2α

j

with hj as in (4.14). Now, integration over Ω provides

∫
Ω

|f(uj(x)) − ISjf(uj)(x)|2 dx ≤
∑
t∈Tj

∫
t

|f(uj(x))− ISjf(uj)(x)|2 dx

≤ 9C2
α h2α

j

∫
Ω

(|∇uj |2 + 1) dx .

Since (uj)j≥0 converges in H1(Ω), the last integral is uniformly bounded and, there-
fore, this whole last term tends to 0 as j → ∞ due to (4.14).

We remark that due to the Sobolev embedding theorem, Lemmas 4.6 and 4.9 also
hold in one space dimension if L2(Ω) is replaced by (C(Ω), ‖ · ‖∞). As a consequence
of Lemmas 4.6, 4.8, and 4.9 we obtain the following convergence results.

Theorem 4.10. Let Assumptions 2.3 and 4.4 be satisfied. Then we have

θj(pj) = ISjM(uj) → M(u) = θ(p) in L2(Ω) for j → ∞ .

In the nondegenerate case (2.8) we also have

pj = ISjκ
−1(uj) → p = κ−1(u) in L2(Ω) for j → ∞ .

Note that in the proof of Lemma 4.9 we also obtained the order of convergence
O(hα

j ) for (4.17). Therefore, altogether we can prove that the convergence pj → p and

ISjθ(pj) → θ(p) in L2(Ω) is of order O(hj) and O(hα
j ), respectively, if the convergence

uj → u in L2(Ω) has the order O(hj). Section 5.1 reveals that numerically one can
observe much more, even in the (degenerate!) Brooks–Corey case.

5. Numerical results. We now concentrate on the numerical properties of the
discretization suggested above and on the efficiency and robustness of the associated
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monotone multigrid method. The implementation has been performed in the numerics
environment dune [5] using the grid manager from ug [4].

5.1. Spatial discretization error. This subsection is devoted to adding a
quantitative flavor to Theorems 4.5, 4.7, and 4.10 by determining numerically the
order of convergence of uj → u and pj → p as j → ∞ for an example in two
space dimensions. We consider the function (x, y) �→ p̃(x, y) = 0.1 − 10 (x2 + y2) on
Ω = [0, 2]× [0, 1] (with pressure and length unit [m]) and set

f := n θ(p̃)− div
(
Khkr(θ(p̃))∇p̃

)
.

One can regard p̃ as a stationary solution of a corresponding time-discretized Richards
equation (1.1) without gravity with the time step size τ = 1 [s]. We use the Brooks–
Corey model. The soil parameters given in Table 5.1 are in a realistic range of sandy
soils (see [32]).

We approximate p̃ by solving the discretized equation

n θ(p)− div
(
Khkr(θ(p))∇p

)
= f

in the finite element space Sj as described above and determine discrete solutions
uj and pj for j = 1, . . . , 11 with monotone multigrid. We choose Dirichlet boundary
conditions on ∂Ω and ISj p̃ as the initial iterate. We start with a uniform coarse
triangular grid for j = 1 with 15 nodes and obtain the higher levels by uniform
refinement. This leads to 8, 394, 753 nodes on the finest level.

The exact solution is a paraboloid directed downwards, and we have full saturation
θ(p̃) = θM on a disc around the origin with the radius

√
0.02 ≈ 0.14 only, so that

a large part of the domain is dominated by the nonlinear nature of the problem.
Besides, note that the problem is not radially symmetric.

Figures 5.1 and 5.2 show an order of convergence O(h2
j) for both uj → ũ = κ(p̃)

and pj → p̃ as j → ∞ in the L2-norm. Figures 5.3 and 5.4 show that with the H1-
norm we obtain only an order of convergence O(hj), which one might expect from
the result for the L2-norm, and which is optimal even for linear problems.

The anomalous behavior of the curves corresponding to the physical pressure for
small mesh sizes can be explained by the ill-conditioning of the inverse Kirchhoff
transformation κ−1 : (uc,∞) → R around uc. The following estimates illuminate this
effect and even confirm its order of magnitude.

Concretely, if ū is an approximation of ũ up to the numerical accuracy of

|ū(x, y)− ũ(x, y)| = 10−16 on Ω ,

the square of this error is only given up to an accuracy of

(5.1) 0.01

∫
Ω

|κ−1(ū(x, y))− κ−1(ũ(x, y))|2 dx dy = 10−34

∫
Ω

|(κ−1)′(u(x, y))|2 dx dy

Table 5.1

Soil parameters of sandy soil.

n θm θM λ pb Kh

0.38 0.21 0.95 1.0 −0.1 [m] 2 · 10−3 [m/s]
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Fig. 5.1. L2-error in u (dotted line: O(h2)).
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Fig. 5.2. L2-error in p (dotted line: O(h2)).
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Fig. 5.3. H1-error in u (dotted line: O(h)).
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Fig. 5.4. H1-error in p (dotted line: O(h)).

