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Abstract

We present the analysis of advection-diffusion equations with random coefficients on mo-
ving hypersurfaces. We define a weak and a strong material derivative, which account for the
spatial movement. Then we define the solution space for these kind of equations, which is the
Bochner-type space of random functions defined on a moving domain. We consider both cases,
uniform and log-normal distributions of the diffusion coefficient. Under suitable regularity as-
sumptions we prove the existence and uniqueness of weak solutions of the equation under anal-
ysis, and also we give some regularity results about the solution.
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1 Introduction

There is a growing interest in partial differential equations (PDEs) with random coefficients that
model problem parameters which include some uncertainty. The uncertainty can come from intrinsic
variability of the physical system or when the input data of the real system are not completely known
[26]. This work addresses specifically parabolic PDEs with random coefficients which have so far
been studied in several papers (see e.g. [3, 7, 22, 25]). Furthermore, these PDEs occur in many
applications, such as hydrogeology, material science, fluid dynamics, biological fluids etc.

All these works have considered equations on some bounded flat fixed domain in Rd. On the
other hand, it is known and well studied that in a variety of applications these models can be bet-
ter formulated on both stationary and evolving curved domains, cf., e.g. [36]. Over the last years,
surface PDEs have garnered increasing interest due to a variety of applications, such as image pro-
cessing [21], computer graphics [4], biological modelling [27] and engineering [30]. Particularly for
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this paper, the motivating example is modelling the transport of a surface active agent (surfactant)
on the interface between two fluids [23, 37].

The numerical analysis of surface PDEs started with the paper [12] and later it developed in
[11, 14, 24] etc. Dziuk and Elliott have introduced the evolving surface finite element method for
PDEs on moving hypersurfaces [13, 15]. Recently this topic has been generalized in [1] and [2] to
a more abstract level, i.e. to parabolic PDEs on any evolving Hilbert space.

Uncertainty naturally appears in all these applications (for example through randomness of the
input data). However, there is no mathematical theory that merges these two frameworks, uncer-
tainty quantification and surface PDEs. This serves to motivate the topic of this paper to consider
PDEs with random coefficients on moving surfaces. More precisely, we wish to analyse the follow-
ing advection-diffusion equation

∂•u−∇Γ · (α∇Γu) + u∇Γ · w = f

u(0) = u0

(1.1)

where ∇Γ is a tangential surface gradient, ∂• is the material derivative and w is a velocity field of
the evolution. Note that we assume the surface evolution to be prescribed. In contrast to the deter-
ministic case, the diffusion coefficient α, the source function f and the initial value u0 are random.
Hence the solution u will also be a random function. The equation (1.1) models the transport of a
scalar quantity, e.g., a surfactant, along a moving two-dimensional interface [37]. The surfactant is
transported by advection via the tangential fluid velocity and by diffusion within the surface.

Let (Ω,F ,P) be a complete probability space. In analogy to the elliptic case [28], for the
parabolic PDE with random coefficients there exist two weak formulations: path-wise (for fixed
sample ω) and ”mean” (includes also integration over Ω). The more direct way (as in [3]) of proving
the integrability of the solution with respect to P is when we integrate the equation over the spatial
domain and in addition also take expectations, which allows us to apply the Banach–Nečas–Babuška
[BNB] theorem directly to the whole solution space. We will call this approach the ”mean-weak”
formulation. This result guarantees the measurability and the existence of the first and second mo-
ments of the solution and bounds of their norms, which motivates us to adopt this approach in the
uniform case when the bilinear forms are uniformly bounded. The main task is to define properly
the framework for the equation which will take into account the L2(Ω) space and to keep track of
the constants in estimates that we perform, i.e. to show that the constants are independent of ω.
In particular, we will choose an appropriate Gelfand triple, precisely define the material derivative
and a solution space. Another difficulty is that our domain changes over time. To deal with this, we
will connect the space at arbitrary time t with the fixed initial space and incorporate this pull-back
into the definition of the solution space. This construction is adapted from [1] where the abstract
setting of the PDE on an evolving Hilbert space has been considered. This setting will enable us
to apply [BNB] which gives us the well-posedness of the PDE with uniformly distributed random
coefficients on an evolving space. First main result is stated in Theorem 4.3. Furthermore, we prove
that for more regular input data, our solution also has more regularity in its material derivative.
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In many practical applications in the geosciences but also in biology [9], flow and transfer in
porous media are processes that are usually analysed and log-normally distributed random coeffi-
cients play an important role. As explained for example in [19], if the diffusion coefficient varies
drastically within a layer, it is appropriate to expand its logarithm in an affine series of independent
identically distributed normal random variables. The log-normal random parameter has been already
analysed for the elliptic equations in many papers, for example in [7, 8, 19, 34] and in parabolic case
in [25, 31]. However, in this case the bilinear forms are not uniformly distributed any more, thus we
cannot consider the ”mean-weak” formulation. Instead, we will consider the path-wise formulation
(as in [22] and [25]). In this approach for each realisation we consider the deterministic problem.
Therefore, we get the family of deterministic weak formulations over the spatial domain that can
be solved P-almost surely by applying the [BNB] theorem in the parabolic case. This implies the
existence and uniqueness of the solution u(ω) for P-a.e. ω. Since we are considering the PDE with
random coefficients, we are interested in statistics of the solution, i.e. we want to prove that the
solution is in L2(Ω). In order to achieve that with the path-wise approach, one needs to prove the
measurability of the solution with respect to P and a uniform bound for the L2(Ω)-norm (or higher
order norm). Usually the latter is reduced to controlling the constants from the existence theory for
the solution of the deterministic PDE (for example to bound the inf-sup constant). The final result
on regularity and stability of the family of path-wise solutions is stated in Theorem 5.6.

The paper is organized as follows. We start the next section by setting up the notation, description
of the hypersurfaces and assumptions on the evolution of the hypersurfaces. Furthermore, since our
spaces will have tensor structure, we briefly summarize, without proofs, the relevant material on
tensor products. At the end of the section we present notation and results about the log-normal
distribution. In the third section we proceed with setting up the function spaces and defining the
material derivative. Moreover, we show that the general framework from [1] is applicable. Section
4 concerns the uniformly bounded diffusion coefficient and contains the proofs of the main results
about the existence, uniqueness and regularity of solutions. In the fifth section we discuss the case
of log-normally distributed random coefficients and we prove the integrability of the solution. In the
final section we discuss possible extensions to this paper for further research.

2 Preliminaries

Let (Ω,F ,P) be a complete probability space with sample space Ω, a σ−algebra of events F and
a probability P : F → [0, 1]. In addition, we assume that L2(Ω) is a separable space. For this
assumption it suffices to assume that (Ω,F ,P) is separable [5, Theorem 4.13].

We will only consider a fixed finite time interval [0, T ], where T ∈ (0,∞). Furthermore, we will
denote by D([0, T ];V ) the space of infinitely differentiable functions with values in a Hilbert space
V and compact support in (0, T ).
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2.1 Hypersurfaces

Let us first recall some basic theory about hypersurfaces and Sobolev spaces on hypersurfaces. For
more details we refer to [10] or [16]. We will assume that Γ is a C2 compact, connected, orientable,
without a boundary, n−dimensional hypersurface, embedded in Rn+1 for n = 1, 2, or 3. For a
function f : Γ → R which is differentiable in an open neighborhood of Γ we define the tangential
gradient by

∇Γf(x) := ∇f̃(x)−∇f̃(x) · ν(x)ν(x) x ∈ Γ,

where ν(x) is the unit normal on TxΓ and∇f̃(x) is the usual gradient in Rn+1 of an arbitrary smooth
extension of f to its neighborhood. Note that ∇Γf(x) is the orthogonal projection of ∇f(x) onto
TxΓ (thus it is a tangential vector) and it depends only on the values of f on Γ [16, Lemma 2.4],
which makes the previous definition of the tangential gradient independent of the extension f̃ . The
tangential gradient is a vector-valued quantity and for its components we will use the notation

∇Γf(x) = (D1f(x), . . . , Dn+1f(x)).

Now we can define the Laplace-Beltrami operator by

∆Γf(x) = ∇Γ · ∇Γf(x) =
n+1∑
i=1

DiDif(x) x ∈ Γ.

Let us state the integration by parts formula for function f ∈ C1(Γ;Rn+1) and ∂Γ = ∅∫
Γ

∇Γ · f =

∫
Γ

f ·Hν (2.1)

where H is the mean curvature with respect to ν. Furthermore, we state Green’s formula∫
Γ

∇Γf · ∇Γg = −
∫

Γ

f∆Γg. (2.2)

From (2.1) and (2.2) we derive the following∫
Γ

f∇Γg = −
∫

Γ

(∇Γf − fHν)g. (2.3)

We will consider a weak formulation of PDEs on Γ, which leads to the concept of Sobolev spaces
on surfaces. We define L2(Γ) as usual, i.e. as a set of all measurable functions f : Γ→ R such that

‖f‖L2(Γ) :=

(∫
Γ

|f(x)|2
)1/2

<∞.

