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ABSTRACT: Markov (state) models (MSMs) and related
models of molecular kinetics have recently received a surge of
interest as they can systematically reconcile simulation data
from either a few long or many short simulations and allow us
to analyze the essential metastable structures, thermodynamics,
and kinetics of the molecular system under investigation. How-
ever, the estimation, validation, and analysis of such models is
far from trivial and involves sophisticated and often numeri-
cally sensitive methods. In this work we present the open-
source Python package PyEMMA (http://pyemma.org) that
provides accurate and efficient algorithms for kinetic model construction. PyEMMA can read all common molecular dynamics
data formats, helps in the selection of input features, provides easy access to dimension reduction algorithms such as principal
component analysis (PCA) and time-lagged independent component analysis (TICA) and clustering algorithms such as k-means,
and contains estimators for MSMs, hidden Markov models, and several other models. Systematic model validation and error
calculation methods are provided. PyEMMA offers a wealth of analysis functions such that the user can conveniently compute
molecular observables of interest. We have derived a systematic and accurate way to coarse-grain MSMs to few states and to
illustrate the structures of the metastable states of the system. Plotting functions to produce a manuscript-ready presentation of
the results are available. In this work, we demonstrate the features of the software and show new methodological concepts and
results produced by PyEMMA.

■ INTRODUCTION

Ever since the introduction of atomistic molecular dynamics
(MD) simulation, the sampling problem has been one of the
fundamental challenges in the field. The sampling problem
limits our ability to simulate sufficiently long MD trajectories
in which the rare, macromolecular transitions are well-sampled.
Special-purpose supercomputers such as Anton1 have gone a
long way in addressing this issue, but such resources are only
accessible to a few researchers. Pioneered by worldwide distri-
buted computing projects such as GPUgrid2 and folding@
home,3 the generation of high-throughput simulation data is
now facilitated through distributed simulations on commonly
available compute clusters, using either high-performance
CPU4−6 or GPU codes.7−9 Today, microsecond-long trajecto-
ries of explicitly solvated protein systems can be produced in
a few days on single GPUs. Computing clusters and HPC
resources packed with hundreds to tens of thousands of GPUs
are being installed around the globe, enabling more and more
researchers to generate macromolecular simulation data on
the order of hundreds of microseconds to milliseconds. The
field has thus started to close the gap of time scales between
experimental and simulation approaches, at least for moderately
sized protein systems, and is on its way toward a more detailed,
quantitative, and insightful analysis of molecular processes
that may serve to meet challenges in biotechnology, nano-
technology, and pharmaceutics.

Scientists employing high-throughput MD simulation data
are challenged by two problems:
(1) How can simulation data in many short trajectories from

often arbitrarily chosen starting points be analyzed in a statis-
tically correct manner? Ideally, given milliseconds of simulation
data, can we say something about millisecond kinetics even
though our individual trajectories are just microseconds or
shorter?
(2) How should the analysis be made such that we can

conveniently obtain an accurate yet humanly readable model of
the metastable states, the thermodynamics, and the kinetics?
We want to avoid subjective choices of reaction coordinates
and steps of manual selection as much as possible.
A particularly successful class of models addressing these

challenges are discrete state kinetic models, such as master-
equation models, Markov models, or Markov state models. For
simplicity we will subsume these terms under the abbreviation
MSMs in this work. While Markov chain theory is over a cen-
tury old, the systematic use of MSMs for molecular dynamics
and related theory has been introduced by Schütte and
colleagues in the late 1990s.10 With the availability of significant
computing power, these ideas have been adopted and brought
to maturity by a few groups in the MD simulation community
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since the mid 2000s.11−19 MSMs and related techniques have
been successfully used to unravel the thermodynamics and kinetics
of complex molecular processes such as protein folding,20−26

protein−ligand binding,27−32 peptide dynamics,15,33−37 peptide
aggregation,38 protein conformation changes,19,31,39−48 and self-
assembly.49

The past few years have seen a large number of develop-
ments and improvements in methodology for the construc-
tion, validation, and analysis of kinetic models. To give some
examples, activities include the determination of suitable
collective coordinates36,50−54 and metrics,16,54−58 the develop-
ment of efficient clustering methods,16,57,59−62 methods for
estimating transition and rate matrices,14,18,21,62 their statistical
errors,13,17,63−69 and their systematic errors,62,70,71 as well as
model selection72 and coarse-graining methods.10,73−81 The
analysis of Markov models with transition path theory (TPT)
was developed in refs 81−84 and 20. Several contributions have
been made toward systematic comparison of Markov models
with experimental observables.85−91 See refs 62 and 92 for an
introduction and overview of MSM methods. Recently, new
model types have been introduced, such as Markov transition
models (MTMs) that operate on continuous state spaces and
avoid clustering93 and hidden Markov state models (HMSMs)
of the underlying kinetics.78,94 The variational principle and
variational approach for conformation dynamics (VAC)
introduced in ref 95 and further developed in refs 36 and 96
provide a generic framework for describing many types of
kinetic models, including MSMs, MTMs, and TICA, and open
up a new approach to model construction by formulating it as a
problem of finding eigenvalues and eigenfunctions of a dynam-
ical operator by a combination of basis functions. Finally, in refs
97−100 MSM estimation methods for data produced at
different thermodynamic states (e.g., temperatures and bias
potentials) have been introduced, thus opening up a way to
integrate enhanced sampling simulations and direct MD
simulations.
It should be clear from the preceding summary that construc-

tion, validation, and analysis of kinetic models such as MSMs
from simulation data sets is a complex task and requires reliable
and efficient software tools. In particular, many of the methods
noted previously are numerically sensitive, such that ad hoc
implementations can easily lead to difficulties. So far, two rela-
tively complete software packages were available for that
task: Emma’s Markov model algorithms (EMMA)101 and
MSMBuilder.61 In the present work we describe the software
package PyEMMA that replaces the previous EMMA program
and contains a large collection of highly usable and efficient
analysis algorithms for the construction of kinetic models from
MD simulation data. Since both PyEMMA and MSMBuilder
are being actively developed, we refrain from doing a compari-
son of available features or performances, as such information
will be quickly outdated.
PyEMMA is written mainly in Python and compatible with

Python 2.7, 3.3, and 3.4. Computationally expensive routines
are implemented in C. PyEMMA runs on all main operating
systems and can process input from all commonly used MD
trajectory formats, as well as coordinate input from text and
Python binary files. PyEMMA is an open-source package distri-
buted under the GNU Lesser General Public License (LGPL)
version 3.0.102 LGPL is a permissive license, i.e., PyEMMA
can be used in both free and propriety software, but if modi-
fied versions of PyEMMA are distributed, the source code
must be made available in order to contribute improvements

and developments back to the open-source community.
The PyEMMA code is hosted on https://github.com/
markovmodel/pyemma.
The installation instructions, documentation, and tutorials

are found at pyemma.org. PyEMMA is used by writing Python
scripts, or interactively via IPython notebooks. These two com-
plementary approaches allow for maximal flexibility and make
command line programs dispensable. The notebooks used
to create the results and figures of this work are available on
http://pyemma.org.
Before going into methodological details, their implementa-

