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Improving clustering by imposing
network information

Susanne Gerber and Illia Horenko*
Cluster analysis is one of the most popular data analysis tools in a wide range of applied disciplines. We propose
and justify a computationally efficient and straightforward-to-implement way of imposing the available
information from networks/graphs (a priori available in many application areas) on a broad family of clustering
methods. The introduced approach is illustrated on the problem of a noninvasive unsupervised brain signal clas-
sification. This task is faced with several challenging difficulties such as nonstationary noisy signals and a small
sample size, combined with a high-dimensional feature space and huge noise-to-signal ratios. Applying this ap-
proach results in an exact unsupervised classification of very short signals, opening new possibilities for
clustering methods in the area of a noninvasive brain-computer interface.
INTRODUCTION

Clustering can be considered as one of the most important learning
and data analysis methods in a large variety of applied disciplines.
The general aim of clustering is in assigning a set of objects into groups,
such that the degree of association—the “similarity”—becomes max-
imized between members of the same group/cluster and minimized
betweenmembers of different groups/clusters. The concept of similar-
ity is—in most cases—realized via a distance function on the data
space. A wide variety of different algorithms have been developed
for special topics, each of them based on a diverse notion of what con-
stitutes a cluster, thus using different induction principles for the
clustering procedures. Consequently, the application of even slightly
different algorithms may result in very deviating outcomes, even ap-
plied to the same data under the same conditions (1–4). Because the
choice of “the best possible” clustering algorithm highly depends on
the individual data set and the intended use of the results, clustering
algorithms are developing just as dynamically as technical capabilities
are evolving. In particular, the new possibilities offered by high-
performance computing technologies give rise to exciting advances in
the ability of researchers to use cluster modeling to analyze huge and
complete data sets, from climate/weather research (5, 6), economics
and finance (7, 8), computational biology, biophysics/bioinformatics
(9, 10), and neuroscience (11, 12).

Most often in data analysis, the available information is only a
series of U (experimental) observations X = x(1), …, x(U), without
a detailed knowledge about the underlying model x(u) = f (y(u)) and
its parameters y(u). Inference of the “optimal” parameters in a wide
range of data analysis approaches is mostly achieved by minimizing
the appropriate fitness function:

lðyðuÞÞ ¼ ∑
U

u¼1
gðxðuÞ; yðuÞÞ ð1Þ

It is measuring the quality of the model for describing the given data
sequence X by calculating the sum of distances g(x(u), y(u)) between
the model’s prediction [obtained from the parameter values y(u)]
and the analyzed data x(u). However, if only one data sequence X
is available and the parameter y is allowed to change with u in an
arbitrary way, the respective minimization problem will simply not
have enough dataX to estimate all of the values of y(u) and will result
in what is called “overfitting.”

Assuming yðuÞ ¼ ∑K
i¼1giðuÞyi (with∑

K
i¼1gi ¼ 1 and gi(u)≥ 0 for

all i and u), clustering algorithms can also be formulated and imple-
mented as a minimization with respect to (wrt.)Y = (y1,…, yK) and
G = (g1, …, gK) of the so-called clustering functional La, taking the
form (13, 14):

LaðY;GÞ ¼∑
K

i¼1
ðgai ÞTgi ð2Þ

where T is a vector transposition operation, {gi}u = g(x(u), yi) are the
row vectors of cluster distances, {gi}u = gi(u) are the row vectors of
cluster affiliations [that is, gi(u) is the probability for data point u to
be from cluster i], anda≥ 1 is a fixed scalar exponent called the fuzzyfier
(14, 15), allowing for the assignment of observed data points to more
than one cluster (soft clustering) if a > 1.

It can be demonstrated (please see section 1 in the Supplementary
Text for a detailed proof) that La ≥ l, that is, that a wide range of
clustering algorithms in their minimizational formulation (Eq. 2)
represent methods for minimizing the upper bound La of the more
general fitness function l. This means that by doing clustering, one is
implicitly finding an approximate piecewise homogeneous solution
of the more general and heterogeneous (that is, with parameters y
being dependent on u) data analysis problem (Eq. 1).

