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Abstract

Identification of the collective coordinates that describe rare events in complex molec-

ular transitions such as protein folding has been a key challenge in the theoretical

molecular sciences. In the diffusion map approach, one assumes that the molecular

configurations sampled have been generated by a diffusion process, and one uses the

eigenfunctions of the corresponding diffusion operator as reaction coordinates. While

diffusion coordinates appear to provide a good approximation to the true dynamical

reaction coordinates, they are not parametrized using dynamical information. Thus,
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their approximation quality could as yet not been validated, neither could the diffusion

map eigenvalues be used to compute relaxation rate constants of the system. Here we

combine the diffusion map approach with the recently proposed variational approach for

conformation dynamics (VAC). Diffusion maps coordinates are used as a basis set, and

their optimal linear combination is sought using the VAC that employs time-correlation

information of the molecular dynamics (MD) trajectories. We have applied this ap-

proach to ultra-long MD simulations of the Fip35 WW domain and found that the

first diffusion coordinates are indeed a good approximation to the true reaction coor-

dinates of the system but they could be further improved using the VAC. Using the

diffusion map basis, excellent approximations to the relaxation rates of the system are

obtained. Finally we evaluate the quality of different metric spaces, and find that pair-

wise minimal root mean square deviation (RMSD) performs poorly, while operating in

the recently introduced kinetic maps based on the time-lagged independent component

analysis performs best.

Introduction

Molecular dynamics (MD) simulations have now reached considerable maturity. A few years

ago, extensive sampling of protein systems was still unfeasible - except in a few exceptional

projects such as folding@home1 or the Anton supercomputer.2 Now, it is commonly possible

to achieve hundreds of microseconds of cumulative simulation time by harvesting the compu-

tational power of GPU’s,3–5 thus enabling extensive sampling of many biomolecular processes

at moderate cost.

With the ability to generate vast amounts of molecular dynamics data on a broad scale,

analyzing these data and interpreting them in physicochemically relevant models has become

a bottleneck. Consequently, the last years have seen a surge of interest in kinetic models

that describe both the equilibrium behavior as well as the transition dynamics amongst a

set of discrete conformational states. Popular examples include Markov models or Markov
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states models (MSMs),6–12 hidden Markov models (HMMs),13,14 diffusion maps,15,16 transi-

tion networks,17–19 and Langevin models.20 All of these models aim at achieving a simplified

and interpretable, yet accurate picture of the dynamics observed in the available MD tra-

jectories. The questions of interest include: which are the most relevant long-lived states

or structures of the molecular system9,14,21–24? What are their probabilities, transition rates

and relaxation timescales11,25–27? What are the transition pathways or mechanisms leading

from reactants such as the unfolded or dissociated state to products such as the folded or

associated states28–33?

It has been realized6 that the most interesting quantities containing information of both

the equilibrium and the slow kinetic properties of a molecular system are the dominant

eigenvalues and eigenfunctions of the Markov operator. The eigenfunctions are typically

nearly constant on the long-lived (metastable) states, but they change their sign between

those regions. In this way, they encode parts of the state space where the system generally

remains for a long time, and it rarely transitions between them. This concept is known as

metastability and is a typical feature of biomolecules. The metastable regions of state space

are frequently associated with biological function of the molecule, e.g. the ability / inability to

bind to a binding partner. Therefore, it is precisely these regions that we are most interested

in. The eigenvalues on the other hand, contain the information about the time it takes until

such a rare transition might occur.

Indeed many quantities of interest can be computed given an approximation of the eigen-

values and eigenfunctions, including metastable states,6,9,14,21 coarse-grained Markov mod-

els34 and experimentally measurable observables.27,35 Having obtained the eigenfunctions,

these can serve to define optimal reaction coordinates33,36,37 and even simulation methods

that are efficient in sampling the rare events.38,39 Most of the molecular kinetics models

above directly aim at, or can be shown to effectively attempt to, reconstruct or approximate

these eigenvalues and eigenfunctions.15,16,40

Since it was realized that the quality of the molecular kinetics model crucially depends
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on its ability to approximate the dominant eigenfunctions,15,25,40 substantial research has

gone into attempting to improve this approximation. Two developments are particularly

noteworthy: Firstly, the time-lagged (or time-structured) independent component analysis

(TICA)41–43 conducts a linear transformation of the molecular coordinates (e.g. internal co-

ordinates such as distances or angles) onto a maximally slow subspace. It can be shown42

that this method provides the optimal linear subspace for representing the eigenfunctions of

the dynamical system, and thus a very good starting point for constructing a Markov model

or other kinetics models that further improve the approximation of the eigenvectors. Sec-

ondly, diffusion maps15 and particularly locally scaled diffusion maps16 attempt to construct

a direct approximation of the same set of eigenfuctions by nonlinearly projecting the high

dimensional configuration space onto a low dimensional hyperplane spanned by the dominant

eigenfunctions to be approximated. In principle, diffusion maps allow a much better approx-

imation to the Markov operator eigenfunctions than a cluster discretization of state space,

because they can operate on each sample configuration.

Despite these nice properties, a major drawback of diffusion maps has been that they

are purely based on the idea that the spatial distribution of sampled configurations has

been generated by a diffusion process. The construction of eigenfunction approximations

through diffusion maps goes thus through the assumption of a specific dynamical model

a priori (namely, a Fokker-Planck diffusion), and not through actual parametrization of

dynamical observables in the data. As a consequence, diffusion maps currently have two

drawbacks: (1) The validity of diffusion coordinates as eigenfunction approximants cannot

be self-consistently checked within the diffusion map framework, and their approximation

quality cannot be improved; (2) The diffusion map eigenvalues cannot be directly related to

physically meaningful relaxation timescales.

Here we set out to solve these two problems. Recently, one of the authors has contributed

to develop a variational principle and the variational approach for conformation dynamics

(VAC).44,45 In brief, this theory makes two statements:
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1. Many molecular kinetics models, including MSMs, can be understood as attempting

to approximate the eigenfunctions of the Markov operator by a linear combination of

basis functions. The approximation is exact if the eigenvalue is approximated exactly

as well. While the approximation is suboptimal, the estimated eigenvalue will be too

small. This idea can be cast into a rigorous variational formulation.

2. Inspired by the analogy with Quantum Mechanics, a method of linear variation can

be formulated which maximizes the estimation of the dominant eigenvalues in order to

systematically exploit the variational bound. This is easily achieved by proposing a set

of basis functions, building their linear combinations and varying the coefficients till the

optimal solution is found. The optimized linear combinations are then approximations

of the dominant eigenvectors.

