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Abstract. Coarsening in solder alloys is a widely accepted indicator for pos-
sible failure of joints in electronic devices. Based on the well-established Cahn–
Larché model with logarithmic chemical energy density [20], we present a nu-
merical environment for the efficient and reliable simulation of coarsening in
binary alloys. Main features are adaptive mesh refinement based on hierarchi-
cal error estimates, fast and reliable algebraic solution by multigrid and Schur–
Newton multigrid methods, and the quantification of the coarsening speed by
the temporal growth of mean phase radii. We provide a detailed description
and a numerical assessment of the algorithm and its different components,
together with a practical application to a eutectic AgCu brazing alloy.
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1. Introduction

The life span of electronic devices strongly depends on the reliability of solder
joints connecting the different components. As voids and cracks typically develop
at phase boundaries, a well-known source of failure is thermomechanically induced
phase separation in solder alloys, often called coarsening. Though there is good
knowledge about the coarsening of classical tin–lead solders, such alloys are intended
to be significantly reduced worldwide and are even banned in the European Union
since 2006, in order to avoid the distribution of lead by electronic waste. The
investigation of environmentally friendly substitutes based both on experiments
and numerical simulation is still underway.

About ten years ago, Dreyer and Müller [20] utilized the framework of stress-
induced diffusion [15] to derive meanwhile well-established Cahn–Larché models
for thermomechanically induced phase separation of binary solder alloys. Such
models consist of a Cahn–Hilliard system, accounting for spinodal decomposition
and Ostwald ripening, coupled with an elasticity equation that represents thermo-
mechanical interaction. In the Cahn–Hilliard system, both theoretical considera-
tions [28, 29] and practical reasoning [9, 10, 50] suggest a chemical energy density
of logarithmic type.

The singular behavior of logarithmic chemical energy densities turned out to be
one of the major challenges of Cahn–Larché systems both in analysis and numerical
approximation. First existence and uniqueness results were obtained by Garcke [22,
23, 24], who also investigated sharp interface limits. Related results for a viscous
Cahn–Larché system were obtained by Bonetti et al. [11]. Upper bounds for time-
averaged coarsening rates, i.e. for the average speed of demixing of the alloy, have
been provided by Novick-Cohen et al. [52, 53] in absence of mechanical effects, i.e.
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for the pure Cahn–Hilliard system. These results extend earlier work of Kohn and
Otto [43] for a quartic chemical energy density,

Numerical simulations with Cahn–Larché systems are facing both locally small
mesh sizes, as required by the spatial resolution of the diffuse interface, and the
algebraic solution of corresponding large-scale systems with logarithmic nonlinear-
ity occurring in each time step. First qualitative numerical studies of Garcke et
al. [26] utilize local adaptive mesh refinement, accounting for the diffuse interface,
and, in order to enable algebraic solution by standard Newton methods, content
themselves with a quartic chemical energy density. An accompanying paper con-
tains the convergence analysis of the underlying implicit Euler discretization in
time and finite element discretization in space [27]. Later, Merkle [48] aimed at
quantitative results based on physical data. However, still lacking for a suitable
algebraic solver, he used smooth spline interpolations instead of the logarithmic
chemical energy density. Recent numerical simulations of coarsening in a eutectic
AgCu alloy by Anders and Weinberg [1] suffer from a severe under-resolution of the
diffuse interface.

In this paper, we present a numerical environment for the efficient and reliable
simulation of coarsening in binary alloys. A semi-implicit Euler scheme provides the
decomposition into a Cahn–Hilliard system and an elasticity equation. We analyze
existence and uniqueness of the resulting spatial problems. Spatial discretization
by adaptive finite elements based on hierarchical a posteriori error estimation [36]
provides an efficient resolution of the diffuse interface. Careful assembling by high-
order quadrature rules instead of mass lumping provides mass conservation, even for
temporally varying grids [31, p. 42, Section 6.2]. Recent Schur–Newton solvers [30,
31, 34, 35, 32] allow for an efficient and reliable solution of the resulting large-
scale algebraic systems with logarithmic nonlinearity without any regularization
but with linear multigrid efficiency. In order to provide direct compatibility with
experimental results, the coarsening speed is quantified by the temporal growth of
the mean phase radius [9] rather than the inverse of interfacial energy [26, 43].

In our numerical experiments, we observed optimal convergence rates of the
adaptive finite element discretization and local mesh independence both of the
Schur–Newton method and of a classical multigrid solver for the elasticity problem.
Equilibrium concentrations are reproduced up to 0.04% inside the phases and mass
is preserved up to 1.9 · 10−9% after 2000 time steps. Coarsening is enhanced by
increasing influence of thermomechanical stress, as expected. In quantitative sim-
ulations, the temporal growth of the mean phase radius seems to strongly depend
on the selection of the chemical free energy. More precisely, replacing a chemi-
cal free energy of logarithmic type by a smooth polynomial interpolate (cf., e.g.,
Merkle [48]), turned out to slow down the coarsening dynamics significantly (cf.
Figure 6 in Subsection 6.3 below).

As a practical application, we present the simulation of coarsening in a eutectic
AgCu brazing alloy. In agreement with experimental results, we found only minor
influence of mechanical interactions for this alloy.

2. Mathematical modeling of binary solder alloys

2.1. Generalized Cahn–Larché equations. We consider the local mass concen-
trations cA, cB of the two constituents A and B of some binary alloy in a bounded
domain Ω ⊂ R

d, d = 1, 2, 3. As concentrations satisfy the pointwise constraints cA,
cB ≥ 0 and cA + cB = 1, we can eliminate cB and reduce our considerations to
the single concentration variable c = cA ∈ [0, 1]. Introducing the displacement field
u and the corresponding linearized strain ε(u) = 1

2

(

∇u+∇uT
)

we consider the
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generalized Ginzburg–Landau free energy

(1) E(c,u) =
∫

Ω

1
2Γ(c)∇c · ∇c+Ψ(c) +W(c, ε(u)) dx−

∫

∂Ω

u · g ds.

Here, the interfacial energy term Γ(c)∇c · ∇c penalizes large concentration gradi-
ents and involves the concentration-dependent symmetric, positive definite matrix
Γ(c) ∈ R

d×d. A most simple choice is Γ(c) = γ(c)Id, where Id denotes the identity
matrix in R

d×d and

(2) γ(c) = cγA + (1− c)γB

relies on linear interpolation of constant parameters γA, γB associated with the
pure constituents A, B, respectively. The double-well potential Ψ represents the
chemical energy density and drives the uphill diffusion in the separation process
towards the equilibrium concentrations. Chemical energy densities of logarithmic
type are suggested both by theoretical and practical considerations [20, 28, 29]. To
fix the ideas, we consider the Margules ansatz [10]

(3)
Ψ(c) = β0Rθ

(

c log(c) + (1− c) log(1− c)
)

+β1(1− c) + β2c+ c(1 − c) (β3c+ β4(1− c))

with given temperature θ > 0, universal gas constant R, and material parameters
βi, i = 0, . . . , 4. Note that the choice β0 = 1/R, β1 = β2 = 0, and β3 = β4 = θc

2
leads to the classical logarithmic potential

(4) Ψ(c) = 1
2θ

(

c log(c) + (1− c) log(c)
)

+ 1
2θcc(1 − c)

with critical temperature θc > θ.
The elastic energy density W takes the form

(5) W(c, ε(u)) = 1
2 (ε(u)− ε̄(c)) : σ.