Most of the existent clustering methods can be formulated as
the optimization of Eq. 2, differing only in the choices of a and the
distance function g(x(u), yi). If, for example, a = 1 and g(x(u), yi) =
||x(u) − yi||2, then minimization of Eq. 2 is the task performed by the
classical k-means algorithm (16). Also, other classical methods of data
analysis and machine learning (for example, multilinear statistical
regression, Gaussian mixture models, and hidden Markov models) can
be derived as special cases of the above optimizational formulation
by choosing specific model distance functions and additional constraints
(16). In other words, clustering can be treated as an inverse prob-
lem that can become expressed and solved as a minimization—or a
maximization—problem.
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Computationally, the procedure of finding a minimum of La

wrt. Y and G in all of the clustering algorithms is implemented
iteratively, by a consecutive repetition of the two following steps:
It is straightforward to verify that for any initial choice of G orY,
iterative repetition of these two steps will lead to a monotonic min-
imization of La and convergence to some local minimum of La (13).
The obtained final estimates of G and Y for different local minima
can then be compared with respect to their values of La to identify the
most optimal clustering of the data sequence X - corresponding to the
smallest value of the respective clustering functional from Eq. 2.

One of the central problems of virtually all state-of-the-art clustering
approaches lies in the fact that the related optimization problem is gen-
erally nonconvex (may have various localminima) and nonrobust or, in
mathematical terms, ill-posed, meaning that tiny changes in the start con-
ditions or in the tuning parameters of the algorithmmight result in large
changes in the answer. Asmentioned above, the latter issuemay arise
due to the high number of unknowns in relation to the known param-
eters. Therefore, the results may heavily depend on the choice of the
initialization, or tuning parameter sets, thus involving the risk of over-
fitting and frequently making the clustering results nonreproducible
even on the same computer with the same set of user-defined tuning
parameters (16).

This drawback becomes even more apparent when dealing with
high-dimensional data, where most of the existing methods can fail
due to the various problems of popular distance metrics deployed in
clustering algorithms. To overcome the above-mentioned issue of non-
robustness, a frequently deployed strategy is to add some additional
information or assumptions to the problem. In mathematical terms,
this strategy is called regularization. Herewith, the nonrobust problem
can be transformed into a robust one (17). Tikhonov regularization (18)
and LASSO regularization (19) are prominent examples in the context
of, for example, spline interpolation and parametric regression problems
in data analysis and statistics.

MATERIALS AND METHODS

The central methodological contribution of this manuscript is in find-
ing and justifying a computationally efficient and easy-to-implement
way of imposing additional information—given in the form of a graph
or a network—on clustering algorithms.

Themain idea is based on the insight that the data index u can be
brought in a relation to the respective node in some network or graph
G = (E, V ), with edges E and vertices V, U = |V|. This graph G is
equipped with some graph-related variation measure ||y(·)||G, for exam-
ple,with ‖yð⋅Þ‖G ¼ ∑u;v∈EWu;v‖yðuÞ − yðvÞ‖22 squaredEuclideannorm
of theparameteryvariationon thegraphG. In this expression,W is amatrix
of weights, with elementsWu,v being, for example, inverse-proportional
to the Euclidean length of a minimal path connecting vertices u and v
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on the graphG. This graphG and the variationmeasure ||·||G are assumed
to be underlying the measurement process and to be known a priori.

Then, inserting the clustering assumption yðuÞ ¼ ∑K
i¼1giðuÞyi

from above into ||y(·)||G, we obtain

‖yð⋅Þ‖G ≤ ∑
K

i¼1
‖yi‖2ðgai ÞTDGgai ≤ CK < þ∞; ð3Þ

where CK is some (unknown) constant, ||yi|| is a Euclidean norm for
cluster parameters yi and DG = P − 2W + Q (with diagonal matrices
Puu≡∑v|(v,u)∈EWv,u andQuu≡∑v|(u,v)∈EWu,v ; please see chapter 1.2 of
the Supplementary Text for a detailed derivation). To give a concrete
example, whendealingwith problems of time series analysis, index u is
denoting the time index of every particular data point, and the underlying
graphG is a linear graph shown in Fig. 1A. Then, kernel weightW can be
defined asWu,v = 1 (for ||u − v|| = 1) andWu,v = 0 (for ||u − v|| ≠ 1), and
the resulting DG will be a tridiagonal positive semidefinite symmetric
Laplacian matrix. This case will be particularly important in a context
of time series clustering methods considered below.

