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Abstract

Motivation: With the advance of high-throughput sequencing technologies, large-scale
datasets becomes increasingly common, from thousands of patients involved in a cohort
study to thousands of single cells from the same tissue. Despite major advances in un-
derstanding the molecular mechanisms governing biological processes from development to
diseases, heterogeneity from between two individual persons to two cells from the same tis-
sue is yet to be scrutinized. Several studies have revealed new insights from such large-scale
datasets [1,2], yet their analysis protocols are not always straightforward to be adopted or
extend. In particular, it is often more of an art to select various parameters along the whole
analysis procedures, and visualization of high dimensional data could be very challenging.
Results: Here, we present Hastings to face the demand of large-scale data analysis and
visualization for RNA-Seq gene expression data. As demonstrated in the three examples,
Hastings can efficiently identify sub-groups in an unsupervised manner, identify potential
marker genes and generate clear 2D visualizations. Hastings could be widely applied from
bench to clinics.

Availability: plan to go on Github

1 Introduction

Each Leonardo Da Vinci’s egg is different from the others, and likewise for human beings, tis-
sues and individual cells in terms of genotype and phenotype. To date, most biological studies
compare two or more groups/conditions in order to learn regulatory mechanisms from the
inter-sample heterogeneity. Only very recently, the importance of intra-sample heterogeneity
is appreciated thanks to the advance in the high-throughput sequencing (HTS) technology
and the single-cell capture techniques. With the availability of large-scale data (gene expres-
sion from thousands of people (TCGA) [1] or thousands of cells from one tissue [3]), new
biological insights can be revealed from the aspect of intra-sample heterogeneity. However,
most state-of-the-art analysis tools for HTS take in thousands of measurements (such as
abundance of genes) but only few samples (such as two conditions each with triplicates),
and they normally require prior knowledge of the conditions and might be difficult to ex-
tend to handle large-scale datasets. Since there is a shift in the analysis paradigm, namely
from inter-sample difference to intra-sample difference together with a demand of unsuper-
vised sub-group classification, new analysis tools are in need. Here, we present Hastings as
a user-friendly R pipeline that can process large-scale RNA-Seq data, perform unsupervised
classification, build phylogenetic tree, identify markers, and visualize heterogeneities between
and within samples.

2 Methods

The pipeline of Hastings is depicted in Figure 1 :

First, low quality data points are removed and a set of highly variable genes (HVG) are
selected for further analysis. Second, Singular Value Decomposition (SVD) is performed on
HVG data, in conjunction with permutation tests to select only a few significant principal
components (sigPC) that can explain true variance among samples other than noise. In this
step, the fine structure of the dataset is identified and the noise most likely introduced in
the experimental procedures is largely removed. Third, the dimension is further reduced to
2 using t-distributed stochastic neighbour embedding (t-SNE) [4] and a phylogenetic tree is



drawn using Mahalanobis distance. The advantage of this approach is to avoid the rather ar-
bitrary selection of the cluster numbers as in k-means clustering or the the distance threshold
in the hierarchical clustering. Also, the dataset is structured in a way that the relationship
among each data points is maintained and visualized in 2D scatter plot, allowing for further
manual inspections and re-analysis. Finally, marker genes of different clusters are identified
and visualized.

HVG can be optionally adjusted after step two, by choosing the genes with top loading
values after projecting all genes onto the sigPCs. Then a second round of SVD is performed
using this new gene set and the new set of principal components are determined accordingly.
The markers identified can be used for further investigation and even clinical diagnosis.
Alternatively, Hastings can be used in a ”review” mode, in which a pre-defined marker set
in used as HVGs.

Re-select HVG

Data filtering SVD 2D representation
+ > + > + —>| Identify Markers
Select HVG Select Sig. PCs Phylogenetic tree

Figure 1: Workflow of Hastings.

2.1 Data filtering and HVG selection

To remove noise introduced in the experimental procedures, customised filtering criteria
should be applied prior to further analysis. Typical filtering criteria includes: 1) remove
measurement (such as gene or transcript isoform) entries when the value is below certain
threshold (e.g. TPM < 1); 2) remove sample entries when the confident measurements is
below certain threshold (e.g. less than 1000 genes expressed). Appropriate normalization
procedures such as quantile normalization or L!-regularization could be applied.

To focus on the informative measurements as well as to speed up the analysis, a subset
of genes that most likely to explain the majority of the heterogeneity is selected. Intuitively,
these genes should have high variance among all the data points. Therefore, HVGs are
selected by choosing the top 10% of the expressed genes in terms of either Fano factor or
CV. Alternatively, when Hastings is used in a "review” mode, a pre-defined marker set can
by used instead.