We say that a function f ∈ L2(Γ) has a weak derivative gi = Dif ∈ L2(Γ), (i = {1, . . . , n+ 1}) if
for every function φ ∈ C1(Γ) and every i it holds∫

Γ

fDiφ = −
∫

Γ

φgi +

∫
Γ

fφHνi.
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The Sobolev space on Γ is defined by

H1(Γ) = {f ∈ L2(Γ) | Dif ∈ L2(Γ), i = 1, . . . , n+ 1}

with the norm
‖f‖H1(Γ) =

√
‖f‖2

L2(Γ) + ‖∇Γf‖2
L2(Γ).

Let us define the family of evolving surfaces {Γ(t)} for t ∈ [0, T ] that we will consider. For each
t ∈ [0, T ] we assume that Γ(t) satisfies the same properties as Γ and we set Γ0 := Γ(0). Furthermore,
we assume the existence of a flow Φ : [0, T ]×Rn+1 → Rn+1 such that for all t ∈ [0, T ] its restriction
Φ0
t := Φ(t, ·) : Γ0 → Γ(t),Φ ∈ C1([0, T ], C2(Γ0)) is a diffeomorphism that satisfies

d

dt
Φ0
t (·) = w(t,Φ0

t (·))

Φ0
0(·) = Id(·).

where w : [0, T ] × Rn+1 → Rn+1 is a velocity field. We assume that w(·, t) ∈ C2(Γ(t)) and that it
has uniformly bounded divergence

|∇Γ(t) · w(t)| ≤ Cw for all t ∈ [0, T ]. (2.4)

Remark. Besides the normal velocity wν = w · νν, which is enough to define the evolution of the
surface, we assume that the surface also has an advective tangential velocity wτ , that describes the
motion of points along the surface. Hence we assume that we are given a global velocity field w
that can be decomposed as w = wν + wτ . In addition, we assume that the physical velocity agrees
with the velocity of the parametrisation. For remark about the different notions of velocities for an
evolving hypersurface see for example [2, Remark 2.6].

2.2 Tensor products

Since the function spaces which will be used later have tensor product structure, let us recall some
basic results about it (see [20] or [33] for more details). Let H1 and H2 be Hilbert spaces and
vi ∈ Hi, i = 1, 2. We define v1 ⊗ v2 as a conjugate bilinear form on H1 ×H2 by

(v1 ⊗ v2)(w1, w2) := (v1, w1)H1(v2, w2)H2 .

Let S be the set of finite linear combinations of such conjugate bilinear forms. We can define an
inner product on S by

(v1 ⊗ v2, w1 ⊗ w2) := (v1, w1)H1(v2, w2)H2 (2.5)

and extend it by linearity to S. The tensor product H1 ⊗H2 is the completion of S under the inner
product (2.5).

Theorem 2.1. The tensor space H1 ⊗ H2 is a Hilbert space. If {ej}j∈N and {fk}k∈N are basis of
Hilbert spaces H1 and H2, then {ej ⊗ fk}j,k∈N constitute a basis of H1 ⊗H2.
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Proof. The proof can be found for example in [33].

Theorem 2.2. Let (X,µ) and (Y, ν) be measure spaces such that L2(X,µ) and L2(Y, ν) are sepa-
rable. Then, the following holds:

a) There is a unique isometric isomorphism

L2(X,µ)⊗ L2(Y, ν) ∼= L2(X × Y, µ× ν)

so that f ⊗ g 7→ fg.

b) If H is a separable Hilbert space then there is a unique isometric isomorphism

L2(X,µ)⊗H ∼= L2(X,µ;H)

so that f(x)⊗ ϕ 7→ f(x)ϕ.

Proof. The proof can be found for example in [33].

2.3 Log-normal expansion

In this subsection we will recall some definitions about the log-normal distribution that we will use
in Chapter 5. For more details we refer to [19, 31, 34].

Definition 2.3. Let S ⊂ Rn and a : Ω× S → R be a random field (RF) i.e. a is a measurable from
(Ω× S,F ⊗ B(S)) to (R,B(R)). Then
• a is called Gaussian if for every k ∈ N, x1, . . . , xk ∈ S the multivariate random variable

(a(x1), . . . , a(xk)) is multivariate Gaussian distributed, i.e.
∑k

i=1 cia(xi) is normally distributed
random variable for every ci ∈ R, i = 1, . . . , k.
• α : Ω× S → R+ is log-normal, RF if logα is an Gaussian RF on S.

In our setting, the diffusion coefficient is defined on the space-time domain GT :=
⋃
t Γ(t)×{t}.

Hence, let α : Ω × GT → R+ be a log-normal diffusion coefficient. We will consider a series
expansion of its logarithm.

Assumption 2.4. There exists a sequence (Yk)k∈N of i.i.d. standard Gaussian random variables on
Ω and functions αk ∈ L∞(GT ) for k ∈ N with b := (‖αk‖L∞(GT ))k∈N ∈ l1(N) i.e.

∑
k bk < ∞,

where bk := ‖αk‖L∞(GT ), such that the diffusion coefficient has the form

α(ω;x, t) = exp

(∑
k≥1

αk(x, t)Yk(ω)

)
. (2.6)

Remark 2.5. Without loss of generality we assumed that logarithm of α is a centred Gaussian
random field.
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Remark 2.6. Necessary conditions to satisfy Assumption 2.4 are discussed e.g. in [29] and the
references given therein. It is shown that standard measurability conditions (more precisely: mea-
surability, finite-variance and isotropy) imply mean-square continuity of a random field. This in turn
is necessary for representation (2.6) to hold.

Motivated by the analysis in [19] and [34], for the log-normal case, we will reformulate the
problem with the parameter domain RN instead of Ω (for details how this can be done see [19, 34]).
Thus, our probability space is (RN,B(RN), γ) with

γ :=
⊗
k≥1

N1 (2.7)

where N1 is the standard Gaussian measure on R. We underline this change by switching from the
notation ω to y and from Yk(ω) to yk. Therefore, the diffusion coefficient now has the form

α(y;x, t) = exp

(∑
k≥1

αk(x, t)yk

)
(2.8)

for y = (yk)k∈N ∈ RN and we assume that yk are i.i.d. standard Gaussian random variables on R. In
order to have the convergence of the series (2.8) we consider

Θb :=

{
y ∈ RN |

∑
k≥1

bk|yk| <∞

}
. (2.9)

With Assumption 2.4, from [19, Lemma 2.2] the series in (2.8) converges in L∞(GT ) in the param-
eter space Θb.

Lemma 2.7. For any b ∈ l1(N) it holds Θb ∈ B(RN) and γ(Θb) = 1.

Proof. We refer to [19, Lemma 2.3].

Instead of the whole space RN, due to Lemma 2.7, we will consider Θ = Θb as the parame-
ter space with the measure that is restriction of γ on Θ. From Assumption 2.4 it follows that the
diffusion coefficient is bounded from above and has positive lower bound for every y ∈ Θ:

Lemma 2.8. For all y ∈ Θ, the diffusion coefficient α(y) is well-defined and satisfies

0 < αmin(y) := ess inf
(x,t)∈GT

α(y;x, t) ≤ ess sup
(x,t)∈GT

α(y;x, t) =: αmax(y) <∞ (2.10)

with

αmax(y) ≤ exp

(∑
k≥1

bk|yk|

)

αmin(y) ≥ exp

(
−
∑
k≥1

bk|yk|

)
.

Proof. The proof can be found in [34, Lemma 2.29], as a direct consequence of Assumption 2.4.
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2.4 Product measures on the probability space

Results of this subsection can be found in [19] or [31], we state those that we will use in the log-
normal case, for the convenience of the reader.

For any σ = (σk)k∈N ∈ exp(l1(N)) i.e. σk = exp(sk) with (sk)k∈N ∈ l1(N), we define the
product measure on (RN,B(RN)) by

γσ :=
⊗
k≥1

Nσ2
k

where Nσ2
k

is a centered Gaussian measure on R with standard deviation σk. Note that γ = γ1 is the
standard Gaussian measure on RN.

Theorem 2.9. For all σ ∈ exp(l1(N)), the measure γσ is equivalent to γ and the density of γσ with
respect to γ is given by

ζσ(y) =

(∏
k≥1

1

σk

)
exp

(
−1

2

∑
k≥1

(σ−2
k − 1)y2

k

)
.

Proof. We refer to [19, Proposition 2.11].

From the previous theorem we get that γσ(Θ) = 1 for every σ ∈ exp(l1(N)), thus restriction of
γσ on Θ is a probability measure. Let σ be the sequence that depends exponentially on b = (bk)k∈N,
for bk := ‖αk‖L∞(GT )defined in Assumption 2.4. We will consider the class

σk := exp(χbk) χ ∈ R, k ∈ N

and we will use the following notation γχ := γσ(χ) and ζχ := ζσ(χ).

Lemma 2.10. Let η < χ and m ≥ 0. Then, for every y ∈ Θ it holds

ζη(y)

ζχ(y)
exp

(
m
∑
k≥1

bk|yk|

)
≤ exp

((
m2 exp(2χ‖b‖l∞)

4(χ− η)
+ χ− η

)
‖b‖l1

)
.

Proof. The proof can be found in [34, Lemma 2.32].