tion, and results on protein dynamics, we will give a brief over-
view of a typical PyEMMA analysis. As an example, we use the
simple pentapeptide WLALL shown in Figure 1. Twenty-five
trajectories of 500 ns each were analyzed by using all ϕ, ψ,
and χ1 angles as input coordinates. We then find collective
coordinates that optimally resolve the rare-event transitions in
the system by employing time-lagged independent component
analysis (TICA, Figure 1a).36,52,103 After clustering to 250
microstates, a MSM model lag time τ is selected at which the
computed relaxation time scales are constant within statistical
error (Figure 1b). The MSM was estimated at a lag of 1 ns,
meaning that we can run such an analysis with trajectories that
are of length 1 ns or longer and predict the long-time-scale
kinetics from that. Because our trajectories are much longer, we
can systematically validate the model predictions (Figure 1c)
and then analyze the model. Figure 1d shows the free energy
landscape over the two slowest collective coordinates. These
coordinates resolve the separation of the state space into four
long-lived macrostates (labels shown in panel d). Figure 1e
shows the probability density of seeing that system in any
microstate given that it is in one of the four metastable states. A
slight overlap between plotted densities is natural due to the
fuzziness of the assignment and due to a projection of higher
dimensional data onto two dimensions. Finally, we perform a
systematic coarse-graining of the 200-state MSM to a four-state
model using hidden Markov modeling techniques.78 Figure 1f
shows the resulting coarse-grained rate network: Representative
structures of the four long-lived states are shown, their equili-
brium probabilities are indicated by the area of the orange discs,
and the transition rates between states are given in ns−1.
Numbers in parentheses indicate the size of the 2σ (95%)
confidence interval.

■ METHODS
Overview. Figure 2 shows an overview of the current

PyEMMA packages. Packages that will be included in the near
future are also listed to give an overview of the software
organization.

coordinates. Loading and saving of molecular coordinates,
selection of features and order parameters (e.g., internal coor-
dinates) to be analyzed, data transformation and dimension
reduction, clustering methods. Contains transformation meth-
ods such as PCA and TICA and clustering methods such as
k-means.

msm. Discrete state kinetic models with a Markovian kernel,
i.e., a means to compute the transition probability pij or transi-
tion rate kij between two discrete sets of state space. This
includes discrete state and discrete time MSMs, master-
equation models, and HMSMs. Contains maximum-likelihood
and Bayesian estimators for all such models.

plots. Convenience plotting functions to visualize important
model properties, such as free energy plots, plots of the kinetic
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relaxation time scales as a function of some model parameter,
or a visual representation of the kinetic model as a network.
thermo (planned). Discrete state models with multiple ther-

modynamic states. This package is currently developed separately
(https://github.com/markovmodel/thermotools) and will be
integrated in PyEMMA in the near future. It will enable the
analysis of data from biased simulations (e.g., umbrella sampling),

or generalized ensemble simulations (e.g., replica-exchange MD),
and combination of such data with direct MD via MSMs. Will
contain estimators such as WHAM104 and TRAM.97,98,100

mtms (planned). Markov transition models.93 Continuous
state kinetic models with a Markovian kernel, i.e., a means to
compute the transition density p(x,y) or rate density k(x,y)
between two continuous points of state space.

Figure 1. Illustrative Markov state model analysis of a pentapeptide. (a) Projection of a trajectory onto the slow collective coordinates (independent
components, ICs) shows rare transitions between different metastable states. (b) Implied relaxation time scales as a function of the Markov model
lag time τ shows that a lag time τ = 1 ns is suitable. Shown as shaded regions are 95% confidence intervals. (c) A Chapman−Kolmogorov test shows
that the τ = 1 ns model accurately predicts the behavior on longer time scales. (d) The free energy landscape is computed from the MSM as a
function of the two slowest ICs. The metastable states can be visually distinguished as free energy minima. (e) Probability distributions are given for
the four longest living metastable states. The resulting assignment between energy minima and state numbers is shown in panel d. (f) The rate model
is obtained from a hidden Markov model based coarse-graining of the MSM. Rates are given in nanoseconds; 10 structures have been sampled for
each metastable state from the distributions shown in panel c. All subfigures except for the molecular structure images have been generated with
PyEMMA. Molecular structures were rendered with VMD.134
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spectral (planned). Implementation of the variational
approach of conformation dynamics (VAC)95,96 for computing
eigenvalue and eigenfunctions of dynamical operators, basis
sets,105 and tensor methods.106 This package is currently devel-
oped separately (https://github.com/markovmodel/variational).
A typical analysis proceeds by first loading molecular

topology information (e.g., from a pdb file) and then specifying
the features or order parameters to be analyzed (e.g., intra-
molecular distances or contacts) and a list of the simulation
trajectories one wants to analyze. Subsequently, one conducts a
series of transformations, such as dimension reduction and
decorrelation of the input features using TICA, and a discre-
tization of the resulting collective coordinates using clustering.
The resulting discretized trajectories are fed into an estimator,
such as a Markov state model or a hidden Markov state model.
This model is then analyzed for molecular or experimental
observables of interest.
Technical Features and Software Design. Before describ-

ing the practical steps in kinetic model construction, we give a
brief overview of the main technical and software features of
PyEMMA:

(a) PyEMMA requires a Python installation version 2.7, 3.3,
or 3.4 and runs under Linux, Mac OS X, and Windows. It can be
installed through the package managers pip and conda, although
we strongly recommend using conda. PyEMMA is part of the
Omnia suite (http://omnia.md) and uses the Omnia software
channel to resolve PyEMMA’s package dependencies.
(b) The progress of all heavy calculations in PyEMMA can

be optionally shown by progress bars.
(c) PyEMMA reads all major MD formats by integrating

MDTraj107 (http://mdtraj.org) and is thus compatible with all
major simulation packages.
(d) All major functionalities of PyEMMA are available using

convenience functions at the package level (e.g., coordi-
nates.tica or msm.estimate_markov_model).
Thereby the user does not need to be familiar with object-
oriented design and programming.
(e) PyEMMA is built on a modular and flexible object

structure (see Figure 2), consisting of data Transformers,
model Estimators, and Models. The designs of these
basic object types were motivated by our previous Java
framework StaLLOne and the machine learning package
scikit-learn (http://scikit-learn.org). Our Transformers

Figure 2. PyEMMA software structure: Representative packages and modules. White packages are currently available; gray packages will be included
in subsequent releases and are shown here as part of the conceptual overview. The basic PyEMMA object types are Transformers that can perform
on-disc or in-memory transformation of mass data and can be chained to form a processing pipeline, Estimators that produce kinetic models from
state discrete or continuous trajectory data, and Models representing the results and providing analysis functionalities. All objects are made available
through convenience functions on the package level; i.e., the user does not need any experience in object-oriented programming.
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and Estimators are compatible with scikit-learn, thus
enabling access to the powerful machine learning algorithms in
scikit-learn. Note that MSMBuilder 3 (http://msmbuilder.org)
uses a similar design, suggesting that it is a natural represen-
tation for the MD analysis problem.
(f) All heavy data processing, such as reading, dimension

reduction, or clustering, is done through Transformer
objects. Transformers can either work in memory to optimize
speed or stream data from disk to minimize memory con-
sumption. Multiple transformers can be chained to a data
processing pipeline. This allows also very long trajectories and
large protein systems to be analyzed.
(g) Processed data are fed into an Estimator which