with suitable u(x, y) between ū(x, y) and ũ(x, y). (The factor 0.01 enters (5.1) because
we treat u in the unit |pb|, whereas the unit for p is given by [m].) Now, we have

(κ−1)′(u) =
1

κ′(κ−1(u))
=

1

κ′(p)
=

1

kr(θ(p))
= (−10 p)5

for p ≤ pb = −0.1 due to (2.1) and (2.2) and the choice of λ = 1. If we insert
this into (5.1) for p = p̃, we can get an estimation of the numerical accuracy for the
square of the L2-error in p by considering the integral only on the right half of the
quadrilateral Ω where we have x2 + y2 ≥ 1. Therefore, we obtain the estimate

10−34

∫ 1

0

∫ 2

1

(100 (x2 + y2)− 1)10 dx dy

≥ 10−34 9910
∫ 1

0

∫ 2

1

(x2 + y2)10 dx dy ≈ 5 · 10−5

for the numerical accuracy that we can expect for the L2-error in p. In fact, the
L2-error in p on levels 9, 10, and 11 is already around 7 · 10−5 as one can see in
Figure 5.2.

Consequently, the H1-error in p raises from level 9 to 10 and from level 10 to 11
by a factor of 2, since the numerical accuracy of these terms is given by the numerical
accuracy of the L2-error in p divided by the horizontal mesh size hj/

√
2. For example,

with h11/
√
2 = 2−11 and the numerical accuracy of 7 ·10−5 for the L2-error we obtain
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0.14 as an estimate for the numerical accuracy of the H1-error in p on level 11. In
fact, here we obtain the H1-error 0.32 as one can see in Figure 5.4.

We point out that this ill-conditioning is part of the problem, i.e., a measure
for the degeneracy of the Richards equation (1.1), and has to be dealt with in one
way or the other within any solution process. The advantage of our approach is the
separation of this ill-conditioning from the solution process.

5.2. Stability of time discretization. In the time discretization as described
in section 4.1, the convective gravitational term is treated by explicit upwinding. On
the one hand, explicit discretizations are usually more accurate than implicit schemes
which tend to smear out sharp fronts, but on the other hand, explicit methods give
rise to stability constraints on the time step. The stability properties of our implicit–
explicit upwind discretization are illustrated by the following numerical experiments.

We consider the computational domain Ω = (0, 1) × (0, 1) with unit length [m]
and soil parameters for sand as obtained from [32] and listed in Table 5.2. We assume
that the upper surface Γ = [0, 1]×{1} of Ω is covered by water with a constant height
of 2 [m] and no flow conditions are imposed at the rest of the boundary.

Starting from an initial pressure p0 = −10 [m], which by Table 5.2 corresponds
to almost dry sand with saturation θ0 = 0.0771, a horizontal saturation front driven
by gravity propagates through Ω from above to below. It reaches the bottom and
thus leads to full saturation after 1126 [s]. The problem in convection dominated in
the sense that the Reynolds number R(u) = kr′(u)M ′(u) of the transformed Richards
equation (2.7) peaks at Re(u) ≈ 50 for u � pb directly before the front and is almost
zero or even zero elsewhere.

We use a uniform triangular grid with mesh size h = 2−6 [m] and vary the time
step from τ = 1 [s] to τ = 1000 [s]. Here, no instability occurs. It seems that due to the
one-dimensional character of the problem, dominating convection at the saturation
front is compensated by dominating diffusion arising directly after the front.

This is no longer the case for a curved saturation front which, for example, is
obtained by restricting the constant water table of 2 [m] to Γ0 = [0.75, 1]× {1} and
assume no flow conditions at Γ\Γ0. We now observe instabilities for time steps larger
than τ = 175 [s] occurring in the upper left corner at just before full saturation is
reached after 2700 [s]. For τ = 200 [s] this is shown in Figure 5.5. As expected, we
found larger (smaller) stability constraints for coarser (finer) spatial meshes.

Table 5.2

Soil parameters of sand.

n θm θM λ pb Kh

0.437 0.0458 1.0 0.694 −0.0726 [m] 6.54 · 10−5 [m/s]

Fig. 5.5. Evolution of the saturation front at time t = 400 s, 800 s, 1600 s, 2600 s.
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5.3. A dam problem in 3D. In this last example we illustrate that our dis-
cretization is solver-friendly in the sense that existing monotone multigrid meth-
ods [30] exhibit fast convergence when applied to the discrete minimization prob-
lems (4.3). Moreover, the convergence speed turns out to be robust with respect to
soil parameters.

