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Abstract

We present the analysis of advection-diffusion equations with random coefficients on mo-
ving hypersurfaces. We define weak and strong material derivative, that take into account also
the spacial movement. Then we define the solution space for these kind of equations, which is
the Bochner-type space of random functions defined on moving domain. Under suitable regular-
ity assumptions we prove the existence and uniqueness of solutions of the concerned equation,
and also we give some regularity results about the solution.
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1 Introduction

There is a growing interest in partial differential equations (PDEs) with random coefficients that are
used as model equations. These equations contain random variables that model parameters which
include some uncertainty. The uncertainty can come from intrinsic variability of the physical sys-
tem or when the input data of the real system are not completely known [15]. This work addresses
specifically parabolic PDEs with random coefficients which have been so far studied in several pa-
pers ([18], [19], [22]). Furthermore, these PDEs occur in many applications, such as hydrogeology,
material science, fluid dynamics, biological fluids etc.

All these papers have considered equations on some bounded fixed domain in Rd. Some of
these models can be better formulated on the moving domain, especially in biological applications
([16],[17]). However, there is no mathematical theory for PDEs with random coefficients on moving
surfaces and for this reason in this paper we consider this type of problem. The deterministic coun-
terpart for these equations, surface PDEs, have been introduced in [10] and then later developed in
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[6], [13], [14], etc. Dziuk and Elliott have introduced the evolving surface finite element method for
PDEs on moving hypersurfaces ([5], [7]). Recently this topic has been generalized ([1], [2]) to a
more abstract level, i.e. to parabolic PDEs on any evolving Hilbert space.

The aim of this paper is to combine surface PDEs on moving hypersurfaces with PDEs with
random coefficients. More precisely, we wish to analyse the following advection-diffusion equation

∂•u−∇Γ · (α∇Γu) + u∇Γ · w = f

u(0) = u0

(1.1)

where∇Γ is a tangential surface gradient, ∂• is a material derivative and w = wν + wτ is a velocity
field. Thus, besides the normal velocity, which is enough to define the evolution of the surface,
the surface also has an advective tangential velocity. Note that we assume the surface evolution to
be prescribed. In contrast to the deterministic case, a source function f and initial function u0 are
random. The diffusion coefficient α is also random and uniformly bounded from above and away
from zero. Hence the solution u will also be a random function. The equation (1.1) models the
transport of a scalar quantity, e.g., a surfactant, along a moving two-dimensional interface [12]. The
surfactant is transported by advection via the tangential fluid velocity and by diffusion within the
surface. A natural next step would be to consider the case when α is a lognormal random field. This
model is widely used for the flow equation in porous media and has been considered on the fixed
domain, for example in [22]. Note that in this case the random field no longer satisfies uniform
coercivity w.r.t. ω. The analysis of this case is left to future work.

Our goal is to prove the existence and uniqueness of a solution of the equation (1.1). Furthermore,
we will prove that for more regular input data, our solution will also have more regularity in its
material derivative. The main task is first to define properly the framework for the equation (choose
an appropriate Gelfand triple, precisely define the material derivative and a solution space), and then
prove the properties of this setting. This will enable us to apply the theorem of well-posedness of
the PDE on an evolving space in the abstract case given in [1].

The paper is organized as follows. We start the second section by setting up the notation, descrip-
tion of the hypersurfaces and assumptions on the evolution of the hypersurfaces. Furthermore, since
our spaces will have tensor structure, we briefly summarize without proofs the relevant material on
tensor products. In the third section we proceed with setting up the function spaces and defining
the material derivative. Moreover, we show that the framework from [1] is applicable. The Sec-
tion 4 contains the precise formulation of the problem and assumptions about random coefficients
and random source. Also, the proofs of the main results about existence, uniqueness and regularity
of solutions are given. In the final section we discuss possible extensions to this paper for further
research.
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2 Preliminaries

Let (Ω,F ,P) be a complete probability space with sample space Ω, a σ−algebra of events F and
a probability P : F → [0, 1]. In addition, we assume that L2(Ω) is a separable space. We will
only consider a fixed finite time interval [0, T ], where T ∈ (0,∞). Furthermore, we will denote by
D([0, T ];V ) the space of infinitely differentiable functions with values in V and compact support
in [0, T ].

2.1 Hypersurfaces

Let us first recall some basic theory about hypersurfaces and Sobolev spaces on hypersurfaces. For
more details we refer to [9] or [8]. We will assume that Γ is a C2 compact, connected, orientable,
n−dimensional hypersurface, embedded in Rn+1 for n = 1, 2, or 3. For a function f : Γ → R
which is differentiable in an open neighbourhood of Γ we define the tangential gradient by

∇Γf(x) := ∇f(x)−∇f(x) · ν(x)ν(x) x ∈ Γ,

where ν(x) is normal on TxΓ.Note that∇Γf(x) is the orthogonal projection of∇f(x) onto TxΓ and
it depends only on the values of f on Γ [8, Lemma 2.4]. Now we can define the Laplace-Beltrami
operator by

∆Γf(x) = ∇Γ · ∇Γf(x) =
n+1∑
i=1

DiDif(x) x ∈ Γ,

where ∇Γ = (D1, . . . , Dn+1). Let us state the integration by parts formula for functions f ∈
C1(Γ;Rn+1): ∫

Γ

∇Γ · f =

∫
Γ

f ·Hν +

∫
∂Γ

f · µ, (2.1)

where µ is the unit conormal vector and H is the mean curvature. Note that since we have assumed
that Γ is compact, it has no boundary. Furthermore, we state Green’s formula∫

Γ

∇Γf · ∇Γg =

∫
∂Γ

f∇Γg · µ−
∫

Γ

f∆Γg. (2.2)

From (2.1) and (2.2), in the case when ∂Γ = ∅, we can derive the following∫
Γ

f∇Γg = −
∫

Γ

(∇Γf − fHν)g. (2.3)

We will consider the Sobolev space on a hypersurface. We define L2(Γ) as usual, i.e. as a set of all
measurable functions f : Γ→ R such that

‖f‖L2(Γ) :=

(∫
Γ

|f(x)|2
)1/2

<∞.
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We say that a function f ∈ L2(Γ) has a weak derivative gi = Dif ∈ L2(Γ), i = 1, . . . , n + 1 if for
every function φ ∈ C1

c (Γ) and every i it holds∫
Γ

fDiφ = −
∫

Γ

φgi +

∫
Γ

fφHνi.