Here we exploit the variational principle and the algorithmic idea to validate and variationally

optimize diffusion coordinates. The main idea is that coordinates obtained by the locally

scaled diffusion map method16 are already a good approximation to the true eigenfunctions

of the dynamical operator. We then use the dominant diffusion coordinates in order to define

a basis set that we further optimize using the method of linear variation. As a result, we get

an improved approximation of the eigenfunctions and additionally we get eigenvalues that can

be interpreted as physical relaxation timescales. The resulting method is called variationally

optimized diffusion map (varDM), and overcomes both diffusion map issues discussed before.

We describe the theory and methodology and apply the varDM method to analyze two

all-atom 100 µs Fip35 WW domain trajectories generated by the special purpose Anton super-

computer.2 This data has been previously analyzed using a number of other methods,2,46–50

and it provides an ideal benchmark for our approach.

The manuscript is organized as follows. After briefly introducing the operators imple-

menting the dynamics and discussing why their eigenvectors and eigenvalues are relevant in

the context of molecular dynamics and simulations, we describe how they can be approx-
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imated from a simulation dataset, specifically focusing on the Method of Linear Variation

and the Locally Scaled Diffusion Map. Particular attention will be devoted to discussing how

the concept of distance can play a crucial role in the diffusion map definition. Results for

independent VarDM calculations for different setups are compared and contrasted, together

with a benchmark MSM calculation. The results show that standard (purely structurally

based) protocols to compute distances between molecular configurations are inadequate at

approximating higher order dominant eigenprocesses. In contrast, a kinetic distance based

on the TICA dimensionality reduction procedure provides an optimal definition of distance

for the construction of diffusion maps. The molecular mechanisms associated with the data

are then interpreted and discussed, in comparison with previous studies.

Theory

Conformation dynamics, eigenfunctions and eigenvalues

A molecular dynamics (MD) simulation can be described as a Markov Process in a state

space Ω (generally containing both positions and momenta) that samples from an equilibrium

probability density π. π is, for our purposes, given by the Boltzmann distribution at a

constant temperature T :

π(x) = Z−1e−βU(x),

where β = (kBT )−1 is the inverse temperature, U(x) is the potential energy at phase space

point x, and Z is the partition function.

Next, a formal way of describing the dynamics has to be introduced. We would like to

stay as generic as possible and only state a few general properties that our dynamics must

fulfill, without focusing on any specific model. Firstly, the dynamics should be Markovian

in full phase space, i.e. there is a probability density pτ (y | x) of making a transition, that
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is, to find the system at state y at a later time t + τ during the MD trajectory, given that

it was at state x at time t. Many of the choices that can be made in a molecular dynamics

program, such as the thermostat and integrator used, will affect pτ (y | x) and will therefore

also affect the kinetics, i.e. the transition rates between different conformations. However,

independently of the specific choice of the dynamics, we require pτ (y | x) to have the following

two properties:

• The dynamics are ergodic, i.e. if we run them long enough (τ → ∞), pτ (y | x) will

sample from the Boltzmann density π(x).

• The dynamics satisfy detailed balance:

π(x) pτ (y | x) = π(y) pτ (x | y) ∀x,y ∈ Ω, (1)

Physically, eq. (1) is consistent with the second law of thermodynamics in its formulation

that work cannot be produced from thermal energy alone. Unfortunately not every imple-

mentation of molecular dynamics obeys eq. (1). It turns out that we can still work with

dynamics implementations that fulfill a generalized form of detailed balance, where forward

and backward probabilities are equal when momenta are reversed.51 Langevin dynamics is

an example of such a dynamics with generalized detailed balance. In this case (1) can be

restored at the cost of Markovianity if x is in position space and momenta are integrated out.

Nonetheless, since typical τ values are far larger than the autocorrelation times of momenta,

the dynamics are still very closely Markovian in position space at timescale τ such that the

present theoretical picture is conceptually useful. For the sake of simplicity, we will just

assume for the subsequent discussion that eq. (1) is fulfilled.

We now introduce a propagator formulation of such an ergodic and Markovian dynamics

following the discussion given in.45 Using the state space function ρt, we can formally write
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the action of the molecular dynamics in terms of a propagator:

ρt+τ = P(τ) ◦ ρt

where ρt quantifies the instantaneous probability density at time t. i.e., ρt measures for an

ensemble of copies of a molecular system what fraction of its population is in which confor-

mation. The propagator P propagates this density in time. Given the above requirements,

it is obvious that after sufficiently many applications of P , or for a long enough time τ , the

resulting density will just be the equilibrium density π(x). Table (1) defines P as a function

of pτ (y | x). Note that we will never explicitly compute P or carry out the integrals in

Table (1). However, we know that when running MD simulations, we effectively sample these

integrals, and this gives us a way to construct a model for P and through that for the most

interesting kinetic quantities.

Although it may seem like a purely mathematical comment, it is sometimes convenient

or even necessary to work with a different operator than P .45 It is then appropriate to define

the relative density ut by:

ut(x) =
ρt(x)

π(x)
, (2)

which is obtained by comparing the instantaneous density with the stationary density. Instead

of working with P we can work with the transfer operator T (τ) that transports u-densities

in time:

ut+τ = T (τ) ◦ ut

When ρt(x) is identical to the equilibrium density, it follows from the definition (2) that the

relative density is identical to 1. Table (1) summarizes the properties of both operators.

It turns out that both the P(τ) and T (τ) operators are of great interest. The eigenfunc-

tions and eigenvalues of these operators contain the essential information of the molecular

8



Table 1: Overview of dynamical operators for describing conformation dynamics and their
spectral expansions.

Propagator Transfer operator
Symbol P(τ) T (τ)

Definition P(τ) ◦ ρ(x)
=
∫
x∈Ω

ρ(x) pτ (y | x) dx

T (τ) ◦ u(y)
= 1

π(y)

∫
x∈Ω

π(x) u(x) pτ (y | x) dx

Scalar product
〈f, g〉π−1

=
∫
x∈Ω

1
π(x)

f(x)g(x) dx
〈f, g〉π
=
∫
x∈Ω

π(x)f(x)g(x) dx

Eigenfunctions φ(x) = π(x) · ψ(x) ψ(x) = π−1(x) · φ(x)

Spectral expansion P(τ) ◦ ρ(x)
=
∑∞

k=0 e
−κkτ 〈φk, ρ〉π−1φk

T (τ) ◦ u(y)
=
∑∞

k=1 e
−κkτ 〈ψk, u〉πψk

Truncated expansion P(τ) ◦ ρ(x)
≈
∑m

k=1 e
−κkτ 〈φk, ρ〉π−1φk

T (τ) ◦ u(y)
≈
∑m

k=0 e
−κkτ 〈ψk, u〉πψk

Stationary density φ0(x) = π(x) = e−βU(x)

(Boltzmann density)
ψ0(x) = 1

Corresp. Generator Forward Generator L
P(τ) = exp(τL)

Backward Generator L∗
T (τ) = exp(τL∗)

kinetics, i.e. what are the long-lived states and what are the transition rates between them.