2.2 Singular Value Decomposition
Let X be an m x n matrix, rows for genes and columns for samples, and the SVD is:
X =UuxvT

where ¥ is a k x k, k < min(m,n) diagonal matrix with non-negative real numbers on the
diagonal (the i'" values is proportional to the square root of the variance explained by the
it PC). U is an m x k unitary matrix that projects the original X in k dimensional space
focusing on the gene, and V7 is a k x n unitary matrix that project X in another k dimensions
focusing on the samples. Finding a smallest k that keeps as much information as possible is
the key in large-scale data analysis and it can be done using permutation test as described
in the next section.



The Singular Value Decomposition can be done using an R package ”svd”. When dealing
with large-scale datasets, the dimension could be so high that it would take svd hours or even
days to finish. Therefore, randomized SVD (RedSVD [5] or flashpca [6]) can be used instead
with marginal loss of accuracy. Hastings makes a test run using all three method and selects
the best one for permutation tests.

2.3 Selecting Informative PCs

Permutation tests are used to select principal components (PC) that explain true variance
other than noise. The rationale is that a cluster-discriminative gene should have a large
weight on a projected PC, whilst shuffling its expression among samples should decrease the
capability of cluster separation and thereby decreases the projection weight of this gene [3].
For each permutation, the expression of a small proportion (e.g. 1%, so that the PCs remains
largely the same) of the genes are shuffled among samples prior to SVD, and the projection
weight of these genes are stored. After permutations, the weights of new projections are
compared with the originals for each PC, and a empirical p-value is derived. PCs with
p-values below a certain threshold are selected.

2.4 Two-dimensional representation

When there are more than 2 dimensions after permutation test, t-SNE is applied to generate
2D representation. In this representation, the euclidean distance between samples is similar
to that in the original high-dimensional space. And a subsequent classification can easily be
illustrated using Density-based spatial clustering of applications with noise (DBSCAN) [7].
Hastings optimizes several important parameters (such as perplexity and epsilon-distance)
by minimizing the sum of squared error (SSE) of each trail and its perturbations.

2.5 Phylogenetic analysis

A phylogenetic tree could be constructed based on dissimilarity metric using an R package
"helust”. However, due to the high dimensionality of the large-scale or single-cell experiments
together with the heterogeneity among samples and noise in measurement, it is advisable to
use the Mahalanobis or Jensen-Shannon distance on the data representation on the reduced
dimensions instead of the commonly used euclidean distance on the raw expression matrix.
Marker genes for one cluster or a set of closely related clusters can be subsequently identified
using statistical tests such as t-test.

3 Results

To demonstrate the versatile application potential of Hastings, we tested it on three large-
scale datasets each with different biological interest. On TCGA dataset, Hastings separated
with high accuracy different cancer types using unsupervised classification method. On DRG
dataset, Hastings identified many sub-cell types with distinct marker genes from hundreds
of DRG neurons that was though to consist of three cell types. On CTC dataset, Hastings
separated CTCs from cell-lines and primary tumor samples and revealed substantial hetero-
geneity for cells derived from the same person, which emphasized the importance of single-cell
analysis in, both early-stage and late-stage, cancer diagnosis.



3.1 TCGA dataset

Molecular markers are important for both clinical diagnosis and a better understanding of
the underlying mechanism of various diseases, including cancer. Application of Hastings to a
dateset from an RNA-Seq experiment on 3602 patients of 12 cancer types [1] demonstrated
that cancer types can be clearly separated. Patients were classified into 10 groups (Figure
2A), with group-8 corresponding to colon (COAD) and rectal (READ) adenocarcinomas,
and group-4 corresponding to head and neck squamous cell carcinoma (HNSC) and lung
squamous cell carcinoma (LUSC). This finding is consistent with the original study that
COAD and READ are grouped together presumably due the similarity of tissue of origin,
and that LUSC and HNSC are grouped together presumably due to the similarity in gene
expression pattern that underlies the common squamous morphology. The unsupervised
classification achieves 97.08% accuracy comparing to the histological examination, higher
than the result in the original study (84.38% using only mRNA data, and 89.56% from
cluster-of-cluster assignments using six data sources). A phylogenetic tree of the classified
groups is shown in Figure 2B and hundreds of marker genes are identified and visualized
in Figure 2C. Interestingly, although LUSC and HNSC samples are grouped together as
previously suggested, they could still be separeted as LUSC localized to the left half of the
group whereas NHSC localized to the right (Figure 2A). This separation is more evident by
different expression pattern of marker genes in Figure 2C. Marker genes identified here can
serve as clinical markers for cancer type diagnosis.
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Figure 2: TCGA dataset. A. Unsupervised classification of 3602 patients. Overall, each group represent one
distinct cancer type, excepted that group-8 correspondes to colon and rectal cancer, and group-4 correspondes
to two squamous cancers LUSC and HNSC. B. A phylogenetic tree among groups. C. Expression pattern of
marker genes for all groups.