Now, we can define the Sobolev space

H1(Γ) = {f ∈ L2(Γ) | Dif ∈ L2(Γ), i = 1, . . . , n+ 1}

with the norm
‖f‖H1(Γ) =

√
‖f‖2

L2(Γ) + ‖∇Γf‖2
L2(Γ).

We will consider the family of evolving surfaces {Γ(t)} for t ∈ [0, T ] which evolves according
to a given velocity field w. For each t ∈ [0, T ] we assume that Γ(t) satisfies the same properties as
Γ and we set Γ0 := Γ(0). We also assume the existence of a flow Φ : [0, T ] × Rn+1 → Rn+1 such
that for all t ∈ [0, T ] its restriction Φ0

t := Φ(t, ·) : Γ0 → Γ(t) is C2−diffeomorphism that satisfies

d

dt
Φ0
t (·) = w(t,Φ0

t (·))

Φ0
0(·) = Id(·),

where w : [0, T ]× Rn+1 → Rn+1 is the C2−velocity field that is uniformly bounded

|∇Γ(t) · w(t)| ≤ C for all t ∈ [0, T ]. (2.4)

2.2 Tensor products

Since the function spaces which will be used later has tensor product structure, let us recall some
basic results about it. Let H1 and H2 be Hilbert spaces. The tensor product v1 ⊗ v2 is defined as a
conjugate bilinear form:

(v1 ⊗ v2)(w1, w2) := (v1, w1)H1(v2, w2)H2

on H1 × H2. Let S be the set of finite linear combinations of such tensor products. We can define
an inner product on S by

(v1 ⊗ v2, w1 ⊗ w2) := (v1, w1)H1(v2, w2)H2 (2.5)

and extend it by linearity to S. The tensor product H1 ⊗H2 is the completion of S under the inner
product (2.5).

Theorem 2.1. The tensor space H1 ⊗ H2 is a Hilbert space. If {ej}j∈N and {fk}k∈N are basis of
Hilbert spaces H1 and H2, then {ej ⊗ fk}j,k∈N constitute a basis of H1 ⊗H2.
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Proof. The proof can be found for example in [21].

Theorem 2.2. Let (X,µ) and (Y, ν) be measure spaces such that L2(X,µ) and L2(Y, ν) are sepa-
rable. Then, the following holds:

a) There is a unique isometric isomorphism

L2(X,µ)⊗ L2(Y, ν) ∼= L2(X × Y, µ× ν)

so that f ⊗ g 7→ fg.

b) If H is a separable Hilbert space then there is a unique isometric isomorphism

L2(X,µ)⊗H ∼= L2(X,µ;H)

so that f(x)⊗ ϕ 7→ f(x)ϕ.

Proof. The proof can be found for example in [21].

3 Function spaces

3.1 Gelfand triple

In this section, we will define the basic Gelfand triple that will be used to define the solution space
for (1.1). For each t ∈ [0, T ], let us define

V (t) := L2(Ω, H1(Γ(t))) and H(t) := L2(Ω, L2(Γ(t))).

Then the dual space of V (t) is the space V ∗(t) = L2(Ω, H−1(Γ(t))) where H−1(Γ(t)) is the dual
space of H1(Γ(t)).

Since all spaces L2(Ω), L2(Γ(t)) and H1(Γ(t)) are separable Hilbert spaces, using Theorem 2.2
we have:

L2(Ω, H1(Γ(t))) ∼= L2(Ω)⊗H1(Γ(t)) (3.1)

L2(Ω, L2(Γ(t))) ∼= L2(Ω)⊗ L2(Γ(t)) (3.2)

Remark. For convenience we will often (but not always) write u(ω, x) instead of u(ω)(x), which
is justified by the aforementioned isomorphisms.

Lemma 3.1. V (t) ⊂ H(t) ⊂ V ∗(t) is a Gelfand triple for every t ∈ [0, T ].

Proof. Since H1(Γ(t)) is dense in L2(Γ(t)), the proof follows from (3.1), (3.2) and [11, Lemma
4.34], using the density argument.
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3.2 Compatibility of spaces

In order to treat the evolving spaces, we need to define special Bochner-type function spaces such
that for every t ∈ [0, T ] we have u(t) ∈ V (t). In general, if we have an evolving family of Hilbert
spacesX = (X(t))t∈[0,T ], the idea is to connect the spaceX(t) at any time t ∈ [0, T ] with some fixed
space, for example with the initial space X(0). We do that using the family of maps φt : X(0) →
X(t), which we call the pushforward map. We denote the inverse of φt by φ−t : X(t)→ X(0) and
call it the pullback map. The following definition is adapted from [1].

Definition 3.2. The pair {X, (φt)t∈[0,T ]} is compatible if the following conditions hold:
• for every t ∈ [0, T ], φt is linear homeomorphism such that φ0 is the identity map
• there exists a constant CX which is independent of t such that

‖φtu‖X(t) ≤ CX‖u‖X(0) for every u ∈ X(0)

‖φ−tu‖X(0) ≤ CX‖u‖X(t) for every u ∈ X(t)

• the map t 7→ ‖φtu‖X(t) is continuous for every u ∈ X(0).

We will denote the dual operator of φt by φ∗t : X∗(t) 7→ X∗(0). As a consequence of the previous
conditions, we obtain that φ∗t and its inverse are also linear homeomorphisms which satisfy the
following conditions

‖φ∗tf‖X∗(0) ≤ CX‖f‖X∗(t) for every f ∈ X∗(t)
‖φ∗−tf‖X∗(t) ≤ CX‖f‖X∗(0) for every f ∈ X∗(0).