We assume Hooke’s law σ = C(c) (ε(u)− ε̄(c)) with a given, positive definite tensor
C(c) that fulfills the usual symmetry conditions of linear elasticity [51] and given
eigenstrains ε̄(c). Both Hooke’s tensor C(c) and the eigenstrains ε̄(c) are allowed
to depend on the concentration c, e.g., linearly as (2). The boundary integral term
finally accounts for the prescribed boundary stress g.

We postulate conservation of mass of the components of the alloy. Hence, the
evolution of c is given by

(6) ∂tc = − div J

with some diffusional flux J . We assume that J is defined by

J = −M(c)∇w,
where M(c) denotes a concentration-dependent mobility matrix and

(7) w =
∂E
∂c

= − div (Γ(c)∇c) + 1
2∇cTΓ′(c)∇c+Ψ′(c) + ∂

∂cW(c, ε)

is the chemical potential. Since mechanical equilibrium is expected to be attained
much faster than thermodynamical equilibrium, we assume that

(8)
∂E
∂u

= 0

holds throughout the evolution. Selecting some final time T > 0, the above equa-
tions constitute the generalized Cahn–Larché system

∂tc− divM(c)∇w = 0(9a)

− div (Γ(c)∇c) + 1
2∇cTΓ′(c)∇c+Ψ′(c) + ∂

∂cW(c, ε(u))− w = 0(9b)

div
(

C(c) (ε(u)− ε̄(c))
)

= 0(9c)
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on Ω× [0, T ] for the unknown concentration c, chemical potential w, and displace-
ment u. We prescribe the Neumann boundary conditions

(10) Γ(c)∇c · n = 0, ∇w · n = 0, σ · n = g on ∂Ω× [0, T ]

with n denoting the outward unit normal to ∂Ω and given boundary stress g.
Finally, we impose the initial condition

(11) c(·, 0) = c0 on Ω.

A thermodynamical derivation of the Cahn–Larché system (9) using a higher gra-
dient theory of mixtures was carried out by Böhme et al. [9, 10].

Observe that the Cahn–Larché system (9) is invariant under infinitesimal rigid
body motions

ker(ε) = {v : Ω → R
d | v(x) = Ax+ b with a skew symmetric matrix A}

representing the kernel of the differential operator div
(

C(c)ε(·)
)

. As only the strain
ε enters the phase field equations (9a) and (9b), the remaining elasticity equation
(9c) can be considered in the corresponding quotient space

H = (H1(Ω))d/ ker(ε).

In preparation of a weak formulation of (9), we assume that there is a splitting

(12) Ψ(c) = Ψ1(c) + Ψ2(c)

of Ψ : R → R∪{+∞} into a convex, piecewise smooth function Ψ1 : R → R∪{+∞}
with domain dom(Ψ1) = [0, 1] and a globally smooth function Ψ2 : R → R. For
example, the logarithmic potential (4) allows for such a splitting with the definitions

(13) Ψ1(c) =
1
2θ

(

c log(c) + (1− c) log(c)
)

, Ψ2(c) =
1
2θcc(1− c).

We introduce the corresponding functionals

(14) ψ1(c) =

∫

Ω

Ψ1(c) dx, ψ2(c) =

∫

Ω

Ψ2(c) dx.

Now the weak formulation of the Cahn–Larché system (9) reads as follows.

(CL) Find c ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;H1(Ω)′) with the property c(·, 0) = c0,
w ∈ L2(0, T ;H1(Ω)), and u ∈ L2(0, T ;H) such that

〈ct, v〉 + (M(c)∇w,∇v) = 0 ∀v ∈ H1(Ω),(15a)






(Γ(c)∇c,∇(v − c)) − (w, v − c)

+ψ1(v) − ψ1(c) ≥ (R(c,u), v − c)
∀v ∈ H1(Ω),(15b)

(C(c) (ε(u)− ε̄(c)) , ε(v)) =

∫

∂Ω

g · v ds ∀v ∈ H(15c)

with

R(c,u) = −Ψ′
2(c)− 1

2 (∇c)
T
Γ′(c)∇c− ∂

∂cW(c, ε(u))

holds a.e. in (0, T ]. Here, (·, ·) stands for the L2-inner product in L2(Ω), L2(Ω)d,
and L2(Ω)d×d and 〈·, ·〉 for the duality pairing.

Remark 2.1. If Ψ is smooth on (0, 1), as, e.g., the Margules potential (3), and if
the concentration c is uniformly contained in (0, 1), then (15b) can be equivalently
rewritten as the variational equality

(Γ(c)∇c,∇v) + (Ψ′
1(c), v) − (w, v) = (R(c,u), v) ∀v ∈ H1(Ω).

However, large values of Ψ′(c), as typically occurring in this formulation, often
cause severe problems in numerical computations. Anticipating that our numerical
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solver (cf. Section 4.1) relies on convexity rather than smoothness, we focus on the
more general formulation (15b).

The following existence result is due to Garcke [22].

Theorem 2.1. Assume that Ω ⊂ R
d is a bounded domain with Lipschitz boundary

∂Ω, the interfacial function takes the form Γ(c) = γI with unit matrix I ∈ R
d×d

and γ > 0 independent of c, the double-well potential Ψ is given by (4), the Hooke
tensor C(c) = C0 is independent of c, the eigenstrain takes the form ε̄(c) = cε̄1 + ε̄0
with given ε̄1, ε̄0 ∈ R

d×d, the boundary stress takes the form g = σn with constant
stress tensor σ on ∂Ω × (0, T ], the mobility M(c) = M0 > 0 is independent of c,
and c0 ∈ H1(Ω) satisfies c ∈ (0, 1) almost everywhere.

Then the weak Cahn–Larché system (CL) admits a unique solution.

Existence and uniqueness results involving more general, concentration-depen-
dent mobilityM(c), Hooke tensor C(c) and eigenstrains ε̄(c) have been presented by
Merkle [47, 48]. However, these results are valid only for globally smooth approxi-
mations of logarithmic-type potentials Ψ which may strongly deteriorate numerical
simulation, e.g. of coarsening rates (cf. Section 6.3).

3. Discretization in time and space

In this section we present a discretization of the weak formulation (CL) of the
generalized Cahn–Larché system by an Euler-type discretization in time and finite
elements in space. Since efficient approximation of the order parameter c requires
different, locally refined spatial grids at different time instants, it is convenient to
use Rothe’s method [13], i.e., (CL) is first discretized in time and the resulting
spatial problems are then discretized in space, independently from each other.

3.1. Implicit time discretization. In order to avoid any time step restrictions,
we apply an implicit Euler discretization to the second order term and to the
convex part ψ1 of the double-well potential ψ in the phase field equation (15b).
The remaining, often concave part ψ2 of ψ is taken explicitly (cf., e.g., [8]). For
a discussion of such kind of semi-implicit time discretization and its fully implicit
counterpart in the case of Allen–Cahn equations, we refer, e.g., to [7, 38]. Assuming
moderate variation of the other solution-dependent coefficients, these functions are
frozen at the preceding time step. Note that this leads to a decoupling of phase
field equation (15b) and mechanics (15c), which will simplify the algebraic solution
of the discretized spatial problems later on. Denoting

K = domψ1 = {v ∈ H1(Ω) | v(x) ∈ [0, 1] a.e. in Ω}
this approach results in the scheme:

(CL∆t) For n = 1, . . . , find (cn, wn,un) ∈ K ×H1(Ω)×H such that

(cn, v) + ∆t
(

M(cn−1)∇wn,∇v
)

=
(

cn−1, v
)

∀v ∈ H1(Ω),(16a)






(

Γ(cn−1)∇cn,∇(v − cn)
)

− (wn, v − cn)

+ψ1(v) − ψ1(c
n) ≥

(

R(cn−1,un−1), v − cn
) ∀v ∈ K,(16b)

(C(cn) (ε(un)− ε̄(cn)) , ε(v)) =

∫

∂Ω

g · v ds ∀v ∈ H.(16c)

with given initial value c0 ∈ K, displacement u0 ∈ H obtained from

u0 ∈ H :
(

C(c0)
(

ε(u0)− ε̄(c0)
)

, ε(v)
)

=

∫

∂Ω

g · v ds ∀v ∈ H,

and suitable time step size ∆t > 0.
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To show existence and uniqueness of solutions we impose the following conditions
on coefficient functions and the initial value.