Deploying Eq. 3 as an additional constraint in the minimization
of the original clustering problem (Eq. 2), one gets a possibility of a
“guided” search for parameters y(·)—based on their differences mea-
sured in terms of the a priori available graph/network informationG.
More specifically, choosing large values of CK will result in those pos-
sible solutions of the original clustering problem that are very different
wrt. parameters y on the neighboring nodes of the graphG. Decreasing
the value of CK will provide parameters that aremore andmore “close”
in terms of the a priori available informationG. Finally, settingCK to
zero will result in stationary/homogeneous estimates, that is, in the
parameters y that are equal for all of the graph G nodes and, thereby,
for all of the data points u. Formulated as an additional assumption,
Eq. 3 basically means that we expect any two different nodes u and v
of the graphG (that are not “too far away” from each other in a sense
of the underlying graph distance measure) to have not “too different”
values of unknown parameters y(u) and y(v).
Fig. 1. Anexampleof the imposednetworkandaclustermodeldiscrimina-
tion. (A) Imposed (linear)graph:aprioripersistencyassumption for theunderlying

dynamics in time. (B) Comparing information content of EEG clusterings: graphs
of the AIC values for K = 1 to 3 as a function of the regularization constant �2.
Standard Clustering

Iteratively repeat until convergence in La:

(Step i) for a current value of G, Eq. 2 is minimized to wrt. Y only (that can
be done analytically, for example, in the case of classical k-means);

(Step ii) for a current value of Y, Eq. 2 is minimized to wrt. G only (that can
also be done analytically).
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It turns out that from numerical/computational points of view,
instead of directly deploying Eq. 3 as an additional inequality constraint,
it is more advantageous to use its equivalent formulation—when the
confined term from Eq. 3 is added as a penalty term to the original
clustering problem formulation (Eq. 2):

L�;aðY;GÞ ¼∑
K

i¼1
½ðgai ÞTgi þ �2jjyijj2ðgai ÞTDGðgai Þ�; ð4Þ

and subject to the original constraints∑K
i¼1gi ¼ ð11;…; 1U Þ ¼ 1,gi≥0.

Penalty factor �2 can then be interpreted as the level of our confi-
dence in the a priori network/graph information G: if �2 is large, then
the impact of the a priori information on the overall solution will be
strong; if �2 is very small or zero, then we essentially solve the original
clustering problem (Eq. 2) and information aboutG does not play any sig-
nificant role. Systematic strategies for automated and user-independent
choice of �2 and K will be introduced below.

The main theoretical/conceptual advantage of this problem for-
mulation (Eq. 4) can be revealed after making an observation that the
right-hand side of the obtained functional is essentially a log-likelihood
formulation of the Bayes theorem: with the second term being a log-
likelihood of the prior distribution in the space of clustering param-
eters (that becomes Gaussian if one fixes either G orY) and with the
first term keeping the form of the original clustering functional (Eq. 2)
as a posterior log-likelihood [It is interesting to observe that the direct
application of Bayes theorem to the original clustering problem (Eq. 2),
assuming the independence of G or Y and a priori Gaussianity for
both of them, would result in two separate quadratic terms for Y and
forG in the right-hand side of Eq. 4, that is, in �2Gg

T
i DGgi þ �2Yy

T
i DYyi.

In contrast, we obtain a fourth-order log-likelihood term that is derived
from an assumption (Eq. 3) and does not require or impose a priori
conditional independence of G and Y.]. In another words,
increasing the value of the user-defined tunable parameter �2 would
decrease the variance/uncertainty of cluster parametersG orY,making
this transformed clustering problem well posed and robust, that is, less
and less dependent on small changes of algorithmic parameters and on
fluctuations in the analyzed data X.

Moreover, it is straightforward to validate (please see chapter 2 of the
Supplementary Text for the detailed derivation) that this regularized
clustering problem represents an upper bound for problems 1 and 2.

lðyð⋅ÞÞ ≤ LaðY;GÞ ≤ L�;aðY;GÞ; ð5Þ
that is, the ill-posed data analysis problem (Eq. 1) (and the clustering
problem in Eq. 2) can be both approximately solved through a minimi-
zation of the well-posed problem (Eq. 4).

The transformed problem (Eq. 4) can now be solved by a slight
modification of the classical clustering algorithm explained above:
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It is easy to prove that the iterative repetition of these two convex
minimization steps will monotonically converge to a local minimum
of L�,a.