Understanding the mathematical properties of these operators allows to design computa-

tional methods to approximate their spectra and thus chemically interesting quantities. A

plethora of different methods such as Markov models, diffusion maps, the variational principle

of conformational dynamics (and many more) are based on this idea.

Both P and T operators share the same eigenvalues. The largest eigenvalue is λ0 = 1,

whereas all remaining eigenvalues are strictly smaller than one:

1 = λ0 > λ1 ≥ · · ·

The eigenfunction corresponding to the largest eigenvalue λ0 = 1 is just the stationary Boltz-

mann density for the propagator and the constant function for the transfer operator. All

eigenvalues except the first decay exponentially with the lag-time τ , i.e. we have

λk(τ) = e−κkτ (3)
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with some relaxation rates κk. Thus, knowing the eigenvalues allows us to compute the

relaxation rates, or the relaxation timescales:

tk = κ−1
k = − τ

log |λk(τ)|
. (4)

These relaxation rates or timescales are important quantities to compare to experiments, as

they directly affect the measurement signal in various kinetic experiments such as fluorescence

correlation spectroscopy,27 2D IR spectroscopy,52 temperature jump spectroscopy,30 neutron

scattering53 (a comprehensive review can be found in Keller et al.35).

The eigenfunctions φ or ψ are the key quantities for understanding molecular mechanisms.

It was proposed in6 that the different metastable (long-lived) states of a molecule could be

identified by sorting its microstates according to the signs they have in the eigenfunctions

corresponding to the slowest relaxations, i.e. those with the largest eigenvalues. This idea

was further refined in.54 In Noé et al.27 it was used in order to construct a systematic way of

giving a structural interpretation to ensemble kinetics experiments with the help of molecular

dynamics simulations. Both Markov state models and diffusion map algorithms attempt to

approximate the eigenfunctions φ or ψ. It was found that the accuracy by which these

eigenfunctions are approximated is crucial for the accuracy of the model.25,40

When studying molecular kinetics we are usually interested in the slow processes only.

Therefore, for a sufficiently large choice of τ (e.g. in the order of nanoseconds), only a finite

number m of the terms in the spectral expansion are still present, and the operator’s action

can be understood in terms of only finitely many processes, and we obtain the truncated

expansions shown in Table (1). We are then interested in methods that allow us to compute

(or approximate) a few dominant eigenvalues λ1, ..., λm and their corresponding eigenfunctions

φ1, ..., φm. Alternatively we may also work with ψ1, ..., ψm provided that some estimate of the

equilibrium distribution π is available.
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Method of linear variation and the special variational principle

A number of useful computational methods have been developed in the last years to approx-

imate the eigenvalues and eigenfunctions of the propagator or transfer operator. Recently, a

very general approximation principle for such purpose was proposed: the variational principle

of conformation dynamics.45 Briefly, if f is some approximation model of the first non trivial

T (τ) eigenfunction, f ≈ ψ1, then the Rayleigh-Quotient

λ̂1(τ) =
〈f, T (τ)f〉π
〈f, f〉π

(5)

is an estimate to the corresponding eigenvalue λ̂1(τ) ≈ λ1(τ) (please see Table (1) for the

definition of the scalar product) The variational principle states that λ̂1 always underesti-

mates the true eigenvalue (λ̂1(τ) ≤ λ1(τ)), equivalence holding only if f = ψ1. If f is an

approximation to other eigenfunctions (ψ2, ...) and constructed such that it is orthogonal to

previous exact eigenfunctions (ψ0 = 1, ψ1, ...), then this variational principle also carries over

to subsequent eigenvalue/eigenfunction pairs. Thus, a computational algorithm can approx-

imate eigenvalue/eigenfunction pairs by proposing a model for the eigenfunction and then

optimizing it by maximizing the corresponding Rayleigh coefficient.

From a practical perspective, the crucial insight from the VAC is that the Rayleigh coef-

ficients can be easily computed for a given model function f in terms of its autocorrelation

function.45 Furthermore, the search for the optimal model can be performed in a single step

if we consider eigenfunctions to be a weighted sum of basis functions {χ1(x), . . . , χN(x)}, i.e.:

ψ̂i(x) =
m∑
j=1

aijχj(x). (6)

In this case, the optimal solution consists of finding the optimal coefficients aij which are just

given by applying the generalized Ritz (or Rothaan-Hall) method to conformation dynam-
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ics.45 One computes the correlation matrices C(τ) and C(0) with elements:

cij(τ) = 〈χi, T (τ)χj〉π, (7)

cij(0) = 〈χi, χj〉π. (8)

and obtains the optimal coefficients aij by solving the generalized eigenvalue problem:44,45

C(τ) ai = λ̂iC(0) ai, (9)

where ai ∈ Rm is the vector of coefficients of the functions χi to build the i-th optimized linear

combination. We refer to the Methods section for a description of how the correlation matrix

elements (7-8) are actually computed from a MD trajectory. The generalized eigenvalue

problem (9) occurs in other kinetic models and estimators, such as Markov models with

fuzzy partitions of unity,55 core- or milestoning-based MSMs,26 time-lagged independent

component analysis (TICA),42 and ordinary MSMs that can all be treated as special cases of

the variational approach of conformation dynamics with specific choices of basis sets (see45

for a discussion).

When using the method of linear variation to compute eigenvalues and eigenvectors, we

can derive a special variational principle that holds for the solutions of the eigenvalue problem

(9):

1. If we use the exact eigenvectors 0 through m as basis functions χi = ψi, we will obtain:

cij(0) = 〈ψi, ψj〉π = δij (10)

cij(τ) = 〈ψi, T (τ)ψj〉π = δijλi(τ) (11)
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and thus:

C(0) = Id (12)

C(τ) = Λ(τ) (13)

so the eigenvalue problem becomes trivial and we recover the exact eigenvalues λ̂i(τ) =

λi(τ) for all i = 1, ...,m.

2. If we have a basis set error, i.e. the exact eigenvectors can not be represented as a

linear combination of basis functions (6), then we have the following special variational

constraint on the eigenvalues:

λ̂i(τ) < λi(τ) for all i = 1, ...,m.

We have the variational principle for all m eigenvalues because our eigenvectors are by

construction an orthogonal set of vectors.