(A1) M(·), Γ(·), and C(·) are uniformly bounded from below on [0, 1], i.e., there
are constants γM , γΓ, γC > 0 such that

γM |x|2 ≤M(c)x · x ∀c ∈ [0, 1], x ∈ R
d,

γΓ|x|2 ≤ Γ(c)x · x ∀c ∈ [0, 1], x ∈ R
d,

γC |x|2 ≤ C(c)x : x ∀c ∈ [0, 1], y ∈ R
d×d.

(A2) The norms of M(·),Γ(·), C(·), ε̄(·),Γ′(·), C′(·), ε̄′(·) are uniformly bounded
from above on [0, 1].

(A3) The initial value c0 is nontrivial in the sense that 0 <
(

c0, 1
)

< |Ω|.

Theorem 3.1. Assume that conditions (A1)–(A3) hold and that for a fixed n > 0
cn−1 ∈ K, cn−1 is nontrivial in the sense that 0 <

(

cn−1, 1
)

< |Ω|, and un−1 ∈ H.

Then there is a solution (cn, wn,un) ∈ K ×H1(Ω) ×H of (16) and (cn,∇wn,un)
is unique.

We only sketch the idea of the proof which is carried out in detail in the appendix.
While existence and uniqueness of the elasticity equation (16c) is straightforward,
the existence proof for the phase field system (16a)–(16b) is slightly more involved.
It is based on the equivalence of these equations to a saddle point problem for the
Lagrangian

Ln(c, w) = J n(c)−
(

c− cn−1, w
)

− ∆t

2

(

M(cn−1)∇w,∇w
)

with the strictly convex energy functional

J n(c) =

∫

Ω

1
2Γ(c

n−1)∇c · ∇c dx+ γ
2

(

c− cn−1, 1
)2

+ ψ1(c)−
(

R(cn−1,un−1), c
)

.

Note that (16a) yields (cn, 1) =
(

cn−1, 1
)

. Hence, by Theorem 3.1, c0 ∈ K and

0 <
(

c0, 1
)

< |Ω| inductively implies existence for all time steps.

Corallary 3.2. Assume that conditions (A1)–(A3) hold. Then (CL∆t) has a
solution (cn, wn,un)n=1,... and (cn,∇wn,un)n=1,... is unique.

�

3.2. Adaptive finite element discretization. We will now consider the adaptive
finite element discretization of the stationary problems (16), as obtained in each
step of (CL∆t).

3.2.1. Conforming finite element spaces on locally refined grids. We first introduce
some notation concerning finite element spaces on hierarchies of locally refined
grids.

Definition 3.1. Let T1 and T2 be two simplicial partitions of Ω ⊂ R
d, d = 1, 2, 3.

Then T2 is called a refinement of T1, if, for each e ∈ T1, the intersection Fe =
{e′ ∈ T2 | int e′∩ int e 6= ∅} is a simplicial partition of e. The refinement T2 is called
regular, if, for each e ∈ T1, the partition Fe is obtained by connecting the midpoints
of the edges of e.

Definition 3.2. (T0, . . . , Tj) is called a (regular) grid hierarchy on Ω, if T0 is a
conforming triangulation of Ω and each Ti, i = 1, . . . , j, is a (regular) refinement
and a conforming partition of a subset of Ti−1. Ti is called the i-th level grid of the
grid hierarchy (T0, . . . , Tj).
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This notion reflects the implementation of adaptively refined grids in finite ele-
ment codes, such as Dune [5, 4]. Obviously, higher levels in the grid hierarchy, in
general, only cover subsets of Ω. The corresponding partition of the whole domain
Ω is the so-called leaf grid.

Definition 3.3. Let (T0, . . . , Tj) be a (regular) grid hierarchy on Ω. Then the leaf
grid denoted by L(T0, . . . , Tj) is defined by

L(T0, . . . , Tj) = Tj ∪
j−1
⋃

i=0

{e ∈ Ti : int e ∩ int e′ = ∅ ∀e′ ∈ Ti+1}.

Note that the partition T = L(T0, . . . , Tj) of Ω consists of all elements of
T0, . . . , Tj that are not refined. In general, T involves so-called hanging vertices. A
hanging vertex is the vertex of an element e ∈ T which is contained in, but is not
a vertex of another element e′ 6= e. The set of nodes, i.e. of vertices of T which are
no hanging vertices, is called N (T ).

Now we introduce the space

S(T ) =
{

v ∈ C(Ω)
∣

∣

∣
v|e is affine ∀e ∈ T

}

⊂ H1(Ω)

of piecewise linear conforming finite elements on the partition T of Ω.

Lemma 3.3. Let (T0, . . . , Tj) be a regular simplicial grid hierarchy on Ω and let T =
L(T0, . . . , Tj). Then, for each p ∈ N (T ) there is a uniquely determined function
λTp ∈ S(T ) such that λTp (q) = δpq holds for all q ∈ N (T ). The set {λTp | p ∈ N (T )}
is a basis of S(T ).

Proof. See [31, Theorem 3.1]. �

The basis given by Lemma 3.3 is called the conforming nodal basis of S(T ). It
reduces to the classical nodal basis, if no hanging vertices occur. Otherwise the
values at hanging vertices are obtained by linear interpolation of the nodal values
(see [31, Section 3.1] for details). We emphasize that a (regular) grid hierarchy
(T0, . . . , Tj) gives rise to an associated hierarchy

S0 ⊂ · · · ⊂ Sj = S(T ) ⊂ H1(Ω)(17)

of finite element spaces Sk = S(L(T0, . . . , Tk)) with k = 0, . . . , j.

3.2.2. Finite element discretization. In the following, we assume that T is the leaf
grid of an underlying simplicial grid hierarchy (T0, . . . , Tj) with an intentionally
coarse initial grid T0. We will discretize the spatial problems occurring in (CL∆t)
with respect to the finite element space Sj = S(T ). The induced subspace hierarchy
will be denoted according to (17). In particular, the discretization of (16c) is based
on the discrete quotient space Hj = Sd

j / ker(ε) = Sd
j ∩H which is well defined since

ker(ε) ⊂ Sd
j . Furthermore, we introduce the approximate nonsmooth nonlinear

functional

ψT
1 (v) =

∑

p∈N (T )

Ψ1(v(p))

∫

Ω

λTp (x) dx,

as obtained by replacing exact integration by a quadrature rule based on nodal
interpolation in Sj .

Assuming that cold ∈ K and uold ∈ H are approximations of cn−1 and un−1 and
denoting

Kj = Sj ∩ K,
the discretized spatial problem in the n-th time step is given by
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(CLn
∆t,T ) Find (cnT , w

n
T ,u

n
T ) ∈ Kj × Sj ×Hj such that

(cnT , v) + ∆t
(

M(cold)∇wn
T ,∇v

)

=
(

cold, v
)

∀v ∈ Sj ,(18a)






(

Γ(cold)∇cnT ,∇(v − cnT )
)

− (wn
T , v − cnT )

+ψT
1 (v) − ψT

1 (cnT ) ≥
(

R(cold,uold), v − cnT
)

∀v ∈ Kj ,(18b)

(C(cnT ) (ε(un
T )− ε̄(cnT )) , ε(v)) =

∫

∂Ω

g · v ds ∀v ∈ Hj .(18c)

The algebraic solution of (CLn
∆t,T ) will be considered in Section 4.