produces the results in the form of a Model. For example,
MaximumLikelihoodMSM estimates a single MSM of
maximum likelihood, while a BayesianMSM estimates a model
containing a single representative (mean or maximum-
likelihood) MSM and a sample of MSMs generated from the
posterior distribution to compute uncertainties. All estimators
are used in the same fashion, which minimizes the code in
PyEMMA needed for generic tasks such as parallel processing.
(h) All Model objects share a common interface which makes

it easy to implement generic tasks such as parameter estimation,
sampling, and model validation. For example, MSMs and
HMSMs both have the method timescales, and thus it is
possible to compute the relaxation time scale as a function of the
model lag time for both of them using the same code. The com-
mon interface allows the user to easily switch their analysis from
one model type to the other, thus avoiding code duplication.
(i) All of PyEMMA’s low-level MSM computations, such as

transition matrix estimation, sampling, and decompositions,
have been implemented in the subsidiary package msmtools.
msmtools has only basic dependencies and can be installed
independently in order to facilitate further software develop-
ment. msmtools supports efficient and robust Matrix
operations that are specialized for the problem at hand (e.g.,
reversible versus nonreversible Markov models), and both
sparse and dense matrix calculations are supported.
Input Feature Selection. Given simulation data of a

macromolecular system of interest, what are the first steps
toward an informative Markov model or other kinetic models?
In contrast to classical analysis methods, the user does not need
to define a restrictive set of collective coordinates on which
the analysis is performedour aim is rather to learn which
collective coordinates best characterize the rare-event tran-
sitions as part of the results of the analysis.
Nonetheless, one needs to define the input coordinates one

is interested in working on. For a macromolecular simulation,
candidates include the following:
(a) Cartesian coordinates of a subset of selected atoms (such

as protein Cα’s, backbone atoms, or heavy atoms of the solute)
after rototranslational alignment. This coordinate set may be
applied if a large part of the solute structure is stable such that a
meaningful reference structure exists.
(b) Flexible torsions, such as protein backbone ϕ/ψ angles or

side chain torsions. Usually these angles are not used directly
but rather their cos and sin values (thus doubling the number
of angle coordinates), because, after the cos/sin transform,
standard operations such as calculating and subtracting the
mean can be performed.55

(c) Distances between pairs of protein Cα’s or solute heavy
atoms.

(d) Contacts between residues or other relevant chemical
groups.
(e) Coordinates characterizing the solvation shell such as

coordination numbers and density coordinates.108−110

(f) Minimal root-mean-square deviation (minRMSD) with
respect to given reference structures, e.g., a protein in a folded
state.
In PyEMMA, the coordinates to be analyzed are called

features. Featurization consists of transforming every Cartesian
coordinate frame ∈ tr( ) n3 atom into a feature vector ∈ tx( ) nfeat

given as a one-dimensional array whose size equals the number of
features:

→t tr x( ) ( )
Cartesian features

coordinates

If Cartesian coordinates of natom atoms are used, x will be a
vector of size 3natom. Many standard features are readily
available for selection, but the user can also add custom features
by implementing the preceding mapping in a custom function
and passing this function to the Featurizer.
The first step of an analysis consists of loading topol-

ogy information, e.g., from a pdb file, and then defining a
Featurizer object that stores a list of all features that will
be used in the analysis. This feature object will be employed
whenever coordinates are read from disk. Feature mapping will
always be applied to small chunks of the simulation trajectory.
In this way, memory overflow is avoided even when very large
feature vectors are employed.
Features can be simply concatenated; i.e., one could have

a feature vector containing a mix of Cartesian coordinates,
intramolecular distances, and angles, etc. In principle, one can
select all of the features described previously, even if they
contain redundant information. However, such an approach
is computationally unfavorable. In the results (Figure 4), we
discuss how the TICA method discussed later can be employed
to select suitable features.

Coordinate Transformation and Dimension Reduc-
tion. The feature vectors selected previously can be very high
dimensional. For example, there are nearly 5000 Cα distances
in a small 100 residue protein. Trying to discretize very high
dimensional spaces by clustering methods is inefficient and
tends to produce low-quality discretizations.54 Furthermore,
features such as pairwise distances are highly redundant and
thus by themselves not very interestingin the preceding
example the Cα positions are fully described by 300 coordinates.
In PyEMMA, we recommend to first reduce the dimen-

sion by conducting a linear coordinate transformation. In linear
transformation methods, one seeks a set of basis vectors U =
[u1, ..., um], where each vector ui is a collective coordinate with
m components. The new coordinates are given by the following
projection:

=t ty U x( ) ( )T

and have thus been reduced to nred dimensions which is usually
much smaller than nfeat. A common approach to finding such a
basis is PCA.111,112 In PCA, one first subtracts the means from
each feature vector, obtaining x(̃t), and then computes the in-
stantaneous correlation matrix with elements cij(0) = ⟨x ̃i(t) x ̃j(t)⟩t.
The principal directions ui are obtained after solving the eigen-
value problem:

σ=C u u(0) i i i
2
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The eigenvalues σi
2 measure the variance of the data along

the principal directions:

σ⟨ ⟩ =y t( ( ))i t i
2 2

PCA transforms the data into an orthogonal basis, such that the
new coordinates are uncorrelated for i ≠ j:

⟨ ⟩ =y t y t( ) ( ) 0i j

This property is very useful, because it transforms the possibly
redundant feature set x into a nonredundant linear basis. Thus,
PCA can remove many input dimensions by finding linear or
near-linear dependencies among input coordinates and assigning
them to directions with eigenvalues σi

2 near zero. The fraction of
the variance retained by this dimension reduction is

σ
=

∑ =V
TVm
i
m

i1
2

where the total variance is TV = ∑i=1
nfeat σi

2. It is well-known that
PCA is optimal within linear transformation methods in terms of
maximizing the retained variance Vm.
However, our aim is not necessarily to retain variance but to

describe the molecular kinetics. Thus, we are most interested in
preserving the slow motions, rather than the large-amplitude
motions. As an example consider an unstructured peptide that
has very flexible ends but undergoes a rare-event concerted
torsion transition in its center. We would like to identify the
rare-event transition rather than the fast and high-variance
fluctuations of the termini.
Toward this end, the standard dimension reduction method

in PyEMMA is the time-lagged independent component
analysis (TICA), originally developed in ref 103 and introduced
to the analysis of molecular kinetics in refs 36 and 52. It has
been shown in ref 36 that TICA implements the variational
approach of conformation dynamics95 and is optimal among
linear methods in recovering the slow reaction coordinates
and their relaxation time scales. TICA is related to PCA but
also uses a time-lagged correlation matrix C(τ) with elements
cij(τ) = ⟨x ̃i(t) xj̃(t + τ)⟩t. One then solves the generalized
eigenvalue problem

τ λ τ=C u C u( ) (0) ( )i i i

thus obtaining independent component directions ui which are
linear approximations to reaction coordinates of the system.
Instead of having maximal variance, they have maximal auto-
correlation, as measured by the eigenvalues λi:

τ λ τ⟨ + ⟩ =y t y t( ) ( ) ( )i i t i

Furthermore, we still retain the PCA property that the new
coordinates are uncorrelated for i ≠ j:

τ⟨ + ⟩ =y t y t( ) ( ) 0i j

Similar to that in PCA, we can define a kinetic variance.54 The frac-
tion of the kinetic variance retained by this dimension reduction is

λ
=

∑ =KV
TKVm

i
m

i1
2

(1)

where the total kinetic variance is

∑ λ=
=

TKV
i

n

i
1

2
feat

Note that the squared eigenvalues are in the range [0, 1], where
values near 1 occur for slow processes and values near 0 occur for
fast processes. Thus, roughly speaking the TKV measures the total
number of slow processes found in the data.
We recommend TICA as a standard method for coordinate

transformation and dimension reduction. We suggest selecting
the retained dimension m using eq 1, i.e., such that the projec-
tion retains a user-defined fraction (e.g., 0.95) of the kinetic
variance. Furthermore, we suggest scaling the TICA coor-
dinates to obtain a kinetic map,54 as the resulting coordinates
define a metric space in which geometric distances are propor-
tional to kinetic distances and are thus optimally prepared for
geometric clustering. The aforementioned settings are defaults
in PyEMMA.