3. The accuracy of the variational approach strictly depends on the choice of the basis

functions.

(Locally Scaled) Diffusion Map and Diffusion Coordinates (DCs)

The Diffusion Map algorithm is an independent approach to approximate the transfer op-

erator eigenfunctions ψi starting from an equilibrium MD dataset. The description of the

algorithm and its ideas that we present here closely parallels that given by Coifman et al.56

In the diffusion map formalism we assume that the configurations in the sampling were

generated by a specific dynamical model being pure diffusion in the potential U(x) (from now

on, x will denote a point in the configuration space). Then, the system dynamics is governed
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by the Fokker-Planck equation:

∂ρ

∂t
= L ◦ ρ =

∆ρ

β
+∇(ρ∇U) (14)

where again ρ(x) is the probability density of state x, β = (kT )−1 is the inverse temperature

and the gradient ∇U is minus the drift (force) at position x. The operator L is the diffusion

generator and it is a differential operator that models the instantaneous time change of the

state space density. It is yet another way of modeling the system’s dynamics and it is related

to the propagator P(τ) by an exponentiation, i.e. P(τ) = exp (τL), see Table (1). L has a

discrete spectrum with nonpositive eigenvalues {−κj}∞j=0 where κ0 = 0 < κ1 ≤ κ2 ≤ ..., are

the system’s relaxation rates of Eq. (3). L has associated eigenfunctions {φj}∞j=0 that are

identical to the propagator eigenfunctions (see Table (1)). Like for propagators and transfer

operators, we can write (at least formally) the solution of (14) as

ρt+τ (y) =
∞∑
j=0

〈φi(x) | ρt(x)〉π−1e−κiτφi(y). (15)

which in the limit of long τ converges to φ0(x) = π(x) corresponding to the eigenvalue κ0 = 0,

which is given by the Boltzmann equilibrium distribution.

A complementary approach is to use the backward Fokker-Planck equation which imple-

ments the time evolution of π−reduced probability densities

∂u

∂t
= L∗u =

∆u

β
−∇u · ∇U (16)

The backward generator L∗ has the same eigenvalues as operator L but the same eigenfunc-

tions ψi(x) as the transfer operator (see Table (1)). It is related to the transfer operator T

by T (τ) = exp (τL∗), see Table (1). A similar infinite decomposition as (15) can be written

for the reduced u probability as well.
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For any starting point x ∈ Ω, let ρτ (y | x) be the solution of the forward Fokker-Planck

equation with initial condition ρ0(x) = δ (x− y). The diffusion distance between any of

the two points x1,x2 ∈ Ω at time τ is defined as the distance between the corresponding

probability densities at time τ , when initialized at x1 or at x2 at time 0.56 The distance is

measured in the Hilbert space L2(Ω, w) with the weight function w(x) = 1/ϕ0(x) = π−1(x).

The distance can be written as

D2
τ (x1,x2) = ||ρt+τ (y | x1)− ρt+τ (y | x2)||2π−1 (17)

Using equation (15) and its relation with (16), we obtain the spectral representation

D2
τ (x1,x2) =

∑
i≥1

e−2κiτ ‖ψi(x1)− ψi(x2)‖2 (18)

Many times, molecular systems are metastable and their dynamics is dominated by a

(finite) number m of slow processes encoding the more interesting physics, while all the other

processes m+1, · · · decay much faster over time and encode more subtle, less crucial dynam-

ical features. From a mathematical standpoint, this means that the propagator eigenvalues

display a spectral gap at an index m, i.e. κm � κm+1. The infinite expansions above (18),

(15) can then be truncated up to the m-th term, if only the slow regime is of interest

ρt+τ (y) = φ0(x) +
m∑
j=1

〈φi(x) | ρt(x)〉π−1e−κiτφi(y). (19)

The Diffusion Map algorithm can then be seen as the specific nonlinear mapping from the

original high dimensional x configuration space to a m-th dimensional Euclidean space that

preserves the diffusion distance between each pair of the points in the dataset.15,16,56 The

main result to be mentioned here is that the low dimensional representation space is spanned

by the eigenvectors of the generator L, which are automatically computed upon carrying out
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the projection.

Now consider that we are given a sample of points, {xi}i=1,...,N generated for example by

a long molecular dynamics trajectory. The elementary steps of the diffusion map algorithm

are the following:

1. Consider the kernel

K(xi,xj) = exp

(
−‖xi − xj‖2

2ε2

)
(20)

where ε is a scale parameter. || · · · || denotes the distance between configurations xi and

xj. The Locally Scaled Diffusion Map (LSDMap) formulation16 differs from the original

Diffusion Map15 in the definition of a local scale parameter ε(x) that is a function of

the configuration x, rather than a constant value ε. For reasons of symmetry, ε2 in (20)

is replaced by ε(xi)ε(xj). The local scale has not been derived from a diffusion process

in the input coordinate space, but is rather a model parameter that has practically

proven to perform significantly better than a constant scale for the definition of reaction

coordinates and in adaptive sampling schemes.16,39 It is worth mentioning that the

particular choice for both || · · · || and ε may severely affect the algorithm performance,

as we will discuss later.

2. Normalize the kernel as

K̃i,j =
K(xi,xj)√∑

kK(xi,xk)
∑

kK(xj,xk)
(21)

3. Define Di =
∑

j K̃i,j, and construct the diffusion map transition matrix

Mi,j =
K̃i,j

Di

(22)

4. Calculate the first m eigenvectors ofM , {ψ̃i}. Note that the eigenvectors ψ̃i are defined

on the sampled configurations x ∈ Ω pointwise.
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The eigenvectors ψ̃i are called diffusion coordinates (DCs) and are point-wise approximations

of the exact eigenvectors ψi(x).

ψ̃i(x) = DCi(x) ≈ ψi(x). (23)

Please note that at this point nothing can really be said or inferred about the relationship

between the diffusion map transition matrix eigenvalues and the exact generator or propagator

eigenvalues.

Choice of a distance metric

The LSDMap algorithm has been tested extensively and has been applied to study the free

energy landscape of a number of molecular systems.16,33,36,38,39 The use of a constant lo-

calscale as proposed in the original formulation56 was found to be inadequate for MD data,

as thoroughly discussed in the references above. Another crucial choice in LSDMap is the

definition of the metric distance involved in the diffusion kernel (20). Similarly, the choice of a

suitable distance is a key ingredient for kinetic clustering protocols in the definition of kinetic

models such a MSMs. In the diffusion map scenario, the prescription to compute distances

influences the definition of diffusion distance preserved upon projection; in the MSMs, it is

fundamental to discretize the configuration space, lump similar configurations together and

separate dissimilar ones, making sure that slow- interconverting states are distinguished and

well separated.