For the Gelfand triple L2(Ω, H1(Γ(t))) ⊂ L2(Ω, L2(Γ(t))) ⊂ L2(Ω, H−1(Γ(t))) we define the
pullback operator φ−t : L2(Ω, L2(Γ(t)))→ L2(Ω, L2(Γ0)) in the following way:

(φ−tu)(ω)(x) := u(ω)(Φ0
t (x)) for every x ∈ Γ(0), ω ∈ Ω.

Remark. Since we are interested only in the dual operator of φt
∣∣
V

, we will denote it by φ∗t :

V ∗(t)→ V ∗0 .

The next step is to prove that (H,φ(·)) and (V, φ(·)
∣∣
V0

) are compatible pairs. The proof is similar
to the proof of [3, Lemma 3.2].

Let J0
t (·) := detDΓ0Φ

0
t (·) denote the Jacobian determinant, i.e. the change area of the element

when transformed from Γ0 to Γ(t). The assumptions for the flow Φ0
t imply J0

t ∈ C1([0, T ] × Γ0)

and that the field J0
t is uniformly bounded

1

CJ
≤ J0

t (x) ≤ CJ for every x ∈ Γ0 and for all t ∈ [0, T ], (3.3)

where CJ is positive constant.
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The substitution formula for integrable functions ζ : Γ(t)→ R reads∫
Γ(t)

ζ =

∫
Γ0

(ζ ◦ Φ0
t )J

0
t =

∫
Γ0

φ−tζJ
0
t .

Using the Leibniz formula for differentiation of a parameter dependent surface integral [5, Lemma
2.1] it can be shown [3, Lemma 3.2.] that

d

dt
J0
t = φ−t(∇Γ(t) · w(t))J0

t . (3.4)

Lemma 3.3. The pairs (H, (φt)) and
(
V, (φt

∣∣
V0

)
)

are compatible.

Proof. First we will prove the statement for the pair (H, (φt)). Let u be from L2(Ω, L2(Γ(t))). Then
we have

‖φ−tu‖2
L2(Ω,L2(Γ0)) =

∫
Ω

∫
Γ(t)

|u(ω)(y)|2 1

J0
t ((Φ0

t )
−1(y))

≤ CJ‖u‖2
L2(Ω,L2(Γ(t))),

where we have used the substitution formula and boundeness of J0
t . It is clear that φ−t is linear and

that its continuity follows immediately from the previous estimate. Since Φ0
t is C2−diffeomorphism,

it follows that φ−t is bijective and its inverse (the pushforward) is defined by

φt : L2(Ω, L2(Γ0))→ L2(Ω, L2(Γ(t))), (φtv)(ω, x) = v(ω) ◦ (Φ0
t )
−1(x).

Similarly as for φ−t, we can prove that φt is well defined, satisfies the norm boundeness relation and
is continuous. Thus, φt is linear homeomorphism.
Since the probability space does not depend on time, the continuity of the map t 7→‖φtu‖L2(Ω,L2(Γ(t)))

follows directly from [3, Lemma 3.3.] and the triangle inequality.
In order to prove compatibility of the family (V, φt

∣∣
V0

), let v ∈ L2(Ω, H1(Γ(t))) and ϕ ∈
L2(Ω, C1(Γ0)). Using the substitution formula and integration by parts on Γ(t) we get∫

Ω

∫
Γ0

φ−tv(ω, x)∇Γϕ(ω, x) =

∫
Ω

∫
Γ(t)

v(ω, x)(DΦ̄t(x))T∇Γ(φtϕ(ω, x))J0
−t(x)

= −
∫

Ω

∫
Γ(t)

φtϕ(ω, x)s(ω, x)J0
−t(x)

= −
∫

Ω

∫
Γ0

[φ−ts(ω, x)−H0ν0φ−tv(ω, x)]ϕ(ω, x)+H0ν0φ−tv(ω, x)ϕ(ω, x), (3.5)

where s is the function that we get from the partial integration. Note that s depends only on the
mean curvature and derivative of Φ̄t which can be bounded independently of time and ω. Thus,
‖s(ω)‖L2(Γ(t))(n+1) ≤ C‖v(ω)‖H1(Γ(t)), where C does not depend on ω and t. Furthermore, we get

‖s‖L2(Ω,L2(Γ(t))n+1) ≤ C‖v‖L2(Ω,H1(Γ(t))).
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Hence, using the estimate from the first part of the proof we get

φ−tv ∈ L2(Ω, L2(Γ0)) and ‖φ−tv‖L2(Ω,L2(Γ0)) ≤ C ′‖v‖L2(Ω,H1(Γ(t))). (3.6)

On the other hand, from the partial integration on hypersurface we get∫
Ω

∫
Γ0

φ−tv(ω, x)∇Γϕ(ω, x) = −
∫

Ω

∫
Γ0

ϕ(ω, x)(∇Γ(φ−tv)(ω, x) + φ−tv(ω, x)H0ν0).

From the last relation and (3.5), since they hold for every ϕ ∈ L2(Ω, C1(Γ0)), we get

∇Γ(φ−tv)(ω, x) = φ−ts(ω, x)−H0ν0(φ−tv)(ω, x). (3.7)

For v ∈ L2(Ω, L2(Γ(t))), we have already proved that ‖φ−tv‖L2(Ω,L2(Γ0)) ≤ CH‖v‖L2(Ω,L2(Γ(t))).
Therefore, the following estimate follows

‖H0ν0(φ−tv)(ω, x)‖L2(Ω,L2(Γ0)) ≤ |H0|CH‖v‖L2(Ω,L2(Γ(t))).

Using the last inequality, (3.6) and (3.7), we get

‖φ−tv‖L2(Ω,H1(Γ0)) ≤ CV ‖v‖V (t),

where CV depends on global bound on |Ht|, ‖∂Φ̄t‖ and ‖∂ijΦ̄t‖ with 1 ≤ i, j ≤ n + 1, t ∈ [0, T ]

and these bounds are deterministic and independent of time.
Similarly to the previous case, the continuity of the map t 7→ ‖φtu‖L2(Ω,H1(Γ(t))) follows from [3,

Lemma 3.3] and the independence of the probability space of time, which completes the proof.