We will need the special case from the previous Lemma, when η = 0, which gives us the bound
for the 1/ζχ(y) exp

(
m
∑

k≥1 bk|yk|
)
.

3 Function spaces

In this section we will define the function spaces that we will mainly consider in the case when
diffusion coefficient has uniform distribution.
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3.1 Gelfand triple

In this section, we will define the basic Gelfand triple that will be used in the uniform case to define
the solution space for (1.1). We begin by recalling the notion of Gelfand triple. Let V and H be
separable Hilbert spaces. A Gelfand triple is a construction

V ↪−→
i
H ∼= H∗ ↪−→

i′
V ∗

where both embeddings i and i′ are continuous and dense, and H is identified with its dual space
H∗ via the Ritz representation theorem (see [39, Def 17.1] for more general definition). The duality
pairing between V and V ∗ is compatible with the inner product on H in the sense that

〈u, v〉V ∗,V = (u, v)H whenever u ∈ H, v ∈ V.

In order to define the Gelfand triple for each t ∈ [0, T ], let us define

V (t) := L2(Ω, H1(Γ(t))) and H(t) := L2(Ω, L2(Γ(t))).

Then the dual space of V (t) is the space V ∗(t) = L2(Ω, H−1(Γ(t))) where H−1(Γ(t)) is the dual
space of H1(Γ(t)).

Since all spaces L2(Ω), L2(Γ(t)) and H1(Γ(t)) are separable Hilbert spaces, using Theorem 2.2
we have

L2(Ω, H1(Γ(t))) ∼= L2(Ω)⊗H1(Γ(t)) (3.1)

L2(Ω, L2(Γ(t))) ∼= L2(Ω)⊗ L2(Γ(t)). (3.2)

Remark. For convenience we will often (but not always) write u(ω, x) instead of u(ω)(x), which
is justified by the aforementioned isomorphisms.

Lemma 3.1. V (t) ↪−→ H(t) ↪−→ V ∗(t) is a Gelfand triple for every t ∈ [0, T ].

Proof. Since H1(Γ(t)) is dense in L2(Γ(t)), the proof follows from (3.1), (3.2) and [20, Lemma
4.34], using the density argument.

3.2 Compatibility of spaces

In order to treat the evolving spaces, we need to define special Bochner-type function spaces such
that for every t ∈ [0, T ] we have u(t) ∈ V (t). In general, if we have an evolving family of Hilbert
spacesX = (X(t))t∈[0,T ], the idea is to connect the spaceX(t) at any time t ∈ [0, T ] with some fixed
space, for example with the initial space X(0). We do that using the family of maps φt : X(0) →
X(t), which we call the pushforward map. We denote the inverse of φt by φ−t : X(t)→ X(0) and
call it the pullback map. The following definition is adapted from [1].

Remark. This approach is similar to Arbitrary Lagrangian Eulerian [ALE] framework.
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Definition 3.2. The pair {X, (φt)t∈[0,T ]} is compatible if the following conditions hold:
• for every t ∈ [0, T ], φt is linear homeomorphism such that φ0 is the identity map
• there exists a constant CX which is independent of t such that

‖φtu‖X(t) ≤ CX‖u‖X(0) for every u ∈ X(0)

‖φ−tu‖X(0) ≤ CX‖u‖X(t) for every u ∈ X(t)

• the map t 7→ ‖φtu‖X(t) is continuous for every u ∈ X(0).

We will denote the dual operator of φt by φ∗t : X∗(t)→ X∗(0). As a consequence of the previous
conditions, we obtain that φ∗t and its inverse are also linear homeomorphisms which satisfy the
following conditions

‖φ∗tf‖X∗(0) ≤ CX‖f‖X∗(t) for every f ∈ X∗(t)
‖φ∗−tf‖X∗(t) ≤ CX‖f‖X∗(0) for every f ∈ X∗(0).

For the Gelfand triple L2(Ω, H1(Γ(t))) ⊂ L2(Ω, L2(Γ(t))) ⊂ L2(Ω, H−1(Γ(t))) we define the
pullback operator φ−t : L2(Ω, L2(Γ(t)))→ L2(Ω, L2(Γ0)) in the following way

(φ−tu)(ω)(x) := u(ω)(Φ0
t (x)) for every x ∈ Γ(0), ω ∈ Ω.

Remark. Since we are interested only in the dual operator of φt
∣∣
V

, we will denote it by φ∗t :

V ∗(t)→ V ∗0 .

The next step is to prove that (H,φ(·)) and (V, φ(·)
∣∣
V0

) are compatible pairs. The proof is similar
to the proof of [38, Lemma 3.2].

Let J0
t (·) := detDΓ0Φ

0
t (·) denote the Jacobian determinant (where (DΓ0Φ

0
t )ij := Dj(Φ

0
t )i), i.e.

it presents the change area of the element when transformed from Γ0 to Γ(t). The assumptions for
the flow Φ0

t imply J0
t ∈ C1([0, T ]× Γ0) and that the field J0

t is uniformly bounded

1

CJ
≤ J0

t (x) ≤ CJ for every x ∈ Γ0 and for all t ∈ [0, T ], (3.3)

where CJ is positive constant.
The substitution formula for integrable functions ζ : Γ(t)→ R reads∫

Γ(t)

ζ =

∫
Γ0

(ζ ◦ Φ0
t )J

0
t =

∫
Γ0

φ−tζJ
0
t .

Using the Leibniz formula for differentiation of a parameter dependent surface integral [13, Lemma
2.1] it can be shown [38, Lemma 3.2] that

d

dt
J0
t = φ−t(∇Γ(t) · w(t))J0

t . (3.4)
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Lemma 3.3. The pairs
(
H, (φt)t∈[0,T ]

)
and

(
V, (φt

∣∣
V0

)t∈[0,T ]

)
are compatible.

Proof. The proof is similar to the proof of [38, Lemma 3.3]. However, we will state the proof in
order to show that constants that appear are independent of the sample ω.

First we will prove the statement for the pair
(
H, (φt)t∈[0,T ]

)
. Let u be from L2(Ω, L2(Γ(t))).

Then we have

‖φ−tu‖2
L2(Ω,L2(Γ0)) =

∫
Ω

∫
Γ(t)

|u(ω)(y)|2 1

J0
t ((Φ0

t )
−1(y))

≤ CJ‖u‖2
L2(Ω,L2(Γ(t))),

where we have used the substitution formula and boundedness of J0
t . It is clear that φ−t is linear and

that its continuity follows immediately from the previous estimate. Since Φ0
t is C2−diffeomorphism,

it follows that φ−t is bijective and its inverse (the pushforward) is defined by

φt : L2(Ω, L2(Γ0))→ L2(Ω, L2(Γ(t))), (φtv)(ω, x) = v(ω) ◦ (Φ0
t )
−1(x).

Similarly as for φ−t, we can prove that φt is well defined, satisfies the norm boundedness relation
and is continuous. Thus, φt is linear homeomorphism.
Since the probability space does not depend on time, the continuity of the map t 7→‖φtu‖L2(Ω,L2(Γ(t)))

follows directly from [38, Lemma 3.3.] and the triangle inequality.
In order to prove compatibility of the family (V, (φt

∣∣
V0

)t∈[0,T ]), let v ∈ L2(Ω, H1(Γ(t))) and
ϕ ∈ L2(Ω, C1(Γ0)). Using the substitution formula and integration by parts on Γ(t) we get∫

Ω

∫
Γ0

φ−tv(ω, x)∇Γϕ(ω, x) =

∫
Ω

∫
Γ(t)

v(ω, x)(DΦ̄t(x))T∇Γ(φtϕ(ω, x))J0
−t(x)

= −
∫

Ω

∫
Γ(t)

φtϕ(ω, x)s(ω, x)J0
−t(x)

= −
∫

Ω

∫
Γ0

[φ−ts(ω, x)−H0ν0φ−tv(ω, x)]ϕ(ω, x)+H0ν0φ−tv(ω, x)ϕ(ω, x), (3.5)

where s is the function that we get from the partial integration. Note that s depends only on the
mean curvature and derivative of Φ̄t which can be bounded independently of time and ω. Thus,
‖s(ω)‖L2(Γ(t))(n+1) ≤ C‖v(ω)‖H1(Γ(t)), where C does not depend on ω and t. Furthermore, we get

‖s‖L2(Ω,L2(Γ(t))n+1) ≤ C‖v‖L2(Ω,H1(Γ(t))).

Hence, using the estimate from the first part of the proof we get

φ−tv ∈ L2(Ω, L2(Γ0)) and ‖φ−tv‖L2(Ω,L2(Γ0)) ≤ C ′‖v‖L2(Ω,H1(Γ(t))). (3.6)

On the other hand, from the partial integration on hypersurface we get∫
Ω

∫
Γ0

φ−tv(ω, x)∇Γϕ(ω, x) = −
∫

Ω

∫
Γ0

ϕ(ω, x)(∇Γ(φ−tv)(ω, x) + φ−tv(ω, x)H0ν0).
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From the last relation and (5.10), since they hold for every ϕ ∈ L2(Ω, C1(Γ0)), we get

∇Γ(φ−tv)(ω, x) = φ−ts(ω, x)−H0ν0(φ−tv)(ω, x). (3.7)

For v ∈ L2(Ω, L2(Γ(t))), we have already proved that ‖φ−tv‖L2(Ω,L2(Γ0)) ≤ CH‖v‖L2(Ω,L2(Γ(t))).
Therefore, the following estimate follows

‖H0ν0(φ−tv)(ω, x)‖L2(Ω,L2(Γ0)) ≤ |H0|CH‖v‖L2(Ω,L2(Γ(t))).