Standard choices for distance metrics for molecular systems, such as the Root Mean Square

Deviation, RMSD, generally use static information from each configuration to define struc-

tural similarity. However, it has been shown in a number of publications57,58 that kinetic

similarity (that is, how long it takes for a configuration to evolve into another) is crucial in

the definition of distance relationship between the molecular configurations. Metric distances

based on purely geometrical criteria suffer when slow conformational transitions between geo-
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metrically proximal states exist, such as register shift dynamics in β-sheet protein topologies,

or, in general, geometrically similar states separated by large free energy barriers.

A general and transferrable protocol to design alternative concepts of metric distances

accounting for the interplay between structural and kinetic similarity is lacking. A first step

towards this direction would be to compare and contrast the performance of different struc-

tural metric distances. It was shown50,57,58 that different geometrical metrics capture kinetic

properties in a specific, metric-dependent fashion. Here we contribute to this discussion by

using the variational principle to decide between different choices of metric distances, in that

it provides us with a quantitative tool to assess the performance of each metric in the context

of LSDMap.

Methods

Fip35 setup and simulation

WW domains are small, independently folding protein domains that bind to proline-rich

sequences. Their topology is characterized by two β hairpins, which form a three-stranded

β-sheet. A number of mutants of the 35 amino acids WW domain of the human protein

Pin1 have been engineered which fold in few tens of microseconds,59 the fastest of them

being the Fip35 mutant. The mutants small size and their ultrafast kinetics make them ideal

benchmark systems, for which numerical simulations can be compared to a large body of

experiments.

Recently, D.E. Shaw research group has generated two 100 µs Fip35 trajectories using

the AMBER99SB-ILDN all-atom force field in TIP3P explicit water, at 337 K using a Nose-

Hoover thermostat with a relaxation time of 1.0ps.2 This dataset is used here as the equilib-

rium sampling onto which multiple Variational Diffusion Map calculations were performed.

The setup details are given below.
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LSDmap setup

The LSDMap analysis was repeated for different choices of distance metrics and different

choices for the local scale parameter ε in order to assess to what extent the algorithm perfor-

mance is affected.

Four choices of distance metrics were considered: three of them (RMSD, DD, CMD) have

an immediate structural interpretation in terms of simple physical degrees of freedom; the

other metric (KD) is less intuitive and requires a more detailed discussion.

Structural metrics: RMSD, DD, CMD

Let xα and xβ be any two molecular configurations. Their mutual Root Mean Square Devi-

ation (RMSD) is defined as

RMSD(xα,xβ) =

√
1

N

∑
i

(xαi − x
β
i )2 (24)

where the sum runs over the N heavy atoms. The two configurations have to be preliminarly

aligned in an optimal way such that their Euclidean distance is minimized.

Inspired by the discussion in Cossio et al.,57 we considered two additional structural

metrics, the dihedral and the contact map distance. The Dihedral Distance (DD) is defined

as

DD(xα,xβ) =

√
1

M

∑
i

1

2
(1− cos (ϕi(xα)− ϕi(xβ))) (25)

where the set of M dihedrals {ϕi} formed by the backbone atoms N,Cα, C,N is considered.

As a reduced number of degrees of freedom is used to measure distances with the DD metric,

it is expected to perform faster than rmsd and it is an appealing candidate for heavy-duty

computations, such as biased MD.39

The Contact Map Distance (CMD) is defined as a standard Euclidean distance in the
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space of heavy atom contacts

CMD(xα,xβ) =

√
1

Nαβ

∑
i 6=j

(Cij(xα)− Cij(xβ))2 (26)

where Cij(x) =
1−(rij(x)/r0)8

1−(rij(x)/r0)12
is a smooth definition for a contact formation, rij being the Eu-

clidean distance between heavy atom pair i−j and r0 = 0.35nm being an appropriate cutoff;

Nαβ =
√

(
∑

ij C
α
ij)(
∑

ij C
β
ij) is a normalization constant.57 CMD is popularly employed in

bioinformatics in structure analysis, such as in structure prediction algorithms;60 hence, it

appears to be a relevant alternative to RMSD while approximately retaining the same level

of coarse-graining description.

Kinetic Distance (KD)

The last metric distance considered in the analysis is a kinetic distance (KD),61 based on the

Time-lagged Independent Component Analysis (TICA).42,43 TICA is a linear dimensionality

reduction technique which builds linear combinations out of a chosen set of molecular coordi-

nates {ri(t)} such as atomic positions, distances, angles, in such a way that the eigenvectors

and eigenvalues of the propagator of the dynamics, P , are approximated. A comprehensive

and detailed description of the algorithm can be found in.42 In practice, TICA performs a

variational optimization as described in the Theory section. Given MD data, a set of input

coordinates {ri(t)} is chosen and the mean-free coordinates

yi(t) = ri(t)− 〈ri(t)〉t (27)

are defined. The yis are then used as input basis functions χ for the variational calculation

specified by equations (7)-(9). Let us denote as ψ̂i and λ̂i the approximated eigenvectors

and eigenvalues respectively from the TICA calculations (at a given lag time reference value

τTICA).
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The dominant linear combinations span a low dimensional space where the system slowest

processes live. The kinetic distance is then defined as the Euclidean distance in this space

upon scaling the ψ̂i by the corresponding eigenvalues in the following way61

KD(xα,xβ) =

√√√√ q∑
i=1

λ̂2
i

(
ψ̂i(xα)− ψ̂i (xβ)

)2

(28)

It was shown61 that using KD as a distance metric for clustering yields Markov State Models

with better approximation qualities than when unscaled TICA coordinates are used. More-

over, the eigenvector rescaling in equation (28) weighs the TICA coordinates according to

their “slowness”, thus making the question of how many coordinates need to be taken into

account in the clustering obsolete.

In our protocol, the input parameters {ri(t)} to the TICA calculations were chosen to be

all the mutual Cα distances (that means, each configuration in the dataset is labelled by a

list of all the mutual distances) at a lag time τTICA = 0.1µs. It is worth pointing out that

this metric distance reduces to the standard Diffusion Distance (18) if the MD dataset was

generated by a reversible purely diffusive process.

The four metric distances (24)-(26) and (28), were used to run separate and independent

LSDMap calculations on the Fip35 data set, by using the algorithm detailed in the Theory

section. Two different choices were used for the local scale parameter ε(x) in the diffusion

map kernel (20):

1. A constant value ε(x) = ε, where different values of ε were tested (Diffusion Map)

2. The distance to Nk(x), the kth nearest neighbor configuration to configuration x in the

dataset:

ε(x) = ||x−Nk(x)||2 (29)

The diffusion coordinates are computed as the eigenvectors of the diffusion map transition
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matrix M in eq. (22). Subsequently, these coordinates were orthogonalized and used as basis

set {χi} for the variational method, as described in the Theory section.