3.3 Bochner-type spaces

In this section, we want to define Bochner-type spaces of random functions that are defined on
evolving spaces. In order to strictly define these spaces we will ask that the pull-back of u belongs
to the fixed initial space V (0). These spaces are a special case of general function spaces defined in
[1]:

Definition 3.4. For a compatible pair (X, (φt)t) we define spaces:

L2
X :=

{
u : [0, T ]→

⋃
t∈[0,T ]

X(t)× {t}, t 7→ (ū(t), t) | φ−(·)ū(·) ∈ L2(0, T ;X0)

}

L2
X∗ :=

{
f : [0, T ]→

⋃
t∈[0,T ]

X∗(t)× {t}, t 7→ (f̄(t), t) | φ∗(·)f̄(·) ∈ L2(0, T ;X∗0 )

}
.

The spaces L2
X and L2

X∗ are separable Hilbert spaces ([1], Corollary 2.11) with the inner product
defined as

(u, v)L2
X

=

∫ T

0

(u(t), v(t))X(t)dt

(f, g)L2
X∗ =

∫ T

0

(f(t), g(t))X∗(t)dt.
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By Lemma 3.3, the spaces L2
V , L2

V ∗ and L2
H are well-defined. Since V ⊂ H ⊂ V ∗ is Gelfand triple,

using identification between L2
V ∗ and (L2

V )∗ [1, Lemma 2.15] and by [1, Lemma 2.19] we get:

Lemma 3.5.
L2
L2(Ω,H1(Γ(t))) ⊂ L2

L2(Ω,L2(Γ(t))) ⊂ L2
L2(Ω,H−1(Γ(t)))

is a Gelfand triple.

3.4 Material derivative

We want to define a time derivative that will also take into account the spatial movement, i.e. the
material derivative for random functions. First let us consider the push-forward of continuously
differentiable functions:

C1
V := {u ∈ L2

V | φ−(·)u(·) ∈ C1([0, T ], L2(Ω, H1(Γ0))}.

Definition 3.6. For u ∈ C1
V the strong material derivative is defined by

u̇ = φt

(
d

dt
φ−tu

)
.

By smoothness of Γ(t), for every ω ∈ Ω each function u(t, ω) : Γ(t) → R can be extended to
a neighbourhood of

⋃
t∈[0,T ]

Γ(t)× {t} ⊂ Rn+2. Thus ∇u(ω) and ut(ω) are well defined for every ω.

Using the chain rule, for u ∈ C1
V and y ∈ Γ0, we get

d

dt
φ−tu(t) =

d

dt
(u(t, ω,Φ0

t (y))

= ut(t, ω,Φ
0
t (y)) +∇u |(t,ω,Φ0

t (y)) ·w(t,Φ0
t (y))

= φ−tut(t, ω, y) + φ−t∇u(t, ω, y) · φ−t(w(t, y)).

Thus, we get the following explicit formula for the strong material derivative

u̇(t, ω, x) = ut(t, ω, x) +∇u(t, ω, x) · w(t, x), (3.8)

for every x ∈ Γ(t).

Remark. Note that the right hand side of (3.8) does not depend on extension, so it is irrelevant that
every extension (i.e. neighbourhood) will depend on ω.

Just as in the deterministic case, it might happen that the equation does not have a solution if
we ask that u ∈ C1

V . Hence, we want to define a weak material derivative that needs less regularity.
In addition to the case when we consider a fixed domain, we will have an extra term that will take
into account the movement of the domain. As usual in this setting, the idea is to pull-back the inner
product on L2(Ω, L2(Γ(t))) onto the fixed space L2(Ω, L2(Γ0)). Which will be the bilinear form b̂.
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Furthermore, we define ĉ as a regular time derivative of this bilinear form. Thus, the extra term c in
the weak material derivative will be the push-forward of ĉ onto H(t)×H(t).

Let us define the bounded bilinear form b̂(t, ·, ·) : L2(Ω, L2(Γ0))×L2(Ω, L2(Γ0))→ R for every
t ∈ [0, T ]:

b̂(t, u0, v0) := (φtu0, φtv0)L2(Ω,L2(Γ(t)))

=

∫
Ω

∫
Γ(0)

u0(ω, x)v0(ω, x)J0
t (x).

Moreover, we define the map θ : [0.T ]× L2(Ω, L2(Γ0))→ R that is the classical time derivative of
the norm on L2(Ω, L2(Γ(t))):

θ(t, u0) :=
d

dt
‖φtu0‖2

L2(Ω,L2(Γ(t))) ∀u0 ∈ L2(Ω, L2(Γ0)).

Lemma 3.7. a) The map θ is well defined and for each t ∈ [0, T ] the map

u0 7→ θ(t, u0) u0 ∈ L2(Ω, L2(Γ0)) (3.9)

is continuous.
b) For every t ∈ [0, T ] there exists deterministic constant C that is independent of time such that

|θ(t, u0 + v0)− θ(t, u0 − v0)| ≤ C‖u0‖L2(Ω,L2(Γ0))‖v0‖L2(Ω,L2(Γ0)).

Proof. a) Using the substitution formula, the formula (3.4) and the assumption (2.4) we get:

θ(t, u0) =

∫
Ω

∫
Γ(0)

(u0(ω, x))2φ−t(∇Γ(t) · w(t, x))J0
t (x)

=

∫
Ω

∫
Γ(t)

(φtu0(ω, x))2∇Γ(t) · w(t, x)

≤ C‖φtu0‖2
L2(Ω,L2(Γ(t))).

Hence, θ is well-defined. In order to prove continuity of (3.9) note that u ∈ L2(Ω, L2(Γ0)) implies
u2 ∈ L1(Ω, L1(Γ0)). This implies that if un → u in L2(Ω, L2(Γ0)), then u2

n → u2 in L1(Ω, L1(Γ0)).

