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1 Introduction

The exchange of ground- and surface water plays a crucial role in a vari-
ety of practically relevant processes ranging from flood protection measures
to preservation of ecosystem health in natural and human-impacted water
resources systems.

Commonly accepted models are based on the shallow water equations for
overland flow and the Richards equation for saturated–unsaturated subsur-
face flow with suitable coupling conditions. Continuity of mass flow across the
interface is natural, because it directly follows from mass conservation. Con-
tinuity of pressure is typically imposed for simplicity. Mathematically, this
makes sense for sufficiently smooth height of surface water as occurring, e.g.,
in filtration processes [8, 13]. Here we impose Robin-type coupling conditions
modelling a thin, nearly impermeable layer at the bottom of the river bed
that may cause pressure discontinuities; an effect which is known in hydrol-
ogy as clogging (see [15] or [7, p. 1376]). From a mathematical perspective,
clogging can be regarded as a kind of regularization, because, in contrast to
Dirichlet conditions, Robin conditions can be straightforwardly formulated
in a weak sense.

Existence and uniqueness results for the Richards equation and the shal-
low water equations are rare and hard to obtain, and nothing seems to be
known about solvability of coupled problems. Extending the general frame-
work of heterogeneous Steklov–Poincaré formulations and iterative substruc-
turing [9, 12] to time-dependent problems, we introduce a Robin–Neumann
iteration for the continuous coupled problem and motivate its feasibility by
well-known existence results for the linear case. As surface and subsurface
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flow are only weakly coupled by clogging and continuity of mass flux, dif-
ferent discretizations with different time steps and different meshes can be
used in a natural way. This is absolutely necessary, to resolve the vastly dif-
ferent time and length scales of surface and subsurface flow. Discrete mass
conservation can be proved in a straighforward way.

Finally, we illustrate our considerations by coupling a finite element dis-
cretization of the Richards equation based on Kirchhoff transformation [4]
with a simple upwind discretization of surface flow. Numerical experiments
confirm discrete mass conservation and show fast convergence of the Robin–
Neumann iteration for real-life soil data.

2 Coupled surface and subsurface flow

Saturated–unsaturated subsurface flow during a time interval (0, Tend) in a
porous medium occupying a bounded domain Ω ⊂ Rd, d = 2, 3, is described
by the Richards equation

n θ(p)t + div v(p) = 0 , v(p) = −K
µ
kr(θ(p))∇(p− %gz) . (1)

The porosity n, permeability K, viscosity µ, and density % are given param-
eters, and g is the earth’s gravitational acceleration. The unknown capillary
pressure p is related to saturation θ(p) and relative permeability kr(θ(p)) by
equations of state [5, 6]

θ(p) =

θm + (θM − θm)
(
p
pb

)−λ
for p ≤ pb

θM for p ≥ pb

kr(θ) =
(
θ − θm
θM − θm

)3+ 2
λ

, θ ∈ [θm, θM ] ⊂ [0, 1] ,

with residual saturation θm, maximal saturation θM , bubbling pressure pb <
0, and pore size distribution factor λ > 0. Let Γ ⊂ ∂Ω denote the coupling
boundary of the porous medium with a surface flow, and denote the outward
normal vector of Γ by n. We impose the coupling by Robin conditions p|Γ −
αv ·n ∈ L2((0, Tend), H−1/2(Γ )) on Γ and homogeneous Neumann conditions
on ∂Ω \Γ . With compatible initial conditions θ0 ∈ L1(Ω) we assume that (1)
admits a unique weak solution p ∈ L2((0, Tend), H1(Ω)). This assumption is
motivated by known existence results [1, 4] and is, obviously, satisfied in the
case of saturated flow θ ≡ θM .

