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1 Introduction

Molecular dynamics (MD) analysis plays an important role in materials
science, biophysics and biochemistry. It is applied to protein structure de-
termination and also to real-life applications such as drug design.

For a better understanding of a biomolecule’s dynamical behavior, time
series obtained from MD simulations [31, 1] are investigated with the goal
to find dynamical and structural patterns. In our application context such
patterns are conformations.

Conformations can be seen as almost invariant or metastable sets in
the configuration space [43], which are characterized either geometrically
as possible shapes of a molecule, statistically in terms of distributions over
the configuration space or kinetically by means of the local dynamics that
describe the oscillation and relaxation behavior of a molecule. Biomolecular
systems possess only few dominant conformations that can be modeled as
metastable states.

Typical conformations provide information about the function of a bio-
molecule [66, 76]. Biomolecules do not exist in a unique structure. They
fluctuate within a conformation, and occasionally perform a transition to
another one [28]. After a conformational change the molecular system takes
a certain time to equilibrate within the respective conformation (towards a
“local equilibrium”). The changes occur rarely on a time scale on which the
dynamical behavior of a molecule usually is simulated.

We aim at a characterization of the system with regard to the behavior
on different time scales: on a macroscopic time scale, on which conforma-
tional changes take place, and on a microscopic time scale, on which the
biomolecule is relaxing towards an local equilibrium and oscillates within a
conformation in local equilibrium. That is, we have to select a model which
represents both levels – long-term and short-term behavior – properly.

We will approach the task of model selection in an “a priori” manner:
the model structure is specified based on previous knowledge about the kind
of processes we have to handle. As a first step the most important features
of the systems under consideration have to be identified. The model should
provide a reduced description, which on one hand essentially characterizes
the behavior of the system in terms of rare and instantaneous conformational
changes and on the other hand reflects the local behavior within different
conformations appropriately.

Once we have selected a model structure, we must specify model pa-
rameters. The problem of model parameterization is addressed with an “a
posteriori” method. Biomolecular systems (or reduced test systems) are sim-
ulated by MD techniques. This way we obtain a time series and based on
this we can determine model parameters. Eventually, conformational pat-
terns are recognized by a time series analysis including parameter estimation
and clustering of the time series into metastable sets.
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However, a satisfying quality of the analysis results is achieved only, if the
model is designed carefully and fits to the effective dynamics of the system.
In the following we will characterize the systems under consideration in more
detail.

System specification and objectives. The processes analyzed in the
scope of this work exhibit a certain dynamical behavior: Namely, the state
space possesses only few metastable sets and the macroscopic dynamics can
be modeled by a Markov jump process. That is, on an appropriate time
scale the jump process describing the transitions between metastable states
is Markovian. This Markov jump process is a kind or flipping process with
instantaneous transitions between metastable states. Typical correlation
times in the system are sufficiently smaller than the waiting times between
the hops amongst the metastable sets. On a microscopic time scale, the
process may possess memory.

The crucial task in conformational analysis is the identification of meta-
stable conformations. The metastable sets are not known a priori and there-
fore have to be extracted from the time series [53]. They can be recovered
by certain geometrical, statistical or kinetical patterns. However, these pat-
terns are unknown a priori as well.

Methods. For the identification of the unknown metastable states, which
are understood as hidden in the data, we will apply hidden Markov mod-
els (HMMs). An HMM consists of two stochastic processes, of which only
one is observable. These processes are referred to as “hidden” and “output“
processes. The combination of different processes fits to our application con-
text since we aim to model two different levels of the system: conformational
changes and oscillatory behavior within a conformation.

The concept of hidden Markov models has been developed in the recent
50 years. Invented by Baum et al. [6, 7, 8] in the late sixties it was applied
first in areas such as speech recognition [64] as well as communication and
control theory [70]. Later, HMMs have also been applied in bioinformatics
to identify genome or protein sequences [14, 4, 17]. In recent works it has
also been applied to biomolecular dynamics [41] and climate data [37, 30].

As the history of HMMs shows, they have been invented in completely
different application areas. Patterns used as output distributions so far
provide a geometrical or statistical description of the data only.

The novel approach in this thesis is that we employ kinetic models ([72],
Chap. 6) as HMM output processes. In this context a kinetic model means
either a dynamical model specified by an SDE [48, 69], or a rate process
realized by a random walk [44, 69, 71]. Thus, we can also express a tran-
sition behavior in the output process. We obtain a tool that allows for the
identification of different metastable sets, which in general will not be dis-
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tinguishable geometrically or statistically. The distinction of the metastable
patterns is based on the detection of kinetic signals. By means of standard
HMMs these patterns are not recognizable.

Furthermore, the model described above provides a deeper insight into
the dynamical behavior of the process within the metastable states. The
crucial distinction to standard HMM is illustrated in figure 1.1.

Figure 1.1: Standard HMM (left) and HMM with kinetic output process (right).

The kinetic processes considered in this thesis are time-continuous Markov
processes: The Ornstein-Uhlenbeck process and the Markov jump process
(MJP). They are used here in combination with HMMs. Depending on the
time series under investigation we select an appropriate output process. We
will call HMMs with Ornstein-Uhlenbeck output process HMMSDE, HMMs
with Markov jump output process HMM-MJP.

The Ornstein-Uhlenbeck process is a good choice for modeling diffusive
molecular dynamics in a harmonic well in the energy landscape (Smolu-
chowski dynamics). HMMSDE therefore fits well in the biomolecular appli-
cation context. For this approach no discretization of the data is necessary.
The MJP on the other hand requires discretized data. Even if the box-
discretization is rather coarse-grained it is still able to recover metastable
patterns. The MJP has the advantage that no assumption about the distri-
bution of the observables is necessary. Only the transition behavior is taken
into account.

As the state space of an MJP is discrete it can be employed not only
as output, but also as hidden process. HMMs with hidden MJP are also
discussed in this thesis. It can handle time series with non-equidistant time
steps. The Ornstein-Uhlenbeck process is used as output process only since
it has a continuous state space. However, in an HMM the hidden state space
is discrete – in our case even finite.

Algorithmic proceeding. The algorithmic proceeding includes two steps:
Recovering a model from data and inferring the metastable states of each
data point. The first step is carried out by the estimation of model param-
eters. A central technique for this purpose is the well-known EM algorithm
[22]. Whenever we derive an EM algorithm in Sections 3.1, 3.1.1, 5.2 - 5.3,
6.2 - 6.3, 7.1, and 7.2 we use the following paradigm:
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1. First, we specify the joint likelihood of observable and hidden variables.

2. Then, we take partial observability into account.

• Expectation-step: Compute the expectation value of the likeli-
hood over the hidden variables. Write down the functional Q,
which contains the expected likelihood.

• Maximization-step: Establish the reestimation formulas by dif-
ferentiating Q with respect to the model parameters.

3. Eventually, we give the algorithmic scheme to exemplify the iteration
procedure.

As a second step we identify the unknown metastable states as hidden states
of the respective HMM. The assignment of each data point to a metastable
state implies a clustering of the time series.

The EM algorithm is relevant not only for the identification of HMM
parameters but also for the estimation of the generator matrix of a Markov
jump process. Generator estimation is a research area on its own. In this
work we discuss and compare several approaches to this topic suggested in
[58, 18, 11]. It is closely related to the Imbedding Problem [47]. The Imbed-
ding Problem deals with the question when a discrete transition matrix is
imbeddable into a time-continuous Markov process. A new result about
imbedding of perturbed transition matrices is derived in Section 2.1.5.

Examples. The presented models have been designed for the analysis of
biomolecular systems. In this work they will be applied to test examples,
where complex systems are reduced to smaller ones that still reflect the
main features of biomolecular time series: They are metastable and on a
macroscopic time scale, on which the transitions between metastable states
take place, they fulfill the Markov property.

Small test examples are expedient for illustrative examples. However,
the algorithms are all applicable to higher dimensional molecule time series.

In several examples we will analyze time series that arise either from
an HMM, from a discrete generator, or from Smoluchowski dynamics. The
analysis of an HMM realization can be understood as reliability test. Es-
timated and original parameters are directly comparable. The realizations
of Smoluchowski dynamics are of most physical relevance, as the resulting
dynamics reflect a given potential. These time series are closely related to
MD simulations, even though we take small toy potentials.

Alternative approaches. The combination of HMMs with other stochas-
tic processes has been investigated in several other works. An overview is
given in Section 7.3. The distinct feature of the techniques presented in
this work is the combination of an HMM with kinetic models. Standard

4



HMMs combine a dynamical analysis by means of the hidden process with a
geometrical analysis by means of the output process. The models presented
here, namely HMMSDE and HMM-MJP, contain a dynamical aspect in the
output process as well. This novel approaches allow for the recognition of ki-
netic patterns, even if the distributions are geometrically identical or largely
overlapping as illustrated in the second part of the example from Section
7.2.4.

Outline. This thesis is organized as follows: Chapter 2 and 3 provide the
theoretical part introducing the concepts that are used in the following chap-
ters. In Chapter 2 the relevant stochastic processes are described. Chapter
3 presents the hidden Markov model framework as well as associated prob-
lems and algorithms. We place emphasis on the EM algorithm, used for the
parameter estimation beyond the HMM context also for generator estima-
tion.