3.2 DRG dataset

After demonstrating that gene expression can be used to separate different cancer types,
or more broadly speaking, different tissues, we went on the identify sub-types of cells from
the same tissue. Here, we applied Hastings to an exploratory dataset from a Single-Cell



RNA-Seq experiment on 622 mouse dorsal root ganglion (DRG) neurons [8]. Neurons are
classified into 13 groups (Figure 3A). And when examining expression pattern of the known
markers for a few well studied cell types (NF, NP, PEP and TH), each of the known cell
types contains a few clearly separable subgroups (Figure 3A). A phylogenetic tree is shown in
Figure 3B and marker genes are identified and visualized in Figure 3C. Owing to the nature
of Single-Cell RNA sequencing, the expression noise between cell from the same group could
not only originate from the experimental protocol but also reflect the important information
of cell-to-cell heterogeneity.
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Figure 3: DRG dataset. A. Unsupervised classification of 622 mouse DRG neurons. Overall, four known
major types of DRG neurons (NF, NP, PEP and TH) are well separeted and each major type can be further
divided into distinct sub-groups. B. A phylogenetic tree among groups. C. Expression pattern of marker
genes for all groups.

3.3 CTC dataset

The knowledge of heterogeneity is particularly important for personalized treatment of can-
cer. For instance, prostate cancer in initially responsive to androgen deprivation, but the
efficacy of the androgen receptor (AR) inhibitors varies in later stages. Whilst traditional
biopsy is challenging, liquid biopsy by sampling circulating tumor cells (CTC) may reveal
drug-resistance mechanism [9]. To demonstrate the potential of Hastings to be applied in
medical diagnosis, we applied it to a dataset from this Single-Cell RNA-Seq experiment con-
sisting of 124 CTCs from 22 patients,30 cells from 4 cell lines (VCaP, LNCaP, PC3, and
DU145), three patient-derived leukocyte controls and bulk RNA-Seq experiment on primary
prostate cancers from 12 patients. To demonstrate the strength of noise reduction capacity of
Hastings, we used all the sequencing samples instead of selecting a subset of CTCs using an ar-
bitrary threshold as in the original study. Samples are classified into nine groups, and primary
tumors (group-9), cell lines (group-8) and CTCs (majorly group-1,2,7) are clearly separated
(Figure 4A). It is now more obvious that single CTCs from each individual demonstrated con-
siderable heterogeneity (Figure 4B) than the original heatmap [9, Fig.1A]. There is clearly a
transition from early-stage/enzalutamide-naive CTC (group-1) to later-stage/enzalutamide-
treated CTCs (group-2). Group-7 largely constitutes of circulating cells whose lineage cannot
be confirmed by canonical marker gene analysis, and their gene expression pattern is indeed



different from CTCs, healty white blood cells or prostate cell lines.. Group-8 consists of all
four cell lines, with two cell lines (VCap and LNCap, AR sensitive and lowly tumorigenic) po-
sitioned closer to all other single cells comparing to the other two cell lines (DU145 and PC3,
AR insensitive and moderately-to-highly tumorigenic). CTCs display moderate-to-high ex-
pression of epithelial marker (Figure 4C), whereas the mesenchymal marker is not expressed
compared to primary tumors (Figure 4D). A subset of CTCs express MYC and WNT7B (a
non-canonical Wnt ligand), which might provide survival signals facing AR inhibition (Fig-
ure 4E,4F). Taken together, these findings suggest the importance of single-cell study for the
mechanisms underlying cancer development and even might help to design suitable treatment
for each individual patients.
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Figure 4: CTC dataset. A. Unsupervised classification of 169 cells including circulating tumor cells. Samples
are clearly separated into four major groups: group-9, primary tumor; group-1 and group-2, cancer cell lines;
group-3 and group-6, healthy control cells and group-8, cell lines. B. The color scheme in A is changed to
reflect the cell origin, and the cell-to-cell heterogeniety is now apparant. Pr: patient CTC; PriTum: primary
tumor; HD1: healthy white blood cells as control. C-F. Gene expression pattern for epithelial marker KRT'18
(C), mesenchymal marker FN1 (D), oncogene MYC (E) and a non-canonical Wnt pathway gene WNT7B
(F). The arrows point to rare cells that express MYC or WNT7B, such cell-to-cell heterogeniety might shed
light on the mechanisms of treatment resistance.

4 Conclusion

We present Hastings, a versatile and user-friendly R pipeline for large-scale RNA-Seq data
analysis. In all datasets tested here, Hastings identified correctly major groups and inter-
estingly many sub-groups. Moreover, the high dimensional data is visualized in 2D and



potential marker genes are identified. Furthermore, the intra-sample heterogeneity can easily
be inspected for each gene on top of the grouping structure. Hastings is not only easy to
use, it can also be easily adopted and extended. For example, the data filtering step could
be modified for special requirements from individual experimental design, and it might be
also helpful to designate a pre-defined HVG set. We believe that Hastings could be widely
applied to various large-scale studies for structure analysis and visualization.
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