The surface flow on Γ is described by the shallow water equations
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ht + div q = r, (2a)
qt + div F(h,q) = −gh∇φ (2b)

where φ : Γ0 → Γ is a parametrization of the surface topography of Γ . The
unknown water height h and discharge q, as well as a given mass source r are
functions on (0, Tend) × Γ0. For ease of presentation, we assume Γ = Γ0 so
that Γ is an open subset of Rd−1. For d = 3, i.e., Γ ⊂ R2, the flux function
F takes the form

F =
(
F1

F2

)
, F1(h,q) =

(
q21/h+ 1

2gh
2

q1q2/h

)
, F2(h,q) =

(
q1q2/h

q22/h+ 1
2gh

2

)
with q = (q1, q2). It degenerates to F(h,q) = q2/h + 1

2gh
2 for Γ ⊂ R. For

suitable initial conditions and inflow conditions on ∂Γin ⊂ ∂Γ we assume
that (2) has a weak solution (h,q) ∈ L∞((0, Tend), L∞(Γ ))d in the sense
of distributions D′((0, Tend) × Γin) where Γin = Γ ∪ ∂Γin. Note that this
assumption is satisfied in the linear case [14, Theorem 2.2].

Mass conservation provides the Neumann coupling condition

r = v · n .

Following, e.g. [15], we postulate a nearly impermeable river bed with thick-
ness ε � 1 and permeability Kε (clogging). Then Darcy’s law provides the
flux v = −Kεµ ∇pε. Setting ∇pε = ε−1(%gh − p|Γ )n, we obtain the Robin
coupling condition

p|Γ − αv · n = %gh (3)

with leakage coefficient α = µε
Kε

. Note that (3) generally implies a pressure
discontinuity across the interface Γ between ground and surface water.

Remark 1. Coupling surface and subsurface flow by continuity p|Γ = %gh of
capillary and hydrostatic pressure is generally not possible, because there is
a regularity gap between pressure p|Γ ∈ L2((0, Tend), H1/2(Γ )) and surface
water height h ∈ L∞((0, Tend), L∞(Γ )) 6⊂ L2((0, Tend), H1/2(Γ )). However,
sufficient smoothness is available in special cases like, e.g., in- and exfiltration
processes [13].

3 Steklov–Poincaré formulation and substructuring

We introduce the Robin-to-Neumann map

SΩ(h) = v(h) · n = α−1(p|Γ − %gh)

for h ∈ L∞((0, Tend), L∞(Γ )) ⊂ L2((0, Tend), H−1/2(Γ )). Here, p is the solu-
tion of the Richards equation (1) with Robin conditions (3). Assuming that
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for given h ∈ L∞((0, Tend), L∞(Γ )) and corresponding inflow boundary con-
ditions, the second part (2b) of the shallow water equations has a unique
weak solution q(h) ∈ L∞((0, Tend), L∞(Γ ))d−1, we set

SΓ (h) = −div q(h) .

The Steklov–Poincaré formulation of the coupled Richards equation and shal-
low water equations then reads

ht = SΩ(h) + SΓ (h) . (4)

Just as (2a), (4) is understood in the sense of distributions D′((0, Tend)×Γin).
In complete analogy to the stationary case [9, 12] we introduce a damped

Robin–Neumann iteration

h
ν+1/2
t − SΓ (hν+1/2) = SΩ(hν) , hν+1 = hν + ω(hν+1/2 − hν) , (5)

with a suitable damping parameter ω ∈ (0,∞) and an initial iterate h0 ∈
L∞((0, Tend), L∞(Γ )). Each step amounts to the solution of the Richards
equation with Robin boundary conditions (3) to evaluate the source term
SΩ(hν), and the subsequent solution of the shallow water equations (2) to
evaluate hν+1/2. The feasibility of (5) requires existence and uniqueness of
these solutions. Note the similarity to wave-form relaxation methods [10].

After selecting a step size ∆T = Tend/N with suitable N ∈ N and corre-
spondig time levels Tk = k∆T , the Robin–Neumann iteration (5) can also be
applied on subintervals [Tk−1, Tk], k = 1, . . . , N .