In the remaining part of this thesis we will investigate how the concepts
of HMMs and kinetic models (here, time-continuous Markov processes) can
be combined. Chapter 4 introduces Ornstein-Uhlenbeck processes. The
maximum likelihood estimators for a fully observable Ornstein-Uhlenbeck
process are all given there.

Chapter 5 describes the combination of HMMs with Ornstein-Uhlenbeck
processes, the HMMSDE. The corresponding EM algorithm is specified and
finally elucidated by an example.

In Chapter 6 we discuss Markov jump processes in detail. We describe
and compare different approaches for the parameter estimation: A method
using the resolvent, a quadratic programming method and a maximum like-
lihood estimation method. The latter approach is preferable in combination
with hidden Markov models and hence we describe it in more detail. In
Chapter 7 we will combine HMMs with Markov jump processes. We call
this approach HMM-MJP. Once a maximum likelihood estimator (MLE) is
defined, it is compatible to the HMM framework. A time-continuous Markov
process fits either as hidden process into an HMM or as output process. Both
possibilities are discussed and exemplified by several examples.
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2 Markov Processes

Consider a stochastic process on (S,B, P ), where S denotes the state space
of the processX(t), t ∈ R, (B) the σ-algebra and P the probability measure.

Definition 2.1 (Markov property [69], Chap. 1.5, p. 9). X(t) is called a
Markov process with state space S, if for any 0 ≤ t1 < t2 < ... < tn and
B ∈ B

P (X(tn) ∈ B|X(t1), ..., X(tn−1)) = P (X(tn) ∈ B|X(tn−1)).

A Markov process is continuous in time ([33], Chap.3.3.1, p. 46), if for
any ε > 0 and z ∈ S we have

P

(
lim

∆t→0

1
∆t

∫
|x−z|>ε

P (x, t+ ∆t|z, t)dx = 0

)
= 1.

Markov processes are kinetic processes. They describe the evolution of phase
transitions of a system over time.

2.1 Markov Jump Processes

Let S be a finite set of states and {X(t)}t≥0 an S-valued time-continuous
Markov process.

Definition 2.2. A time-continuous Markov process with the following reg-
ularity conditions ∀i, j ∈ S

1.) P(0, i, j) = δij

2.) limt→0+ P(t, i, j) = δij

3.) its realization X(t) is right-continuous and the limit from the left ex-
ists,

is called Markov jump process.

Regularity ensures right-continuity of the process. That is, there exists
a τ > 0 such that

X(t+ s) = X(t) ∀s < τ a.s.

For a detailed introduction of Markov jump processes see [44, 69, 71]. A
Markov jump process can be considered as composition of two stochastic
processes. The first is a Poisson process N(t) with parameter λ, which con-
trols the time between two state transitions (jump times) and the second is
a time-independent Markov chain with transition matrix K, which controls
the state transitions.
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Jump times are exponentially distributed but in contrast to an ordinary
Poisson process the state transitions are not deterministic from i to i + 1
but rather stochastic from i to j with probability Kij . We can write the
probability density for a transition exactly at time t from state i ∈ S to
state j ∈ S as

P(i, j, jump at t) = Kijλ exp(−λt), (2.1)

since the jump times are independent from the state transitions.
The transition probability from i to j within a time interval [0, t] is the

probability for n jumps multiplied with the probability for a state transition
from i to j in n steps, for n = 0, ...,∞ [44].

P(i, j, t) =
∞∑

n=0

P(N(t) = n)Kn
ij =

∞∑
n=0

(tλ)n

n!
exp(−λt)Kn

ij (2.2)

2.1.1 The Generator Matrix

With λ <∞ the transition probability is differentiable. In the following we
denote with P (t) = (P(i, j, t))ij the time-dependent transition operator.

Definition 2.3. We call the differential of the transition probability in time
point 0 the infinitesimal generator.

lim
t→0

P (t)− P (0)
t

= L

With (2.2) in matrix notation we get

L =
∂

∂t

∞∑
n=0

(tλK)n

n!
exp(−λt)

∣∣
t=0

=
∂

∂t
expm (tλ(K − Id))

∣∣
t=0

= λ(K − Id)expm (tλ(K − Id))
∣∣
t=0

= λ(K − Id). (2.3)

The notation expm denotes here the matrix exponential. In particular we
obtain a concise expression for the transition probability:

P(i, j, t) = expm(tL)ij . (2.4)

From (2.3) follows immediately that the generator matrix has the fol-
lowing structure

Lij ≥0 ∀i, j with i 6= j

Lii =−
∑
j 6=i

Lij ∀i. (2.5)
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Definition 2.4 ([49]). A family of stochastic transition matrices P (t) sat-
isfying the properties

1.) P (0) = Id,

2.) P (s)P (t) = P (s+ t)

is called a transition semi-group.

The transition probability defined in (2.4) is apparently a transition semi-
group. From the semi-group property follows immediately

P (t+ h)− P (t)
h

= P (t)
P (h)− Id

h
=
P (h)− Id

h
P (t).

The first equality gives the Kolmogorov forward equation

P ′(t) = P (t)L, (2.6)

the second equality on the other hand the Kolmogorov backward equa-
tion

P ′(t) = LP (t).

2.1.2 The Imbedding Problem

A Markov process X(t) observed on equidistant time points t1 = τ, ..., tn =
nτ defines a discrete Markov chain Y1 = X(τ), ..., Yn = X(nτ) with transi-
tion matrix P̃ = expm(τL). Yet conversely not every discrete Markov chain
belongs to a continuous Markov process. In other words, not every discrete
Markov chain can be imbedded into a time-continuous Markov process. The
imbedding problem addresses just that question:

Does a time-continuous Markov process P (t) for a given discrete Markov
chain P̃ exist, such that for an appropriate τ P (τ) = P̃ holds?

If such a process exists, it can be expressed in terms of the generator L,
which is up to a scalar factor τ the logarithm of P̃ , since

P (τ) = expm(τL).

But L̃ = τ−1logm(P̃ ) is not guaranteed to satisfy the generator constraints
(2.5). Furthermore, the complex logarithm is not unique. Hence, if a matrix
has complex eigenvalues, the matrix logarithm is also not unique. This
means, there exist possibly no, one or a finite number of generators (that an
infinite number of generators is impossible will be elucidated later on page
13). Firstly we will define the set of generators by

G =

L ∈ Rd×d : Lij ≥ 0 for all i 6= j, Lii = −
∑
j 6=i

Lij

 (2.7)
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and the set of imbeddable Markov chains by

Pτ =
{
P̃ ∈ Rd×d : ∃L ∈ G such that P̃ = expm(τL)

}
.

In the following some criteria for a stochastic matrix P̃ are listed, that
guarantee that a generator possibly exists and if it is unique or not. Note
that we have assumed S to be finite, such that the transition matrices are
finite-dimensional.

But first we give some preliminary remarks about the computation of
the logarithm. The logarithm of a matrix P , which is sufficiently close to
the identity, such that ‖P − Id‖ < 1 holds, can be computed by

logm(P ) = −
∞∑

r=1

(Id− P )r

r
. (2.8)

If P = V DV −1 is diagonizable, the matrix logarithm is simply

logm(P ) = V (logm(D))V −1.

Since D = diag{Λi}i∈S is a diagonal matrix that contains the eigenvalues
Λ1, ...,Λn of P , its logarithm is simply the scalar logarithm of the eigenvalues

logm(D) = diag{log(Λi)}i∈S .

The real scalar logarithm is unique, but the complex logarithm is not.

log(Λ) = |Λ|+ i (arg(Λ) + 2πk) , ∀k ∈ Z (2.9)

It is defined up to a multiple of 2πi. That is, we can add to the eigenvalues
of a matrix L = logm(P ) any multiple of 2πi and obtain a matrix L̄ with

expm(L) = expm(L̄).

The logarithm (2.9) with k = 0 is called the principal branch of the
logarithm or principal logarithm.

Remark 2.1. Note that the principal logarithm is always computed by (2.8).

Multiple branches of the logarithm imply the problem: If we compute
the principal logarithm L̃ of a given stochastic matrix P̃ and

L̃ /∈ G

we can not infer, that
P̃ /∈ P.
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Example 1. The transition matrix

P̃ =



0.2742 0.5360 0.1858 0.0018 0.0005 0.0006 0.0011
0.2755 0.5349 0.1860 0.0017 0.0003 0.0004 0.0012
0.2755 0.5360 0.1849 0.0014 0.0004 0.0007 0.0011
0.0003 0.0005 0.0002 0.9977 0.0002 0.0004 0.0006
0.0007 0.0010 0.0004 0.0004 0.9957 0.0009 0.0008
0.0004 0.0007 0.0004 0.0008 0.0007 0.9963 0.0007
0.0005 0.0011 0.0004 0.0005 0.0003 0.0006 0.9967


has the principal logarithm

L̃ =



−5.2440 7.0526 -1.8141 0.0020 0.0015 0.0022 -0.0001
1.4349 −3.8862 2.4481 0.0021 0.0000 -0.0006 0.0019
3.6256 0.7442 −4.3722 0.0000 0.0001 0.0012 0.0011
0.0005 0.0002 0.0004 −0.0023 0.0002 0.0004 0.0006
0.0015 -0.0006 0.0013 0.0004 −0.0043 0.0009 0.0008
0.0003 0.0003 0.0009 0.0008 0.0007 −0.0037 0.0007
0.0000 0.0019 0.0000 0.0005 0.0003 0.0006 −0.0033


,

which is certainly not in G, since there are several negative off-diagonal
entries. The eigenvalues of L̃ are

(0.0000,−0.0032,−0.0053,−0.0047,−0.0041,−6.7493+3.0545i,−6.7493−3.0545i).