Now continuity follows from:

|θ(t, un)− θ(t, u)| ≤
∫

Ω

∫
Γ0

|u2
n(ω, x)− u2(ω, x)||φ−t(∇Γ(t) · w(t, x))J0

t (x)|

≤ C‖u2
n − u2‖L1(Ω,L1(Γ0)) → 0.

b) Using the Cauchy-Schwarz inequality, (3.3) and (3.4) we get the estimate:

|θ(t, u0 + v0)− θ(t, u0 − v0)| = ‖4 d
dt
b̂(t;u0, v0)‖

= 4|
∫

Ω

∫
Γ0

u0(ω, x)v0(ω, x)
d

dt
J0
t (x)|

≤ C| (u0, v0) |L2(Ω,L2(Γ0))

≤ C‖u0‖L2(Ω,L2(Γ0))‖v0‖L2(Ω,L2(Γ0)).
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Now we can define the bilinear form ĉ(t; ·, ·) : L2(Ω, L2(Γ0))× L2(Ω, L2(Γ0))→ R as a partial
time derivative of b̂:

ĉ(t;u0, v0) :=
∂

∂t
b̂(t;u0, v0) =

1

4
(θ(t, u0 + v0)− θ(t, u0 − v0))

=

∫
Ω

∫
Γ0

u0(ω, x)v0(ω, x)φ−t(∇Γ(t) · w(t, x))J0
t (x).

From [1, Lemma 2.27] it follows that for every u, v ∈ C1([0, T ];L2(Ω, L2(Γ0))) the map

t 7→ b̂(t;u(t), v(t))

is differentiable in the classical sense and the formula for differentiation of the scalar product on
L2(Ω, L2(Γ(t))) is

d

dt
b̂(t;u(t), v(t)) = b̂(t;u′(t), v(t)) + b̂(t;u(t), v′(t)) + ĉ(t;u(t), v(t)).

We will generalise this result in Section 3.5, to less regular functions u and v.
Now we can define the extra term that appears in the definition of the weak material derivative.

As we have already announced, we pull-back the functions on Γ(0) and apply bilinear form ĉ on
them. More precisely, we define the bilinear form c(t; ·, ·) : L2(Ω, L2(Γ(t)))×L2(Ω, L2(Γ(t)))→ R
by

c(t;u, v) := ĉ(t;φ−tu, φ−tv) =

∫
Ω

∫
Γ(t)

u(ω, z)v(ω, z)(∇Γ(t) · w(t, x)).

Lemma 3.8. For every u, v ∈ L2
V , the map

t 7→ c(t;u(t), v(t))

is measurable. Furthermore, c is bounded independently of t by deterministic constant:

|c(t;u, v)| ≤ C‖u‖L2(Ω,L2(Γ(t)))‖v‖L2(Ω,L2(Γ(t))).

Proof. From Lemma 3.7 it follows that we can apply a corollary of [1, Lemma 2.26], which proves
the Lemma.

Now we can define the weak material derivative.

Definition 3.9. We say that ∂•u ∈ L2
V ∗ is a weak material derivative of u ∈ L2

V iff∫ T

0

〈∂•u(t), η(t)〉V ∗(t),V (t) = −
∫ T

0

(u(t), η̇(t))H(t) −
∫ T

0

c(t;u(t), η(t))

=

∫ T

0

∫
Ω

∫
Γ(t)

u(t, ω, x)η̇(t, ω, x)−
∫ T

0

∫
Ω

∫
Γ(t)

u(t, ω, x)η(t, ω, x)∇Γ(t) · w(t, x),

holds for all η ∈ DV (0, T ) = {η ∈ L2
V | φ−(·)η(·) ∈ D((0, T );L2(Ω, H1(Γ0)))}.

Note that it can be directly shown that if it exists, the weak material derivative is unique and
every strong material derivative is also a weak material derivative.
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3.5 Solution space

We will ask for the solution of the equation (1.1) to be in the space L2
V and also to have a weak

material derivative. Hence, we define the solution space as:

W (V, V ∗) := {u ∈ L2
V | ∂•u ∈ L2

V ∗}.

In order to prove that the solution space is Hilbert space and also that it has some additional prop-
erties, we will connect it with the standard Sobolev-Bochner space for which these properties are
known. Thus, let us define the following space:

W(V0, V
∗

0 ) = {u ∈ L2(0, T ;L2(Ω, H1(Γ0))) | u′ ∈ L2(0, T ;L2(Ω, H−1(Γ0)))}.

The spaceW(V0, V
∗

0 ) is Hilbert space with the inner product defined via:

(u, v)W(V0,V ∗
0 ) :=

∫ T

0

∫
Ω

(u(t, ω), v(t, ω))H1(Γ0) +

∫ T

0

∫
Ω

(u′(t, ω), v′(t, ω))H−1(Γ0).

We will use that the embedding

D([0, T ];V0) ⊂ W(V0, V
∗

0 ) (3.10)

is dense. More properties of this space can be found for example in [3, Lemma 2.2].
We want to show that the previous two types of spaces are connected in a natural way, i.e. that

the pull-back of the functions from the solution space belong to Sobolev-Bochner space and vice
versa. In addition, we also have the equivalence of the norms. First we will prove the technical result
which is similar to [3, Lemma 3.6.].

Lemma 3.10. Let w ∈ W(V0, V
∗

0 ) and f ∈ C1([0, T ]× Γ0). Then fw ∈ W(V0, V
∗

0 ) and

(fw)′ = ∂tfw + fw′, (3.11)

where 〈fw′, ϕ〉L2(Ω,H−1(Γ)),L2(Ω,H1(Γ)) = 〈w′, fϕ〉L2(Ω,H−1(Γ)),L2(Ω,H1(Γ)) .