Using the last inequality, (3.6) and (3.7), we get

‖φ−tv‖L2(Ω,H1(Γ0)) ≤ CV ‖v‖V (t),

where CV depends on global bound on |Ht|, ‖∂Φ̄t‖ and ‖∂ijΦ̄t‖ with 1 ≤ i, j ≤ n + 1, t ∈ [0, T ]

and these bounds are deterministic and independent of time.
Similarly to the previous case, the continuity of the map t 7→ ‖φtu‖L2(Ω,H1(Γ(t))) follows from

[38, Lemma 3.3] and the independence of the probability space of time, which completes the proof.

3.3 Bochner-type spaces

In this section, we want to define Bochner-type spaces of random functions that are defined on
evolving spaces. In order to strictly define these spaces we will ask that the pull-back of u belongs
to the fixed initial space V (0). These spaces are a special case of general function spaces defined in
[1]:

Definition 3.4. For a compatible pair (X, (φt)t) we define spaces:

L2
X :=

{
u : [0, T ]→

⋃
t∈[0,T ]

X(t)× {t}, t 7→ (ū(t), t) | φ−(·)ū(·) ∈ L2(0, T ;X0)

}

L2
X∗ :=

{
f : [0, T ]→

⋃
t∈[0,T ]

X∗(t)× {t}, t 7→ (f̄(t), t) | φ∗(·)f̄(·) ∈ L2(0, T ;X∗0 )

}
.

Remark. In the following we will identify u(t) = (u(t), t) with u(t).

The spaces L2
X and L2

X∗ are separable Hilbert spaces ([1], Corollary 2.11) with the inner product
defined as

(u, v)L2
X

=

∫ T

0

(u(t), v(t))X(t)dt

(f, g)L2
X∗

=

∫ T

0

(f(t), g(t))X∗(t)dt.

By Lemma 3.3, the spaces L2
V , L2

V ∗ and L2
H are well-defined. Furthermore, from [1, Lemma 2.15]

it follows that we can identify L2
V ∗ and (L2

V )∗. Using Lemma 3.1 and [1, Lemma 2.19] we conclude
the following result.
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Lemma 3.5.
L2
L2(Ω,H1(Γ(t))) ↪−→ L2

L2(Ω,L2(Γ(t))) ↪−→ L2
L2(Ω,H−1(Γ(t)))

is a Gelfand triple.

3.4 Material derivative

This subsection is motivated by the abstract framework from the Chapter 2.4 in [1]. We want to de-
fine a time derivative that will also take into account the spatial movement, i.e. the material derivative
for random functions. First let us consider the spaces of pushed-forward continuously differentiable
functions

CjV := {u ∈ L2
V | φ−(·)u(·) ∈ Cj([0, T ], L2(Ω, H1(Γ0)))} for j ∈ {0, 1, . . . }.

Definition 3.6. For u ∈ C1
V the strong material derivative u̇ ∈ C0

V is defined by

u̇(t) = φt

(
d

dt
φ−tu(t)

)
for every t ∈ [0, T ].

By smoothness of Γ(t) and evolution Φ0
t , for every ω ∈ Ω each function u(t, ω) : Γ(t) → R

can be extended to a neighbourhood of
⋃

t∈[0,T ]

Γ(t)× {t} ⊂ Rn+2 in which ∇u(ω) and ut(ω) for the

extension are well defined for every ω (for the construction of extension see [16]). Using the chain
rule, for u ∈ C1

V and y ∈ Γ0, we get

d

dt
φ−tu(t) =

d

dt
(u(t, ω,Φ0

t (y))

= ut(t, ω,Φ
0
t (y)) +∇u |(t,ω,Φ0

t (y)) ·w(t,Φ0
t (y))

= φ−tut(t, ω, y) + φ−t∇u(t, ω, y) · φ−t(w(t, y)).

Thus, we get the following explicit formula for the strong material derivative

u̇(t, ω, x) = ut(t, ω, x) +∇u(t, ω, x) · w(t, x), (3.8)

for every x ∈ Γ(t) and ω ∈ Ω.

Remark. Note that the right hand side of (3.8) does not depend on extension, so it is irrelevant that
every extension (i.e. neighbourhood) will depend on ω.

Just as in the deterministic case, it might happen that the equation does not have a solution if we
ask that u ∈ C1

V . Hence, we want to define a weak material derivative that needs less regularity. In
addition to the case when we consider a fixed domain, we will have an extra term that will take into
account the movement of the domain. As usual in this setting (see for example[1]), the idea is to
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pull-back the inner product on L2(Ω, L2(Γ(t))) onto the fixed space L2(Ω, L2(Γ0)), which will be
the bilinear form b̂. Furthermore, we define ĉ as a regular time derivative of this bilinear form. Thus,
the extra term c in the weak material derivative will be the push-forward of ĉ onto H(t)×H(t).

Let us define the bounded bilinear form b̂(t, ·, ·) : L2(Ω, L2(Γ0))×L2(Ω, L2(Γ0))→ R for every
t ∈ [0, T ]

b̂(t, u0, v0) := (φtu0, φtv0)L2(Ω,L2(Γ(t)))

=

∫
Ω

∫
Γ(0)

u0(ω, x)v0(ω, x)J0
t (x).

Moreover, we define the map θ : [0, T ]×L2(Ω, L2(Γ0))→ R that is the classical time derivative of
the norm on L2(Ω, L2(Γ(t)))

θ(t, u0) :=
d

dt
‖φtu0‖2

L2(Ω,L2(Γ(t))) ∀u0 ∈ L2(Ω, L2(Γ0)).

Lemma 3.7. a) The map θ is well defined and for each t ∈ [0, T ] the map

u0 7→ θ(t, u0) u0 ∈ L2(Ω, L2(Γ0)) (3.9)

is continuous.
b) For every t ∈ [0, T ] there exists deterministic constant C that is independent of time such that

|θ(t, u0 + v0)− θ(t, u0 − v0)| ≤ C‖u0‖L2(Ω,L2(Γ0))‖v0‖L2(Ω,L2(Γ0)).

Proof. a) Using the substitution formula, the formula (3.4) and the assumption (2.4) we get:

θ(t, u0) =

∫
Ω

∫
Γ(0)

(u0(ω, x))2φ−t(∇Γ(t) · w(t, x))J0
t (x) ≤ C‖u0‖2

L2(Ω,L2(Γ0)).

Hence, θ is well-defined. In order to prove continuity of (3.9) note that u ∈ L2(Ω, L2(Γ0)) implies
u2 ∈ L1(Ω, L1(Γ0)). This implies that if un → u in L2(Ω, L2(Γ0)), then u2

n → u2 in L1(Ω, L1(Γ0)).

Now continuity follows from:

|θ(t, un)− θ(t, u)| ≤
∫

Ω

∫
Γ0

|u2
n(ω, x)− u2(ω, x)||φ−t(∇Γ(t) · w(t, x))J0

t (x)|

≤ C‖u2
n − u2‖L1(Ω,L1(Γ0)) → 0.

b) Using the Cauchy-Schwarz inequality, (3.3) and (3.4) we get the estimate:

|θ(t, u0 + v0)− θ(t, u0 − v0)| = ‖4 d
dt
b̂(t;u0, v0)‖

= 4|
∫

Ω

∫
Γ0

u0(ω, x)v0(ω, x)
d

dt
J0
t (x)|

≤ C| (u0, v0) |L2(Ω,L2(Γ0))

≤ C‖u0‖L2(Ω,L2(Γ0))‖v0‖L2(Ω,L2(Γ0)).
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Now we can define the bilinear form ĉ(t; ·, ·) : L2(Ω, L2(Γ0))× L2(Ω, L2(Γ0))→ R as a partial
time derivative of b̂

ĉ(t;u0, v0) :=
∂

∂t
b̂(t;u0, v0) =

1

4
(θ(t, u0 + v0)− θ(t, u0 − v0))

=

∫
Ω

∫
Γ0

u0(ω, x)v0(ω, x)φ−t(∇Γ(t) · w(t, x))J0
t (x).

From [1, Lemma 2.27] it follows that for every u, v ∈ C1([0, T ];L2(Ω, L2(Γ0))) the map

t 7→ b̂(t;u(t), v(t))

is differentiable in the classical sense and the formula for differentiation of the scalar product on
L2(Ω, L2(Γ(t))) is

d

dt
b̂(t;u(t), v(t)) = b̂(t;u′(t), v(t)) + b̂(t;u(t), v′(t)) + ĉ(t;u(t), v(t)).

We will generalise this result in Section 3.5, to less regular functions u and v.
Now we can define the extra term that appears in the definition of the weak material derivative.