4 Discretization and discrete Robin–Neumann iteration

We first derive a discrete version of the Steklov–Poincaré formulation (4) on
a fixed time interval [Tk, Tk+1] with 0 ≤ Tk < Tk+1 = Tk + ∆T ≤ Tend. To
this end, we introduce intermediate time levels ti = Tk + iτ , i = 0, . . . ,M ,
with step size τ = ∆T/M and suitable M ∈ N. Spatial discretization is
based on a partition TΓ of Γ into simplices T that is regular in the sense that
the intersection of two simplices T , T ′ ∈ TΓ is either a common face, edge,
vertex, or empty. We introduce the corresponding space of discontinuous finite
elements of order q ≥ 0 by

VΓ = {v ∈ L2(Γ ) | vT is a polynomial of degree at most q ∀T ∈ TΓ } ,

and let h = (hi)Mi=0 denote approximations hi ∈ VΓ at ti, i = 0, . . . ,M .
Then, utilizing the forward difference quotient ∂thi = (hi+1 − hi)/τ , a

discrete Steklov–Poincaré formulation reads
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∂thi = SΓ (h)i + SΩ(h)i, i = 0, . . . ,M − 1 . (6)

Here and in the rest of this section, subscripts i indicate approximations
taken at time ti.

For given h = (hi)Mi=0, the discrete surface flow

(SΓ (h)i, v)Γ =
∑
T∈TΓ

(
(q(h)i,∇v)T+(Gh(hi,q(h)i)·nT , v)∂T

)
∀v ∈ VΓ (7)

results from an explicit discontinuous Galerkin discretization of (2a), charac-
terized by the discrete flux function Gh. Here, (·, ·)U stands for the L2 scalar
product on U = Γ , T , ∂T , respectively; nT is the outward normal on T , and
the discrete discharge qi = q(h)i is obtained from an explicit discontinuous
Galerkin discretization of (2b)

(∂tqi, v)Γ =
∑
T∈TΓ

(
(F(hi,qi),∇v)T +(Gq(hi,qi) ·nT , v)∂T

)
∀v ∈ (VΓ )d−1 .

(8)
Since we expect the dynamics of subsurface flow to be much slower than

the surface water dynamics, we use the macro time step ∆T for an implicit
time discretization of SΩ(h). The spatial discretization is based on conforming
piecewise linear finite elements

VΩ = {v ∈ C(Ω) | v|T is affine linear ∀T ∈ TΩ}

with respect to a regular partition TΩ of Ω. No compatibility conditions on
TΩ and TΓ are required. For given pk ∈ VΩ and hk+1 ∈ VΓ , the discrete
capillary pressure pk+1 ∈ VΩ is then obtained from the variational equality

n〈θk+1, v〉Ω +∆T
(
(vk+1,∇v)Ω

+α−1(〈pk+1|Γ , v〉Γ − (%ghk+1, v)Γ )
)

= n〈θk, v〉Ω ∀v ∈ VΩ .
(9)

Here 〈·, ·〉Ω denotes the lumped L2 scalar product on Ω, 〈·, ·〉Γ is the cor-
responding lumped L2 scalar product on Γ , θk = θ(pk), and vk+1 is a dis-
cretization of the flux v at Tk+1. Once pk+1 ∈ VΩ is available, we set for all
i = 0, . . . ,M

(SΩ(h)i, v)Γ = α−1(pk+1|Γ − %ghk+1, v)Γ ∀v ∈ VΓ . (10)

Note that SΩ(h)i is constant on the macro interval [Tk, Tk+1] and only de-
pends on hk+1.

Testing (6) and (9) with constant functions 1 ∈ VΓ and 1 ∈ VΩ , re-
spectively, and using 〈pk+1|Γ ,1〉Γ = (pk+1|Γ ,1)Γ we obtain discrete mass
conservation.

Proposition 1. The discrete Steklov–Poincaré formulation (6) with SΓ and
SΩ defined by (7) and (10) is mass conserving in the sense that
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(hk+1,1)Γ +n〈θk+1,1〉Ω = (hk,1)Γ +n〈θk,1〉Ω+τ
M−1∑
i=0

(Gh(hi,qi)·n∂Γ ,1)∂Γ

holds for k = 0, 1, . . . , with n∂Γ denoting the outward normal on ∂Γ .
We emphasize that this result holds for arbitrary discretizations of the