Variational optimization

Were this LSDMap approximation exact, then the stationary eigenvector ϕ0(x) of M would

be identical to π(x) = e−βU(x) and then the eigenvectors would be orthonormal with respect

to this density (〈ψ̃i, ψ̃j〉ϕ0 = 〈ψi, ψj〉π = δij).

Because we assume to have some finite approximation errors, we perform an orthogonal-

ization procedure in order to obtain self-consistent diffusion coordinates. We first compute

the overlap matrix:

cij(0) = 〈ψ̃i, ψ̃j〉ϕ0 (30)

where ϕ>0 = ϕ>0 M is the stationary eigenvector obtained from the diagonalization of the

diffusion map transition matrix M . We then solve for the eigenvectors of the overlap matrix

C(0)ψ̂i = λ̂iψ̂i (31)

and use the resulting eigenvectors

χi = ψ̂i (32)

as a basis in the method of linear variation described above. Note that the generalized

eigenvalue problem (9) does not require the basis set to be orthogonal; however, the orthog-

onalization in (9) is made with respect to the stationary density of the transfer operator,

while the orthogonalization in (31) is done with respect to the diffusion map stationary den-

sity. Because of the approximations involved, these orthogonalization procedures are slightly

different and (30-32) is done in order to start the variational method with a self-consistent

basis set.

If the diffusion coordinates were exact, ψ̂i = ψ̃i = ψi, the variational principle correlation
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matrices would be diagonal (see Eq. (10)-(13)). On the other hand, the variational princi-

ple can be used as an a posteriori validation of the approximation quality of the diffusion

coordinates and to further optimize them.

Matrix elements can be computed on the fly by using a stochastic realization of the

trajectory {x1, x2, . . . , xk, . . . , xT}. Upon orthogonalization (31), we compute the variational

principle correlation matrices (7-8) as direct time averages:

cij(τ) ≈ 1

T − τ

T−τ∑
k=1

χi(xk)χj(xk+τ ), (33)

cij(0) ≈ 1

T

T∑
k=1

χi(xk)χj(xk). (34)

Furthermore, we enforce the time-lagged correlation matrix to be symmetric:

C(τ) =
1

2
(C(τ) + C(τ)T ), (35)

then solve the eigenvalue problem (9) for different values of the lag time τ . The eigenvalues

λ̂i(τ) are used to approximate the kinetic timescales of the eigenprocesses, whereas the gen-

eralized eigenvectors {ai} are the linear combination coefficients to build the approximants

ψ̂i =
∑

j aijχj to the eigenvectors of the propagator.

Markov State Model

As a comparison, a Markov State Model was built on of the Fip35 dataset, using the pyEMMA

package (www.pyemma.org).62 The kinetic distance introduced above (28) was used in the

definition of the MSM and 1000 k-means clusters were used as clustering protocol. It is

worth pointing out that other MSM-based Fip35 studies49,50 use metrics for clustering that

are different from KD. Timescale convergence was studied and compared to varDM results

and literature.
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Results and Discussion

The folding of WW domain Fip35 mutant

The folding of the Fip35 mutant of the WW domain has been widely investigated. For

example, MD simulations63,64 were performed for a time interval longer than 10µs but no

folding transitions were observed. Pande and coworkers65 tackled the problem using a world

wide distributed computing scheme, and found transitions proceeding through a multitude of

qualitatively different and nearly equiprobable folding pathways. A very different conclusion

was reached by Shaw and collaborators,2 by analyzing ultralong MD trajectories with multi-

ple unfolding/folding events, obtained using a special-purpose supercomputer. The authors

concluded that Fip35 folds predominantly along a pathway in which the first hairpin is fully

structured, before the second hairpin begins to fold. On the same line, they concluded that

no relevant barriers are present in the folding process; hence, Fip35 is an incipient downhill

folder.

Krivov46 challenged this interpretation and proposed the existence of intermediates re-

vealed by using a novel optimized reaction coordinate on the same dataset. Moreover, he

proposed that an alternative folding pathway also exists, in which the second hairpin forms

before the first hairpin, though it is five times less likely than the main pathway.

Markov State Model analysis49,50 of the same Fip35 dataset also suggested that folding

mechanism is heterogenous, though it was realized that the majority of the folding flux flows

through the path reported by Shaw.2 Characteristic timescales were estimated to be 5µs,

and faster processes were also investigated systematically.

Recently, Mori and Saito48 built on the popular PCA approach to propose a Dynamic

Component Analysis using temporal information from the trajectory and concluded that

Fip35 is not an incipient dowhnill folder. They succeeded in identifying two misfolded states

where the trajectory happens to be temporarely trapped; hence, explaining the reason for
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dynamic heterogeneity.

Finally, Berezovska et al.47 presented a network-based analysis of the same data by look-

ing at local fluctuations of conventional order parameters such as RMSD and recapitulated

previous results by showing that folding occurs along two preferential pathways, both in-

volving intermediates formation. Their estimate for the mean first-passage folding time is

4.3µs.

Beccara et al.66,67 generated their own MD dataset using the DPR protocol68 and con-

firmed that Fip35 folds mostly through two channels which differ in the order in which

hairpins are formed, and that folding involves intermediates.

In the following we contribute to the discussion by analyzing the Fip35 dataset using

the varDM hybrid approach based on LSDMap and the Variational Principle, as described

above. Our analysis reveals that standard structural metrics used to define configuration

similarity are not appropriate, in that they do not fully capture the kinetic properties of the

system. We propose a new way of computing distances between configurations which turns

out to be extremely effective, kinetically and computationally. Our results show that the

Fip35 folding mostly proceeds via on-pathway intermediate(s), in qualitative agreement with

previous results based on reaction coordinate optimization.

Results

Optimal LSDMap parametrization

The original data set was downsampled to 100, 000 uniformely spaced points, so that two

consecutive configurations are separated by a 2 ns time interval. Multiple varDM calcula-

tions were performed using metrics (24)-(26) with both constant and adaptive localscales, as

described above, and a input basis set of 100 diffusion coordinates.

The distribution of the local scale values obtained using the k-nearest neighbor definition

provided in eq. (29) is bimodal (data not shown), suggesting that the definition of an appro-
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priate constant ε value may be difficult, once again supporting the need of an adaptive, point

dependent localscale.16,39 Results for different constant localscale values are discussed in the

Supporting Information.