Discretization. Many kinetic models, including MSMs and
HMSMs, are built on discrete state spaces. Therefore, the trans-
formed input data must be discretized. Since the dimension of
the TICA subspace can still be high (often in the range of a few
10s of dimensions), employing any kind of grid discretization is
unfeasible. A discretization that can be employed in high-
dimensional state spaces is the Voronoi discretization,113 where
a set of k centers is determined, and then each data point y(t) is
assigned to the closest center. At this point we usually use the
standard Euclidean distance to measure distances, although
other options such as minimal RMSD exist.16 If TICA-based
kinetic maps were used as described at the end of the last
section, these distances approximate the kinetic distances.
The locations of the k centers are determined by a clustering

method. The recommended method in PyEMMA is to use
k-means114 in combination with the k-means++ initialization
procedure.60 This approach is relatively fast and generates
reproducible results with only a few (one to five) k-means
iterations. Because the full k-means algorithm is linear in the
amount of samples and centers, a minibatch115 version of
k-means has been implemented to support fast clustering of
very large data sets. PyEMMA has efficient C implementations
for these three methods.
For completeness, PyEMMA also has implementations of

regular-space clustering and uniform-time clustering as dis-
cussed in ref 62. In regular-space clustering, points are distri-
buted such that the distances to the nearest neighbors are
approximately uniform, thus giving rise to an approximately
regular coverage of the sampled space. We discourage the
use of the regular-space algorithm as it tends to place cluster
centers on outliers, which can lead to models that are poorly
reproducible and have unnecessarily large statistical error. The
uniform-time clustering algorithm samples cluster centers at
regular time intervals. This approach leads to cluster centers
being concentrated in the most stable region, and very few
are assigned to transition states or to less populated metastable
states. Such a cluster distribution is unfavorable for the esti-
mation of MSMs70 and is therefore discouraged as well. The
k-means algorithm produces a balanced clustering which is “in
between” the other two extreme clustering algorithms: k-means
clusters are more regular in space than uniform-time clustering
but selects less outliers than regular-space clustering.
Although implicit pairwise norms such as minRMSD16,62,101

are available, we discourage the usage of clustering algorithms
that employ pairwise minRMSD. In our experience, such ap-
proaches are computationally expensive and produce lower
quality discretizations than the recommended approach of
combining TICA and k-means.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00743
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

F

http://dx.doi.org/10.1021/acs.jctc.5b00743


An open question is how to select the number of clusters in
k-means. Reference 72 suggests picking the number of clusters
using cross-validation using the partial eigenvalue sum of the
estimated MSM as a score which should be maximized
according to the variational principle.95 However, there was a
large range of k within which the results were indistinguishable
within statistical error. This coincides with our experiences,
where the choice of k has a relatively modest effect compared
to the model lag time τ that can have a dramatic effect (see later
discussion). Therefore, we suggest the simple approach to
choose the number of clusters as √N, where N is the total
number of available samples in the input trajectories. This gives
a number of clusters in the few hundreds to a few thousands for
typical data sizes. √N is the default parameter for clustering
algorithms in PyEMMA that use a predefined number of
clusters.
Estimation of Markov State Models. Markov state

models (MSMs) are relatively simple and yet powerful kinetic
models. An MSM approximates the molecular kinetics by a
matrix of conditional transition probabilities among discrete
states. Suppose the state space has been discretized into dis-
crete trajectories s(t) jumping between n microstates (n equals
the number of cluster centers k in the previous section). The
parameters of an MSM are the conditional transition proba-
bilities between microstates at τ:

τ τ= + = | =p s t j s t i( ) ( ( ) ( ) )ij

The MSM predicts kinetics at longer time scales in term of the
powers of the transition matrix (Markov property):

τ τ+ = | = = s t k j s t i P( ( ) ( ) ) [ ( )]k
ij

Much of the power of MSMs comes from the fact that they use
conditional transition probabilities. In order to parametrize an
MSM, one thus only has to estimate the probability of going to
j given that we start in state i. In other words we can use many
short trajectories starting from different states i, rather than a
single long trajectory visiting all of them (with the equilibrium
frequency). We do not need to know in advance what the
equilibrium probability of state i israther the MSM predicts
that this equilibrium probability π = (πi) in terms of its station-
ary vector:

π π τ= P( )T T

Thus, the MSM can be thought of as reweighing trajectories
whose starting points have been selected from an out-of-
equilibrium distribution. By virtue of this property, MSMs are
very useful in reconciling short and independently generated
trajectories and have thus been a method of choice for distri-
buted simulation projects such as GPUgrid2 and folding@home.3

PyEMMA currently has two estimator classes for MSMs:
MaximumLikelihoodMSM seeks the maximum of the tran-
sition matrix likelihood:

∏τ τ| ∝ τ

=

 pC P( ( ) ( ))
i j

n

ij
c

, 1

( )ij

The class BayesianMSM generates a sample of transition
matrices P(τ) according to the posterior distribution:

∏τ τ| ∝ τ

=

  pP C P( ( ) ( )) ( )
i j

n

ij
c

, 1

( )ij

Here cij(τ) is the number of times a trajectory has been
observed in state i at time t and in state j at time t + τ. The
maximum-likelihood estimator takes all of these transition
counts into account by default, as it will converge to the correct
transition matrix irrespective of the statistical correlations in
subsequent count windows such as t → t + τ and t + 1 → t +
1 + τ.62 For the Bayesian estimator, by default only statistically
effective counts will be used that are estimated based on
computing the statistical inefficiency between transition
counts.69,116

A crucial parameter for the accuracy of the Markov model
is the lag time τ. τ should be picked such that the implied
relaxation time scales

τ τ
λ τ

= −
| |

t ( )
ln ( )i

i (2)

are approximately constant within the statistical error,11 where
λi(τ) is the ith largest eigenvalue of the MSM estimated at τ. To
facilitate this, PyEMMA uses the meta-estimator Implied-
Timescales which can compute relaxation time scales as a
function of the lag time for any estimator/model pair that can
compute time scales, including MSMs. If a BayesianMSM is
employed, then these time scales estimates will automatically
have error bars as shown in several figures.
To illustrate, parts c−f of Figure 3 show results of an MSM

estimation and validation for a double-well potential using a
good and a poor discretization, respectively. The implied time
scales and their error bars can be computed for a range of
lag times and then visualized with one simple command. The
implied time scales plot is not sufficient as a model test. Please
see later how to systematically validate a model.
Both the maximum-likelihood and the Bayesian estimators

can be run in either of three modes:
(1) Nonreversible estimation: P(τ) is a transition matrix (pij ≥ 0,