Step ii of this modified clustering algorithm represents the main
computational bottleneck because it requires a numerical solution of
a largeQP problem. If the a priori graph/network information is avail-
able in the form of an undirected graphG, the correspondingmatrices
DGwill be symmetric. IfDG are also sparse, then we can take advantage
of the highly efficient linear solvers for sparse banded matrices imple-
mented, for example, in high-performance software libraries such as
(Sca)LAPAK (20, 21) or FLAME (22). However, the computational
complexity in this case will still scale as O(Up) (with p > 2), limiting
the overall applicability of thismethodology to relatively small data sets.

By deploying the method of Lagrange multipliers, it can be shown
that in a particular case of hard clustering (that is, when a = 1), one can
find an explicit analytical solution of this problem:

gi ¼
1

K
1 −

1

2�2Kjjyijj2
D−1

G Kgi − ∑
K

i¼1
gi

 !
; ð6Þ

that also satisfies the optimization constraints gi ≥ 0 and Si gi = 1.
Please see chapter 3 of the Supplementary Text for a detailed deriva-
tion of this solution.

This result (Eq. 6) is particularly important in the context of the
so-called finite element method family of time series clustering
methods with bounded variation of the model parameters (FEM-BV)
(23, 24). This method family represents a special case of the introduced
graph-regularized clustering framework, when the underlying graph is
linear (representing the time axis) with graph distances only being lo-
calized to consider/measure the nearest neighbor interactions in time.
In this situation, the graph distance matrix DG will be a Laplacian
matrix, that is, it will be tridiagonal and positive-semidefinite, meaning
that its inverse can be expressed analytically—through the eigenvectors
and eigenfunctions of Laplace operator in one dimension. This result
allows to reduce the overall computational complexity of step ii in
FEM-BV clustering methods from O(Up) (with p > 2) to O(U). The
inverse of DG in this tridiagonal case can be analytically precomputed
once and then reused with Eq. 6 every time when step ii of the FEM-BV
clustering is performed. This resolves the main current computational
bottleneck of the FEM-BVmethods of the time series analysis, allowing
us to address the analysis of a much longer time series than what is cur-
rently possible with these methods.

Choosing an optimal setting for the clustering algorithm
Because the outcome of clustering is highly dependent on the specific
choice of the number of clusters K, regularization constant �2, and
fuzziera (aswell as on the choice of thedistancemeasure on the graphG),
another challenge is in choosing all of these parameters and settings in
some “optimal” way. Several ways of choosing optimal clustering param-
eters have been discussed in the literature (23, 24). In the situations when
the distance function g can be interpreted in the probabilistic sense—
for example, as a log-likelihood of some distribution—information crite-
ria can be used to identify/discriminate the optimal parameter setting
for clustering algorithms (16, 25). This is done in a sense of “Occam’s
razor” principle: information-theoretic tools such as Akaike (AIC) and
Bayes information criteria can be used to find the clusterings that are
simultaneously most qualitative (in terms of minimizing the value of L
Clustering with an imposed graph information

Iteratively repeat until convergence in L�,a:

(Step i) for a current value of G, Eq. 4 is minimized as an unconstrained
convex (for example, quadratic) problem wrt. Y only (this can be done an-
alytically in many cases);

(Step ii) for a current value of Y, Eq. 4 is minimized to wrt. G only, as a
constrained convex [for example, as a quadratic programming (QP)] pro-
blem.
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in Eq. 2 or 4) and simple (in terms of the low number of clusters and/or
other tunable parameters). However, this information-theoretic approach
is limited to situations when g has an explicit probabilistic interpretation,
that is, has a formof the parametric (for example, Gaussian) log-likelihood.
It is not the case in situations when g simply measures some geometric
distance (for example, anEuclidean distance between the points for stan-
dard k-means clustering) that is not a priori-interpretable as some log-
likelihood associatedwith some assumed parametric probabilitymeasure
(for example, Gaussian). In (16), it was presented how to select the op-
timal clustering models in a non-parametric way, without a priori
parametric probabilistic assumptions on underlying measures. As was
demonstrated in information theory (26), nonparametric exponential
distributions represent the family of maximum entropy distributions
for the given scalar valued process time series. That is, max log-likelihood
fitting of these exponential distributions to the available data would re-
sult in the posterior identification of the most likely and least-biased
(that is, the simplest) random process that has the highest affinity to
produce such an output as the one that is observed. The main idea of
the respective nonparametric model selection approach is based on
the posterior maximum log-likelihood fitting of a sequence of such
nonparametric exponential family distributions