Proof. We will first prove the Lemma for ϕ ∈ D([0, T ], L2(Ω, H1(Γ0))). From the proof of [3,
Lemma 3.6] it follows that f ∈ C1([0, T ]× Γ0) implies

f ∈ C([0, T ], C1(Γ0)) and f ∈ C1([0, T ], C(Γ0)). (3.12)

In order to prove that fϕ ∈ L2([0, T ];L2(Ω, H1(Γ0))) we can treat deterministic function f as
a random function that is constant in ω. More precisely, if we define the function f̃(t, ω, x) :=

f(t, x), from (3.12) it follows f̃ ∈ C([0, T ], L2(Ω, C1(Γ0)). This can be strictly shown by defining
the function g : C(Γ0) → L2(Ω, C(Γ0)), g(f)(ω, x) := f(x). Note that g is linear and thus a C∞

function and also that for every t we have g(f(t)) = f̃(t).
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It is then clear that we have

f̃ϕ ∈ C([0, T ], L2(Ω, H1(Γ0))) ∩ C1([0, T ], L2(Ω, L2(Γ0)))

which implies f̃ϕ ∈ L2([0, T ];L2(Ω, H1(Γ0))) and hence, fϕ ∈ L2([0, T ];L2(Ω, H1(Γ0))).
It is left to prove that formula (3.11) is valid. We will prove this using the characterisation of the

weak derivative ([1, Theorem 2.2]) and partial integration ([1, Lemma 2.1(3)],) we get∫ T

0

〈fw′, ϕ〉L2(Ω,H−1(Γ)),L2(Ω,H1(Γ)) = −
∫ T

0

〈w, (fϕ)′〉L2(Ω,H1(Γ)),L2(Ω,H−1(Γ))

= −
∫ T

0

〈∂tfw, ϕ〉L2(Ω,H−1(Γ)),L2(Ω,H1(Γ)) −
∫ T

0

〈fw, ϕ′〉L2(Ω,H−1(Γ)),L2(Ω,H1(Γ)) .

It follows ∫ T

0

〈fw, ϕ′〉L2(Ω,L2(Γ0)) =

∫ T

0

〈∂tfw + fw′, ϕ〉L2(Ω,H−1(Γ)),L2(Ω,H1(Γ)) ,

i.e. (fw)′ = ∂tfw + fw′. Using the density result (3.10) we can approximate every function fw
by continuous L2(Ω, H1(Γ0))−valued functions and conclude fw ∈ L2(Ω, H1(Γ0)). The similar
argument implies that (fw)′ ∈ L2(Ω, H−1(Γ0)).

Corollary 3.11. If Tt : L2(Ω, L2(Γ0))→ L2(Ω, L2(Γ0)) is defined as Ttu0(ω, x) := u0(ω, x)J0
t (x),

then it holds:
u ∈ W(V0, V

∗
0 ) if and only if T(·)u(·) ∈ W(V0, V

∗
0 ). (3.13)

Proof. Apply Lemma 3.10 to the functions f = J0
(·) and f = 1

J0
(·)

, which are both from the space

C1([0, T ]× Γ0).

Theorem 3.12. The following equivalence holds:

v ∈ W (V, V ∗) if and only if φ−(·)v(·) ∈ W(V0, V
∗

0 ), (3.14)

and the norms are equivalent

C1‖φ−(·)v(·)‖W(V0,V ∗
0 ) ≤ ‖v‖W (V,V ∗) ≤ C2‖φ−(·)v(·)‖W(V0,V ∗

0 ). (3.15)

Remark. Following the notation from [1], we say that there exists an evolving space equivalence
between the spaces that satisfy (3.14) and (3.15).

Proof. Let us define for every t ∈ [0, T ] a map Ŝ(t) : V ∗0 → V ∗0 by

Ŝ(t)u(ω, x) := u(ω, x)J0
t (x).

Note that since J0
t is bounded independently of t and has an inverse, this implies that Ŝ(t) has an

inverse, and both Ŝ(t) and Ŝ−1(t) are bounded independently of t. Furthermore, from the uniform
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bound on J0
t we have that Ŝ(·)u′(·) ∈ L2(0, T ;V ∗0 ) for u ∈ W(V0, V

∗
0 ). In the end, using the product

rule (3.11), we get

(Ttu(t))′ = (J0
t u(t))′ = φ−t(∇Γ(t) · w(t))J0

t u(t) + J0
t u
′(t) = Ŝ(t)u′(t) + Ĉ(t)u(t),

where Tt is defined in the previous corollary and Ĉ(t) : L2(Ω, L2(Γ0))→ L2(Ω, L2(Γ0)) is defined
as Ĉ(t, ω, x) = φ−t(∇Γ(t) · w(t))J0

t (x), i.e. < Ĉ(t)u0, v0 >:= ĉ(t;u0, v0). Thus, using in addition
Corollary 3.11, we can apply [1, Theorem 2.32.], which yields that there exists the evolving space
equivalence between W (V, V ∗) andW(V0, V

∗
0 ).

Corollary 3.13. The solution space W (V, V ∗) is a Hilbert space with the inner product defined via

(u, v)V,V ∗ =

∫ T

0

∫
Ω

(u(t), v(t))H1(Γ(t)) +

∫ T

0

∫
Ω

(∂•u(t), ∂•v(t))H−1(Γ(t)).

More properties of the space W (V, V ∗) can be found in [1].
We have shown how to differentiate the inner product of functions fromC1

H onH(t) = L2(Ω, L2(Γ(t))).
We can generalize this result to functions from the solution space.

Theorem 3.14. (Transport theorem.) For all u, v ∈ W (V, V ∗), the map

t 7→ (u(t), v(t))L2(Ω,L2(Γ(t)))

is absolutely continuous on [0, T ] and

d

dt
(u(t), v(t))H(t) = 〈∂•u(t), v(t)〉V ∗(t),V (t) + 〈∂•v(t), u(t)〉V ∗(t),V (t) + c(t;u(t), v(t)), (3.16)

for almost all t ∈ [0, T ].

Proof. The proof is based on the density of the space DV [0, T ] in the space W (V, V ∗) and the
transport formula for the functions from C1

H . For a detailed proof, we refer the reader to [1, Theorem
2.38.].

4 Existence, uniqueness and regularity of solutions

4.1 Formulation of the problem

We want to consider the following equation

∂•u−∇Γ · (α∇Γu) + u∇Γ · w = f in L2
V ∗

u(0) = u0.
(4.1)

Let us state assumptions for the initial data that we need in order to prove the existence and unique-
ness of the solution. The initial value u0 belongs to L2(Ω, L2(Γ0)). For the source term we assume
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f ∈ L2
V ∗ . Moreover, α : Ω×GT → R is assumed to be a random F ×B(GT )−measurable function,

where GT is the space-time surface GT :=
⋃
t Γ(t)×{t}. Furthermore, we assume that the diffusion

coefficient α is bounded and uniformly coercive in the sense that there are constants αmin, αmax
such that

0 < αmin < α(ω, x, t) < αmax <∞ a.e. (x, t) ∈ GT (4.2)

holds for P−a.e. ω ∈ Ω.