∑jpij = 1), with no other constraints. In this case the maximum-
likelihood estimator is analytically available (pîj = cij/∑kcik), and
the posterior can be sampled by drawing from statistically
independent Dirichlet distributions.13 Nonreversible estimation is
the fastest option but not recommended for MD simulation,
unless one is deliberately simulating a system that violates detailed
balance.
(2) Reversible estimation: P(τ) is reversible with respect to its

equilibrium distribution (πipij = πjpji). This is the default option
as reversibility is physically meaningful for most MD setups,
reduces the statistical uncertainty, and permits a range of
analysis methods of the equilibrium kinetics to be applied.69

Bayesian estimation is conducted using the highly efficient
Gibbs sampling procedure described in ref 69.
(3) Reversible estimation with f ixed π: Same as the preceding

mode, but the equilibrium distribution is an input. This option
is useful for combining free MD simulations with knowledge
of the equilibrium distribution obtained from other methods
such as umbrella sampling or replica-exchange MD in order to
estimate the kinetics of rare events that cannot be sampled in
the unbiased MD simulations.117

Any discrete model will be constructed on a so-called active
set of states, usually a proper subset of all observed states. The
standard use of an active set is to mark the subset of states that
are connected through trajectory data in both directions. If state
labels are empty, for example because the clustering algorithm
has not assigned any MD configurations to them, or if states are
not reversible connected such as state 0 in the trajectory [0, 1,
2, 1, 2, 1], these disconnected states will be excluded in the
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estimation procedure and the subsequent model analysis.
Note that when estimating with respect to a given equilibrium
distribution, the data only need to be simply connected; i.e., in
this case the trajectory [0, 1, 2, 1, 2, 1] would have the active set
{0, 1, 2}.
Estimation of Hidden Markov State Models. A limita-

tion of MSMs is that even with a relatively good discretization,
the required τ to achieve a model with acceptable quality may
be large. It has been shown in ref 118 that the MSM implied
time scales only converge linearly in τ, and this poor conver-
gence behavior is clearly seen, e.g., in Figure 4b. However,

when τ exceeds the time scales of interest, or the affordable
trajectory lengths, then an MSM is of little use.
An interesting alternative may be to construct a hidden

Markov model on the discrete state space, here termed hidden
Markov state model (HMSM). Hidden Markov models119,120

are widely used in machine learning.121 However, it has only
been shown recently78 that HMMs can be excellent approxi-
mations of the kinetics on discretized molecular state spaces. If
a time scale separation exists after m eigenvaluesand typically
a situation where tm is twice tm+1 is sufficient for thatthen the
transition probability between n microstates at any lag time kτ

Figure 3. Lag time selection and model validation: Comparison of implied time scale plots and generalized Chapman−Kolmogorov tests for a
metastable two state system (a, b) with good discretization (left) and bad discretization (right). The model quality of Markov state models (c−f) is
compared to hidden Markov state models (g−j). Estimates are shown with 95% confidence intervals (blue). Generalized Chapman−Kolmogorov
tests are shown for MSM estimates at lag τ = 20 steps and HMM estimates at lag τ = 5 steps.
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can be accurately described by the so-called projected Markov
model:

τ τΠ Λ= −kP Q Q( ) ( )k1 T

where τΛ ∈ ×( ) m m are the first m true eigenvalues, Π =
diag(π1, ..., πn) is the diagonal matrix of stationary probabilities,
and ∈ ×Q m n is a matrix of true eigenfunctions projected onto

the n microstates.78 While the preceding formulation is not
immediately useful, it can be approximated by

χ χτ τΠ Π= ̃ ̃−kP P( ) ( )k1 T

which is a hidden Markov model.78 Here, ̃ ∈ ×P m m is a small
transition matrix between m metastable states of the system,
and χ ∈ ×m n contains probability vectors in its rows, each

Figure 4. Input feature selection and transformation method. Three types of input features (rototranslationally oriented Cα coordinates, Cα−Cα
distances, and residue contacts based on closest heavy-atom distances) and two transformation methods (PCA, TICA) are compared in their abilities
to capture the slow processes in BPTI conformational dynamics based on a 1 ms simulation trajectory.1 (a, d) Projection of the trajectory onto the
two largest principal or independent components (left) and density plot of both coordinates in log-space (density maxima, blue/purple; low
densities, yellow/red). (b, e) Implied relaxation time scales of MSMs built from these data, always using k-means with 100 cluster centers.
(c, f) Cumulative variance captured by PCA and the cumulative variance captured by TICA using the three different input features. (g) Total kinetic
MSM variance plotted as a function of lag time for different input features and projection methods. (h) Three representative sets of structures for the
metastable states indicated as A, B, and C in panel d.
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of which determines the probability that a metastable state will
appear in one of the n microstates.
Consider the double-well system in Figure 3 as an example.

In the poor discretization (right column), a MSM cannot
describe the kinetics accurately for any acceptable lag time τ
(panel d). The problem lies in the fact that the dynamics are
very non-Markovian on this particular discretization. However,
a HMM can describe the kinetics on the poor discretization
very well using short lag times (panel h). The reason is that the
system itself is excellently described by a transition matrix
between two states, because there is only one slow time scale.
The effect of poor discretization can be captured by the output
probability matrix χ, which in the example of Figure 3 is
approximately

χ =
⎡
⎣⎢

⎤
⎦⎥

0.88 0.12
0 1

This matrix corrects the fact that the poor discretization shown
in Figure 3b has mixed up the true metastability structure of the
double well: The true metastable state 1 (left well) shows
up mostly (88%) in the left bin, but also with considerable
probability (12%) in the right bin. On the other hand, the
right well almost always shows up in the right bin. This exam-
ple illustrates why the concept of an output probability is
meaningfulit simply corrects for problems introduced by
poor discretizations or poor choices of the input features.
Since a HMSM is a generalization of an MSM, all physico-

chemically relevant quantities that can be computed from
an MSM can also be computed from an HMSM (see later
discussion).
Like for MSMs, PyEMMA has two Estimators for hidden

Markov state models, the MaximumLikelihoodHMSM
that employs the standard Baum−Welch algorithm119,120 and
a BayesianHMSM estimator that samples the posterior dis-
tribution of HMSMs by generating pairs of transition matrices
and output matrices, (P̃(τ), χ) using the Gibbs sampler de-
scribed in ref 122. Both estimators employ the bhmm pack-
age (https://github.com/bhmm) that is installed as a dependency
with PyEMMA. Using the BayesianHMSM estimator, all HMM
quantities can be computed with statistical error estimation.
Kinetic Model Validation. Kinetic models are approx-

imations of the full phase-space dynamics and therefore have
nonzero systematic error. For example, consider a hypothetical
simulation where we start a large number of long simulations in
conformation A and measure the time each simulation takes to
reach conformation B, and average those numbers to obtain the
mean transition time. Alternatively, we build an MSM from a
large amount of simulation data (either short or long simula-
tions) and compute the mean first passage time directly from
this model. While the latter approach has numerous advantages,
the MSM estimate might have a small but systematic error.
This systematic error will not vanish in the large data limit.
It depends on (i) the type of model used, (ii) state space
discretization, and (iii) lag time τ.
We therefore suggest validating any kinetic model before

using it for analysis. Model validation is considered successful
when the model, estimated at lag time τ, is able to predict esti-
mates performed at longer time scales kτ within statistical error.
The canonical approach for MSMs is to test some formulation
of the Chapman−Kolmogorov equation