If we add to the 6-th eigenvalue 2πi and on the 7-th eigenvalue −2πi, we
obtain another matrix logarithm of P̃

˜̃L =



−4.5096 0 4.5042 0.0035 0.0008 0 0.0011
2.3155 −2.3184 0 0.0013 0 0 0.0016
0 6.6707 −6.6743 0 0.0009 0.0027 0
0.0005 0.0004 0.0002 −0.0023 0.0002 0.0004 0.0006
0.0017 0.0005 0.0000 0.0004 −0.0043 0.0009 0.0008
0.0007 0 0.0008 0.0008 0.0007 −0.0037 0.0007
0 0.0012 0.0007 0.0005 0.0003 0.0006 −0.0033


,

for which ˜̃L ∈ G and expm(˜̃L) = P̃ holds.

2.1.3 Necessary Conditions for the Existence of a Generator

Due to the periodicity of the complex matrix logarithm, there are an infinite
number of matrices Li 6= L with expm(Li) = expm(L). However, we will
see in the following, that only a finite number of these matrices satisfy the
generator constraints. For this purpose we study the connections between
the spectral and algebraic properties of matrices from G and P.
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Theorem 2.1 (of Geršgorin [54]). Let A be an n × n-matrix with entries
Aij ∈ C and define the Geršgorin discs by

Di =
{
z ∈ C : |z −Aii| ≤

n∑
j = 1
j 6= i

|Aij |
}
, for 1 ≤ i ≤ n.

Then all eigenvalues ofA are contained in
⋃n

i=1Di, the union of the Geršgorin
discs.

Applied to stochastic matrices P , the Geršgorin discs become

Di =
{
z ∈ C : |z − Pii| ≤ 1− Pii

}
, for 1 ≤ i ≤ n.

Let now g(t) = mini Pii(t). Then all eigenvalues lie in the disc around g(t)
with radius 1− g(t):

|Λi − g(t)| ≤ 1− g(t).

Analogously, for generator matrices the Geršgorin discs have the shape

Di =
{
z ∈ C : |z − Lii| ≤ |Lii|

}
, for 1 ≤ i ≤ n.

With lmin = mini Lii all eigenvalues lie in the disc around lmin with radius
−lmin:

|λi − lmin| ≤ −lmin. (2.10)

Theorem 2.2. Let L be an n×n matrix in G, with eigenvalues |λ1| ≤ ... ≤
|λn|, λk ∈ C and P = P (1) = expm(L) the associated transition matrix. We
denote the eigenvalues of the transition matrix P by Λ1, ...,Λn ∈ C. Then
the following properties are satisfied

1. Complex eigenvalues λi (resp. Λi) can occur only in complex conju-
gated pairs.

2. trace(L) = log[det(P )].

3. |Λi| ≤ 1, ∀i

4. |λi − trace(L)| ≤ −trace(L), ∀i.

The first property follows from the fact that L is a real matrix and hence
the characteristic polynomial has real coefficients [63]. The second property
can be found in [47]:

trace(L) =
∑

i

λi =
∑

i

log[Λi] = log[
∏

i

Λi] = log[det(P )].

Note, that complex eigenvalues can only occur in complex conjugated pairs.
The sum of the eigenvalues therefore is real. The last two properties are

12



given in [46]. Property 3 follows from the well known theorem of Frobenius
([68], Chap. 1.1, p. 3-4) and property 4 can be checked by

|λ− lii| ≤ −lii
⇔ |λ− lii|+ |

∑
j 6=i ljj | ≤ −lii + |

∑
j 6=i

ljj |.

Since
|λ− lii|+ |

∑
j 6=i

ljj | ≥ |λ−
∑

j

ljj |

and all diagonal entries are negative, thus

−lii + |
∑
j 6=i

ljj | = |
∑

j

ljj |

holds. We finally obtain

|λ−
∑

j

ljj | ≤ |
∑

j

ljj |

⇔ |λ− trace(L)| ≤ |trace(L)|.

The disc defined by (2.10) is smaller than |λ− trace(L)| ≤ |trace(L)|. How-
ever, since by property 2 a relation between the eigenvalues of the generator
and the transition matrix is given, the rougher estimates from Theorem
(2.2) provide some nice necessary conditions. We will exploit that in the
following. Putting together properties 2 and 4 we get

|λi − log[det(P )]| ≤ |log[det(P )]|. (2.11)

Since trace(L) is real, log[det(P )] also is real. And as the real logarithm of
det(P ) is defined, follows det(P ) > 0. And hence we obtain criteria for the
eigenvalues of P : Λi 6= 0 and the number of Λi < 0 has to be even.

Further, if we write the eigenvalues λi of L as (2.9) and bear in mind
that log[det(P )] is purely real, we see easily that only a finite number of
multiples of 2πi can be added without leaving the disk defined by (2.11)
and that |Λi| = 1 is true if and only if Λi = 1. These observations have
already been discussed in [26].

Other criteria have been proven by Goodman [34]:

n∏
i=1

Pii ≥ det(P ),

and by Chung ([16], Chap. II.1, p.126)

∃ t0, such that Pij(t0) = 0 ⇔ Pij(t) = 0 ∀t > t0

13



and
∃ t0, such that Pij(t0) 6= 0 ⇔ Pij(t) 6= 0 ∀t > t0.

Altogether we obtain the following corollary:

Corollary 2.1. Let P be a stochastic matrix with state space S and eigen-
values (Λi)i∈S . If one of the following necessary criteria is not satisfied,

1.
∏n

i=1 Pii ≥ det(P ) ≥ 0,

2. ∃ t0, such that Pij(t0) = 0 ⇔ Pij(t) = 0∀t > t0,

3. ∃ t0, such that Pij(t0) 6= 0 ⇔ Pij(t) 6= 0∀t > t0,

4. Λi 6= 0, ∀i ∈ S,

5. the number of i ∈ S with Λi < 0 has to be even.

6. |Λi| = 1, if and only if Λi = 1, ∀i ∈ S,

7. if Λi are real distinct eigenvalues ⇒ Λi > 0, ∀i ∈ S

P is not imbeddable.

2.1.4 Uniqueness of the Generator

Eventually, we will address the question, when a unique generator exists.
Cuthbert [19] gave some results about the uniqueness of the matrix loga-
rithm for finite-state Markov processes and formulated the following two
theorems:

Theorem 2.3. [19] Let P be a stochastic matrix with inf{Pii} > 1
2 , then P

is imbeddable in a uniformly continuous way. For the principal logarithm

−
∞∑

r=1

(Id− P )r

r
∈ G

holds.

Convergence of the series (2.8) is guaranteed by

1− 1
2
‖P (t)− Id‖ = 1− 1

2
max

i

∑
j 6=i

|P (tij)|+ |P (tii)− 1|


= 1− 1

2
max

i
(1− P (tii) + 1− P (tii)))

= 1− 1
2

(2− 2g(t)) = g(t),

with g(t) = mini P (t)ii. From g(t) > 1
2 , ‖P (t) − Id‖ < 1 follows and hence

the principal logarithm converges.
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Theorem 2.4. [20] Let P (t) be a finite-state Markov semi-group. For those
t for which

det(P (t)) > exp(−π)

holds, a unique generator exists.

Here the relation

|λi − log[det(P (t))]| ≤ −log[det(P (t))] ⇒ |Im(λi)| ≤ −log[det(P (t))]

was exploited. If now −log[det(P (t))] ≤ π, we obtain −π < Im(λi) < π.
Thus λi = t−1log[Λi(t)] is unique. Both theorems provide conditions for
the principal logarithm to be the unique generator. Another uniqueness
criterion is given by the following theorem.

Theorem 2.5 ([45]). Let P be a stochastic matrix. If det(P ) > 1
2 , then P

has at most one generator. If further ‖P − Id‖ < 1
2 holds, the only possible

generator is the principal logarithm of P .

According to Israel, Rosenthal and Wei the eigenvalues in Theorem 2.4
have to be distinct, which is not claimed in theorem 2.5.

Remark 2.2. Unfortunately, the existence and uniqueness theorems can not
be generalized to the case expm(τF ), where F is no generator matrix. This
is due to all these statements being based on

|λi − trace(F )| ≤ |trace(F )|,

which does not hold in general for F 6∈ G.

2.1.5 Imbedding of Perturbed Generator Matrices

We aim at investigating how the error of a perturbed propagator

ε = P (τ)− P̂ (τ)

is transferred to the generator matrix. P (τ) denotes an imbeddable transi-
tion matrix generated by

P (τ) = expm(τ L),

where L is a generator matrix with L ∈ G. Further, let the matrix P̂ (τ)
be stochastic but not necessarily imbeddable. The rows of the error matrix
must therefore all sum to zero.

Since the logarithm series converges for ‖P (τ)− Id‖ < 1 to the principal
logarithm, and the generator is unique under this condition, we restrict the
error analysis to matrices that are sufficiently near to the identity.