Remark. As we have mentioned in the introduction, one could consider the case with weaker
assumptions for the coefficient α. A frequently studied case is when α is a homogeneous lognormal
random field. More precisely, let α(ω, x) = eg(ω,x) be a lognormal homogeneous random field,
where g is a mean-free Gaussian field. We can define αmin(ω) = minxα(ω, x) and αmax(ω) =

maxxα(ω, x) and these random variables satisfy αmin, αmax ∈ Lp(Ω), p > 1. The proof of this result
can be found for example in [20]. Thus, it follows from [5] that for all ω ∈ Ω there exists a unique
solution. What is still lacking is the regularity of the solution w.r.t. ω, but this result requires a more
thorough investigation.

Definition 4.1. We say that u is a weak solution of (4.1) if it satisfies the initial condition u(0) = u0

and u ∈ W (V, V ∗) and a.e. in [0, T ]:

〈∂•u(t), v〉L2(Ω,H−1(Γ(t))),L2(Ω,H1(Γ(t))) +

∫
Ω

∫
Γ(t)

α(t)∇Γu(t) · ∇Γv

+

∫
Ω

∫
Γ(t)

u(t)v∇Γ · w = 〈f(t), v〉L2(Ω,H−1(Γ(t))),L2(Ω,H1(Γ(t))) ,

(4.3)

for every v ∈ L2(Ω, H1(Γ(t))).

In order to simplify the notation we define the bilinear form a(t; ·, ·) : V (t)× V (t)→ R by

a(t;u, v) :=

∫
Ω

∫
Γ(t)

α(ω, x, t)∇Γu(ω, x) · ∇Γv(ω, x).

Let us state some of the properties of the bilinear form a.

Lemma 4.2. The map

t 7→ a(t;u, v) (4.4)

is measurable. Furthermore, there exist positive deterministic constants C1, C2 and C3 that are inde-
pendent of t such that

a(t; v, v) ≥ C1‖v‖2
L2(Ω,H1(Γ(t))) − C2‖v‖2

L2(Ω,L2(Γ(t))), (4.5)

|a(t;u, v)| ≤ C3‖u‖L2(Ω,H1(Γ(t)))‖v‖L2(Ω,H1(Γ(t))). (4.6)
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Proof. The measurability of (4.4) follows directly from Fubini-Tonelli theorem. Moreover, the as-
sumption (4.2) directly implies

a(t; v, v) ≥ αmin‖∇Γv‖L2(Ω,L2(Γ)),

thus we can take C1 = C2 = αmin. Using again (4.2) and the Cauchy-Schwarz inequality we get
that C3 = αmax:

|
∫

Ω

∫
Γ(t)

α(ω, x, t)∇Γu · ∇Γv| ≤ αmax| 〈∇Γu,∇Γv〉L2(Ω,L2(Γ(t))) |

≤ αmax‖∇Γu‖L2(Ω,L2(Γ(t)))‖∇Γv‖L2(Ω,L2(Γ(t)))

≤ αmax‖u‖L2(Ω,H1(Γ(t)))‖v‖L2(Ω,H1(Γ(t))).

4.2 Existence and uniqueness

Developing all the necessary results, we can now formulate the theorem about the existence and
uniqueness of a solution of the equation (4.3).

Theorem 4.3. Under the aforementioned assumptions on f ∈ L2
V ∗ , the diffusion coefficient α and

u0 ∈ L2(Ω, L2(Γ0)), there exists a unique solution u ∈ W (V, V ∗) satisfying (4.3) such that

‖u‖W (V,V ∗) ≤ C(‖u0‖H0 + ‖f‖L2
V ∗ )

where V = (V (t))t∈[0,T ] is the family of spaces V (t) = L2(Ω, H1(Γ(t))), V ∗ is the family of
corresponding dual spaces and H0 = L2(Ω, L2(Γ0)).

Proof. Lemma 3.3, Theorem 3.12 and Lemma 4.2 imply that we can apply [1, Theorem 3.6] about
the existence and uniqueness of the solution of the parabolic PDE on an abstract evolving space.
The main idea of the proof of [1, Theorem 3.6] is to use the Banach-Nečas-Babuška theorem. This
proves the theorem.

4.3 Regularity

Let us now assume more regularity of the input data. More precisely, let f ∈ L2
H and u0 ∈ V0. We

will prove that in this case we also have more regularity for the solution, i.e. its material derivative.
Before we state this result, we will prove some technical results.

First we define the solution space for the case when the solution has more regularity:

Definition 4.4. We define
W (V,H) := {u ∈ L2

V | ∂•u ∈ L2
H}.

Lemma 4.5. There is an evolving space equivalence between W (V,H) and W(V0, H0) ≡ {v ∈
L2(0, T ;L2(Ω, H1(Γ0))) | v′ ∈ L2(0, T ;L2(Ω, L2(Γ0)))}.
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Proof. Since The Jacobian J0
t is uniformly bounded, both in time and space (see 3.3), applying [1,

Theorem 2.33] on the restriction Ŝ(t) :H0 → H0 of the map defined in the proof of Theorem 3.12,
we prove the lemma.

Corollary 4.6. W (V,H) is a Hilbert space.

If u0 ∈ V0 and f ∈ L2
H , the Definition 4.1 of the weak solution transforms to:

Find u ∈ W (V,H) such that u(0) = u0 and a.e. in [0, T ]:∫
Ω

∫
Γ(t)

(∂•u(t), v)H1(Γ(t)) +

∫
Ω

∫
Γ(t)

α(t)∇Γu(t) · ∇Γv +

∫
Ω

∫
Γ(t)

u(t)v∇Γ · w(t) =

∫
Ω

∫
Γ(t)

fv, (4.7)

for every v ∈ L2(Ω, H1(Γ(t))).

Lemma 4.7. There exists a basis {χ0
j}j∈N of V0 ≡ L2(Ω, H1(Γ0)) and for every u0 ∈ V0 there

exists a sequence {u0K}K∈N such that u0K ∈ span{χ0
1, . . . , χ

0
K} for every K, such that

u0K → u0 in V0

‖u0K‖H0 ≤ ‖u0‖H0

‖u0K‖V0 ≤ ‖u0‖V0 .