τ τ=kP P( ) ( )k
(3)

The preceding equation holds exactly if there is no systematic
or statistical error. When model estimates are made, we test if
the systematic error is acceptable by assessing whether the left-
and right-hand sides of (3) are equal within their statistical
errors.
We have generalized this idea to a class of time-lagged model

tests that are applicable to all kinetic models in PyEMMA,
including MSMs and HMSMs. This is possible because all of
the existing (and also all of the currently planned) kinetic
models can be estimated at different lag times and can be used
to make predictions at arbitrary longer times kτ, with k ≥ 1.
f denotes some function of interest given for the model M(τ),
and f(̃k)[M(τ)] denotes the model prediction of f for a longer
time kτ; then we compare whether

τ τ= ̃f M k f M[ ( )] [ ( )]
estimation prediction

k( )

(4)

holds within the error for multiple values of k.
Currently, two such tests are implemented in PyEMMA: (1)

The eigenvalue decay test, closely related to the mode correla-
tion test, e.g., described in ref 18, compares the predicted and
estimated decay of the model eigenvalues:

λ τ λ τ=k( ) ( )i i
k

for different model eigenvalues i. This test is very generally
applicable to any model of the equilibrium kinetics, including
MSMs with transition or rate matrices, HMSMs, Markov transi-
tion models,93 and purely spectral models obtained from the
variational approach95,96 such as TICA.
For models that can propagate probability densities in time,

such as MSMs, HMSMs, and Markov transition models, we can
perform more specific and sensitive tests. To this end, we have
implemented a generalized Chapman−Kolmogorov test that
compares prediction and estimation of the probability of being
in set J at time kτ given that we start in a local equilibrium of set
I at time 0:

τ τ= ̃p k p( ) ( )IJ IJ
k( )

Although arbitrary sets can be chosen, we use the following
as default. For MSMs, we use fuzzy sets representing the
metastable states and their initial distribution computed using
PCCA++77 and Bayesian inversion.78 For HMMs, one usually
has a transition matrix between only a few metastable states,
and thus the Chapman−Kolmogorov test (3) can be applied
directly on the hidden transition matrix.
In PyEMMA the preceding tests are generalized and auto-

matized. Given an estimated MSM or HMSM, one can simply
call its function cktest and visualize the results via the
corresponding plotting function. If the Estimator supports the
estimation of error bars (e.g., BayesianMSM and Baye-
sianHMSM), these will be automatically computed on the pre-
dicted quantities, and if desired also on each of the estimates.
Illustrations are shown in Figure 3 for a double-well potential

with good (left) and poor (right) discretizations, using either
MSMs estimated at a lag time of τ = 20 (panels e and f) or
HMMs estimated at a lag time of τ = 4 (panels i and j). In both
cases, the model predictions at long time scales are consistent
with the corresponding estimates for the good discretization,
but the validation fails for the poor discretization. In the first
case, the model can be accepted and analyzed. In the second
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case, one has to use a finer discretization and/or a longer lag
time.
Kinetic Model Analysis. A large part of PyEMMA’s con-

venience comes through the wealth of analysis functions offered
by MSMs, HMSMs, and other model objects. The following
quantities can be easily obtained once such a kinetic model has
been estimated:
(a) Stationary distribution of the model, π. Calculation of π

is extremely fast by using inverse iteration.123 In PyEMMA,
every model that has a stationary distribution can be used to
recompute the statistical weight of the MD configurations used
as an input. With this feature, the user can easily compute
equilibrium expectation of any observables of interest that can
be computed from MD frames, for example spectroscopically
measurable functions, even if the simulation trajectories were
not generated from an equilibrium distribution. Another appli-
cation is the computation of MSM-reweighed free energy
surfaces as shown in Figure 1d.
(b) Eigenvalues λi(τ) and left or right eigenvectors. Eigen-

values are related to the relaxation time scales (2) and thus
to time scales or rates measurable in kinetic experiments.85

Eigenvectors indicate the structural changes occurring at these
time scales.62,85 Because eigenvalues and eigenvectors are
needed for various other calculations, we have optimized the
calculation of eigenvalues and eigenvectors to automatically
employ specialized algorithms. For example, the eigenvalue
problem for reversible Markov models is formulated as a gener-
alized symmetric eigenproblem which can be solved much
faster than a nonsymmetric eigenproblem.
(c) Metastable (long-lived) states and their probability distri-

butions using the PCCA++ algorithm for MSMs77 or the output
probabilities of the HMSMs. Metastable state distributions are
shown in Figure 1e. They are employed to generate represen-
tative structures of these metastable states, as shown, e.g., in
Figure 1f and Figure 4h.
(d) Mean first passage time tAB, or inverse transition rate,

to go from any set of states A to any other set of states B.13

Of particular interest is the mean first passage time between
metastable states.
(e) Committor probabilities, also known as probability of

folding or splitting probability.124,125 The forward committor qi
+

relative to educt states A and product states B is the probability
of reaching B before A when starting from state i. The backward
committor qi

− is the probability to have come from A last rather
than from B. These properties are ideal reaction coordinates for
the A → B transitions and are the key to computing transition
pathways (see later discussion).
(f) Quantities measurable by kinetic experiments, such as

time-relaxation function, that are relevant for temperature-jump,
pressure-jump, pH-jump, or rapid mixing experiments.86,88 Time-
correlation functions are relevant for fluorescence correlation and
dynamical neutron scattering experiments.85,89

(g) Spectral representation of such computational experi-
ments, also called dynamical fingerprint.85,88,89 Dynamical
fingerprints are useful for designing new experiments,85 e.g., by
predicting where to place a spectroscopic probe to maximize the
signal/noise ratio when measuring a specific relaxation process.
All of the preceding quantities can be conveniently computed

from the MSM or HMSM objects obtained after estimation.
This ability relies on using functions of PyEMMA’s low-level
MSM package msmtools (https://github.com/markovmodel/
msmtools).

Transition Path Theory. Transition path theory (TPT) is
a framework to compute fluxes from a set of source or educt
states A to a set of sink or product states B and to thus extract
information about the structural mechanism and the kinetics of
the A → B transition. TPT has been originally introduced
for continuous-space Markov processes in81 and has been
formulated for rate matrices in refs 83 and 84 and for transition
matrices in ref 20. TPT is useful for studying processes such as
protein folding20,22,126 and protein−ligand binding.27,31

In PyEMMA, TPT is represented by a ReactiveFlux
model that can be generated from an MSMs or HMSMs. A
ReactiveFlux contains a set of network fluxes between pairs of
microstates. The gross flux, the average number of transitions
along an edge i → j as part of the transition A → B, is com-
puted as

π= − +f q p qij i i ij j

where qi
− and qi

+ are the backward and forward committor
probabilities and πipij is the equilibrium flux. The net fluxes are

= −+f f fmax{0, }ij ij ji

These net fluxes define a directed graph from A to B states.
PyEMMA provides graph-based algorithms to decompose f ij

+

into individual pathways with their corresponding contribu-
tion83 and algorithms to coarse-grain the flux onto sets of
interest, such as the metastable sets.20 An application of TPT is
shown in Figure 5 (see Results).