Remark 2.3. For each L we can find a transition matrix P (τ) = expm(τL),
such that ‖P (τ)−Id‖ < 1 is fulfilled. We just have to choose τ small enough.
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Furthermore, suppose P and ε commutate. We compute the distance
between the logarithm of the perturbed and the unperturbed matrix:

log[P (τ) + ε]− log[P (τ)]

=
∞∑

n=1

(Id− P (τ)− ε)n

n
−

∞∑
n=1

(Id− P (τ))n

n

=
∞∑

n=1

1
n

(
n∑

k=0

(
n

k

)
(Id− P (τ))k(−ε)n−k

)
− (Id− P (τ))n

n

=
∞∑

n=1

1
n

(
n−1∑
k=0

(
n

k

)
(Id− P (τ))k(−ε)n−k

)

=
∞∑

n=1

1
n

(
n(Id− P (τ))n−1(−ε) +

n−2∑
k=0

(
n

k

)
(Id− P (τ))k(−ε)n−k

︸ ︷︷ ︸
o(ε)

)

= −
∞∑

n=1

(Id− P (τ))n−1ε+ o(ε).

For the second equation was exploited that P and ε commutate, such that
the binomial expansion is possible. The resulting term−

∑∞
n=1(Id−P (τ))n−1

is exactly the Neumann series, which converges to P−1(τ) for ‖P (τ)−Id‖ <
1. We obtain the error estimate∥∥∥τ(L̂− L)

∥∥∥ =
∥∥∥log[P (τ) + ε]− log[P (τ)]

∥∥∥
=
∥∥P−1(τ)ε+ o(ε)

∥∥ ≤ ∥∥P−1(τ)ε
∥∥+ o(‖ε‖)

≤‖ε‖
∥∥P−1(τ)

∥∥ .
(2.12)

Remark 2.4. The commutativity of P and ε is ensured if for example ε has
the same structure as L:

ε = cL,

where the constant c is a scaling factor. Since P is generated by L, P and
L commutate. Thus, P and ε also commutate.

We end this section with the following proposition

Proposition 2.1. Let P (τ) be an imbeddable propagator matrix P (τ) =
expm(τL), such that ‖P (τ)− Id‖ < 1. Then for each ε commutable with P
and satisfying

τ−1‖P−1(τ)‖ ‖ε‖ ≤ min
i,j∈S

|Lij |

all perturbed transition matrices in

Pε = {P̃ (τ), with ‖P (τ)− P̃ (τ)‖ ≤ ‖ε‖}

are imbeddable.
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Proof. Unless otherwise specified we use here as everywhere else in this thesis
the 2-norm as matrix norm. First note that

‖A‖ ≥ max
j,j∈S

|Aij |

for any matrix A holds. Now denote the error matrix of the generator by

δ = L̂− L.

We get
max
i,j∈S

|δ| ≤ ‖δ‖ ≤ τ−1
∥∥P−1(τ)

∥∥ ‖ε‖.

Per definition this term is bounded by

τ−1
∥∥P−1(τ)

∥∥ ‖ε‖ ≤ min
i,j∈S

|Lij |,

finally we obtain
max
i,j∈S

|δ| ≤ min
i,j∈S

|Lij |.

But this means nothing else than that the generator properties are preserved.

2.2 The Ornstein-Uhlenbeck Process

The focus in this section is on another class of Markov processes with con-
tinuous time and continuous state space. In particular we will concentrate
on diffusion processes, which are described in more detail e.g. in [48, 69].
The following summary is based on [49]. This class of kinetic processes is
essentially based on the so-called Wiener process.

Definition 2.5 (Wiener process – Brownian Motion). A standard d-dimensional
Wiener process W (t) is a stochastic process with the following properties:

• P(W (0) = 0) = 1,

• for all s, t with 0 ≤ s ≤ t the increments W (t)−W (s) are independent
and normally distributed

P(W (t)−W (s) = x) =
1

(
√

2π(t− s))d
exp

(
− x2

2(t− s)

)
. (2.13)

Due to the independence of the increments the Wiener process is Marko-
vian. Further, for the increments

E [W (t)−W (s)] = 0 (2.14)
Var [W (t)−W (s)] = t− s (2.15)
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holds. These properties follow immediately from the Gaussian distribution
of the increments (2.13). The Wiener process is almost nowhere differen-
tiable. To see this we consider the absolute value of the differential quotient
E
[∣∣∣W (t)−W (t+∆t)

∆t

∣∣∣]. The expectation of the absolute value of the increments
amounts to

E [|W (t)−W (s)|] =

√
2(t− s)

π
.

This implies that the differential quotient is unbounded

lim
∆t→0

E
[∣∣∣∣W (t)−W (t+ ∆t)

∆t

∣∣∣∣] = lim
∆t→0

√
2

π(∆t)
= ∞.

Hence the SDE

Ẋ(t) = f(X(t)) + σ(X(t))Ẇ (t), X(0) = x0 (2.16)

does not exist formally. Notwithstanding an integral equation exists.

X(t) = X0 +
∫ t

0
f(X(s)) ds+

∫ t

0
σ(X(s)) dW (s).

The differential of the Wiener process Ẇ (t) is also referred to as white
noise. The stochastic integral is defined similarly to the Riemann integral
as the limit of the sums∫ T

0
g(t) dW (t) = lim

n→∞

n−1∑
i=0

g(t̂)(W (ti+1)−W (ti)) (2.17)

over an infinitesimal fine partition of the interval [0, t] into intervals [ti, ti+1]
with t0 = 0 and tn = T . However, in contrast to the Riemann integral the
value of the stochastic integral depends on the choice of the evaluation point
t̂ between ti and ti+1. This is due to the fact that the Wiener process is not
of bounded variation. The Itô integral is defined by (2.17) with evaluation
point t̂ = ti and the Stratonovich integral with t̂ = (ti+1−ti)/2. The sums in
(2.17) are effectively computable for finite n since the increments W (ti+1)−
W (ti) are normally distributed random variables. Unless otherwise specified,
the Itô integral will be used in the following. Before we focus on SDEs in
more detail, we keep hold of some preliminary properties of the Itô integral.

Proposition 2.2. [49] Let f : [α, β] → R be a continuous function and
ξ =

∫ β
α f(t) dW (t), then for the expectation value holds

E [ξ] = 0

and for the variance

Var [ξ] =
∫ β

α
f2(t) dt.
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Proof. The proof is a simple calculation:

E [ξ] = E
[∫ β

α
f(t) dW (t)

]
= E

[
lim

n→∞

n∑
i=0

f(ti)(W (ti+1)−W (ti))

]

= lim
n→∞

n∑
i=0

f(ti)E [(W (ti+1)−W (ti))] ,

By (2.14) follows E [(W (ti+1)−W (ti))] = 0, so that the whole expression
vanishes and we get

E [ξ] = 0.

For the variance the independence of the increments is exploited:

Var[ξ] = E

[(∫ β

α
f(t) dW (t)

)2
]

= E

( lim
n→∞

n∑
i=0

f(ti)(W (ti+1)−W (ti))

)2


= lim
n→∞

n∑
i,j=0

f(ti)f(tj)E [(W (ti+1)−W (ti))(W (tj+1)−W (tj))] .

With the independence assumption from above and (2.15) we obtain

E [(W (ti+1)−W (ti))(W (tj+1)−W (tj))] = δij(ti+1 − ti)

and thus

Var[ξ] = lim
n→∞

n∑
i,j=0

f2(ti)(ti+1 − ti) =
∫ β

α
f2(t) dt.

The SDE (2.16) specifies a diffusion process. If f is linear and σ
constant in X we have a special kind of diffusion process, the Ornstein-
Uhlenbeck process

Ẋ(t) = −D(X(t)− µ) + σẆ (t), X(0) = x0. (2.18)

Remark 2.5. The common representation of the Ornstein-Uhlenbeck process
is the SDE

Ẋ(t) = DX(t) + σẆ (t), X(0) = x0,

but in the scope of this thesis the constant µ will be required.
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The following calculations are carried out for the one-dimensional case.
The explicit solution of the SDE can be calculated simply by variation of
constants:

X(t) = exp(−Dt)X0 + µ(Id− exp(−Dt)) +
∫ t

0
exp(−D(t− s))σ dW (s).

By means of proposition 2.2 we can now compute the expectation value
E [X(t)] and the variance Var[X(t)] of the Ornstein-Uhlenbeck process. The
solution X(t) depends on the random variables X0 and W (s), which are
independent.

E [X(t)] = E [exp(−Dt)X0]+E [µ(Id− exp(−Dt))]+E
[∫ t

0
exp(−D(t− s))σ dW (s)

]
.

The last term on the right hand side vanishes according to proposition 2.2,
hence the expectation value reduces to

E [X(t)] = exp(−Dt) E [X0] + µ(Id− exp(−Dt)).

The variance is calculated as follows

Var [X(t)] = E

[(
exp(−Dt)(X0 − E [X0]) +

∫ t

0
exp(−D(t− s))σ dW (s)

)2
]
.

By the independence of X0 and W (s) and proposition 2.2 we obtain

Var [X(t)] = exp(−2Dt) Var [X0] +
∫ t

0
exp(−2D(t− s))σ2 ds

= exp(−2Dt) Var [X0] +
σ2

2D
(Id− exp(−2Dt)).

To obtain the moments for a process in equilibrium we consider the limits:

lim
t→∞

E [X(t)] = µ

lim
t→∞

Var [X(t)] =
σ2

2D
.