As we have already announced, we pull the functions back to Γ(0) and apply bilinear form ĉ to them.
More precisely, we define the bilinear form c(t; ·, ·) : L2(Ω, L2(Γ(t)))× L2(Ω, L2(Γ(t)))→ R by

c(t;u, v) := ĉ(t;φ−tu, φ−tv) =

∫
Ω

∫
Γ(t)

u(ω, z)v(ω, z)(∇Γ(t) · w(t, x)).

Lemma 3.8. For every u, v ∈ L2
V , the map

t 7→ c(t;u(t), v(t))

is measurable. Furthermore, c is bounded independently of t by deterministic constant:

|c(t;u, v)| ≤ C‖u‖L2(Ω,L2(Γ(t)))‖v‖L2(Ω,L2(Γ(t))).

Proof. From Lemma 3.7 it follows that we can apply a corollary of [1, Lemma 2.26], which proves
the Lemma.

Now we can define the weak material derivative.

Definition 3.9. We say that ∂•u ∈ L2
V ∗ is a weak material derivative of u ∈ L2

V if and only if∫ T

0

〈∂•u(t), η(t)〉V ∗(t),V (t) = −
∫ T

0

(u(t), η̇(t))H(t) −
∫ T

0

c(t;u(t), η(t))

=

∫ T

0

∫
Ω

∫
Γ(t)

u(t, ω, x)η̇(t, ω, x)−
∫ T

0

∫
Ω

∫
Γ(t)

u(t, ω, x)η(t, ω, x)∇Γ(t) · w(t, x),

holds for all η ∈ DV (0, T ) = {η ∈ L2
V | φ−(·)η(·) ∈ D((0, T );L2(Ω, H1(Γ0)))}.

Note that it can be directly shown that if it exists, the weak material derivative is unique and
every strong material derivative is also a weak material derivative.
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3.5 Solution space

We will ask for the solution of the equation (1.1) to be in the space L2
V and also to have a weak

material derivative. Hence, we define the solution space as:

W (V, V ∗) := {u ∈ L2
V | ∂•u ∈ L2

V ∗}.

In order to prove that the solution space is Hilbert space and also that it has some additional prop-
erties, we will connect it with the standard Sobolev-Bochner space for which these properties are
known. Thus, let us define the following space:

W(V0, V
∗

0 ) = {u ∈ L2(0, T ;L2(Ω, H1(Γ0))) | u′ ∈ L2(0, T ;L2(Ω, H−1(Γ0)))}.

The spaceW(V0, V
∗

0 ) is Hilbert space with the inner product defined via:

(u, v)W(V0,V ∗0 ) :=

∫ T

0

∫
Ω

(u(t, ω), v(t, ω))H1(Γ0) +

∫ T

0

∫
Ω

(u′(t, ω), v′(t, ω))H−1(Γ0).

We will use that the embedding

D([0, T ];V0) ⊂ W(V0, V
∗

0 ) (3.10)

is dense. More properties of this space can be found for example in [38, Lemma 2.2].
We want to show that the previous two types of spaces are connected in a natural way, i.e. that

the pull-back of the functions from the solution space belong to Sobolev-Bochner space and vice
versa. In addition, we also have the equivalence of the norms. First we will prove the technical result
which is similar to [38, Lemma 3.6.].

Lemma 3.10. Let w ∈ W(V0, V
∗

0 ) and f ∈ C1([0, T ]× Γ0). Then fw ∈ W(V0, V
∗

0 ) and

(fw)′ = ∂tfw + fw′, (3.11)

where 〈fw′, ϕ〉L2(Ω,H−1(Γ0)),L2(Ω,H1(Γ0)) = 〈w′, fϕ〉L2(Ω,H−1(Γ0)),L2(Ω,H1(Γ0)) .

Proof. We will first prove the Lemma for ϕ ∈ D([0, T ], L2(Ω, H1(Γ0))). From the proof of [38,
Lemma 3.6] it follows that f ∈ C1([0, T ]× Γ0) implies

f ∈ C([0, T ], C1(Γ0)) and f ∈ C1([0, T ], C(Γ0)). (3.12)

In order to prove that fϕ ∈ L2([0, T ];L2(Ω, H1(Γ0))) we can treat deterministic function f as
a random function that is constant in ω. More precisely, if we define the function f̃(t, ω, x) :=

f(t, x), from (3.12) it follows f̃ ∈ C([0, T ], L2(Ω, C1(Γ0)). This can be strictly shown by defining
the function g : C(Γ0) → L2(Ω, C(Γ0)), g(f)(ω, x) := f(x). Note that g is linear, thus a C∞-
function and for every t we have g(f(t)) = f̃(t).
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It is then clear that we have

f̃ϕ ∈ C([0, T ], L2(Ω, H1(Γ0))) ∩ C1([0, T ], L2(Ω, L2(Γ0)))

which implies f̃ϕ ∈ L2([0, T ];L2(Ω, H1(Γ0))) and hence, fϕ ∈ L2([0, T ];L2(Ω, H1(Γ0))).
It is left to prove that formula (3.11) is valid. We will prove this using the characterisation of the

weak derivative [1, Theorem 2.2] and partial integration [1, Lemma 2.1(3)]:∫ T

0

〈fw′, ϕ〉L2(Ω,H−1(Γ(t))),L2(Ω,H1(Γ(t))) = −
∫ T

0

〈w, (fϕ)′〉L2(Ω,H1(Γ(t))),L2(Ω,H−1(Γ(t)))

= −
∫ T

0

〈∂tfw, ϕ〉L2(Ω,H−1(Γ(t))),L2(Ω,H1(Γ(t))) −
∫ T

0

〈fw, ϕ′〉L2(Ω,H−1(Γ(t))),L2(Ω,H1(Γ(t))) .

It follows ∫ T

0

〈fw, ϕ′〉L2(Ω,L2(Γ0)) =

∫ T

0

〈∂tfw + fw′, ϕ〉L2(Ω,H−1(Γ(t))),L2(Ω,H1(Γ(t))) ,

i.e. (fw)′ = ∂tfw+ fw′. Using the density result (3.10) we can approximate every function fw by
continuous L2(Ω, H1(Γ0))−valued functions and conclude that fw ∈ L2(Ω, H1(Γ0)). The similar
argument implies that (fw)′ ∈ L2(Ω, H−1(Γ0)).

Corollary 3.11. If Tt : L2(Ω, L2(Γ0))→ L2(Ω, L2(Γ0)) is defined as Ttu0(ω, x) := u0(ω, x)J0
t (x),

then it holds:

u ∈ W(V0, V
∗

0 ) if and only if T(·)u(·) ∈ W(V0, V
∗

0 ). (3.13)

Proof. Apply Lemma 3.10 to the functions f = J0
(·) and f = 1

J0
(·)

, which are both from the space

C1([0, T ]× Γ0).

Theorem 3.12. The following equivalence holds

v ∈ W (V, V ∗) if and only if φ−(·)v(·) ∈ W(V0, V
∗

0 ), (3.14)

and the norms are equivalent

C1‖φ−(·)v(·)‖W(V0,V ∗0 ) ≤ ‖v‖W (V,V ∗) ≤ C2‖φ−(·)v(·)‖W(V0,V ∗0 ). (3.15)

Remark. Following the notation from [1], we say that there exists an evolving space equivalence
between the spaces W (V, V ∗) andW(V0, V

∗
0 ) if and only if they satisfy (3.14) and (3.15).

Proof. Let u ∈ W(V0, V
∗

0 ). For every t ∈ [0, T ] we define a map Ŝ(t) : V ∗0 → V ∗0 by

Ŝ(t)u′(t) := J0
t u
′(t).
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Note that since J0
t is bounded independently of t and has an inverse, this implies that Ŝ(t) has an

inverse, and both Ŝ(t) and Ŝ−1(t) are bounded independently of t. Furthermore, from the uniform
bound on J0

t we have that Ŝ(·)u′(·) ∈ L2(0, T ;V ∗0 ). In the end, using the product rule (3.11), we get

(Ttu(t))′ = (J0
t u(t))′ = φ−t(∇Γ(t) · w(t))J0

t u(t) + J0
t u
′(t) = Ŝ(t)u′(t) + Ĉ(t)u(t),

where Tt is defined in the previous corollary and Ĉ(t) : L2(Ω, L2(Γ0))→ L2(Ω, L2(Γ0)) is defined
as Ĉ(t, ω, x) = φ−t(∇Γ(t) · w(t))J0

t (x), i.e.
〈
Ĉ(t)u0, v0

〉
:= ĉ(t;u0, v0). Thus, using in addition

Corollary 3.11, we can apply [1, Theorem 2.32.], which yields that there exists the evolving space
equivalence between W (V, V ∗) andW(V0, V

∗
0 ).

Corollary 3.13. The solution space W (V, V ∗) is a Hilbert space with the inner product defined via

(u, v)W (V,V ∗) =

∫ T

0

∫
Ω

(u(t), v(t))H1(Γ(t)) +

∫ T

0

∫
Ω

(∂•u(t), ∂•v(t))H−1(Γ(t)).