Coarse-Grained Markov Models. There is a great interest
in having a model with few states that contains the essential
structural, thermodynamic, and kinetic information on the
molecular system under investigation. The user wants to get a
comprehensive illustration of important key facts: which meta-
stable states do exist, what are their structural characteristics,
what are their equilibrium probabilities or free energies, which
of them are kinetically connected, and by which transition
rates? In PyEMMA we provide a systematic and rigorous path
toward obtaining such a picture.
The number of MSM microstates generated by clustering is

usually in the range of hundreds to thousands. While such a fine
discretization is important to compute quantitatively accurate
information, such as the mean first passage time from one
set of states to another, or the time-relaxation behavior in a
temperature-jump experiment, it hardly qualifies as a humanly
understandable representation of the system.
Suppose one is given a discretization of the state space into n

microstates, and a MSM with stationary distribution πi and
transition matrix pij(τ). Now one wants to group the micro-
states into m ≪ n sets of microstates, which we shall call
macrostates. How does one obtain a coarse-grained model that
correctly maintains the structural, thermodynamic, and kinetic
information? Simply by grouping structures and adding up
equilibrium probabilities:

∑π π=
∈

I
i I

i

However, coarse-graining the kinetics is not trivial. The direct
summation of fluxes,

∑ ∑τ
π

π τ=
∈ ∈

p p( )
1

( )IJ
I i I

i
j J

ij
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is correct for lag time τ, but usually fails to be an accurate
Markov model as it will no longer make accurate predictions for
longer time scales. For example, macroscopic kinetic properties

such as the mean first passage time from one set I to another
set J will be different when pij(τ) or pIJ(τ) are employed. The
fine-grained MSM with an n-state discretization and transition

Figure 5. Hidden Markov state model analysis for protein−ligand bindingtrypsin−benzamidine. (a−d) Model quantities reported as a function of
τ: (a) implied relaxation time scales; (b) binding free energy, measured between bound state 4 and unbound state 2, compared to experimental
values; (c, d) dissociation and association rates, compared to experimental values. (e) Rate network (rates in ns−1) between metastable states. Sizes
of low-populated states are enhanced for visual clarity. (f) Transition path theory fluxes from unbound to bound state. (g) Structures sampled from
the HMM metastable state distributions. Benzamidine positions are shown according to state color (compare to panels e and f). The binding fluxes
of panel f are indicated by black arrows.
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matrix pij(τ) has been validated, e.g., using a generalized
Chapman−Kolmogorov test (see previous discussion). But by
the process of coarse-graining the MSM to m states, we change
the discretization, such that the validation does not hold
anymore for the coarse-grained model. We could re-estimate and
validate a MSM on the coarser state space, but this approach
often requires unacceptably long lag times τ to be used.
Reference 80 has suggested a scheme to strike a balance

between reproducing the fast and the slow relaxation behavior
of the model for a given definition of coarse sets. Other studies
have suggested finding an optimal choice of coarse states25,75,76

and then to re-estimating the MSM on the coarse state space. It
has been first realized in ref 74 that coarse-graining in a way
that exactly preserves the slow kinetics, and in particular the m
slowest relaxation time scales, is not possible using any hard
assignment of microstates to macrostates, but must rather be
made by a fuzzy assignment in which each microstate i has a
probability of participating in macrostate I:

= |m I i(macro micro )iI (5)

and vice versa, each macrostate I has a probability of being
observed in microstate i

χ = | i I(micro macro )Ii

We can write these probabilities into a membership matrix
∈ ×M n m and an observation probability matrix χ ∈ ×m n

and relate them by

χ Π Π= ̃− M1 T
(6)

where Π = diag(πi) and Π̃ = diag(πI).
78 The key contribution

of ref 74 is the finding that when the membership probabilities
(5) are computed by a linear transformation of the first m
transition matrix eigenvectors, which is achieved by the PCCA+
and PCCA++ methods,73,77 then there is a m × m-sized coarse-
grained transition matrix (here using the formulation of ref 78):

̃ = −P M M M PM( )T 1 T
(7)

which exactly preserves the relaxation kinetics of the m slowest
processes. Unfortunately the transition matrix (7) is physically
not very appealing because it can have a few negative transition
probabilities. However, it was noticed in ref 78 that (7) and (6)
together define a hidden Markov model and that hidden Markov
models are a good approximation to the exact dynamics on
discrete state spaces for all long time scales. These insights lead
to the following rigorous and unique coarse-graining strategy:
(1) Estimate and validate a microstate MSM with transition

matrix P(τ) at lag time τ.
(2) Compute the initial HMSM using (7 and 6).
(3) Optimize P̃ and χ by maximizing the HMSM likelihood

using the Baum−Welch algorithm119,120

(4) Analyze P̃ as the coarse-grained Markov model. Represen-
tative structures can be sampled from the row vectors of χ.
Error bars on the coarse-grained Markov model can be computed

as described earlier for HMSMs. The coarse-graining procedure
is completely automatized in PyEMMA. A coarse-grained MSM
can be simply obtained by calling coarse_grain(m) on an
estimated MSM object. This analysis results in the coarse-
grained representation shown in Figures 1 and 5.

■ RESULTS
Feature Selection Using TICA. Here we evaluate the

questions of how input features should be selected and how the

featurized input data should be transformed in order to prepare
it for the construction of kinetic models.
In Figure 4, we have used a 1 ms simulation of bovine

pancreatic trypsin inhibitor (BPTI) produced by the D. E. Shaw
Anton supercomputer1 (see there for details of the simulation
setup). The analysis was done using a 10 ns stride (100000 frames),
which allows all analyses shown in Figure 4 to be run within a
few minutes on an ordinary laptop computer. Smaller strides
were tried but did not change the qualitative picture.
We have compared three feature sets: (i) the 174 coordinates

of the 58 Cα atoms, after rototranslational alignment; (ii) the
1653 distances between pairs of Cα coordinates; and (iii)
residue−residue contacts defined to be 1 for Cα distances
≤0.75 nm and 0 for larger separations. These feature sets were
then fed into a PCA and a TICA transformation, respectively,
resulting in six setups that are being compared. In order to
communicate a visual impression we show the projections of
the simulation trajectory onto the first two main components
(left column), as well as the logarithm of the histogram as a
simple estimate of the free energy surface (second column).
Note that in none of these setups is the variance well-explained
by two coordinates, and thus panels a and d should not be
quantitatively interpreted. For the quantitative analysis (b, c,
and e−h) much higher dimensions are employed.
Looking at the low-dimensional projections (a, d) already

reveals very interesting qualitative differences. The three PCA
analyses all appear very different. There are two deeper minima
in each of them, but the overall structure is different when a
different feature set is chosen. In stark contrast, the three TICA
projections appear very similar despite extremely different input
features. The trajectory projections (d, left) appear almost
identical to the eye. Subtle differences show up in the free
energy plots (d, right), but the overall structure is conserved:
two deeper minima separated by the second-slowest process,
both of which are separated from a less deep set of minima by
the slowest process. The TICA projection clearly separates the
three structures shown in Figure 4h that are later found to
be the metastable conformations of BPTI. These qualitative
observations confirm that TICA should be preferred over PCA
if our aim is to build a kinetic model of the slow molecular
transitions.
Within a TICA transformation the quality of feature sets can

be compared using the total kinetic variance TKV (see earlier).
The best feature set is the one that maximizes the TKV as it
best retains the slow processes intrinsic in the unfeaturized data.
In Figure 4f, it is seen that, for this BPTI data set, the KTV
indicates that Cα coordinates and residue−residue contacts
perform similarly, while the Cα distances perform much better
in terms of resolving the slow processes.
To validate this indication, we build MSMs from each of

these six setups and for a range of lag times τ. In order to make
a fair comparison, we always selected a number of dimensions
such that 95% of the total (kinetic) variance is retained in each
setup. The TICA coordinates were scaled to a kinetic map.54