Proof. Since H1(Γ0) is compactly embedded in L2(Γ0), there exists an orthonormal basis {wm} in
H1(Γ0) such that {λ−1/2

m wm} is an orthonormal basis of L2(Γ0) where

(u,wm)L2(Γ) = λ−1
m (u,wm)H1(Γ) ∀u ∈ H1(Γ0). (4.8)

On the other hand, since L2(Ω) is separable, it has an orthonormal basis {en}. It follows by Theorem
2.1 that {wmen} is the orthonormal basis of L2(Ω, L2(Γ0)) and {λ−1/2wmen} is the orthonormal
basis of L2(Ω, H1(Γ0)). Let u0 ∈ L2(Ω, H1(Γ0)) be arbitrary. Then, (4.8) implies

(u0, enwm)L2(Ω,L2(Γ0)) = λ−1
m (u0, enwm)L2(Ω,H1(Γ0)). (4.9)

Thus we have

u0 =
∑
m,n

(u0, enwm)L2(Ω,L2(Γ0))enwm

=
∑
m,n

(u0, enwm)L2(Ω,H1(Γ0))λ
−1
m enwm.

Now we can define

u0K :=
∑

n=1,...,Nk
m=1,...,Mk

(u, enwm)L2(Ω,L2(Γ0))enwm =
∑

n=1,...,Nk
m=1,...,Mk

(u, enwm)L2(Ω,H1(Γ0))λ
−1
m enwm,

where the last equality follows from (4.9). We choose Mk and Nk such that they both converge to
∞, as K →∞. Defined like this, u0K satisfies the conditions from the Lemma.
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If we write χtj := φt(χ
0
j), where {χ0

j}j∈N is a basis of V0, then by [1, Lemma 5.1] it follows that
{χtj}j∈N is a countable basis of V (t). Now we define the space

C̃1
V := {u |u(t) =

m∑
j=1

αj(t)χ
t
j,m ∈ N, αj ∈ AC([0, T ]) and α′j ∈ L2(0, T )},

where AC([0, T ]) is the space of absolutely continuous functions from [0, T ].
For improved regularity of the solution, we will also need the following assumption on the mate-

rial derivative of the random coefficient α. More precisely, we assume that there exists a determin-
istic constant C that does not depend on time such that

|α̇| ≤ C, (4.10)

where α̇ is a strong material derivative. Thus, in order for this assumption to make sense and be
satisfied, it is sufficient to assume α(ω, ·, ·) ∈ C1(GT ), P−a.e..

Lemma 4.8. a) The map
t 7→ a(t; y(t), y(t))

is an absolutely continuous function on [0, T ] for all y ∈ C̃1
V .

b) a(t; v, v) ≥ 0 for all v ∈ V (t).

c)
d

dt
a(t; y(t), y(t)) = 2a(t; y(t), ∂•y(t)) + r(t; y(t)) ∀y ∈ C̃1

V ,

where the derivative is taken in the classical sense and r(t; ·) : V (t)→ R satisfies

|r(t; v)| ≤ C3‖v‖2
V (t) ∀v ∈ V (t).

Proof. The part b) follows immediately from the assumption (4.2). In order to prove parts a) and c),
let us first take η ∈ C∞V . Since the probability space Ω does not depend on time, it does not have any
influence in taking time derivative, thus the analogue transport formulae from the deterministic case
(that can be found in [7]) still hold in our setting. By applying formula to the bilinear form a(t; ·, ·)
we get:

d

dt
a(t; η(t), η(t)) = 2

∫
Ω

∫
Γ(t)

α∇Γη · ∇Γ(∂•η) +

∫
Ω

∫
Γ(t)

α̇|∇Γη|2

+

∫
Ω

∫
Γ(t)

α|∇Γη|2∇Γ · w−
∫

Ω

∫
Γ(t)

2αDΓ(w)|∇Γη|2

= 2a(t; η, ∂•η) + r(t; η),

where (DΓw(t))ij := Djwi(t) and

r(t; η(t)) :=

∫
Ω

∫
Γ(t)

α̇|∇Γη|2 + α|∇Γη|2∇Γ · w− 2αDΓ(w)|∇Γη|2.
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By the similar arguments as in [2, Ch. 5.2], which are based on the density result of space
C∞V in C̃1

V , we can conclude that the previous formula is true also for every function η ∈ C̃1
V .

Furthermore, the boundedness of r(t; ·) follows directly from the assumptions about the velocity
(2.4) and assumption (4.10). This proves c). It remains to prove the part a). This claim follows
directly from the previous calculation, which implies that both the function

∫
Ω

∫
Γ(t)

α(t)|∇Γη(t)|2

(w.r.t. time) and its time derivative, are in L1(0, T ).

Theorem 4.9. Under general assumptions on the diffusion coefficient α, assumption (4.10) and
in addition f ∈ L2

H and u0 ∈ V0, the unique solution u of (4.7) satisfies u ∈ W (V,H) and the
following estimate holds

‖u‖W (V,H) ≤ C(‖u0‖V0 + ‖f‖L2
H

).

Proof. From Lemma 4.2, Lemma 4.7 and Lemma 4.8, it follows that we can apply the general [1,
Theorem 3.13] about regularity of the solution of parabolic PDEs on evolving space, which implies
the theorem.

5 Outlook

Although we have stated and solved the problem of finding the unique solution of advection-
diffusion PDE with random coefficients on a moving hypersurface, only the continuous case has
been discussed. The next step is to consider the numerical approximation of the solution of the
equation. More strictly, since the solution is a random variable, we are interested in a numerical
approximation of the expected value of the solution. One approach for discretization in space would
be to use the evolving surface finite element method from [5], for which we approximate the hyper-
surface by an evolving interpolated polyhedral surface. In order to deal with uncertainty, one could
use the Monte Carlo method which approximates the expected value. The goal would be to find the
error estimate for this approximation. These results are subject of ongoing research and a paper is
in preparation.
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