Corollary 2.2. The Ornstein-Uhlenbeck process is a Gaussian process with
mean value

E [X(t)] = exp(−Dt) E [X0] + µ(Id− exp(−Dt)).

and variance

Var [X(t)] = exp(−2Dt) Var [X0] +
σ2

2D
(Id− exp(−2Dt)).
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An alternative approach to determine the probability density for a canon-
ical ensemble of SDE-systems (so called diffusion processes) as specified in
(2.16) is given by the solution of the Fokker-Planck equation. Let ρ(t, x)
denote the probability density function of the process above. It depends on
the process itself and on the time t. The Fokker-Planck equation (FPE)
specifies how this density evolves in time:

∂ρ(x, t)
∂t

= −
d∑

i=1

∂

∂xi
(fi(x)ρ(x, t)) +

1
2

d∑
i,j=1

∂2

∂xixj
(σij(x)ρ(x, t)) . (2.19)

The coefficient of the deterministic part of the diffusion process f(x) is called
drift vector, the coefficient of the stochastic part σ(x) diffusion tensor. The
Fokker-Planck equation is also referred to as Kolmogorov forward equation,
which we have already introduced for a discrete state space in (2.6). Under
certain conditions it possesses analytic solutions ([65], p.7). If the drift
vector is linear and the diffusion tensor is constant as in (2.18), the solutions
are Gaussian densities. We will use this technique in Section 4.1 ff.
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3 Hidden Markov Models

A hidden Markov model consists of two stochastic processes. A Markov
chain Y0, ..., YM and a second process O0, ..., OM , of which random vari-
ables are distributed according to some parametric distribution. In what
follows we will use a Gaussian normal distribution. The random variables
(Om)m=0,...,M are independent from each other, but the parameters of their
distribution depend on the state of the Markov chain at that time:

P(Om|Ym = k) = N (Om, µk,Σk).

Remark 3.1. In case of continuous output the output probabilities are actu-
ally probability density functions (pdf). We use here the notation of Rabiner
[64].

Only the random variables of the second process (Om)m=0,...,M are ob-
servable, the states of the Markov chain (Ym)m=0,...,M are hidden. A schematic
representation of HMM is shown in Figure 3.1. For an introduction to
HMMs see [64]. The parameters of the hidden Markov process are speci-
fied by a transition matrix P and an initial distribution π. To each state
of the Markov chain an output distribution is assigned. This output dis-
tribution is specified by the parameters of the particular distribution for
each state the Markov chain can assume. In case of a Gaussian output
distribution these are the mean value µk and the covariance matrix Σk for
each state k ∈ S, where S is the state space of the Markov chain. An
HMM with Gaussian output is thus fully specified by the parameter tuple
λ = (π, P, (µk)k∈S , (Σk)k∈S). The likelihood of a realization from an HMM
is given by

P(O, Y |λ) = πY0 N (O0, µY0 ,ΣY0)
M−1∏
m=0

PYmYm+1N (Om+1, µYm+1 ,ΣYm+1). (3.1)

In the context of HMMs there are essentially three problems:

1. the calculation of the likelihood for a given observation data O and fix
model parameters λ

P(O|λ),

2. the inference of the most likely hidden state path, given the observation
data O and model parameters λ

argmaxY P(O, Y |λ),

3. the estimation of the model parameters λ, that maximize the likelihood
of the observed data O

argmaxλP(O|λ).
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The first question is addressed by a dynamic programming technique, the
forward-backward algorithm, the second problem can be solved by a
similar technique – the Viterbi algorithm – and the third task is carried
out by an EM algorithm. The next section concentrates on the latter
mentioned algorithm.

Computation of the likelihood for a given observation sequence.
At this point the forward-backward algorithm will be elucidated. It is used
to solve the first problem and is also employed in the EM algorithm.

The forward variables α denote the likelihood

αi(tm) = P(O0, . . . , Om, Ym = i|λ),

the backward variables β denote

βi(tm) = P(Om+1, . . . , OM |Ym = i, λ),

for i ∈ S and m = 1, ..,M . Both auxiliary variables are computable recur-
sively

αi(tm) =
∑

Ym−1∈S

αYm−1(tm−1) PYm−1i N (Om, µi,Σi)

βi(tm) =
∑

Ym+1∈S

PiYm+1 N (Om+1, µYm+1 ,ΣYm+1) βYt+1(tm+1)
(3.2)

with initial values

αi(t0) = πiN (O0, µi0 ,Σi0),
βi(tM ) = 1, ∀i ∈ S.

Both together provide an occupancy probability of being in state i at time
tm, having observed the time series O0, . . . , OM .

αi(tm)βi(tm) = P(O0, . . . , Om, Ym = i|λ)P(Om+1, . . . , OM |Ym = i, λ)
= P(O0, . . . , OM , Ym = i|λ). (3.3)

This way we obtain the likelihood P(O0, . . . , OM |λ) by means of the forward
backward variables:

P(O0, . . . , OM |λ) =
∑
i∈S

αi(tm)βi(tm). (3.4)

Remark 3.2. The likelihood (3.4) is independent of the time point tm, at
which the forward-backward variables are evaluated since∑

i∈S

αi(tm)βi(tm) =
∑
i∈S

αi(tm+1)βi(tm+1)
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holds. In particular

P(O0, . . . , OM |λ) =
∑
i∈S

αi(tM )

holds.

Hence the likelihood P(O0, . . . , OM |λ) is computable in the complex-
ity of the forward-backward recursions, which is O(N2M), where N is the
number of states contained in S. This is indeed feasible in contrast to the
straightforward evaluation of the likelihood (3.1)

P(O0, . . . , OM |λ) =
∑

Y ∈SM

P(O0, . . . , OM , Y0, ..., YM |λ),

with complexity O(NM ). As we will see in the next subsection these aux-
iliary variables containing occupancy probabilities act as weights in the pa-
rameter reestimation as stated in Algorithm 3.2.

Optimal sequence of hidden states. Problem (2) can be solved by ap-
plying the Viterbi algorithm [70]. For given λ and O this algorithm computes
the most probable hidden path Y ∗ = (Y ∗

0 , . . . , Y
∗
M ). This path is called the

Viterbi path. For an efficient computation we define the highest probability
along a single path, for the first m observations, ending in the hidden state
i at the time tm,

δi(tm) = max
Y0,Y1,...Ym−1

P (Y0, Y1 . . . Ym = i, O0, O1 . . . Om|λ).

This quantity is given by induction as

δj(tm) = max
i∈S

[δi(tm−1)P (i, j)] N (Om, µj ,Σj). (3.5)

In addition, the argument i that maximizes (3.5) is stored in ψ in order
to actually retrieve the hidden state sequence. These quantities are cal-
culated for each t and j, and then the Viterbi path will be given by the
sequence of the arguments in ψ, obtained from backtracking. For more de-
tails see [64]. The dynamic programming technique is the same as in the
forward-backward algorithm. The only difference is the substitution of the
sum with a maximization. The complexity remains O(N2M).

3.1 The EM Algorithm

The expectation maximization (EM) algorithm is designed to determine
the maximum likelihood estimator for partially observable data. In this
section we will introduce the algorithm generically and afterwards apply it
to HMMs. For the abstract introduction we denote the observables with X1,
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Figure 3.1: Hidden Markov model with output process O0, ..., Om−1, Om, Om−1, ..., OM

and hidden process Y0, ..., Ym−1, Ym, Ym−1, ..., YM .

the hidden variables withX2 and the parameters with Θ. The parameterized
likelihood to be maximized is the likelihood of the observed data

L(X1|Θ) =
∫
L(X1, X2|Θ) dX2, (3.6)

specified as marginal distribution of the model data, integrated over the hid-
den part. This likelihood is too complex to maximize it directly. The whole
likelihood is not available since it is partially hidden. Thus the expectation
value E [L(X1, X2|Θ)] over the hidden part of the data has to be computed.
However, to compute the expectation a probability measure P(X2) for the
hidden part is required a priori. To formulate this prior probability measure
it is necessary to make an initial assumption on the parameters Θ0. Fur-
thermore, for computational reasons we build the expectation value of the
log-likelihood and eventually obtain the functional

Q(Θ,Θ0) = E
[
log[L(X1, X2|Θ)]|Θ0

]
=
∫

log[L(X1, X2|Θ)] L(X2|Θ0) dX2.

(3.7)
Finding the maximum of Q is much easier than finding the maximum of
L(X1|Θ) directly, because the functional Q has a unique global maximum
as shown by Baum [9]. Accordingly we obtain an iterative procedure

Θ̂k+1 = argmaxΘQ(Θ,Θk).

Moreover it is shown in the same article that this iteration causes also an
increase in the original likelihood L(X1|Θ) and converges finally in a (local)
maximum of L(X1|Θ). We will come back to this point later in Chapter 7.1.
Overall, the EM algorithm is a two step iteration: In the expectation step
the expected log-likelihood is computed given the current parameter guess
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Formulate L(X1, X2|Θ)

↓

Compute Q(Θ,Θ0) = E
[
log[L(X1, X2|Θ)]|Θ0

]
↓

Compute Θ̂ as minimum of Q(Θ,Θ0)

Figure 3.2: Proceeding to determine the reestimation formulas in the EM algorithm.

Q(Θ,Θk) and in the maximization step the parameter reestimation is
carried out. The maximum is found by differentiating Q with respect to
each parameter component of Θ and find the root.

∂Q(Θ,Θk)
∂Θ

= 0 (3.8)

Since we know that Q has an unique global maximum (3.8) is sufficient for
its identification. The implementation is listed in Algorithm 3.1.

Algorithm 3.1 Generic EM algorithm
Require: Time series X1 ,initial guess of parameters Θ0, accuracy ε.