rðyðu; �;K; aÞ; l�;K;a;kÞ ¼ exp ∑
k

j¼0
l�;K;a;k
j y jðu; �;K;aÞ

 !
; ð7Þ

(for various k) to the scalar sequence of the posterior clustering
model errors y�;K;aðuÞ ¼ ∑k

i¼1giðuÞgðxðuÞ; yiÞ, obtained from regu-
larized clustering problem (Eq. 4) for various combinations of �, K, a.
Then, the log-likelihood of the identified nonparametric process (Eq. 7)
can be plugged into the information criterion to obtain the most in-
formative model. This modified AIC (mAIC) [please see section 3 of
(16) for more details] will be, in the following text, applied to compare
different clustering results and to identify the optimal combination of
clustering parameters K, k, �2, and a, resulting in the procedure that is
free of any user-defined tunable parameters.

Application example
As explained in Materials and Methods, the FEM-BV family of time
series clustering methods represents a particular case of the introduced
graph-regularized clustering methodology, with the graph G being a
linear graph and matrixDG being tridiagonal. Application of the meth-
odology in this situation to various test systems, comparison to standard
clusteringmethods, andmachine learning approaches can be found, for
example, in the review paper (16).

In the following text, we illustrate the potential of the presented
methodology for time series analysis (that is, imposing the linear graph
G as in the case of FEM-BVmethods) and exploiting the new possibilities
provided by the formulation (Eq. 4) and, especially, by the obtained an-
alytical solution (Eq. 6). We consider analysis and unsupervised classi-
fication of electroencephalography (EEG) data—an application area
with currently very limited use of unsupervised approaches such as
clustering. For example, EEG data analysis in the rapidly developing
area of brain-computer interface (BCI) (27, 28) is usually performed
by (semi-)supervisedmethods such as independent component analysis
(ICA), linear discriminant analysis (LDA), support vector machines
(SVMs), decision trees, or artificial neural networks (ANN) [for re-
view, please see (29–31)]. The BCI technology enables people to com-
municate with their environment or to activate and control certain
devices solely by using the brain’s neural activity. Herewith, it opens
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a perspective for restoring motor ability or communication to severely
disabled and paralyzed people as well as for ill individuals who experience
significant physical limitations such as amyotrophic lateral sclerosis,
locked-in syndrome, or other severe neuromuscular disorders (32–34).
The benefits and accuracy of such a prosthetic system in the so-called
noninvasive setting, however, heavily depend on correct recognition of
patternswithin the recorded signal aswell as anunerring classificationof the
executed signals. This task is hamperedby serious challenges: in contrast to
the excellent (millisecond) temporal resolution of EEG, the spatial infor-
mation of the neuronal activity is rather poor (resolution of centimeters).

The observable information, the so-called electroencephalogram,
is the summed activity of about 106 to 108 neurons lying in the vicinity
of the electrodes (35) being recorded and condensed by a comparatively
tiny number of electrodes (normally between 64 and 128). This signal is
also characterized by a poor signal-to-noise ratio and high uncertainty
because scull, skin, and hair are damping and skewing the electromag-
netic waves (36). Furthermore, the measured signal reflects both the
intrinsic neuronal activity within the cerebral cortex as well as the nerve
impulses received from subcortical structures and the sense receptors.
Such a signal is by its nature nonstationary and nonlinear, whichmakes
the analysis and classification of the underlying signal patterns very
difficult. Systematically missing data and unresolved scales may result
in a problem of nonstationarity (37, 38), which may lead to biased re-
sults when using the most common state-of-the-art classifiers in BCI
research (ICA, LDA, SVMs, or ANN) that are all based on some form
of intrinsic stationarity assumptions (38, 39).

Although a wide range of these classifiers have been successfully ap-
plied to several important problems such as the noninvasive identifica-
tion of epileptic patterns, almost all of the classifications of (imaginary)
left/right hand or foot movements, or classification of emotions (29–31),
given the inter- and intrapersonal variations in EEG as well as the poor
signal-to-noise ratio—require very long data sets for the initial training
to obtain satisfactory performance. In addition, from themathematical/
computational perspective, they are based on a priori assumptions con-
cerning the distance metric (mostly chosen to be Euclidean) and/or the
probabilistic assumptions (for example, Gaussianity and independence).
In practical applications, however, there is no guarantee that these nec-
essary assumptions can be fulfilled a priori. For this purpose, as a practical
illustration of the clustering methodology is introduced in this article,
we are presenting a way of using nonparametric clustering approaches
to enable classification of high-dimensional experimental EEGdata with-
out initial training or a priori probabilistic assumptions on the nature of
the data. As will be demonstrated below on a particular set of EEG data,
this procedure leads to a very accurate unsupervised classification of
very short nonstationary and noisy EEG signals.