Theorem 3.4. Assume that conditions (A1)–(A3) hold and that for a fixed n > 0
cold ∈ K, cold is nontrivial in the sense that 0 <

(

cold, 1
)

< |Ω|, and uold ∈ H.
Then there is a solution (cnT , w

n
T ,u

n
T ) ∈ Kj × Sj ×Hj of (18) and (cnT ,∇wn

T ,u
n
T )

is unique. If there is furthermore a vertex p ∈ N (T ) such that Ψ1 is differentiable
at cnT (p), then w

n
T is unique.

Proof. The existence of (cnT , w
n
T ,u

n
T ) and uniqueness of (cnT ,∇wn

T ,u
n
T ) follows by

the same arguments as in the proof of Theorem 3.1.
To show uniqueness of wn

T let p ∈ N (T ) such that Ψ1 is differentiable at ξ =
cnT (p). Then ξ ∈ (0, 1) and we can use v± = cnT ± δλTp for sufficiently small δ > 0 in
(18b). Testing (18b) with v+ and v− for two solutions wn

T ,1 and wn
T ,2, respectively,

and adding both inequalities yields

(

wn
T ,2 − wn

T ,1, λ
T
p

)

≥
(Ψ1(ξ)−Ψ1(ξ + δ)

δ
− Ψ1(ξ − δ)−Ψ1(ξ)

δ

)

∫

Ω

λTp (x) dx.

Taking the limit δ → 0 and switching the role of wn
T ,1 and wn

T ,1 we get

0 =
(

wn
T ,2 − wn

T ,1, λ
T
p

)

=
(

wn
T ,2 − wn

T ,1, 1
) (λp, 1)

|Ω| .

The last equation holds because wn
T ,2 − wn

T ,1 is constant and implies that this
constant is zero. �

Note that the condition for uniqueness of wn
T is always satisfied for logarithmic

potentials of the form (3) because 0 < cnT < 1. For the obstacle potential it is
satisfied if there is at least on vertex p ∈ N (T ) in the discrete interfacial region.

Usually, cold is a finite element function on a grid T old. In case of adaptive
refinement, T old is usually different from T . Desired properties as, e.g., mass
conservation (cnT , 1) =

(

cold, 1
)

then impose the following restrictions on the choice

of possible approximations of the occurring L2-inner products.

(i) To guarantee mass conservation, the approximate inner products used on
the left and right hand side of (18a) should both be exact for v = 1.

(ii) To guarantee that (18a) is equivalent to cnT = cold for ∆t → 0, the approx-
imate inner products on the left and right hand side of (18a) should be the
same.

(iii) To preserve the symmetric saddle point structure (see proof of Theorem 3.4),
the approximate inner products used on the left hand side of (18a) and
(18b) should be the same.

As a consequence of (i), lumping should be carried out with respect to a fine grid
that contains both T and T old. In general, lumping then no longer provides a
diagonal matrix and thus its main advantage is lost. Hence, lumping is avoided
here.

We emphasize that for affine parameter functions Γ, C, ε̄, andM , e.g., of the form
(2), and finite element functions cold and uold, all integrals involved in (CLn

∆t,T )
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can be calculated exactly using suitable quadrature rules. Numerical computations
indicate that this is particularly important for the leading order terms. As expected,
such quadrature rules usually involve a fine grid that contains both T and T old [40].

3.2.3. Hierarchical a posteriori error estimation. As the concentration c is expected
to strongly vary across phase boundaries, spatial adaptivity based on a posteriori
error estimates is mandatory. Hierarchical error estimates rely on the solution
of local defect problems. While originally introduced for linear elliptic problems
[14, 17, 41, 60] this technique was successfully extended to nonlinear problems [3],
constrained minimization [42, 44, 45, 56, 61] and nonsmooth saddle point problems
[36, 31].

Thermomechanical stress is caused by different thermal expansion coefficients
and the mismatch of the different constituents [19]. Hence, we assume that the
accuracy of the finite element approximation (18c) is controlled by the resolution
of the diffuse interface and thus concentrate on hierarchical error estimation of the
phase field variables cnT and wn

T .
To this end, we note that the discrete spatial Cahn–Hilliard system (18a), (18b)

is equivalent to a saddle point problem in Sj × Sj for a Lagrangian functional Ln
T

similar to Ln. In fact, selecting cn−1 = cold and un−1 = uold, the Lagrangian Ln
T is

obtained from Ln by replacing ψ1 by the approximation ψT
1 . Following [31, 36], we

now derive an a posteriori error estimate by suitable approximation of the defect
problem associated with the defect Lagrangian

D(ec, ew) = Ln(cnT + ec, w
n
T + ew)− ψ1(c

n
T + ec) + ψT

′

1 (cnT + ec).

In the first step the defect problem is discretized with respect to a larger finite
element space Q×Q, where Q = S(T ′) and T ′ is obtained by uniform refinement
of T . Note that we have Q = Sj ⊕ V with V denoting the incremental space

V = span{λT ′

p | p ∈ E ′}.

Here, E ′ = N (T ′) \ N (T ) is the set of non-hanging edge mid points in T .
In the second step, the discrete defect problem is localized by ignoring the cou-

pling between Sj and V and also the coupling between λT
′

p for all p ∈ E ′. Denoting

Dp(r, s) = D(rλT
′

p , sλT
′

p ), this results in the local saddle point problems

(ec,p, ew,p) ∈ R
2 : Dp(ec,p, s) ≤ Dp(ec,p, ew,p) ≤ Dp(r, ew,p) ∀r, s ∈ R

for all p ∈ E ′ that give rise to the hierarchical a posteriori error estimate

(19) η =
(

∑

p∈E′

η2p

)
1

2

, η2p =
∥

∥

∥
ec,pλ

T
′

p

∥

∥

∥

2

c
+
∥

∥

∥
ew,pλ

T
′

p

∥

∥

∥

2

w,T ′
, p ∈ E ′

for the norms

‖c‖2c =
(

Γ(cold)∇c,∇c
)

+ γ0 (c, 1)
2 ,

‖w‖2w,T = ∆t
((

M(cold)∇(w),∇w
)

+ ‖w‖20,T
)

and an averaged surface tension coefficient γ0 = 1
d

∑d
i=1 Γii(0).

After elimination of ew,p, the local saddle point problems can be expressed in
terms of scalar convex minimization problems which can be easily solved, e.g., by
bisection. Numerical computations indicate efficiency and reliability of this error
estimate [36], but theoretical justification is still open.
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3.2.4. Adaptive mesh refinement. Adaptive mesh refinement based on a posteriori
error estimation is carried out in two steps. In each time step, we first select a
hierarchical coarse mesh. This mesh is intended to be coarse enough to allow for
adaptive grids that are strongly varying in time and fine enough to make sure that
relevant features of the solution enter the a posteriori error estimation.

To this end, we apply successive derefinement to the grid T old from the preceding
time step. In the first time step, we chose a uniformly refined mesh T old which is
sufficiently fine to resolve all relevant features of the initial value c0. In each of
the m derefinement steps, we derefine all simplices e of T old that were obtained by
more than minLevel refinements and satisfy either the condition (i) |∇(Iec

old)|e| <
Tolderefine or the condition (ii) |∇(Ie′c

old)|e′ | ≥ Tolderefine with e′ chosen such that
e is obtained by refinement of e′. Here, Ie and Ie′ denote the linear interpolation
on e and e′, respectively. Note that in the case |∇(Iec

old)|e| > Tolderefine the
condition (ii) indicates that some strong variation is present and not overlooked
after derefinement.