(1) Set Θ̃ := Θ0.
(2) Compute Q(Θ, Θ̃)
(3) Reestimation: determine Θ, such that (3.8) holds.
(4) ∆L = log[L(X1|Θ)]− log[L(X1|Θ̃)];
if ∆L > ε then

Set Θ̃ := Θ.
Go to step (2)

end if
return Θ

Summarizing, we will give the scheme, which will be used in the Sec-
tions 3.1.1, 5.2 - 5.3, 6.2 - 6.3, 7.1, and 7.2, whenever an EM algorithm is
derived (cf. Figure 3.2).

• First, specify the joint likelihood of the entire (observable and hid-
den) data given an initial guess for the model parameters Θ:

L(X1, X2|Θ).

• Then compute the expectation value for the joint likelihood over
the hidden data with respect to a prior probability L(X2|Θ0) (also
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L(X1, X2|Θ0) or L(X2|X1,Θ0) works here). This step is also referred
to as the expectation step. Θ0 stands for the initial parameters,
which are required to state the prior probability

Q(Θ,Θ0) = E [L(X1, X2|Θ)|Θ0] .

• Finally compute the partial derivatives of Q with respect to each com-
ponent of Θ and find the root. The estimator Θ̂ that solves

∂Q(Θ,Θ0)
∂Θ

= 0

is the unique maximum of Q. This way a reestimation formula for
Θ is obtained. Parameter reestimation is the actual maximization
step of the EM algorithm.

3.1.1 The Baum-Welch Algorithm

In this thesis the EM algorithm is applied to two different model structures.
The first is an HMM, the corresponding EM algorithm will be described in
more detail now. The EM algorithm for the special case of HMMs is also
known as the Baum-Welch algorithm. The second is a time-continuous
Markov chain, the corresponding EM algorithm will be pointed out in Chap-
ter 6.

Likelihood. In the context of HMMs we denote the observables byO0, ..., OM ,
the hidden variables by Y0, ..., YM and the parameters by λ. The likelihood
that has to be maximized is L(O|λ). It is defined as a marginal distribution
of the likelihood for the entire HMM as specified in (3.6)

L(O|λ) =
∑

Y ∈SM

L(O, Y |λ).

The entire likelihood is explicitly computable by (3.1) and also its marginal
distribution is effectively computable by means of forward-backward vari-
ables (3.4).

Expectation-Step. To estimate parameters that maximize L(O|λ), we
apply the EM iteration, where in each iteration a functional (3.7) with a
unique global maximum as mentioned above is maximized. This functional
denotes the expected log-likelihood. To build the expectation value the
prior probability L(O, Y |λ0) instead of L(Y |λ0) was used. The expected
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log-likelihood has the concrete shape

Q(λ, λ0) =
∑

Y ∈SM

[
log[πY0 ] + log[N (O0, µY0 ,ΣY0)] +

M−1∑
m=0

log[PYmYm+1 ] + log[N (Om+1, µYm+1 ,ΣYm+1)]
]
L(O, Y |λ0)

=
∑

i∈S

(
log[πi]αi(t0)βi(t0) +

M∑
m=0

log[N (Om, µi,Σi)]αi(tm)βi(tm)

)
+

∑
i,j∈S

M−1∑
m=0

log[Pij ] αi(tm) (P0)ij N (Om+1, (µ0)j , (Σ0)j) βi(tm). (3.9)

In the last equation was exploited that L(O, Ym = i|λ0) is expressible by
forward-backward variables (3.3) and alike

L(O, Ym = i, Ym+1 = j|λ0) = αi(tm) (P0)ij N (Om+1, (µ0)j , (Σ0)j) βi(tm).

This follows immediately from the recursion (3.2).

Maximization-Step. Eventually we obtain the reestimation formulas straight-
forward as the MLEs:

∂Q(λ, λk)
∂πi

= 0 ⇔(π̂k+1)i =
αi(t0)βi(t1)∑
i αi(t0)βi(t0)

∂Q(λ, λk)
∂Pij

= 0 ⇔(P̂k+1)ij =
αi(tm) (Pk)ij N (Om+1, (µk)j , (Σk)j) βi(tm)∑M−1

m=0 αi(tm)βi(tm)

∂Q(λ, λk)
∂µi

= 0 ⇔(µ̂k+1)i =
∑M

m=0Om αi(tm)βi(tm)∑M
m=1 αi(tm)βi(tm)

∂Q(λ, λk)
∂Σi

= 0 ⇔(Σ̂k+1)i =
∑M

m=0(Om − (µk+1)i)(Om − (µk+1)i)′ αi(tm)βi(tm)∑M
m=1 αi(tm)βi(tm)

,

(3.10)

where for π and P Lagrange multipliers have been imposed to assure that∑
i πi = 1 and

∑
j Pij = 1. The calculations are to be found in [50]. For the

convenience of the reader is given the implementation of the EM algorithm
in Algorithm 3.2 below. The explicit computation of Q(λ, λk) is needless
since only the forward backward variables enter the reestimation formulas
and at the time facilitate the computation of L(O|λ). So we restrain the
expectation step to the computation of α and β.

Complexity and Convergence. How does the numerical effort of the
algorithmic realization scale with the size of the problem, i.e., with the length
of the observation sequence M , its dimension d, and the number of hidden
states N? The literature on the application of EM, Viterbi, and forward-
backward algorithms to the parameterization of HMMs demonstrates that
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Algorithm 3.2 Baum-Welch algorithm
Require: Time series O, initial guess of parameters λ0, accuracy ε.

(1) Set λ̃ := λ0.
(2) Compute forward-backward variables via (3.2).
(3) Reestimation: determine λ according to (3.10).
(4) Compute ∆L = log[L(O|λ)]− log[L(O|λ̃)] via (3.4).
if ∆L > ε then

Set λ̃ := λ.
Go to step (2)

end if
return λ

one step of EM and the entire forward-backward algorithm scale linearly in
M and quadratically in N . The scaling with respect to d is not so obvious;
it depends mainly on the distribution of the observables or on its maximum
likelihood estimators respectively. Whenever the distribution is Gaussian,
the scaling will be O(d2M + d3). Carefully putting all terms together one
finds an asymptotic estimate of the form [25]

O
(
(d2M +N2)M + d3

)
× number of EM iterations.

Here, the necessary number of iterations of the EM procedure should be
determined by a certain accuracy requirement on the error of the underlying
optimization problem, i.e., the maximum likelihood problem. There is a
variety of results on the convergence of the EM algorithm [73, 74]. One of
the basic pitfalls of EM algorithms is the following: given the initial values,
they often get trapped by a local maximum; this phenomenon is quite typical
for HMMs, or more generally, mixture models. There is copious literature
on the subject and how to address it, see for instance [51]. In this thesis
convergence is controlled by the following termination criterion: When the
increase in likelihood in the last EM iteration does not exceed a certain
preset threshold level, the iteration is stopped.

The accuracy of the results will also critically depend on the length of
the observation sequence. In the context of the problems considered herein
this means that we will have to have “enough” time steps in each of the
metastable states.

3.1.2 Metastability Analysis with HMMs

A central issue in many application areas of the following modified HMMs
is the identification of metastable states. That is, states in which the time
series stays for a long time. If the number of metastable states is known a
priori, we can assume each state of the hidden Markov chain as metastable
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and the identification is carried out by the Viterbi algorithm (problem (2)
stated in the beginning of this chapter).

The problem of identifying the number of dominant metastable states
can be formulated as the problem of aggregating states Om from the time
series into metastable states (i.e., clustering states that belong to the same
metastable state). The identification of an optimal aggregation based on the
observation of the dynamical behavior is an important algorithmic problem.
There are no general solutions to this problem and the best way to han-
dle it often is a mixture of insight and preliminary analysis. However, this
task could in general be handled by using algorithmic concepts from finite
mixture models or comparable approaches, cf. [52]. For the problems con-
sidered herein, we will see that optimal aggregates can be identified via the
dominant eigenmodes of a so-called transfer or transition matrix, which de-
scribes the overall transition probabilities between all states of the system
under consideration. The identification is possible by considering the largest
eigenvalues of the transition matrix and by exploiting an intriguing property
of dominant eigenmodes: they exhibit significant jumps between different
metastable aggregates, while varying only slowly within them [21, 67]. This
has led to the construction of an aggregation technique called “Perron Clus-
ter Cluster Analysis” (PCCA) [23, 24].

We will use PCCA within the HMM framework as follows: In the setup
of an HMM for a given observation sequence, one is confronted with the task
of selecting the number N of hidden states in advance. Since our goal is to
identify metastable states we can proceed as suggested in [29]: Start the
EM algorithm with an appropriate number of hidden states, say N , that
should be greater than the expected number of metastable states. After
termination of the EM algorithm, take the resulting transition matrix P
and aggregate the N hidden states into Nmeta ≤ N metastable states by
means of PCCA. The resulting conformation states will then allow for an
interpretation of the results in terms of metastable states.

30



4 Parameter Estimation for Ornstein-Uhlenbeck
Processes

Before we consider the parameter estimation of the modified HMM in Chap-
ter 5, we firstly will derive the maximum likelihood estimators for the output
process stand-alone assuming full observability. In this chapter we will focus
on the process given by the SDE:

Ẋ(t) = −∇XV (X(t)) + σ Ẇ (t).