As a data source, we take the EEG Motor Movement/Imagery
Dataset from Physionet.org (40), which was created using the BCI2000
instrumentation system (28) (www.bci2000.org). This data set consists
of more than 1500 1- and 2-min EEG recordings obtained from 109 vol-
unteers. Subjects performed different motor/imagery tasks while 64-
channel EEGactivitywas recordedwith electrodes positioned according
to the international 10-10 system. Each subject performed—besides other
experimental runs—the two 1-min baseline runs (onewith eyes opened,
one with eyes closed) when the basic activity of the brain is being mea-
sured. In the following, we will only focus on these baseline measure-
ments. These measurements for opened and closed eyes are similar to
such an extent that standard unsupervised methods (as will be seen
later) are not able to distinguish between them.
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The experiment is undertaken as follows: the subject (without
any external disturbance) is sitting for 1 min with closed eyes
and for another minute with opened eyes. Each of the two investi-
gated experiments (baseline “eyes opened” and baseline “eyes
closed”) has 64 dimensions (due to the 64 electrodes), with U =
9760 measurements per minute (which makes a demand interval
of about 160 Hz). Thus, for every experimental run, we have to deal
with a matrix in R64×U. To ensure the comparability of different
EEG data sets and applicability of Euclidean distance measure, a
series of preprocessing steps (including differencing, embedding,
and dimension reduction of the embedded signal) has been per-
formed (please see the section “Preprocessing” in the Supplemen-
tary Text for the explicit description of the data preprocessing
protocol). For a distance measure g to be deployed in the clustering,
we choose a measure associated with the principal components anal-
ysis (PCA), that is, the Euclidean distance

gðxðuÞ;YiÞ ¼ ‖xðuÞ − YiY
T
i xðuÞ‖22

between the n-dimensional data points x(u) and their orthogonal pro-
jections on the d-dimensional (d < n) locally linear manifold Yi ∈
Rn×d correspondent to the cluster i. For more details on PCA-induced
clustering, please refer to (16, 23). Next, we choose an appropriate initial
information/assumptions that can be imposed on the clustering of
the EEG data. We choose a very mild assumption that the under-
lying essential dynamics (captured as the temporal change of the
low-dimensional manifold YðuÞ ¼ ∑K

i¼1giðuÞYi) is a persistent and
slowly varying process in time. Then, the a priori graph G is a linear
time graph, and a matrix of weights W can be chosen, for example, as
W s

u;v ¼ exp½sðu−vÞ2� (with s < 0, please see Fig. 1A).

Outcome
We tested the methodology for this particular choice of distance mea-
sure g andweightmatrixWwith the first 20 subjects of the original data
set. We achieved an exact and unsupervised classification of opened
and closed eyes measurements for all of the cases with the measure-
ment fragments that were down to 7 seconds short. We will show ex-
emplarily results for the subject Nr. 1. Figure 1B demonstrates the
mAIC curves for models with K = 1, 2, 3 clusters as a function of
the regularization constant �2. The overall minimum is attained at
the position K = 2, �2 ≥ 105. As can be seen from Fig. 1B, from the
viewpoint of information theory, the optimal solution of clustering
problems obtained with standard unregularized clustering methods
(such as k-means and hierarchical clustering algorithms) is attained
for K = 1, and allows no distinction between the two states (that is,
between opened and closed eyes), and is inferior in terms of informa-
tion contents to the solution of the regularized problem (Eq. 4) for a
given set of data. By introducing regularization, the overall minimum is
attained with two clusters (K = 2), where one cluster only corresponds
to the opened eyes and the second to the closed. Both experiments are
correctly classified to their respectivemanifolds and can be visualized by
plotting the cluster affiliation function g for the optimal result (please
see fig. S1). The two identified attractive manifolds—each of which is
characteristic for one experiment—can be visualized by plotting the
first three dimensions (out of the 300 most significant dimensions)
that were detected during the data reprocessing via PCA. Figure 2 gives
an impression of the dynamics of the two systems in phase space. Both
dynamic systems are essentially nonlinear oscillators. Although they
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behave similarly, one can see that the orientation of the planes in which
the oscillations take place is different. These principal attractor mani-
folds are approximated and distinguished via linear projectors Yi de-
ployed in our PCA-based regularized clustering procedure. However,
because the dynamics are geared into each other, standard algorithms
are incapable of correctly solving this clustering problem. This result
demonstrates that deploying the manifold-based clustering combined
with a priori persistency assumption for the underlyingdynamics allows
us to use the respective structure of the manifold as a classifier to deter-
minewhether the unlabeled shortmeasurement belongs to a subject with
opened or closed eyes. New data can be projected on the manifolds and
(bymeans of proximity) assigned to one of them. Standard PCA clustering
[withgðxðuÞ;YiÞ ¼ jjxðuÞ − YiY