Results obtained by using eq. (29) are very robust against varying the number of nearest

neighbors k over a broad range from 5 to 10000, as showed in the left panel of Fig. (S1).

This result indicates that appropriate network connectivity is ensured by an extremely small

fraction of points, and that the dataset manifold shape is preserved.

In the following we will show the results obtained with k = 2000.

Eigenvalues and Implied Timescales

The variational eigenvalue problem (9) is solved for increasing values of the lag time τ to

study the convergence of both eigenvalues and eigenvectors. In principle, both quantities are

lag time independent, since the generator (14) does not depend on τ explicitly. However,

in practice, some equilibration over short timescale is expected, where timescales and eigen-

vectors gradually converge to their asymptotic values. This can be interpreted formally by

invoking theoretical results about MSM convergence, once it is realized that the variational

formulation with characteristic functions as basis functions is equivalent to a MSM.45 On the

other hand, if too long of a lag time is chosen, then decorrelation time and trajectory length

start being comparably long, and estimates are no longer reliable. Thus, we expect only a

limited range of lag time values where physical convergence of model parameters is reached,

as customarily observed.25,42,44,45 A bootstrapping procedure was employed to estimate sta-

tistically meaningful errorbars for the timescales and the linear combination coefficients.

As pointed out in the previous section, we are discussing here optimization results obtained

choosing k = 2000 for localscale computation. Fig. (1) shows the convergence of the first
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three implied timescales associated with Fip35 kinetics,

ti = − τ

log λ̂i(τ)
i = 1, 2, 3 (36)

obtained with the structural metrics and the kinetic distance metric (28) (panels a, b and c). A

comparison with the Markov State Model results is showed in panel (d). The semilogarithmic

scale helps highlight the improvement of convergence upon using the kinetic metric; indeed,

t1 enters its convergence region around τ = 0.1µs and τ = 4µs when kinetic distance or

structural distances are used respectively (for visualization purposes, the plots are truncated).

The corresponding estimate for the folding characteristic timescale is 6.2µs and (5.5±2.0)µs

respectively, in agreement with each other, with MSM results and other estimates obtained

using alternative analysis procedures.46–50 By invoking the variational bound, we claim that

all four metrics metrics employed in the calculations provide consistent results within the

errorbars in the estimation of the first timescale, though KD and CMD performing slightly

better in absolute terms.

In contrast, a different scenario arises when the second timescale t2 is considered. On

one hand, KD calculations converge nicely to t2 ≈ 1µs; on the other hand, structural met-

ric calculations show (see Fig. (1)) that the unphysical region is entered even before real

convergence sets in, and that the process occurs on a timescale t2 = (60 ± 5)ns which is

about two orders of magnitude smaller than the folding process. According to the results

obtained with the structural metrics, Fip35 kinetics displays a marked timescale separation:

a µs folding process couples with faster ns eigenmotions. In addition, t1 would converge in

such a regime where higher order processes have died off already, and this poses a consistency

problem. Indeed, the set of timescales should be the solution of the eigenvalue problem (9)

at a well-defined lag time τ , and so it is reasonable to assume that a given range of τ exists

where all timescales converge; clearly, this is not the case here.

However, KD results are much more robust, all timescales converges almost simultane-
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ously, and provide a t2 estimate which is on the microsecond timescale (panel b), mirrowing

the benchmark MSM calculations (panel d).

The situation is even more critical for implied timescale t3, which is degenerate with t2 in

RMSD, DD and CMD calculations (panel c), while is well-separated from t2 by an order of

magnitude, as MSM calculations (panel d) show and the kinetic distance setup confirms.

All in all, the timescale analysis suggests that the convergence issues and the large

timescale separation t1 � t2, ≈ t3 exhibited in RMSD, CMD and DD calculations is an

artifact of the structural metrics which systematically miss the second slowest process in the

system dynamics. The use of purely structural metrics in LSDMap results in the systematic

underestimation of the characteristic timescale associated with Fip35 processes faster than

plain folding. Now we turn our attention to the optimized eigenvectors.

Optimized eigenvectors

Discussing how the optimization affects the Diffusion Coordinates allows to assess to what

extent LSDMap results are reliable and whether they require any a posteriori optimization. As

a visual aid to the discussion, we show the linear combination coefficient matrix [A]ij = aij

(see eq. (6)) for each calculation setup, see Fig. (2). We took into account multiple fast

processes, to better elucidate that some of those may be surprisingly important in shaping

the optimized eigenvectors. Let us now briefly discuss the results qualitatively and their

implications. We considered the equilibrium eigenprocess, and the first seven non trivial

eigenprocesses (m = 7). It is worth recalling though, that the first 100 diffusion coordinates

were fed to the optimization procedure; we are showing in Fig. 2 just a portion of the A

matrix for the sake of clarity.

We see an optimal one to one correspondence between the variationally optimized equilib-

rium distribution ψ̂0(x) and LSDMap BoltzmannDC0(x) and the first non-trivial eigenvectors

ψ̂1(x) and DC1(x), for any metric choice. However, this type of regularity is partially lost if

higher orders are considered. Indeed, different patterns arise, which compromise the diagonal
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structure of the coefficients we would expect. Off-diagonal elements become important, and

RMSD and CMD are the only setups where the diagonal structure is approximately preserved

even for ψ̂2(x), despite the corresponding eigenvalue being completely missed (see Fig. (1)).

On the other hand, KD does not display a nice diagonal structure, in spite of the timescales

being well approximated; indeed, ψ̂2, ψ̂3, ψ̂4 all have large components along DC3.

It is quite unexpected to see that coefficient a22 is exactly equal to zero in panel (d).

Physically, this shows that the DC2 direction in the subspace is practically orthogonal to the

optimized ψ̂2 direction and indicates that LSDMap further optimization is necessary.

In conclusion, our analysis shows that LSDMap calculations equipped with structural

metrics such as RMSD, DD or CMD project onto a low dimensional space systematically

missing the second non trivial process, whereas a kinetic distance such as KD works very

well, as comparison with MSM calculations shows. Nevertheless, bare LSDMap results can

be further optimized by building optimal DC linear combinations according to the prescription

(9).

Eigenvector correlations

We plotted the time evolution of the estimates ψ̂1, ψ̂2 for the four metric distances considered

and their cross-correlations, to check a posteriori to what extent the results correlate with

one another. Figs. (3) and (4) clearly show how ψ̂1 results from all metric calculations are

consistent with one another. Exactly the same transitions between the folded and unfolded

state (negative and positive ψ̂1 values respectively) are found in each setup, and the Pearson

coefficient ρ = 0.96 guarantees almost perfect correlation. This is consistent with previous

timescale results Fig. (1) showing that all metric distance setups nicely approximate the true

folding timescale t1 upon optimization.