Adaptive mesh refinement of the resulting grid T is based on the local error
indicators ηp defined in (19). In each step, the indicators ηpi

, i = 1, . . . , |E ′|, are
arranged with decreasing order, to determine the minimal number i0 of indicators
such that

(20)

i0
∑

i=1

η2pi
> κη2

holds with a given parameter κ ∈ [0, 1]. Then all simplices e ∈ T with the property
pi ∈ e for some pi with i ≤ i0 are marked for refinement [18]. Each marked simplex
is partitioned by (red) refinement [6, 12]. Possible additional refinement is used to
uniformly bound the ratio of diameters of neighboring simplices. The refinement
process is terminated, if the estimated relative error is less than a given tolerance
Toladapt > 0, i.e.,

(21) η < Toladapt ·
(

‖c‖2c + ‖w‖2w,T

)
1

2

.

In all numerical experiments to be reported below, we selected the derefinement
parameters m = 2, minLevel = 6, and Tolderefine = 2.0, and the error tolerance
Toladapt = 0.1 if not explicitly stated otherwise. In general we used κ = 0.8 for the
refinement criterion (20). In order to avoid severe ’overrefinement’ the parameter
κ was reduced heuristically if η was already close to the desired tolerance in (21).

4. Algebraic solvers

In this section we will discuss the efficient algebraic solution of the discrete
problems (CLn

∆t,T ) by iterative methods. In each time step this amounts in the

solution of the nonsmooth nonlinear saddle point problem (18a)–(18b) and the
linear equation (18c) in the quotient space Hj .

4.1. Nonsmooth Schur–Newton methods. Assuming an ordering λTp1
, . . . , λTpN

with N = |N (T )| of the basis of S(T ) we can represent cnT and wn
T by coefficient

vectors c, w ∈ R
N . Following the proof of Theorem 3.1 we will use an equivalent

reformulation of (18a)–(18b) with 0 = γ0
(

cnT − cold, 1
)

(1, v − cnT ) added to (18b)
resulting in the discrete variational inequality

(Ac) · (v − c)− (Mw) · (v − c) + ϕ(v)− ϕ(c) ≥ f · (v − c) ∀v ∈ R
N
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with A,M ∈ R
N×N , f ∈ R

N , and the functional

ϕ(v) =

N
∑

i=1

Ψ1(vi)

∫

Ω

λTpi
(x) dx.

Utilizing the subdifferential ∂ϕ : RN → 2R
N

of ϕ the whole system can be written
as inclusion

(

A+ ∂ϕ −M
−M −C

)(

c
w

)

∋
(

f
g

)

(22)

with symmetric positive semi-definite C ∈ R
N×N and symmetric positive definite

matrix A ∈ R
N×N . Notice that A is the sum of a sparse matrix of rank (N − 1)

and a dense matrix of rank 1. The inclusion (22) is called a saddle point problem
since its solutions are saddle points of

L(c, w) =
1

2
Ac · c− f · c+ ϕ(c)−Mc · w − g · w − 1

2
Cw · w.

In case of a logarithmic potential (3), the inclusion (22) can be as well written
as an equation, involving the derivative of Ψ. However, in light of its singularities
at c = 0, 1 and desired robustness of iterative solution with respect to temperature
θ, we concentrate on the more general formulation (22).

We now describe the iterative solution of the saddle point system (22) by so-
called nonsmooth Schur–Newton multigrid methods, NSNMG methods in short.
Here, it does not matter whether ∂ϕ is set- or single-valued, because NSNMG relies
on convexity rather than smoothness. While originally introduced for saddle point
problems with obstacles [34, 35], NSNMG has been meanwhile extended to more
general nonlinearities with nonsmooth convex energies [31, 32, 37]. The NSNMG
approach relies on the equivalent minimization problem

w ∈ R
N : h(w) ≤ h(v) ∀v ∈ R

N

with the dual energy functional

h(w) = − inf
v∈RN

L(v, w).(23)

This equivalence was already used in the proofs of Theorems 3.1 and 3.4.
Now the main observation is that h : R

N → R is convex and differentiable
with Lipschitz continuous derivative ∇h. Hence, the saddle point system (22) is
equivalent to the equation

(24) ∇h(w) = 0,

where the derivative ∇h is given by the nonlinear Schur-complement

∇h(w) =M
(

(A+ ∂ϕ)−1(f +Mw)
)

+ Cw + g.

Lipschitz continuity of ∇h allows to apply Newton-like gradient related descent
methods

wν+1 = wν − ρν

(

∂2h(wν)
)−1

∇h(wν)(25)

with ∂2h(wν) being a generalized linearization of ∇h at wν and ρν a suitable
damping parameter. Exploiting Lipschitz continuity and enforcing a chain rule, we
obtain the linear Schur-complement

∂2h(wν) =MA+
ν M + C
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with A+
ν denoting the Moore–Penrose pseudoinverse of the truncated matrix

(Aν)ij =











Aij if i 6= j and i, j ∈ Iν ,
Aii +Ψ′′

1(c
ν
i ) if i ∈ Iν ,

0 else.

The inactive set Iν =
{

i | Ψ1 is twice differentiable at cνi and Ψ′′
1(c

ν
i ) < cmax

}

is

determined by the associated primal iterate cν ,

cν = (A+ ∂ϕ)−1(f +Mwν).(26)

Here cmax > 0 is a large constant meant to avoid unbounded diagonal elements of
Aν . Assuming existence and uniqueness of the solution wn

T , it was shown in [31, 32]
that the resulting algorithm is globally convergent, if the damping parameters ρν
are properly chosen, e.g., by bisection or by the Armijo rule. Global convergence is
preserved by inexact evaluation of the directions (∂2h(wν))−1∇h(w) with increasing
accuracy.

Each NSNMG iteration is stopped, if the norm of the actual correction of the
dual iterate falls below a given threshold, i.e.,

(27)
∥

∥wν+1 − wν
∥

∥

w,T
≤ TolNSNMG .

In the numerical experiments reported below TolNSNMG = 10−12 was chosen.
Each iteration step of NSNMG requires the (approximate) solution of the nonlin-

ear Allen–Cahn-type problem (26) and the linear system (25) for the Schur comple-
mentMA+

ν M+C in order to obtain∇h(wν) and the new iterate wν+1, respectively.
In our numerical computations to be reported below, the nonlinear Allen–Cahn-
type problem (26) is solved in an efficient and robust way by V(3,3) cycles of
truncated nonsmooth Newton multigrid (TNNMG), combining nonlinear relaxation
methods with nonsmooth Newton techniques [31, 33, 39]. The linear system (25)
is equivalent to a linear saddle point problem and can be solved by a multitude of
direct or iterative solvers. We used the GMRES method [54] preconditioned with
a multigrid method with block Gauß–Seidel smoother [55, 58, 62] in our numerical
computations.

4.2. A multigrid method for singular elasticity problems. In order to de-
scribe the iterative solution of the elasticity problem (18c), we first consider the
related problem

ũn
T ∈ Sd

j : a(ũn
T ,v) = l(v) ∀v ∈ Sd

j(28)

with symmetric positive semi-definite bilinear form and linear functional given by

a(·, ·) = (C(cnT )ε(·), ε(·)) , l(·) =
∫

∂Ω

g · (·) ds + (C(cnT )ε̄(cnT ), ε(·)) .

Without loss of generality we assume that g satisfies the compatibility condition
∫

∂Ω

g · v ds = 0 ∀v ∈ ker(ε).