t
ixðuÞjj2 butwithoutthegraph-induced

regularization]was, in contrast, not able to detect the twomanifolds and
proposed a common basismanifold for the two situations. That is, graph-
induced regularization introduced in this paper appears to be essential for
the correct unsupervised classification of these data sequences.

Revealing the essential spatiotemporal dynamics
With the help of the identified manifolds and their affiliated eigen-
vectors (constituting the columns of cluster projectormatricesYi), es-
sential components of the underlying dynamical system can now be
extracted from the available short, nonstationary, and noisy EEG time
series. For this purpose, the experimental data are projected on the
identified linear attractor manifolds Yi. Spectral analysis for the em-
bedded projections of original EEG data on the dominant manifold
dimensions (that is, on different columns ofYi as resulting from the regu-
larized clustering) reveals the well-known a, b, g, and m waves of the brain
(please see fig. S2). In contrast to the standard procedures of obtaining
these signals (that involve a very long measurement series and a careful
selection of points on the head where thesemeasurements are performed),
in the context of the presentedmethodology, these brain waves can be ob-
tained from the full original EEG with a very short (down to 7 seconds)
measurement length. In the next step, we are going to examine the spa-
tiotemporal dynamics of these brain wave patterns. For this purpose, the
snapshots of eigenvectors are visualized over a schematic representation
of the head (indicating the positions and numbers of electrodes
according to the international 10-10 system). Because of the embedding
during the preprocessing, this visualization of embedded eigenvectors
Fig. 2. Visualization of the two identified manifolds.
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(representing the dominant manifold components) results in spatio-
temporal animations of the essential dimensions of the underlying
dynamics that can be extracted from the two identified clusters. A se-
lection of these animations is provided as movies S1 to S8. A couple of
snapshots from movies S1 (animating the most dominant attractor di-
mension for the experiment with opened eyes) and S2 (animating the
most dominant attractor dimension for the experiment with closed
eyes) are exemplarily presented in Fig. 3. The left column of Fig. 3
presents a series of snapshots taken from movie S1. These snapshots
capture the dynamics in themost dominantmanifold dimension (that
is, the first column of the obtained Yi in the respective cluster) for the
experiment with opened eyes. This dominant dynamics—a spatio-
Gerber and Horenko Sci. Adv. 2015;1:e1500163 7 August 2015
temporal oscillation—takes place in the anterior part of the brain: most
evident frontally and propagating into the central (and even posterior)
regions of the brain. These spatial characteristics (together with the ob-
servation of fig. S2) allow to conclude that the observed dominant pat-
tern reflects a combination of rhythmical b activity [which is usually
encountered over the frontal and central brain regions (41)] andgwaves
[mainly observed in the visual cortex (42, 43)]. Furthermore, the movie
reveals that themain spatiotemporal dynamics for the EEGwith opened
eyes can be explained by a traveling wave oscillating between the frontal
and the posterior regions of the brain. This dynamic is hidden in the
very noisy EEG signal and can be uncovered by the presented cluster
analysis methodology.

Entirely different dominant spatiotemporal dynamics are revealed in
the situation with closed eyes (right column of Fig. 3): the oscillations
are clearly located in the posterior half of the head only propagating to a
minor degree into central areas (please see in addition movie S2 for the
full animation). This pattern may be dedicated to the a rhythm, which is
usually found over occipital, parietal, and posterior temporal regions of
the brain (41, 44). The animations of higher components (4, 7, and10)
for both experiments are provided by additional movies S3 to S8.