The scenario is more complicated if we look at the time evolution of the second diffusion

coordinate (right panel in Fig. (3)). The kinetic distance highlights a much slower process

than structural metrics do, and transitions showed in the top and bottom panel do not corre-
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late at all, as showed in Fig. (4b). This was expected, since structural metrics systematically

miss the second eigenprocess, whereas KD metric captures it correctly.

Free energy and structure analysis

As discussed in previous sections the KD metric distance provides superior results than popu-

lar structural metrics. We now consider the free energy plot as a function of the variationally

optimized KD eigenvectors in Fig. (5), and extract physical observations about the dynamics

of Fip35.

There is a clear separation between the folded and unfolded state (positive and negative

ψ1 respectively), as the structural metrics also encoded. The two of them are separated by a

minimum at ψ1 ≈ 0.004 which appears to be an intermediate (A) along the folding pathway.

The presence of this state shows that folding cannot be downhill incipient, in agreement with

other studies.46–48 In addition, there is an additional basin (C) just outside the unfolded state

at ψ1 ≈ 0.007 and a cloud of dispersed states (B) at ψ1 ≈ 0.004 which elongates orthogonally

to the horizontal folding direction. To better investigate the features of these states, heavy

atom contact maps were built on sets of structures sampled from the trajectory.

The contact map analysis reveals that the first hairpin is formed in the intermediate

(A), but the second is not. This uncovers one of the two folding pathways discussed in

the literature46,47,66,67 Previous MSM models49 also identify this pathway in the transition

network as that featuring the largest probability flux. In addition, the contact map shows

that states falling in (B) all share a native-like structure, though some key contacts are

rearranged. In particular, the first hairpin is out-of-register. Projecting the trajectory onto

the ψ̂1 − ψ̂2 plane reveals that (B) is accessed only from the unfolded state, and no directed

connections exist to or from the folded state located in the bottom left of Fig. (5). Thus,

state B represents a misfolded state, similar to those found in previous studies.47,48 Finally,

state (C) exhibits a random-coil structure, where the second hairpin starts being formed (a

number of key contacts are being formed). Projecting productive trajectory portions onto
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the free energy plot in Fig. (S2) reveals that state (C) does uncover an additional transition

pathway, where hairpin 2 is formed, followed by hairpin 1 and the immediate transition to the

folded state. As a reference, two sample transitions are plotted on the top of the free energy

plot in Fig. (S2) the blue and red trajectory display a hairpin 1 - hairpin 2 and hairpin 2 -

hairpin 1 folding events, respectively.

Conclusions

We introduced an innovative technique which combines LSDMap and the Principle of Linear

Variation to extract physically meaningful collective coordinates from a molecular dynamics

dataset. This formulation is particularly appealing, since it overcomes issues with both build-

ing blocks. It allows to compute information about the timescales shaping up the kinetics,

which is not possible in the original classic LSDMap algorithm.

Diffusion maps themselves are limited by the fact that they assume an overdamped dif-

fusion process in the metric space used and this may not allow the eigenfunctions of the

Markov backward propagator to be represented perfectly. However, the individual diffusion

coordinates do not need to be perfect approximations to the real eigenfunctions to to pro-

vide a good basis set for the variational procedure. The requirement is only that the first m

backward propagator eigenfunctions (of interest) need to be well representable by the set of

n diffusion coordinates used. If n goes to N (number of samples), then the basis set accuracy

improves, and the systematic error reduces.

In addition, the variational approach is not limited to use one type of basis function.

Diffusion coordinates can be combined with other basis functions, such as MSM characteristic

functions, Gaussians, etc. The motivation for the choice of diffusion maps here is that,

by experience, they usually provide good approximations to the true backward propagator

eigenfunctions33,69,70 so they are likely good basis set components in a variational approach.

We applied our variational diffusion map protocol to study the Fip35 protein with two
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purposes. First of all, we were interested in assessing to what extent changing LSDMap pa-

rameters would affect the quality of the results. Hence, we adopted four complimentary and

indepentent definitions of metric distance to formalize the concept of distance in the config-

uration space. Our calculations showed that standard structural metrics based on RMSD,

dihedrals or contacts are not appropriate, and that introducing an alternative distance metric

that can capture the kinetic properties at least approximately, such as TICA, significantly

outperforms them. Secondly, our approach allows to characterize the slow processes in the

folding dynamics of Fip35. The characteristic folding timescale calculated with our protocol

is consistent with previously proposed calculations adopting alternative analysis algorithms.

The analysis of free energy profiles support the intermediate folding hyphotesis previously

proposed in other studies.46–48,66,67 Additionally, an orthogonal motion involving a misfolded

state was also found, consistent with previous work.47,48

The proposed technique is general and easily implemented.
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Figure 1: (a) - (c) Implied timescales t1, t2, t3 as from the varDM calculations (k = 2000)
(from panel (a), (b) and (c) respectively) using RMSD, DD, CMD, KD metric distance. All
metrics are equally efficient in targeting t1 ≈ 5.5µs, even though KD estimates converge
faster and almost simultaneously. The second and third implied timescales t2, t3 are severely
underestimated by all three structural metrics considered (see panels (b) and (c)), and affected
by serious convergence issues. (d) Comparison of the timescales resulting from KD varDM
and MSM timescales: t1 is blue, t2 red and t3 purple.
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(a) (b)

(c) (d)

Figure 2: Truncated linear combination coefficient matrix A for RMSD (a), DD (b) and CMD
(c), KD (d). The entry (i, j) is the matrix element aij and represents the component of the
i-th optimized eigenvector onto the j-th LSDMap Diffusion Coordinate. Ideally we would
expect an identity matrix aij = δij, but these results show that this is not the case; hence,
the DCs are not invariant upon optimization.
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Figure 3: Time sequences for ψ̂1 (panel a) and ψ̂2 (panel b) from different metric calculations:
RMSD (blue), DD (red), CMD (green), KD (orange), for the first Fip35 trajectory.2 The first
eigenprocess is correctly captured by all four metric choices consistently, whereas the second
is not.
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Figure 4: Statistical correlations between KD and CMD optimized eigenvectors ψ̂1 (a) and
ψ̂2 (b). The Pearson correlation coefficient ρ is also shown.
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(a)

(b)

Figure 5: (a) Free energy plot as a function of the optimized KD VarDM coordinates, and
sample contact maps. Folded and unfolded state are clearly separated along the ψ̂1 direction;
additional states are labelled (A), (B) and (C). See text for complete description. (b) Sample
structures from these states.
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