Then the solutions space of (28) is given by un
T + ker(ε).

For the solution of (28) we can now use a classical linear multigrid method
with linear Gauß–Seidel smoother with respect to the hierarchy Sd

0 ⊂ · · · ⊂ Sd
j of

subspaces, as introduced in (17). We emphasize that the Gauß–Seidel smoother is
well-defined for all levels k because the vector valued nodal basis functions of Sd

k

are not contained in the kernel ker(ε) of the bilinear form a.
It is easy to see that this multigrid method converges to the solution un

T with

respect to the half-norm a(·, ·)1/2. For the Poisson problem with Neumann bound-
ary conditions discretized with respect to a hierarchy of quasi-uniform grids, mesh
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independence of the convergence rates was shown in [46]. Mesh independence for
classical multigrid applied to the present singular elasticity problem (28) can be
shown using the same arguments.

Notice that only the projections of the iterates to H converge to un
T with respect

to the H1(Ω)d-norm. This is due to the non-uniqueness of rigid body motions of
solutions to (28).

5. Quantification of coarsening

In order to assess the coarsening of microstructure in binary alloys we need to
introduce a characteristic length scale of a given grain distribution. It is well-known
that for the Cahn–Hilliard equation (without elasticity) such a length scale – in a
time averaged sense – cannot grow faster than t1/3 (cf. [43, 16, 52, 53]). Obviously,
there are no corresponding global lower bounds, as there are stable states that do
not coarsen at all. While the inverse of the Ginzburg–Landau energy has emerged
as a convenient length scale in analysis and numerical computations (cf. [16, 25,
43, 52, 53, 59]), it suffers from inaccessibility in physical experiments. Hence,
we choose the so-called mean phase radius r̄ (i.e. mean radius of precipitates)
as characteristic length scale to maintain quantitative comparability with material
science experiments as for example in [9]. In order to determine r̄ we follow standard
procedure of quantitative stereology performing a lineal analysis (cf. [57]). From this
we can approximate the mean intercept length L̄ which in turn can be translated
into the mean phase radius assuming spherical phase shape. The details of the
applied procedure are given below.

For the following let’s call the matrix and particle (or precipitate) phases β- resp.
α-phase and assume that the phase field value cα of the α-phase is greater than
that of β-phase, cβ . In this context let Θ denote the set of secants of α-precipitates
and L(ω), ω ∈ Θ their lengths. The mean intercept length is then

L̄ = E(L)

the expected value of secant length assuming uniform distribution on Θ. In order
to approximate L̄ we lay an equidistant cube mesh with mesh size h over the
computational domain and count the number of mesh edges NE and the number
of line segments NL intersecting an α-precipitate. Partially intersecting edges are
counted as one half. Thus we have as an approximation

L̄ ≈ NE · h/NL.

If no particles of diameter less than
√
2h are present, counting the intersecting edges

amounts to counting grid vertices inside α-regions and multiplying by the dimension
of the computational domain (note that smaller particles might be overlooked this
way, cf. fig. 1a). A vertex is counted as inside α-phase iff the value of the phase
field at its coordinates is above a given threshold c0. As intersecting line segments
we count nonempty α-vertex sets which are discretely connected along mesh lines
(cf. fig. 1b). Under the assumption that the minimal distance of two neighboring
precipitates is larger than h this is exactly the number NL.

The mean intercept length of a single spherical particle of radius r is νd · r where
νd = π

2 in 2D and νd = 4
3 in 3D. Hence the mean phase radius of conglomerates of

particles – under the assumption of spherical phase shape – is given by

r̄ =
L̄

νd
.
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Figure 1. Illustration of our lineal analysis. In this exampleNE =
12; NL = 7

6. Coarsening of microstructure in a eutectic AgCu brazing alloy

In this section we simulate the microstructure evolution in a eutectic silver/copper
(Ag71Cu29) brazing alloy utilizing the Cahn–Larché model (9) and its discretiza-
tion (18).

6.1. Problem setting. The computations are carried out in the square Ω =
[−L,L]2 with edge length 2L = 0.1µm during the time interval from zero to
T = 375 s = 6.25min. We choose c to be the copper concentration so that c = 0
corresponds to pure silver and c = 1 corresponds to pure copper. Concerning the
setting and material parameters, we closely follow [10], i.e., for the alloy in question
the eigenstrains are assumed to result only from thermal expansion: ε̄(c) = ∆θA(c).
In our computations we chose ∆θ = 1000K. The surface tension, mobility, and
thermal expansion then reduce to scalar functions

Γ(c) = γ(c)Id, M(c) = m(c)Id, A(c) = a(c)Id.

The corresponding quantities for the pure constituents, i.e. for c = 0, 1, are given in
Table 1 (note that due to a different scaling in our equations, we need to rescale γ
by a factor of 2 as compared to [10]). The entries of the Hooke tensors CAg and CCu

for pure silver and copper, respectively, are given in Table 2. As in (2), the values
of the functions γ, m, a, and C at c ∈ (0, 1) are obtained by linear interpolation.

γAg[N] γCu[N] mAg[
m5

Js ] mCu[
m5

Js ] aAg[
106

K ] aCu[
106

K ]
3.06 · 10−10 3.808 · 10−10 7.25 · 10−25 3.65 · 10−25 18.9 16.5

Table 1. Material parameters (taken from [10])

C11
Ag[GPa] C12

Ag[GPa] C44
Ag[GPa] C11

Cu[GPa] C12
Cu[GPa] C44

Cu[GPa]

168 121 75 124 94 46

Table 2. Entries of the Hooke tensors for pure silver and copper
in Voigt notation (taken from [10])

The chemical energy density Ψ takes the form (3) with parameters βi given in
Table 3. The splitting (12) is chosen according to

Ψ1(c) = β0Rθ (c log(c) + (1− c) log(1− c))

+ (β4 − β3)c
3 + (β3 − β4)c

2 + (β2 − β1 + β4)c+ β1

Ψ2(c) = −β4c2.
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β0[
mol
m3 ] β1[

GJ
m3 ] β2[

GJ
m3 ] β3[

GJ
m3 ] β4[

GJ
m3 ]

1.11248134 · 105 −5.20027 −7.2738 2.96683 3.01417

Table 3. Fitting parameters for Margules ansatz at θ = 1000K
and given material data (taken from [10])

In our computations we chose L as unit length, Ψ0 = 0.1 GJ
m3 as unit energy

density, and 10−25 m5

Js as unit mobility resulting in a unit time of t0 = 250 s. Nu-

merical tests suggest the choice ∆t = 7.5 ·10−4t0 = 0.210−3T of the time step. The
coarsest grid T0 consists of a partition of Ω into two congruent subtriangles. In the
first time step, we start the derefinement process described in Section 3.2.4 from
T old obtained by 8 uniform refinements of T0.

6.2. Evolution of concentration. In our first simulation, we apply no bound-
ary stress and select the initial condition c0 as shown in the upper left picture of
Figure 2. We chose these default data in the sequel, if not otherwise stated. The
colors blue and red indicate high concentrations of silver and copper, respectively.
The remaining pictures in Figure 2 illustrate the evolution of the approximate con-
centration cnT together with the corresponding final grids of the adaptive procedure
over various time steps n = 50, . . . , 2000. Observe that the coarsening significantly
slows down during the evolution (see Subsection 6.3 for details).