More properties of the space W (V, V ∗) can be found in [1].
We have shown how to differentiate the inner product of functions from C1

H onH(t) = L2(Ω, L2(Γ(t))).
We can generalize this result to functions from the solution space.

Theorem 3.14. (Transport theorem.) For all u, v ∈ W (V, V ∗), the map

t 7→ (u(t), v(t))L2(Ω,L2(Γ(t)))

is absolutely continuous on [0, T ] and

d

dt
(u(t), v(t))H(t) = 〈∂•u(t), v(t)〉V ∗(t),V (t) + 〈∂•v(t), u(t)〉V ∗(t),V (t) + c(t;u(t), v(t)), (3.16)

for almost all t ∈ [0, T ].

Proof. The proof is based on the density of the space DV [0, T ] in the space W (V, V ∗) and the
Transport formula for the functions from C1

H . For a detailed proof, we refer the reader to [1, Theorem
2.38.].

4 Uniform random diffusion coefficient

In this section we will consider the case when the diffusion coefficient is uniformly bounded away
from zero and from above, which allows us to consider the ”mean-weak” formulation and directly
apply the [BNB] theorem about the existence and uniqueness of the solution. The formulation of
the [BNB] theorem can be found for example in [17].
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4.1 Formulation of the problem

We want to consider the following equation

∂•u−∇Γ · (α∇Γu) + u∇Γ · w = f in L2
V ∗

u(0) = u0.
(4.1)

Remark. The initial condition is meaningful thanks to the embedding W (V, V ∗) ⊂ C0
V [1, Lemma

2.35].

Let us state assumptions for the initial data that we need in order to prove the existence and
uniqueness of the solution.

Assumption 4.1. The initial value u0 belongs to L2(Ω, L2(Γ0)). For the source term we assume
f ∈ L2

V ∗ . Moreover, α : Ω×GT → R is assumed to be a random F ⊗B(GT )−measurable function,
where GT is the space-time surface GT :=

⋃
t Γ(t)×{t}. Furthermore, we assume that the diffusion

coefficient α is bounded and uniformly coercive in the sense that there are constants αmin, αmax

such that
0 < αmin ≤ α(ω, x, t) ≤ αmax <∞ ∀(x, t) ∈ GT (4.2)

holds for P−a.e. ω ∈ Ω.

Definition 4.2. We say that u is a ”mean-weak” solution of (4.1) if it satisfies the initial condition
u(0) = u0 and u ∈ W (V, V ∗) and a.e. in [0, T ]:

〈∂•u(t), v〉L2(Ω,H−1(Γ(t))),L2(Ω,H1(Γ(t))) +

∫
Ω

∫
Γ(t)

α(t)∇Γu(t) · ∇Γv

+

∫
Ω

∫
Γ(t)

u(t)v∇Γ · w = 〈f(t), v〉L2(Ω,H−1(Γ(t))),L2(Ω,H1(Γ(t))) ,

(4.3)

for every v ∈ L2(Ω, H1(Γ(t))).

In order to simplify the notation we define the bilinear form a(t; ·, ·) : V (t)× V (t)→ R by

a(t;u, v) :=

∫
Ω

∫
Γ(t)

α(ω, x, t)∇Γu(ω, x) · ∇Γv(ω, x). (4.4)

Let us state some of the properties of the bilinear form a.

Lemma 4.3. The map
t 7→ a(t;u(t), v(t)) (4.5)

is measurable for all u, v ∈ L2
V . Furthermore, there exist positive deterministic constants C1, C2 and

C3 that are independent of t such that the following holds for almost every t ∈ [0, T ]

a(t; v, v) ≥ C1‖v‖2
L2(Ω,H1(Γ(t))) − C2‖v‖2

L2(Ω,L2(Γ(t))) ∀v ∈ V (t) (4.6)

|a(t;u, v)| ≤ C3‖u‖L2(Ω,H1(Γ(t)))‖v‖L2(Ω,H1(Γ(t))) ∀u, v ∈ V (t). (4.7)
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Proof. The measurability of (4.5) follows directly from the Fubini-Tonelli theorem. Moreover, the
assumption (4.2) directly implies that

a(t; v, v) ≥ αmin‖∇Γv‖2
L2(Ω,L2(Γ)),

thus we can take C1 = C2 = αmin. Using again (4.2) and the Cauchy-Schwarz inequality we get
that C3 = αmax

|
∫

Ω

∫
Γ(t)

α(ω, x, t)∇Γu · ∇Γv| ≤ αmax| 〈∇Γu,∇Γv〉L2(Ω,L2(Γ(t))) |

≤ αmax‖u‖L2(Ω,H1(Γ(t)))‖v‖L2(Ω,H1(Γ(t))).

4.2 Existence and uniqueness

After developing all the necessary results, we can now formulate the theorem about the existence
and uniqueness of a ”mean-weak” solution of the equation (4.3).

Theorem 4.4. Under the Assumption 4.1 for given f ∈ L2
V ∗ and u0 ∈ H0, there exists a unique

”mean-weak” solution u ∈ W (V, V ∗) satisfying (4.3) such that

‖u‖W (V,V ∗) ≤ C(‖u0‖H0 + ‖f‖L2
V ∗

)

where V = (V (t))t∈[0,T ] is the family of spaces V (t) = L2(Ω, H1(Γ(t))), V ∗ is the family of
corresponding dual spaces and H0 = L2(Ω, L2(Γ0)).

Proof. Lemma 3.3, Theorem 3.12 and Lemma 4.3 imply that we can apply [1, Theorem 3.6] about
the existence and uniqueness of the solution of the parabolic PDE on an abstract evolving space.
The main idea of the proof of [1, Theorem 3.6] is to use the Banach-Nečas-Babuška theorem. This
proves the theorem.

4.3 Regularity

Let us now assume more regularity of the input data. More precisely, let f ∈ L2
H and u0 ∈ V0. We

will prove that in this case we also have more regularity for the solution, i.e. its material derivative.
Before we state this result, we will prove some technical results.

First we define the solution space for the case when the solution has more regularity.

Definition 4.5. We define
W (V,H) := {u ∈ L2

V | ∂•u ∈ L2
H}.

Lemma 4.6. There is an evolving space equivalence between W (V,H) and W(V0, H0) ≡ {v ∈
L2(0, T ;L2(Ω, H1(Γ0))) | v′ ∈ L2(0, T ;L2(Ω, L2(Γ0)))}.
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Proof. Since The Jacobian J0
t is uniformly bounded, both in time and space (see 3.3), applying [1,

Theorem 2.33] to the restriction Ŝ(t) :H0 → H0 of the map defined in the proof of Theorem 3.12,
completes the proof.

Corollary 4.7. W (V,H) is a Hilbert space.

If u0 ∈ V0 and f ∈ L2
H , the Definition 4.2 of the ”mean-weak” solution transforms to:

find u ∈ W (V,H) such that u(0) = u0 and a.e. in [0, T ] holds∫
Ω

(∂•u(t), v)H1(Γ(t)) +

∫
Ω

∫
Γ(t)

α(t)∇Γu(t) · ∇Γv +

∫
Ω

∫
Γ(t)

u(t)v∇Γ · w(t) =

∫
Ω

∫
Γ(t)

fv, (4.8)

for every v ∈ L2(Ω, H1(Γ(t))).

Lemma 4.8. There exists a basis {χ0
j}j∈N of V0 ≡ L2(Ω, H1(Γ0)) and for every u0 ∈ V0 there

exists a sequence {u0k}k∈N such that u0k ∈ span{χ0
1, . . . , χ

0
k} for every k, such that

u0k → u0 in V0

‖u0k‖H0 ≤ ‖u0‖H0

‖u0k‖V0 ≤ ‖u0‖V0 .

Proof. Since H1(Γ0) is compactly embedded in L2(Γ0), there exists an orthonormal basis {wm} in
L2(Γ0) such that

(u,wm)L2(Γ0) = λ−1
m (u,wm)H1(Γ0) ∀u ∈ H1(Γ0) (4.9)

and in addition, {λ−1/2
m wm}m∈N is an orthonormal basis of H1(Γ0) (see for instance [32, Theo-

rem 6.2-1]). On the other hand, since L2(Ω) is separable, it has an orthonormal basis {en}n∈N. It
follows according to Theorem 2.1 that {wmen}m,n∈N is an orthonormal basis of L2(Ω, L2(Γ0)) and
{λ−1/2wmen}m,n∈N is an orthonormal basis of L2(Ω, H1(Γ0)). Let u0 ∈ L2(Ω, H1(Γ0)) be arbitrary.
Then, (4.9) implies

(u0, enwm)L2(Ω,L2(Γ0)) = λ−1
m (u0, enwm)L2(Ω,H1(Γ0)). (4.10)

Thus we have

u0 =
∑
m,n

(u0, enwm)L2(Ω,L2(Γ0))enwm =
∑
m,n

(u0, enwm)L2(Ω,H1(Γ0))λ
−1
m enwm.