The left term on the right side denotes the derivative with respect to X of
a potential. If the potential has the shape

V (X) = (X − µ)′D(X − µ), (4.1)

with a positive definite symmetric form D, it is called harmonic; its deriva-
tive with respect to X is linear and thus we obtain an Ornstein-Uhlenbeck
process (2.18). The Ornstein-Uhlenbeck process is Markovian, hence the
likelihood L(O) = P(O0, ..., OM ) factorizes as follows:

P(O0, ..., OM ) =
M∏
i=1

P(Oi|Oi−1)P(O0). (4.2)

To determine the maximum likelihood estimator, we finally have to specify
the particular factors of the likelihood P(Oi = x|Oi−1 = y) = ρ(x, ti|y).

4.1 Propagation of the Probability Density

Considering a statistical density function ρ(x, t|x0) of an ensemble of SDE
solutions (2.18) for different realizations of the stochastic process W with
initial values X(0) = y, we get an equivalent representation of the dynamics
in terms of the Fokker-Planck operator:

∂tρ = 4xV (x)ρ+∇xV (x) · ∇xρ+
1
2
∇x ·B∇xρ, (4.3)

where B = (σ2 ∈ R1 denotes the variance of the white noise (for Rd it
is a positive definite self-adjoint matrix B = σ′σ). In the following con-
siderations the matrices B and D are supposed to commutate. In the one-
dimensional case they do definitely, the multi-dimensional case is considered
in the end of this section. The equation (4.3) is the Fokker-Planck equation
from (2.19) with f(x) = ∇xV (x) = D(x − µ). In the case of harmonic po-
tentials the drift vector is linear and the partial differential equation can be
solved analytically whenever the initial density function can be represented
as a superposition of Gaussian distributions: the solution of the Fokker-
Planck equation (4.3) remains to be a sum of Gaussians whenever the initial

31



probability function ρ(·, t = 0) is one, see also ([65], p.7). Therefore, let us
apply the variational principle (Dirac-Frenkel-MacLachlan principle [27]) to
(4.3) restricted to functions ρ of the form

ρ(x, t) = A(t) exp
(
−(x− y(t))′Σ(t)(x− y(t))

)
.

The particular terms of (4.3) are

∂tρ =
(
Ȧ(t) + 2A(t)ẏ(t)′Σ(t)(x− y(t))−A(t)(x− y(t))′Σ̇(t)(x− y(t))

)
exp

(
− (x− y(t))′Σ(t)(x− y(t))

)
,

4xV (x) = trace(D),
∇xV (x) = D(x− µ) = D(x− y(t)) +D(y(t)− µ),

∇xρ = −2Σ(t)(x− y(t))A(t) exp
(
− (x− y(t))′Σ(t)(x− y(t))

)
,

∇x ·B∇xρ =
(
− 2(x− y(t))′BΣ2(t)(x− y(t)) + trace(BΣ(t))

)
A(t) exp

(
− (x− y(t))′Σ(t)(x− y(t))

)
.

Putting these terms together into equation (4.3), it leads to the solution of
the system of ordinary differential equations. We get:

ẏ = −D(y − µ),
Σ̇ = −2BΣ2 + 2DΣ,
Ȧ = (trace(D −BΣ))A,

for the time-dependent parameters
{
y,Σ, A

}
. The explicit solution of this

system of equations on the time-interval [t, t+ τ ] is:

y(t+ τ) = µ+ exp (−Dτ) (y(t)− µ),

Σ(t+ τ) =
(
D−1B − exp (−2Dτ)

(
D−1B − Σ(t)−1

))−1
,

A(t+ τ) =
1√
π

det(Σ(t+ τ))1/2, (4.4)

For y the solution is straightforward, for Σ the ordinary differential equation
(ODE) was transformed to

Σ̇Σ−2 = −2B + 2DΣ−1,

with Σ̃ = Σ−1 we get the ODE

˙̃Σ = 2B − 2DΣ̃,

and the solution follows immediately. The ODE for A has the solution

A(t+ τ) = A(t) exp
(

trace
(∫ t+τ

t
D −BΣ(s) ds

))
.
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Another transformation of the ODE system for Σ yields

1
2
Σ̇Σ−1 = D −BΣ.

Now, the left side can be easily integrated

1
2
logm(Σ) =

∫
D −BΣ(s) ds.

Thus we get for A

A(t+ τ) = A(t) exp
(1

2
trace

[
logm

(
Σ(t+ τ))− logm(Σ(t))

)])
=

A(t)

det
[
expm

(
logm

(
Σ(t)

))] 1
2

(
det
[
expm

(
logm

(
Σ(t+ τ)

))]) 1
2

=
1√
π

det(Σ(t+ τ))
1
2 .

The coefficient has to be 1√
π

to obey the constraint that ρ should be a
normal distribution. In case of initial states that are sums of Gaussians,
each Gaussian would move independently according to (4.4) and we would
get the solution of (4.3) by superposition.

However, in the case considered herein, we are interested in the proba-
bility of output Oj+1 under the condition that the system has been in state
Oj at the time tj . For this, we can now use (4.4) with y(tj) = Oj and
Σ(tj)−1 = 0. Therefore, the output probability distribution results to be

ρ(Oj+1|Oj) = A(tj+1) exp
(
− (Oj+1 − y(tj+1))′Σ(tj+1)(Oj+1 − y(tj+1))

)
,

with

y(tj+1) = µ+ exp (−Dτ) (Oj − µ),

Σ(tj+1) =
(
D−1B − exp (−2Dτ)D−1B

)−1

= (Id− exp (−2Dτ))−1DB−1,

A(tj+1) =
1√
π

Σ(tj+1)1/2, (4.5)

with τ = tj+1 − tj .

Remark 4.1. The obtained solutions have been already stated in Corol-
lary 2.2 with y(t) = E [O(t)] and 1

2Σ−1(t) = Var [O(t)]. The corollary was
stated for the one-dimensional case, where B and D are commutable.

Now, that we have ρ(x, t|x0), we can construct the maximum likelihood
estimator. However, in order to obtain an analytical solution, we have to
make another assumption.
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4.1.1 Further Simplification

The formula (4.5) for the parameters of the output distribution can be fur-
ther simplified by the assumption that we do only want to know about the
evolution of the system within a short time interval [t, t+ τ). We then can
apply an Euler discretization resulting in

y(t+ τ) = Ot −D(Ot − µ)τ

Σ(t+ τ) =
1
2τ

B−1

A(t+ τ) =
1√
π

Σ1/2(t+ τ),

(4.6)

which is not necessary but simplifies the following steps significantly.
Therefore we have the following probability distribution for the observa-

tion sequence O0, ..., OM (cf. 4.2)

L(O0, ..., OM ) = A(t0) exp
(
− (O0 − y(t0))′Σ(t0)(O0 − y(t0))

)
M∏
i=1

A(ti) exp
(
− (Oi − y(ti))′Σ(ti)(Oi − y(ti))

)
.

Due to (4.6) the Gaussian observation likelihood reduces to

ρ(Oi|Oi−1) =
1

(2πτ)d/2
det(B)−1/2

exp
(
−(Oi − y)′

1
2τ
B−1(Oi − y))

)
,

with
y = (Oi−1 −D(Oi−1 − µ)τ).

The initial density function

ρ0(O0) = A(t0) exp
(
− (O0 − y(t0))′Σ(t0)(O0 − y(t0))

)
has mean y(t0) = O0 and variance Σ(t0)−1 = 0. It is a Gaussian distribution,
which has density 1 at O0 and 0 elsewhere. The density function results in
a Dirac delta function.

4.2 Optimal Parameters via the Maximum Likelihood Prin-
ciple

The likelihood now is expressible by the time-independent parameters {µ,D,B}.
To determine the parameters that maximize the likelihood L(O0, ..., OM )
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for a given observation sequence, we take for the sake of simplicity the log-
likelihood into consideration.

log[L(O0, ..., OM )] = log[ρ0(O0)] +
M∑
i=1

log
[

1
(2πτ)d/2

det(B)−1/2

]
− (Oi −Oi−1 +Dτ(Oi−1 − µ))′ (2τB)−1

(Oi −Oi−1 +Dτ(Oi−1 − µ))

(4.7)

ρ0 does not depend on {µ,D,B} and is therefore negligible. We derive
partial derivatives of the likelihood log[L(O)] defined above, which then are
used to compute the maximum of log[L(O)].

∂log[L(O)]
∂µ

=
M∑
i=1

D
1
2
B−1(Oi −Oi−1 +Dτ(Oi−1 − µ))

∂log[L(O)]
∂D

=
M∑
i=1

(−Oi +Oi−1 −D(Oi−1 − µ)τ)(Oi−1 − µ)′
1
2
B−1

∂log[L(O)]
∂B−1

=
1
2

[ M∑
i=1

−B−1 + (−Oi +Oi−1 −Dτ(Oi−1 − µ))

(−Oi +Oi−1 −Dτ(Oi−1 − µ))′
1
τ

]
The maximum is obtained by finding the root of the above system of deriva-
tives as follows:

∂log[L(O)]
∂µ

= 0 ⇔ µ =
∑M

i=1(Oi −Oi−1 +DOi−1τ)

Dτ
∑M

i=1

, (4.8)

∂log[L(O)]
∂D

= 0 ⇔ D =
∑M

i=1(Oi −Oi−1)(Oi−1 − µ)

−τ
∑M

i=1(Oi−1 − µ)2
, (4.9)

∂log[L(O)]
∂B−1

= 0 ⇔ B =
1
τM

M∑
i=1

(−Oi +Oi−1 −D(Oi−1 − µ)τ)2.