Mass conservation of the constituents is a key feature of the physical process
which should be preserved in numerical simulations. In our computation of over
2000 time steps, we found the maximal relative deviation from the initial mass of
copper of

max
n=1,...,2000

|
∫

Ω c
n
T −

∫

Ω c
0|

∫

Ω
c0

≈ 1.9 · 10−11

The equilibrium concentrations

cα = 0.05096976816135458 and cβ = 0.9460270077128279

of the Ag-rich α- and the Cu-rich β-phase, respectively, are determined by the
Maxwell-tangent construction (see e.g. [49]). In our computations the phase equi-
libria are recovered up to about 4 ·10−4. This is illustrated by Figure 3 showing the
cross section of the initial condition (black) and of the approximate solution c2000T

along the y-axis.
In order to study the influence of thermomechanical stress on the evolution of

the phase field we applied boundary stress of the form

(29)
g = −gn on ∂Ω

g(x) = g0 GPa, if x = (x1,±L) and g(x) = 0GPa, otherwise

with the different values g0 = 0, . . . , 20GPa, but observed only minor changes in
the evolution (see also Subsection 6.3). In this and the following experiment the
error tolerance Toladapt = 0.05 was chosen.

In order to (unphysically!) enhance the influence of thermomechanical stress, the
elastic energy density W(c, ε(u)) is multiplied by a factor of ω = 1, 10, 100, 1000
while zero boundary stress is prescribed. This leads to a significantly faster dy-
namics and oblong phase shapes oriented along the coordinate directions. This is
illustrated in Figure 4 that shows the initial condition c0 and the approximate con-
centration cnT together with the underlying grids for ω = 1000 and the time steps
n = 40, 60, 80, 100, 150.
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Figure 2. Initial value c0 and approximation cnT at time steps
n = 50, 100, 200, 300, 400, 800, 1000, 2000.

1.0 0.5 0.0 0.5 1.0
y

0.0
cα

0.2

0.4

0.6

0.8

cβ
1.0

p
h
a
se

 f
ie

ld

Figure 3. Cross section of the initial condition (black) and of
the approximate solution c2000T along the y-axis. The dotted lines
represent the equilibrium concentrations cα and cβ .

6.3. Evolution of mean phase radii. In this subsection, we investigate the dy-
namics of coarsening in terms of the evolution of the mean phase radii in more
detail.

In our first experiment we investigate the sensitivity of the evolution of mean
phase radii with respect to a smooth approximation of the logarithmic-type Mar-
gules potential Ψ as described in (3) with parameters βi given in Table 3. To this
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Figure 4. Initial value c0 and approximation cnT at time steps
n = 40, 60, 80, 100, 150 for (unphysically!) increased elastic energy
density W(c, ε(u)).

end, we consider the quartic Hermite interpolation PΨ(c) =
∑4

i=0 αic
i of Ψ at the

equilibrium concentrations cα, cβ , and at the eutectic point ceut, characterized by

PΨ(cα) = Ψ(cα), PΨ(cβ) = Ψ(cβ), PΨ(ceut) = Ψ(ceut)

(PΨ)′(cα) = Ψ′(cα), (PΨ)′(cβ) = Ψ′(cβ).

The left and the right picture in Figure 5 show Ψ (solid), PΨ (dashed), and

0.2 0.4 0.6 0.8 1.0

-6.5

-6.0

-5.5

0.2 0.4 0.6 0.8 1.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Figure 5. Left: Margules potential Ψ (solid), quartic approxima-
tion PΨ (dashed). Right: First derivatives.

their derivatives, respectively. The splitting (12) of PΨ is selected according to

PΨ
1 =

∑4
i=0

i6=3

αic
i and PΨ

2 = α3c
3.

We prescribe zero boundary stress (see Figure 2 for the corresponding evolution
of the approximate concentrations). Now Figure 6 shows the evolution of the mean
phase radii for the Margules potential Ψ (black) and its quartic approximation PΨ

(red), respectively. It turns out that quartic approximation strongly perturbs the
coarsening behavior which is in agreement with the engineering literature [19, 20].

In our next experiment, we investigate the influence of strongly varying bound-
ary pressure g0 = 0, 1, 2, 3, 4, 5, 10, 20GPa in the boundary condition (29). Figure 7
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Figure 6. Approximate evolution of mean phase radii for Mar-
gules potential Ψ (black) and its quartic approximation PΨ (red).

shows that even large mechanical stress has only minor influence on the coars-
ening behavior. This effect has also been observed in previous simulations [20,
Section 4.3].
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Figure 7. Approximate evolution of mean phase radii for bound-
ary pressure g0 = 0GPa (red), 1GPa (blue), 2GPa (black), 3GPa
(yellow), 4GPa (magenta), 5GPa (cyan), 10GPa (green), and
20GPa (gray).

For a qualitative investigation of mechanically induced coarsening, the elastic
energy density W(c, ε(u)) is replaced by ωW(c, ε(u)) with (unphysical!) amplifica-
tion factors ω = 1, 10, 100, 1000. Figure 8 shows that the coarsening speed increases
with increasing ω, as expected (recall the evolution of concentrations for ω = 1000
depicted in Figure 4).
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Figure 8. Approximate evolution of mean phase radii for (un-
physically!) amplified elastic energy by the factor ω = 1 (red), 10
(blue), 100 (black), and 1000 (yellow).
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6.4. Numerical aspects. We now briefly illustrate the performance of the main
building blocks of our numerical solution algorithm. For more detailed numerical
experiments, we refer to [31, 32, 34, 36].

We first consider a posteriori error estimation and adaptive mesh refinement as
described in Subsections 3.2.3 and 3.2.4, respectively. The corresponding adaptive
algorithm is applied to the spatial problem arising in the n = 1st time step of the
discretized Cahn–Larché system (16) with material data and discretization param-
eters given in Subsection 6.1. The grid T satisfying the stopping criterion (21)
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Figure 9. Left: Adaptively refined grid T . Right: Estimated
error η over N1/2 (solid) in comparison with O(N−1/2) (dashed).

with Toladapt = 0.03 after 9 adaptive refinement steps is shown in the left picture
of Figure 9. Observe how the initial, 8 times uniformly refined grid T old has been
adaptively coarsened and then refined according to the new approximation in the
new time step. The right picture shows the corresponding estimated error η, as
introduced in (19), over

√
N , N denoting the corresponding number of unknowns.

Note that h = N−1/2 is the mesh size in case of uniform refinement. The dashed line
indicates O(N−1/2). A comparison suggests that our adaptive refinement algorithm
provides approximations with optimal order.

Using the same problem as above, we now illustrate the iterative solution of the
discretized phase field system (18a), (18b). On each computational grid the overall
iteration is stopped once the termination criterion (27) with TolNSNMG = 10−12

is matched. The initial iterate is selected as the final iterate from the preceding
refinement step (nested iteration). The resulting number of Nonsmooth Schur–
Newton Multigrid (NSNMG) iterations required to reach this tolerance ranges from
5 on the coarser grids to 3 on the finer grids.

Recall that each step of NSNMG is quite expensive (cf. Subsection 4.1): It
involves the approximate solution of the discrete Allen–Cahn-type system (26) by
V(3,3) cycles of truncated nonsmooth Newton multigrid (TNNMG) and of the linear
saddle point problem (25) by a GMRES method with a multigrid preconditioner
with block Gauß–Seidel smoother. In order to illustrate the share of the numerical
solution of each of these two subproblems in the computational effort of an NSNMG
iteration step, we consider the discrete spatial problems occurring in the first time
step after j = 0, . . . , 9 adaptive refinement cycles. This leads to a minimal mesh
size

√
2 · 2−11 and 2739799 unknowns on the final level.