Concluding discussion
We have presented a methodology for imposing a priori graph/network
information on clustering algorithms. The theoretical justification of
this approach was presented, based on the derivation of a generalized
graph/network-related regularization strategy, proving that it allows us
to find the approximate solutions of various heterogeneous data analysis
problems through upper-boundminimization and obtaining a particu-
lar analytic solution (Eq. 6). This thereby resolves amain computational
bottleneck of a large family of time series clustering algorithms. The in-
troduced approach is neither in competition with the various existing
clustering methods nor is it just “yet another clustering method.” As
demonstrated above, presented methodology can be implemented as
a very straightforwardmodification of the existent clustering algorithms
for solving unsupervised and nonparametric classification problems.

When applying this approach to different EEG data sets, it was
shown that combining the new methodology with Taken’s theorem,
data embedding, and PCA-related clustering, one can achieve the ex-
act unsupervised classification of very short unlabeled EEG sequences.
Standard clustering methods without regularization (for example, k-
means, spectral clustering, and hierarchical clustering) were not able to
differentiate between the two situations and suggested a commonmodel/
cluster, thus excluding the possibility for the unsupervised classifica-
tion of the analyzed data. The introducedmethodology operated as an
exact classifier and detected two distinct clusters as the best model—each
of which associated with only one of the two states. Furthermore, it was
exemplified how the obtained results can be used to extract the domi-
nant spatiotemporal dynamic patterns which are otherwise hidden in
very noisy nonstationary signals. We also investigated the possibility
of using the identified manifolds from one subject’s EEG to classify
the signal in the EEG of another subject. However, results differ signif-
icantly across probands, implying that the analysis must be uniquely
performed separately for each individual.

The presented general framework for graph-induced regularization
of clustering problems is expected to become helpful in the areas where
the already collected information can be represented as a graph and de-
ployed to increase the quality of clustering results. For example, this may
be done in the areas of bioinformatics (where the a priori information is
Fig. 3. Snapshots of the spatiotemporal dynamics of the most domi-
nant eigenvectors. (A, C, E, and G) Several time instances of the extracted

dominant wave pattern for the EEG with opened eyes. (B, D, F, and H)
Snapshots for the dominant EEG pattern with closed eyes at the same
time points. Red color stands for the positive component of the oscilla-
tion, and blue color for the negative component. Snapshots are taken in
both experiments at time points t = 0.0 s (A and B), 0.018443 s (C and D),
0.043033 s (E and F), and 0.061475 s (G and H).
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put together in the form of a so-called gene ontology graph) or in geo-
science (where the prior notion about scaling cascades and self-similarity
can be represented as directed graphs, giving a possibility to deploy them
in cluster analysis of geophysical data). A brief overview and classification
of the clustering methods that can potentially profit from this method-
ology are given within the section “Classification of the clustering algo-
rithms” in the Supplementary Text.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/1/7/e1500163/DC1
Text
Movie S1. Visualization of the most dominant attractor dimension over a schematic
representation of the head (indicating the positions and numbers of electrodes according
to the international 10-10 system) for the experiment with opened eyes.
Movie S2. Visualization of the most dominant attractor dimension over a schematic
representation of the head (indicating the positions and numbers of electrodes according
to the international 10-10 system) for the experiment with closed eyes.
Movie S3. Visualization of fourth eigenvector over a schematic representation of the head
(indicating the positions and numbers of electrodes according to the international 10-10
system) for the experiment with opened eyes.
Movie S4. Visualization of the fourth eigenvector over a schematic representation of the head
(indicating the positions and numbers of electrodes according to the international 10-10
system) for the experiment with closed eyes.
Movie S5. Visualization of the seventh eigenvector over a schematic representation of the
head (indicating the positions and numbers of electrodes according to the international 10-10
system) for the experiment with opened eyes.
Movie S6. Visualization of the seventh eigenvector over a schematic representation of the
head (indicating the positions and numbers of electrodes according to the international 10-10
system) for the experiment with closed eyes.
Movie S7. Visualization of the 10th eigenvector over a schematic representation of the head
(indicating the positions and numbers of electrodes according to the international 10-10
system) for the experiment with opened eyes.
Movie S8. Visualization of the 10th eigenvector over a schematic representation of the head
(indicating the positions and numbers of electrodes according to the international 10-10 system)
for the experiment with closed eyes.
Fig. S1. Cluster affiliation function for the two identified manifolds.
Fig. S2. Spectrograms of the EEG data.
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