Richards flux v.
The discrete Steklov–Poincaré formulation (6) gives rise to the discrete

damped Robin–Neumann iteration

∂th
ν+1/2
i − SΓ (hν+1/2)i = SΩ(hν)i , hν+1

i = hνi + ω(hν+1/2
i − hνi ) , (11)

with suitable damping parameter ω ∈ (0,∞) and initial iterate h0
i ∈ VΓ for

i = 0, . . . ,M . Each step amounts to the solution of the discretized Richards
equation (9) to obtain SΩ(hν)i from (10) with pk+1 = pν+1

k+1, and to M time
steps of the discontinuous Galerkin discretization of (2) described by (7) and
(8) to obtain h

ν+1/2
i , i = 1, . . . ,M . For k > 0 the initial iterate h0 is the

solution of the preceeding time step. We emphasize that no compatibility
conditions on the different meshes TΓ and TΩ are necessary, because only
weak coupling conditions are involved.

5 Numerical experiments

We consider a model problem on a square Ω ⊂ R2 of side length 10 m and
select Γ as the upper part of its boundary. The soil parameters are n = 0.437,
θm = 0.0458, θM = 1, pb = −712.2 Pa, λ = 0.694, and K = 6.66 · 10−9 m2

(sandy soil). The viscosity and density of water is µ = 1 m Pa s and % =
1000 kg m−3, respectively. In accordance with measurements [15] we select
the leakage coefficient as α = ρgL−1 with L = 10−6 s−1 allowing for large
pressure jumps across the interface.

We choose the initial conditions θ0 ≡ θ(−20.000 Pa) = 0.1401, h(0) ≡
1 m, q(0) ≡ 10 m2 s−1, and inflow boundary conditions for h(0, t) and q(0, t)
alternating between 2 m and 1 m and 20 m2 s−1 and 10 m2 s−1, respectively,
with a period of 10 s. This leads to a supercritical water flow from left to
right, which can result, for example, from opening a flood gate.

For the porous media flow on Ω we use the uniform time step size ∆T =
500 s and a triangulation TΩ resulting from 6 uniform refinement steps applied
to a partition of Ω into two triangles with hypotenuse from lower left to
upper right. The Richards equation (1) is discretized by the implicit scheme
based on Kirchhoff transformation suggested in [4], and truncated monotone
multigrid [11] is used as the algebraic solver. For the surface flow we use the
time step size τ = γ∆T with γ = 3−1 · 10−5, and the partition TΓ consists
of 400 elements of equal length. Note that TΓ does not match with TΩ |Γ .
The shallow water equations (2) are discretized by a discontinuous Galerkin
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Fig. 1 The water height hi at times ti = iτ , i = 30, 150, 250, 500.

Fig. 2 The pressure p at times Tk = k∆T , k = 20, 150, 300, 450.

method (7) with VΓ consisting of piecewise constant functions, and we use
simple upwind flux functions Gh and Gq in (7) and (8), respectively. The
final time is Tend = 3.5 · 104 s. For the implementation we used the Dune
libraries [2] and the domain decomposition module dune-grid-glue [3].

Figure 1 shows the evolution of the surface water height h over the first
period of the boundary conditions. The porous medium flow is much slower,
as expected. Figure 2 shows the evolution of the pressure. Water enters the
domain from the top, and after about 480 macro time steps or, equivalently,
4000 minutes, the soil saturation is constant at about 75 %. Then, the domain
gets fully saturated starting from the bottom. Hydrostatic pressure builds up
and is fully reached at time step 700.

At each time step we observe discrete mass conservation up to machine
precision. The total relative mass loss over the entire evolution is about 10−10.
Our numerical computations thus nicely reproduce the theoretical findings
of Proposition 1.

To investigate the convergence behavior of the Robin–Neumann iteration
(11) the algebraic error of the Steklov–Poincaré variable h is measured in the
L1(Γ ) norm. It turns out that convergence rates are in the range of 10−4 and
below. Only two or three iterations are necessary to reduce the estimated
algebraic error below the threshold 10−12 in each time step. This is a con-
sequence of the weak (in the physical sense) coupling of surface water and
subsurface flow as prescribed by the large leakage coefficient α. For decreasing
α we observe increasing convergence rates of the Robin–Neumann iteration.
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