Now we can define

u0k :=
∑

n=1,...,Nk
m=1,...,Mk

(u, enwm)L2(Ω,L2(Γ0))enwm =
∑

n=1,...,Nk
m=1,...,Mk

(u, enwm)L2(Ω,H1(Γ0))λ
−1
m enwm,

where the last equality follows from (4.10). We choose Mk and Nk such that they both converge to
∞, as k →∞. Defined like this, u0k satisfies the conditions from the Lemma.
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If we write χtj := φt(χ
0
j), where {χ0

j}j∈N is a basis of V0, then by [1, Lemma 5.1] it follows that
{χtj}j∈N is a countable basis of V (t). Now we define the space

C̃1
V := {u |u(t) =

m∑
j=1

αj(t)χ
t
j,m ∈ N, αj ∈ AC([0, T ]) and α′j ∈ L2(0, T )},

where AC([0, T ]) is the space of absolutely continuous functions from [0, T ].
For improved regularity of the solution, we will also need the following assumption on the mate-

rial derivative of the random coefficient α. More precisely, we assume that there exists a determin-
istic constant C that does not depend on time such that

|α̇(ω, x, t)| ≤ C, P− almost everywhere (4.11)

where α̇ is a strong material derivative. For this assumption to be fulfilled, it suffices to assume that
α(ω, ·, ·) ∈ C1(GT ) holds P−almost everywhere, which implies the boundedness of |α̇(ω)| on GT
and in addition we assume that this bound is uniform in ω.

Lemma 4.9. a) The map
t 7→ a(t; y(t), y(t))

is an absolutely continuous function on [0, T ] for all y ∈ C̃1
V .

b) a(t; v, v) ≥ 0 for all v ∈ V (t).

c)
d

dt
a(t; y(t), y(t)) = 2a(t; y(t), ∂•y(t)) + r(t; y(t)) ∀y ∈ C̃1

V ,

where the derivative is taken in the classical sense and r(t; ·) : V (t)→ R satisfies

|r(t; v)| ≤ C3‖v‖2
V (t) ∀v ∈ V (t).

Proof. Part b) follows immediately from the assumption (4.2). In order to prove parts a) and c),
let us first take η ∈ C∞V . Since the probability space Ω does not depend on time, it does not have
any influence in taking time derivative, thus the analogue Transport formulae from the deterministic
case (that can be found in [15, Lemma 2.1]) still hold in our setting. By applying this formula to the
bilinear form a(t; ·, ·) we get

d

dt
a(t; η(t), η(t)) = 2a(t; η(t), ∂•η(t)) + r(t; η(t)), (4.12)

where the function r(t; η(t)) is defined by

r(t; η(t)) :=

∫
Ω

∫
Γ(t)

α̇|∇Γη|2 + α|∇Γη|2∇Γ · w− 2∇Γη(DΓ(w))∇Γη

with the deformation tensor (DΓw(t))ij := Djwi(t).
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By the similar arguments as in [2, Ch. 5.1], which are based on the density result of space C∞V
in C̃1

V , we can conclude that the previous formula is also true for every function η ∈ C̃1
V . Further-

more, the boundedness of r(t; ·) follows directly from the assumptions about the velocity (2.4) and
assumption (4.11). This proves c). It remains to prove part a). This claim follows directly from the
previous calculation, which implies that both the function a(t; η(t), η(t)) and its time derivative (i.e.
the right hand side of (4.12)) belong to L1(0, T ), from which it follows that t 7→ a(t; η(t), η(t)) has
an absolutely continuous representative.

Theorem 4.10. Let Assumption 4.1 hold and additionally assume (4.11). Then for given f ∈ L2
H

and u0 ∈ V0, there exists a unique ”mean-weak” solution u ∈ W (V,H) satisfying (4.8) and the
following a priori estimate holds

‖u‖W (V,H) ≤ C(‖u0‖V0 + ‖f‖L2
H

).

Proof. From Lemma 4.3, Lemma 4.8 and Lemma 4.9, it follows that we can apply the general
theorem [1, Theorem 3.13] about the regularity of the solution of parabolic PDEs on evolving space,
which implies the theorem.

5 Log-normal random diffusion coefficient

In this section we will consider the case when the diffusion coefficient has a log-normal distribu-
tion introduced by Definition 2.3 and satisfies Assumption 2.4. We will use results and definitions
from subsections 2.3 and 2.4, especially our sample space Θ will be defined by (2.9) with mea-
sure γ defined by (2.7). Since in this case the random coefficient is not uniformly bounded in the
parameter y ∈ Θ, integration of the path-wise formulation over Θ with respect to γ does not lead
to a well-posed ”mean-weak” formulation. Thus we can not apply the [BNB] theorem as we did
in the uniform case in the section 4. Instead, we will consider for each realization y a path-wise
formulation for which we know from the deterministic case that it has a unique solution u(y). Since
we are interested in the statistics of the solution, especially expectation and variance, we want to
prove p-integrability of the solution with respect to γ. This consists of two steps, first, proving the
measurability of the map y 7→ u(y) and second, proving the bound for the norm.

5.1 Path-wise formulation of the problem

For the path-wise formulation we will consider the Gelfand tripleH1(Γ(t)) ⊂ L2(Γ(t)) ⊂ H−1(Γ(t)).

Let us define
V(t) := H1(Γ(t)) and H(t) := L2(Γ(t)).

For simplicity we will assume that the source term f ∈ L2
V∗ and the initial data u0 ∈ L2

H are
deterministic. Furthermore, let us remark that we can transform the problem (1.1) into a PDE with
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zero initial condition, the reader can find a more detailed argument in [1]. Thus, from now we will
assume that u0 = 0.

The solution space for the path-wise formulation will be

W0(V ,V∗) = {u ∈ L2
V | ∂•u ∈ L2

V∗ , u(0) = 0}

which is a Hilbert space, as a closed linear subspace of W (V ,V∗).
Let us now state the path-wise weak formulation of (1.1):

For every y ∈ Θ find u(y) ∈ W0(V ,V∗) such that almost everywhere in [0, T ] it holds

〈∂•u(y), v〉V∗(t),V(t) +

∫
Γ(t)

α(y)∇Γu(y) · ∇Γv +

∫
Γ(t)

u(y)v∇Γ · w = 〈f, v〉V∗(t),V(t) , (5.1)

for every v ∈ V(t).
In order to get a coercive bilinear form, we write (1.1) as

∂•u−∇Γ · (α∇Γu) + (λ+∇Γ · w)u− λu = f (5.2)

for any λ ∈ R. Introducing

û(y) := e−λtu(y) and f̂(y) := e−λtf(y)

and using the product rule, we can rewrite (5.2) as

∂•û−∇Γ · (α∇Γû) + (λ+∇Γ · w)û = f̂ . (5.3)

Furthermore, the path-wise weak form of (5.3) is given by:
for every y ∈ Θ find û(y) ∈ W0(V ,V∗) such that almost everywhere in [0, T ] it holds

〈∂•û(y), v̂〉V∗(t),V(t) + â(y, t; û, v̂) =
〈
f̂ , v̂
〉
V∗(t),V(t)

∀v̂ ∈ V(t), (5.4)

where the parametric bilinear form â(y, t; ·, ·) : V(t)× V(t)→ R is defined by

â(y, t; ξ, η) :=

∫
Γ(t)

α(y)∇Γξ · ∇Γη + (λ+∇Γ · w)ξη.

The advantage of writing the equation in this form is that now the induced bilinear form â(y, t; ·, ·)
is coercive and bounded, for sufficiently large λ. Namely for λ > Cw and Cλ := λ− Cw we have

â(y, t; η, η) ≥ m(y)‖η‖2
V(t) (5.5)

|â(y, t; η, ξ)| ≤M(y)‖η‖V(t)‖ξ‖V(t) (5.6)

where m(y) := min(αmin(y), Cλ) and M(y) := max(αmax(y), λ+ Cw).
Furthermore, we will also use the following estimate

â(y, t; η, η) ≥ min

(
αmin(y),

Cλ
2

)
‖η‖2

V(t) +
Cλ
2
‖η‖2

H(t). (5.7)
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We define the bilinear form d(y) : W0(V ,V∗)× L2
V → R by

d(y; ξ, η) :=

∫ T

0

〈∂•ξ, η〉V∗,V + â(y, t; ξ, η).

Then the inf-sup constant is given by

β(y) := inf
η∈W0(V,V∗)

sup
ξ∈L2

V

|d(y; η, ξ)|
‖η‖W0(V,V∗)‖ξ‖L2

V

.

Lemma 5.1. Let Assumption 2.4 hold and additionally assume λ ≥ 3Cw and (2.4). Then for ev-
ery y ∈ Θ, there exists a unique solution û(y) ∈ W0(V ,V∗) to the problem (5.4). Moreover, the
following estimate holds

‖û(y)‖W0(V,V∗) ≤
1

β(y)
‖f̂‖L2

V∗
(5.8)

where the inf-sup constant is bounded from below by

β(y) ≥
min

(
m(y)
M(y)2

, αmin(y), Cλ
2

)
√

2 max(m(y)−2, 1)
. (5.9)

Proof. Under Assumption 2.4, the existence and uniqueness of the solution, as well as the estimate
(5.8) follow from the deterministic result for λ ≥ 3Cw, which can be found in [2] and [13]. In order
to prove the bound (5.9) we will use the idea from [35]. The main difference in the proof is that
our domain is curved and changing in time, therefore we can not use the standard partial integration
formula, but instead we will use partial integration that follows from the Transport theorem and has
an additional term that reflects the spatial change in time.