5.3.1. Fast multigrid solution. We consider a dam described by the coarse
grid (consisting of prisms and hexahedra) as depicted in Figure 5.6. The dam has a
constant width on the bottom and a constant maximal height, both equal to 9.81 [m].
Its length is four times this value. We assume that the dam consists of sand with
material parameters listed in Table 5.2 and, as in section 5.2, we select the constant
pressure p0 = −10 [m], or, equivalently, the very low saturation θ0 = 0.0771 as initial
condition for the Richards equation with gravity. As to the boundary conditions, we
assume a constant sea level of the maximal height 9.81 [m] of the dam on the front side
(left in Figure 5.6) leading to Dirichlet conditions by hydrostatic pressure. On the
small faces of the dam as well as its bottom side we impose homogeneous Neumann
conditions. Finally, on the back side water may (and eventually will) flow out so that
we have a Signorini-type condition (2.11) there.

As a result, water infiltrates until a fully saturated dam with an overall nonneg-
ative pressure, i.e., a stationary state, is reached. With the time step size τ = 2.5 [s]
this takes 106 time steps. See Figures 5.7–5.10 for the evolution of the wetting front
(p = pb) on the left and color plots of the physical pressure (between −10 and 9.81)
on a vertical cut through the dam (situated at about a third of the dam length from
the left small face).

The space discretization is carried out by first order Lagrangian finite elements
(compare Figures 5.6 and 5.10 for the coarse grid). We have four refinement levels with
216, 849 nodes on the finest level. The monotone multigrid starts with the function
obtained by nested iteration and stops as soon as the relative distance of succeeding
iterates uk−1, uk in the H1-seminorm | · |1 satisfies

(5.2)
|uk − uk−1|1

|uk−1|1
< 10−13 .

Let un be the last iterate. Then for each time step we calculate the multigrid conver-
gence rate as the geometric mean of the rates

(5.3)
|uk − un|1

|uk−1 − un|1
, k = 1, . . . , n− 1 ,

Fig. 5.6. Coarse (prism) grid of the dam.
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Fig. 5.7. t = τ = 2.5 s.

Fig. 5.8. t = 20 τ = 50 s.

Fig. 5.9. t = 60 τ = 150 s.

Fig. 5.10. t = 100 τ = 250 s.
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Fig. 5.11. Multigrid convergence rates for the spatial problems over the time steps j = 1, . . . , 106.

setting the rate equal to 0 if n ≤ 2. Figure 5.11 shows the multigrid convergence rates
for the different spatial problems over the time steps j = 1, . . . , 106. As a result, the
maximal rate for all time steps is ρmax = 0.35 and the average rate is about ρav = 0.23
in this example, which we find to be a quite good performance of the multigrid solver.
Note that these rates do not differ much from the rate ρlin = 0.21 in the linear case,
which is a Darcy problem that has to be solved at the end of the evolution.

5.3.2. Robustness with respect to soil parameters. Now we illustrate the
robust behavior of the multigrid solver with respect to the soil parameters pb and λ
which enter the nonlinearities. Concretely, we fix the time step size τ = 2.5 [s] and
the initial condition θ0 = 0.0771 as well as the parameters in Table 5.2 apart from
pb or λ. We vary −pb or λ, respectively, within a large range of the decimal powers
between 10−10 and 1010 and, in addition, on the intervals [0.01, 0.1], [0.1, 1], and [1, 10],
each subdivided in 10 subintervals with equal length, which represent a hydrologically
realistic range (compare [32, Table 5.3.2]). We have computed the evolution for each
case until a stationary state with a fully saturated dam has been reached. This
takes between 2 and 115 time steps. For each time step we calculated the multigrid
convergence rates according to (5.2) and (5.3) as above. Then we determined the
maximum ρmax and the average ρav of these rates for each evolution.

The saturation θ(p) as a function M(u) = θ(κ−1(u)) of u degenerates to step
functions for λ → 0, λ → ∞, or pb → 0. As a consequence, variation of λ and
−pb over 20 orders of magnitude requires considerable care to obtain a numerically
stable implementation of M(u). For example, already for λ = 10−4 the interval
|u− uc| < 10−200 covers 0− 95% of full saturation.

Figures 5.12 and 5.13 show the maximal and, as a dashed line, the average con-
vergence rates ρmax and ρav per evolution for varying λ and −pb, respectively. In
light of the preceding remarks, we cannot rule out that the oscillations occurring in
Figure 5.12 for (completely unphysical) values λ < 10−4 are due to numerical insta-
bilities. In Figure 5.13 one can see a peak with unusually big convergence rates of
about 0.9 for (unphysical) values −pb ≈ 102 [m]. It seems that for these cases nested
iteration does not provide an initial iterate which is accurate enough to enter the fast
asymptotic regime of monotone multigrid convergence immediately (cf. [30]). Never-
theless, our extensive numerical experiments reveal that for a wide variation of soil
parameters λ and pb the monotone multigrid solver exhibits good convergence rates
which are often comparable to the linear self-adjoint case.
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Fig. 5.12. ρmax and ρav over λ.
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Fig. 5.13. ρmax and ρav over −pb.
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