Discretization was always done with 100 clusters using k-means
with k-means++ initialization,60 which leads to well-reprodu-
cible cluster center distributions and thus to robust conclusions.
The relaxation time scales shown in panels b and e are

excellent measures of the model quality, as larger time scales
indicate a better discretization,95 and in this case a better choice
of input features and transformation method. Within the PCA
setup, the Cα distances perform slightly better than the other
feature sets. However, all PCA setups are by far outperformed
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by each TICA setup that recovers much slower time scales.
Within TICA setups the Cα distances are again the best feature
set.
Figure 4g summarizes the model quality in a single number

for each model at lag time τ: The total kinetic variation TKV of
the MSM is computed as the sum of squares of its eigenvalues.
This evaluation leads to the same conclusions as those earlier:
(i) TICA substantially outperforms PCA in terms of kinetic
modeling, which is a general statement because TICA is opti-
mal among linear projection methods in terms of approximat-
ing the slow reaction coordinates and maximizing the time
scales,36 and (ii) for BPTI, the Cα distances outperform Car-
tesian coordinates and contacts.
Since conclusion ii is model-dependent, it should be checked

for different systems. Moreover, optimality is not the only
relevant aspect. For large macromolecules, it is unaffordable to
compute all pairwise residue distances. In contrast, variable
residue−residue contacts, i.e., contacts of those residue pairs
that form or break a contact at least once in the simulation,
are an affordable metric even for rather large macromolecular
systems.127

Application to Protein−Ligand Binding. Here we
illustrate the construction and analysis of a kinetic model for
protein−ligand binding. A set of 50 × 200 ns simulations (10 μs
cumulated simulation time) was run for the serine protease
trypsin with its reversible competitive inhibitor benzamidine in
explicit solvent. The simulation setup is described in ref 29. All
simulations started with trypsin and benzamidine separated, i.e.,
in the dissociated state. This simulation set is much shorter
than data sets used in earlier studies,29,31 and in addition data
were only saved once every 1 ns, leading to larger statistical
errors than in previous analyses. However, we have deliberately
limited the amount of data as these data are provided for
download as part of the PyEMMA tutorials. Despite the smaller
amount of data, we shall see that a very interesting kinetic
analysis can be made.
Previous analyses were able to characterize the binding

kinetics and binding affinity of trypsin−benzamidine.29,128 In
other studies,31,129,130 it has been found that trypsin−
benzamidine binding and dissociation are accompanied by
conformational changes in the trypsin binding loops. It has
been shown that these trypsin conformation changes need to be
taken into account in order to arrive at a complete description
of the binding kinetics.31 However, none of these studies
could correctly compute the dissociation rate of trypsin and
benzamidinethese rates were always overestimated.29,31

Here we demonstrate the capabilities of hidden MSMs by
using the 10 μs trypsin−benzamidine data set and selecting the
nearest neighbor heavy-atom contacts between benzamidine
and all trypsin residues as input features. These features
were transformed by TICA to a kinetic map preserving 95% of
the kinetic variance, resulting in a 59-dimensional transformed
space. As described in Methods, 200 clusters were generated by
k-means clustering. Bayesian hidden Markov models using five
metastable states were estimated at lag times of 1−10 ns. These
lags are short compared to those previously used MSM ana-
lyses;29,31 however, it has been found (see ref 78 and Figure 3)
that HMSMs can often be estimated accurately with much
smaller lag times than those of MSMs.
Figure 5a shows the implied relaxation time scales as a func-

tion of the lag time, which are indeed constant within statistical
error for short lag times around 2 ns, while the estimates start
to diverge for lag times of 5 ns and larger. We therefore select

τ = 2 ns and further analyze this model. Figure 5b shows the
binding free energy, computed as

π
π
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where πbound is the stationary probability of the bound state,
πunbound is the stationary probability of the state including the
cluster with zero trypsin−benzamidine contacts, Vunbound is the
simulated solvent volume, and V0 = 1.663 nm3 is the standard
volume (see refs 31 and 128). The maximum-likelihood HMSM
binding free energy estimate at τ = 1 is slightly higher but within
statistical uncertainty of the experimental values given in refs 131
and132.
Parts c and d of Figure 5 show the binding and dissociation

rates of trypsin−benzamidine, computed as
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where tunbound→bound and tbound→unbound are the mean first passage
times computed from the HMSM from the unbound to the
bound state and vice versa. For the first time we can match not
only the binding rate but also the dissociation rate with the
experimental value of ref 133 within statistical error.
Figure 5e shows the rate matrix obtained from the five-state

MSM, represented by a PyEMMA network plot. It is seen that
the network has a star structure, where the unbound (green)
state can communicate with all of the other states. While the
yellow state is misbound, i.e., a dead end or trap state, the other
states are arranged linearly; i.e., they can transition into one
another toward binding or dissociate. The individual transition
rates are given in units of (2 ns)−1, and are in the range of 1μs
to 1/(10 ms).
Figure 5f shows the ensemble of binding pathways analyzed

by TPT. The main binding pathways are direct binding from
the dissociated state or binding through the blue intermediate.
Other pathways, in which the benzamidine goes through low-
populated intermediates are possible but much less frequent.
Figure 5g shows the positions of the benzamidine drawn on

the simulation starting structure of trypsin. The five different
metastable states of the HMSM are shown in different colors,
corresponding to the color code in Figure 5e,f. Note that the
structures shown here (and all structures shown in the other
figures) have been automatically selected by PyEMMA based
on the metastable state probabilities in the HMSM model and
were not manually chosen. The bound state (purple) is very
well defined by the Trp in the binding cavity and forming a salt
bridge to Asp 189. The unbound state (green) can be clearly
seen as the only state which has most ligands in the solvent, or
weakly attached to trypsin. Two metastable misbound states are
found (yellow, blue), where benzamidine binds to off-target
aspartic acids. Out of these, the yellow state is far from the
binding site and forms an off-pathway intermediate, that
benzamidine has to dissociate from in order to get on a binding
pathway. Another weakly stable intermediate that is not
stabilized by specific salt bridge contacts (cyan) is close to
the binding pocket. The arrows in Figure 5g qualitatively show
the binding fluxes from Figure 5f. Benzamidine can bind from
the dissociated state to any intermediate or directly to the
bound state. When starting in the cyan state, benzamidine
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jumps to the blue prebound state and finally binds into the
purple state.

■ CONCLUSIONS
We have described the software package PyEMMA for the
construction, validation, and analysis of Markov models, hidden
Markov models, and other kinetic models from MD simulation
data. The features, the software architecture, and the usage of
the software were discussed, and new methodological approaches
and results were described.
PyEMMA is a very actively developed code, and we have a

long-term interest in keeping the development up. Near-future
additions will include packages for the variational approach of
conformation dynamics (VAC),95,96 Markov transition models
(MTMs),93 and kinetic models using data from multiple ther-
modynamic states, e.g., using the TRAM estimator.97,98 In
addition, various extensions to make kinetic model construction
more convenient, automatic, and efficient will be made.
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