For a fair comparison, the required computational work is measured in work
units rather than iteration steps. One work unit is chosen to be the cpu time for
one V(3,3) cycle of TNNMG on the corresponding grid. While the sum of work
units for all subproblems on each refinement level is ranging from 12 to 20 for the
discrete Allen–Cahn-type system (TNNMG), it reaches values from 647 to 2784 for
the linear saddle point problem (preconditioned GMRES). Similarly, for TNNMG
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the average error reduction over all subproblems occurring on each refinement level
j = 1, . . . , 9 never exceeds 0.05, but even reaches values of 0.98 for preconditioned
GMRES on finer grids.

Thus, the overall computational work is obviously dominated by the linear sad-
dle point solver. A first, simple, reason is that the linear saddle point problem
(25) is larger: It involves twice the number of unknowns of the discrete Allen–
Cahn-type system (26). Another reason is that an equivalent reformulation of the
discrete Allen–Cahn-type system in terms of convex minimization could be directly
exploited in the algebraic solution process. This is not the case for linear saddle
point problems.

We finally consider the (indefinite) linear elasticity problem (18c). Figure 10
shows the average error reduction ρk per iteration step of the Quotient Space Multi-
grid method (QMG) described in Subsection 4.2 for a Dirichlet problem of linear
elasticity (triangles) and the corresponding Neumann problem (circles) in 2D (solid)
and 3D (dashed). The iteration is stopped once the estimated relative accuracy of
10−10 is reached and the initial iterates are obtained by nested iteration. The av-
erage error reduction ρk seems to saturate with increasing refinement level. This is
in perfect agreement with theoretical considerations (cf., e.g., [46]).
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Figure 10. Averaged error reduction per iteration step of QMG
over number of unknowns for a Dirichlet problem of linear elasticity
(triangles) and the corresponding Neumann problem (circles) in 2D
(solid) and 3D (dashed)

7. Appendix

7.1. Existence and uniqueness of time-discrete solutions. In this section we
prove Theorem 3.1. The following continuity result will be helpful.

Lemma 7.1. Let z ∈ L1(Ω). Then the functional g(v) = (z, v) is continuous on
each L∞(Ω)-bounded subset of Lp(Ω), 1 ≤ p ≤ ∞.

Proof. For p = ∞ the assertion follows from Hölders inequality. Let 1 ≤ p < ∞.
Consider some U ⊂ Lp(Ω) such that there is r > 0 with |v(x)| ≤ r a.e. in Ω for all
v ∈ U . We define the function f : Ω× R → R according to

f(x, v) =



















z(x)v, if |v| ≤ r,

z(x)r, if v > r,

−z(x)r, if v < −r.
Then the corresponding superposition operator F , given by (F (v))(x) = f(x, v(x)),
satisfies F (v) = zv for all v ∈ U . Moreover, |F (v)| ≤ r|z| holds for all v ∈ Lp(Ω) and
therefore F : Lp(Ω) → L1(Ω). As f(x, ·) is continuous on R for all x ∈ Ω and f(·, v)
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is measurable on Ω for all v ∈ R [2, Theorem 3.7] implies that F : Lp(Ω) → L1(Ω)
is even continuous. Hence U ∋ v 7→

∫

Ω
F (v) dx = (z, v) is continuous from U to R

with respect to ‖ · ‖Lp(Ω). �

Note that the linear map is Gâteaux differentiable on bounded functions but its
Gâteaux derivative g′(v) = g is in general not continuous on this space.

Lemma 7.2. Let cn−1 ∈ K = {v ∈ H1(Ω) | v(x) ∈ [0, 1] a.e} and un−1 ∈ X. Then
the functional J n : H1(Ω) → R ∪ {∞} given by

J n(c) =

∫

Ω

1
2Γ(c

n−1)∇c · ∇c dx+ γ
2

(

c− cn−1, 1
)2

+ ψ1(c)−
(

Rn−1, c
)

with Rn−1 = R(cn−1,un−1) is proper, strongly convex, and lower semi-continuous
on H1(Ω).

Proof. Utilizing the assumptions (A1), (A2) on Γ, the Poincaré inequality implies
that the two quadratic terms in J n are strongly convex and continuous on H1(Ω).
Furthermore ψ1 is convex, proper, and lower semi-continuous on H1(Ω) (see e.g.
[31, Lemma 3.5]). 1

It remains to show that the linear functional
(

Rn−1, ·
)

is lower semi-continuous.

To this end, first note that cn−1(x) ∈ [0, 1] a.e. in Ω together with smoothness of Ψ2

implies Ψ′
2(c

n−1) ∈ L∞(Ω). Utilizing the boundedness of the coefficient functions
occurring in Rn−1, cn−1 ∈ H1(Ω), and un−1 ∈ H1(Ω)d, we get

z = 1
2

(

∇cn−1
)T

Γ′(cn−1)∇cn−1 + 1
2ε(u

n−1) : C′(cn−1)ε(un−1) ∈ L1(Ω)

and all other terms are in L2(Ω). Lemma 7.1 implies that v 7→ g(v) := (z, v)
is continuous on K = dom(J n) with respect to ‖ · ‖L2(Ω), and all the more with
respect to ‖ · ‖H1(Ω). Hence, the extension of g by infinity is lower semi-continuous

on H1(Ω). Thus J n is lower semi-continuous on H1(Ω). �

Note that strong convexity implies strict convexity and coercivity.

Proof of Theorem 3.1. To show existence of (16a)–(16b) we can proceed as in [31,
Theorem 3.8]: First we note that these equations are equivalent to a saddle point
problem for the associated Lagrangian functional

Ln(c, w) = J n(c)−
(

c− cn−1, w
)2 − ∆t

2

(

M(cn−1)∇w,∇w
)

.

Note that the additional integral term
(

c− cn−1, 1
)

in J n vanishes if (16a) is

satisfied. While Ln(c, ·) is trivially concave and upper semi-continuous, Lemma 7.2
provides convexity, coercivity, and lower semi-continuity of Ln(·, w). Now existence
follows from [21, Chapter VI, Proposition 2.4], if the dual functional

h(w) = − inf
v∈K

Ln(v, w)

is coercive on H1(Ω). This can be shown as in [31, Theorem 3.8] by proving that

h(w) ≥ −Ln(c(w), w) ≥ C‖w‖H1(Ω) − C

holds with c(w) = (1 + sgn (w, 1))/2 = const ∈ {0, 0.5, 1}.
In order to prove uniqueness, assume that (cn1 , w

n
1 ) and (cn2 , w

n
2 ) are two solutions.

Then testing (16a) for (cni , w
n
i ) with w

n
i −wn

j , j 6= i, and adding the equations yields

(wn
2 − wn

1 , c
n
1 − cn2 ) = ∆t

(

M(cn−1)∇(wn
1 − wn

2 ),∇(wn
1 − wn

2 )
)

.(30)

1While the proof in [31] is given for a special case of Ψ1 it directly carries over to the class of
convex functions considered here.
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Similarly testing (16b) for (cni , w
n
i ) with c

n
j , j 6= i, yields

(

Γ(cn−1∇(cn1 − cn2 ),∇(cn1 − cn2 )
)

+ (wn
2 − wn

1 , c
n
1 − cn2 ) ≤ 0.(31)

Inserting (30) into (31) provides uniqueness on ∇cn and ∇wn. Testing (16a) with
v = 1 = const finally provides uniqueness of (cn, 1) and therefore of cn.

For the remaining problem (16c) the assumptions (A1)–(A3) on the coefficient
functions ensure that the right hand side is in H1(Ω)′ and therefore the bilinear
form (C(cn)ε(·), ε(·)) is (ε(·), ε(·))-elliptic. Now Korn’s inequality (see, e.g., [51,
Theorem 3.5]) provides H1(Ω)d-ellipticity on the quotient space H and thus the
existence of a unique solution un ∈ H. �
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