Let y ∈ Θ be arbitrary. We start with defining the linear operatorA(y, t) : V(t)→ V∗(t) induced
by

〈A(y, t)η, ξ〉V∗(t),V(t) := â(y, t; η, ξ).

Given an arbitrary 0 6= w(y) ∈ W0(V ,V∗), we define

zw(y, t) := A−1(y, t)∂•w(y, t) ∈ V(t)

and select the test function

vw(y, t) := zw(y, t) + w(y, t) ∈ V(t).

Using (5.5) and (5.6) we obtain

〈∂•w, zw〉V∗(t),V(t) ≥
m(y)

M(y)2
‖∂•w‖2

V∗(t). (5.10)

The definition of zw directly implies

â(y, t;w, zw) =
〈
Aw,A−1∂•w

〉
V∗(t),V(t)

= 〈w, ∂•w〉V(t),V∗(t) . (5.11)
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Analogous to Theorem 3.14, the Transport formula for the scalar product inH(t) holds with

c(t;u, v) :=

∫
Γ(t)

uv∇Γ · w.

As a consequence, we obtain the following integration by parts formula (see [1, Corollary 2.41])

(u(T ), v(T )))H(t)− (u(0), v(0))H(t) =

∫ T

0

〈∂•u, v〉V∗(t),V(t) + 〈∂•v, u〉V∗(t),V(t) + c(t;u, v). (5.12)

Using (5.10) and (5.11) we arrive at

d(y;w, vw) ≥
∫ T

0

m(y)

M(y)2
‖∂•w‖2

V∗(t) + 〈∂•w,w〉V∗(t),V(t) + 〈w, ∂•w〉V(t),V∗(t) + â(y, t;w,w)

≥
∫ T

0

m(y)

M(y)2
‖∂•w‖2

V∗(t) − Cw‖w‖2
H(t) +

Cλ
2
‖w‖2

H(t) + min

(
αmin(y),

Cλ
2

)
‖w‖2

V(t)

where for the last inequality we used (5.7), (5.12) and (2.4). Taking λ ≥ 3Cw gives Cλ ≥ 2Cw and
we get

d(y;w, vw) ≥ min

(
m(y)

M(y)2
, αmin(y),

Cλ
2

)
‖w‖2

W0(V,V∗). (5.13)

It is left to estimate the norm ‖vw‖L2
V

, which follows directly from (5.5)

‖vw‖2
L2
V
≤ 2

(
‖A−1∂•w‖2

L2
V

+ ‖w‖2
L2
V

)
≤ 2 max(m(y)−2, 1)‖w‖2

W0(V,V∗).

Since w is arbitrary, the last estimate together with (5.13) implies the bound (5.9).

Using Lemma 5.1 we can prove the bound for the path-wise solution.

Theorem 5.2. Let Assumptions 2.4 hold and additionally assume (2.4). Then problem (5.1) has a
unique solution u(y) ∈ W0(V ,V∗) for every y ∈ Θ and it satisfies

‖u(y)‖W (V,V∗) ≤
Ĉ

β(y)
‖f‖L2

V∗

where Ĉ is independent of y and the inf-sup constant β(y) is bounded from below by (5.9).

Proof. Similarly as in the previous Lemma, the existence and uniqueness of the path-wise solution
follow from the deterministic results (see [2, 13]). In order to get the estimate of the solution norm,
we compare the norms ‖u(y)‖W0(V,V∗) and ‖û(y)‖W0(V,V∗). Since

‖∂•u(y)‖2
L2
V∗
≤ 2e2λT

(
Cλ‖û(y)‖2

L2
V

+ ‖∂•û(y)‖2
L2
V∗

)
where C is the embedding constant of L2

V into L2
V∗ , using Lemma 5.1 we obtain

‖u(y)‖2
W0(V,V∗) ≤ e2λT

(
‖û(y)‖2

L2
V

+ 2Cλ‖û(y)‖2
L2
V

+ 2‖∂•û(y)‖2
L2
V∗

)
≤ e2λT max(2, 1 + 2Cλ)

1

β(y)2
‖f̂‖2

L2
V∗
≤ Ĉ2 1

β(y)2
‖f‖2

L2
V∗

where Ĉ2 = eλT max(2, 1 + 2Cλ) is independent of y, which completes the proof.
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Remark 5.3. Without loss of generality we can assume

αmin(y) ≤ Cw ≤
αmax(y)

4

for almost every y. Furthermore, without loss of generality we can assume that αmin(y) ≤ 1 and
αmax(y) ≥ 1 for almost every y. Previous assumptions are without loss of generality and just makes
the calculations less technical, since it simplifies the bound of the inf-sup constant.

Under Assumption 5.3, by taking λ = 3Cw, the bound (5.9) becomes

β(y) ≥ 1√
2

αmin(y)2

αmax(y)2
for a.e. y.

Previous together with Lemma 2.8 imply

‖u(y)‖W0(V,V∗) ≤
√

2

Ĉ

αmin(y)2

αmax(y)2
≤
√

2

Ĉ

(
4
∑
k≥1

bk|yk|

)
(5.14)

for almost every y.

5.2 Integrability of the solution

In this section we will prove the p-integrability of the solution u with respect to γ. The first step is
to show the measurability of the map y 7→ u(y), Θ → W0(V ,V∗). The main idea of the proof is
adopted from [19, Lemma 3.4]. It consists of proving that the solution u is almost surely the limit
of measurable functions un that are the ”mean-weak” solutions of (1.1) in the uniform case.

Remark 5.4. Let us note that since the sample space Θ is independent of time, it holds

L2(Θ, L2
V) ∼= L2(Θ)⊗ L2

V
∼= L2

L2(Θ,V).

From this we deduce

W (V, V ∗) ∼= L2(Θ)⊗W (V ,V∗) ∼= L2(Θ,W (V ,V∗)).

We will exploit this isomorphism in the proof of the p-integrability of the solution u with respect to
γ, where we consider the problem in a path-wise sense.

Theorem 5.5. The solution u : Θ→ W (V ,V∗), y 7→ u(y) of (5.1) is B(RN)−measurable.

Proof. Since we have proved the well-posedness of the ”mean-weak” formulation in the uniform
case, the proof of the measurability can be adopted from [19, Lemma 3.4]. Here we just sketch
its main idea. We start with defining a subspace Θn of Θ, for every n ∈ N, where the diffusion
coefficient is uniformly bounded

Θn := {y ∈ Θ |αmax(y) < n, αmin(y) >
1

n
} ⊂ Θ.
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Note that Θn is increasing and Θ = ∪nΘn. Then we consider the ”mean-weak” formulation on the
parameter space Θn. In the uniform case, from the Theorem 4.4 it follows that there exists a unique
solution un ∈ L2(Θn, γ;W0(V ,V∗)). In particular, un is a measurable function on Θn. The last step
is proving that u is a.s. limit of un, thus it is measurable. This follows because un also solves the
path-wise equation (5.1) for a.e. y ∈ Θn.

Now we can state the result about the p−integrability of the solution.

Theorem 5.6. Let 0 < p < ∞, χ > 0 and f ∈ L2
V∗ . If Assumption 2.4 holds and additionally we

assume (2.4), then the solution u of (5.1) belongs to Lp(Θ, γ;W0(V ,V∗)) and satisfies

‖u‖Lp(Θ,γ;W0(V,V∗)) ≤ cp,χ‖f‖L2
V∗

with

cp,χ =

√
2

Ĉ
exp

(
4p exp(2χ‖b‖l∞)

χ
+
χ

p

)
‖b‖l1 .

Proof. With previous results in mind, the proof is similar to the proof stated in [31, Prop. 3.3.2].
However, since the bound for the inf-sup constant β is a bit different in our case, we give the main
ideas of the proof. From Theorem 5.2 and Theorem 5.5 we obtain∫

Θ

‖u(y)‖pW0(V,V∗)dγ ≤
∫

Θ

1

β(y)p
‖f‖p

L2
V∗
dγ

=

∫
Θ

ζχ(y)−1 1

β(y)p
‖f‖p

L2
V∗
dγχ ≤ ess sup

y

(
1

ζχ(y)β(y)p

)
‖f‖p

L2
V∗
,

where ξχ and γχ are defined in Section 2.4. In order to bound 1
ζχ(y)β(y)p

we use Lemma 2.10 and
bound (5.14), which completes the proof.

6 Outlook

Although we have stated and solved the problem of finding the unique solution of advection-
diffusion PDEs with random coefficients on a moving hypersurface, only the continuous case has
been discussed. The next step is to consider the numerical approximation of the solution of the
equation. More strictly, since the solution is a random variable, we are interested in a numerical
approximation of the expected value of the solution. One approach for discretization in space would
be to use the evolving surface finite element method from [13], for which we approximate the hy-
persurface by an evolving interpolated polyhedral surface. In order to deal with uncertainty, one
could use the Monte Carlo method which approximates the expected value. The goal would be to
find the error estimate for this approximation. These results are the subject of ongoing research and
a paper is in preparation.
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