The parameters µ and D are independent of B. Hence it suffices to solve
the smaller system of equation (4.8) and (4.9):

⇒ (4.8),(4.9)

∑M
i=1(Oi −Oi−1)(Oi−1 − µ)

−τ
∑M

i=1(Oi−1 − µ)2
=
∑M

i=1(Oi −Oi−1)

τ
∑M

i=1(Oi−1 − µ)

⇔ µ =
X1X2 −X3X4

X1X4 −X3X5
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with
X1 =

∑M
i=1(Oi −Oi−1), X2 =

∑M
i=1(O

2
i−1),

X3 =
∑M

i=1(Oi −Oi−1)Oi−1, X4 =
∑M

i=1Oi−1,

X5 = M.

Summarizing we obtain the estimators:

µ̂ =
X1X2 −X3X4

X1X4 −X3X5
,

D̂ =
∑M

i=1(Oi −Oi−1)(Oi−1 − µ)

−τ
∑M

i=1(Oi−1 − µ)2

B̂ =
1
τM

M∑
i=1

(−Oi +Oi−1 −D(Oi−1 − µ)τ)2

Remark 4.2. The further simplification (4.6) by means of Euler discretiza-
tion with constant time step is not necessary. It leads to the previous explicit
formula for the maximizing parameters. When omitting it, we would have
to solve some low-dimensional algebraic equations. This is possible with-
out significant numerical effort but includes an additional Newton iteration.
Details of this discretization-free approach to HMMSDE and its derivation
are published elsewhere [40]. A more general approach to a discretization-
free multi-dimensional parameter estimation was derived in [41]. We will
explicate it in the following section.

4.3 Multi-Dimensional Parameter Estimation without Euler
Discretization

We end this chapter with a generalization of the parameter estimation for
Ornstein-Uhlenbeck processes. This approach actually was designed in [41]
for systems governed by Langevin dynamics

q̇(t) = M−1p(t)
ṗ(t) = −∇V (q(t))− γM−1p(t) + σẆ (t).

The variables q and p denote the positions and momenta of the system, M
stands for the mass matrix, V for the potential and γ for the friction matrix.
For high friction the system is transferred to the overdamped Langevin (or
Smoluchowski) dynamics. With an harmonic potential V as given in (4.1)
we obtain an Ornstein-Uhlenbeck process

Ẋ(t) = −D(X(t)− µ) + σẆ (t).
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The variable X is defined on the position space only. In contrast to the
previous sections, we define here a multi-dimensional process. As pointed
out in section 2.2 the solution of the SDE above is

X(t+ τ) = µ+ expm(−Dτ)(X(t)− µ) +
∫ τ

0
expm(−D(τ − s))σẆ (s).

In Corollary 2.2 was stated that X is normal distributed with mean

ym(τ) = µ+ expm(−Dτ)(X(tm)− µ), (4.10)

and variance

R(τ) =
∫ τ

0
expm(−Ds) B expm(−Ds)Ẇ (s).

B stands for the squared noise intensity B = σσ′. In Corollary 2.2 the inte-
gral (4.11) was solved under the assumption that D and σ are commutable.
Without this restriction we obtain by partial integration the linear matrix
equation

− (R(τ) D +D R(τ)) = expm(−Dτ) B expm(−Dτ) +B.

Suppose the time lag between the particular observation points tm is con-
stant (i.e. tm+1 − tm = τ). We can specify the likelihood of the process in
terms of the parameter triple (µ, expm(−Dτ), R(τ)):

logL(O0, ..., OM ) = log[A(τ)] +
(
− 1

2
(O0 − y0(τ))′R(τ)−1(O0 − y0(τ))

)
+

M∑
i=1

log[A(τ)]− 1
2

(Om − ym(τ))′R(τ)−1 (Om − ym(τ)) , (4.11)

with ym(τ) from (4.10) and a normalization constant

A(τ) =
1√

(2π)d det(R(τ))
.

The dimension of the observables is here denoted by d. Differentiating (4.11)
with respect to (µ, expm(−Dτ), R(τ)) and determining the roots produces
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the linear matrix equation system:

µ =
1

M − 1
(Id− expm(−Dτ))−1

M−1∑
m=1

(Om+1 − expm(−Dτ)Om)

expm(−Dτ) = C1(µ)C−1
2 (µ)

C1(µ) =
(M−1∑

m=1

(Om+1 − µ)
)(M−1∑

m=1

(Om − µ)
)′

C2(µ) =
(M−1∑

m=1

(Om − µ)
)(M−1∑

m=1

(Om − µ)
)′

R(τ) =
1

M − 1

M−1∑
m=1

(
Om+1 − µ− expm(−Dτ)(Om − µ)

)
(
Om+1 − µ− expm(−Dτ)(Om − µ)

)′
.

The solution of the system above determines the optimal parameters (µ̂, expm(−D̂τ), B̂).

µ̂ = Ō − (Id− Cor(O))−1δ

expm(−D̂τ) = Cor(O)
B̂ = (Cov(O) + E)D +D(Cov(O) + E),

with δ =
1

M − 1
(OM −O1).

The moving average, the positive definite covariance matrix and the nor-
malized autocorrelation are defined as

Ō =
M−1∑
m=1

Om

Cov(O) =
M−1∑
m=1

(Om − Ō)(Om − Ō)′

Cor(O) =
M−1∑
m=1

(Om+1 − Ō)(Om − Ō)′Cov(O)−1.

The symmetric matrix E is obtained by solving the Sylvester equation

Cor(O)ECor(O)−E = δδ′+
1

M − 1
(
(OM − Ō)(OM − Ō)′ − (O1 − Ō)(O1 − Ō)′

)
Whenever the Eigenvalues of D̂ are on the positive complex half-plane C+,
the Sylvester equation has an unique solution. This condition is fulfilled as
D is symmetric and positive definite the Eigenvalues are even positive and
real.
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In this approach it is no longer necessary to use an Euler discretiza-
tion to compute the explicit estimators. It applies also to multi-dimensional
processes. What makes this improvement possible is the parameter estima-
tion of the operator expm(−Dτ) rather than a direct estimation of D. The
crucial drawback of this proceeding is that it implies the requirement of a
constant time lag τ .

Furthermore, D is in general not unique since the matrix logarithm of
expm(−Dτ) is not. In case of Ornstein-Uhlenbeck dynamics as stated above
this problem does not occur since D is symmetric and has therefore solely
real eigenvalues. Thus the matrix logarithm is unique but in the more
general context of Langevin dynamics this constraint does not apply.
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5 HMMSDE

Diffusion processes are kinetic models that can be combined with an HMM
framework (c.f. [38]). In the foregoing chapter the parameter estimators
for an observable diffusion process have been derived. We will see now that
the embedding of this process into an HMM is possible in a natural way
and provides a powerful tool for the time series analysis. In contrast to
the standard HMM, here the output process consists instead of independent
identically distributed random variables of a SDE governed dynamic process,
such as an Ornstein-Uhlenbeck process.

Figure 5.1: Hidden Markov model with Ornstein-Uhlenbeck output process. The
hidden states are Y0, ..., Ym−1, Ym, Ym+1, ..., YM , the observable data points are
O0..., Om−1, Om, Om+1, ..., OM . The continuous process between the observables is given
by the SDE (5.1).

5.1 Model Design

Now we explain in more detail how the HMM concept has been combined
with a special class of kinetic models, namely diffusion processes (2.2). The
effective dynamics here are approximated by stochastic differential equations
(SDEs) of the following type for the state X ∈ Rn of the system:

Ẋ(t) = −∇XV
(Y (t))(X(t)) + σ(Y (t)) dW (t) (5.1)

Y (t) = Markov jump process with states 1, . . . , N.

The standard Brownian motion is denoted by W (t), ∇X stands for the gra-
dient with respect to X, σ = (σ(1), . . . , σ(N)) contains noise intensities, and
V = (V (1), . . . , V (N)) interaction potentials. The jump process Y (t) is in-
tended to mimic the hopping of the effective dynamics from one metastable
set to another metastable set such that its hopping rates have to be related
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to the transition rates between the sets. It thus can be represented by an
N ×N rate matrix L. The SDEs (5.1) then have to approximate the (more
rapidly mixing) dynamics within the metastable states, and thus must have
correlation times that are significantly smaller than the typical waiting times
between hops of the jump process. Altogether, the model is completely char-
acterized by the tuple (π, L,V, σ), where π denotes the initial distribution of
the hidden Markov process Y . In the following we will assume that V only
contains potentials V (Y ) from a certain family of potentials that is given by
a (not too large) tuple of parameters θ(Y ) (e.g., polynomial potentials) such
that V is completely determined by the parameters Θ = (θ(1), . . . , θ(N)).

Consequently, we have to find a procedure that can determine the opti-
mal model λ = (π, L,Θ, σ) for the complex system under consideration. The
goal of the algorithmic approach to be presented herein is to identify the
optimal model (π, L,Θ, σ) from time series resulting from long-term simula-
tion of the complex system under consideration. Thereby, the information
about which and how many metastable sets being present in the time series
is understood as being hidden within the data. Then, metastability is iden-
tified in the following way: we try to assign to any state from the given time
series the hidden metastable state to which it belongs. The metastable sets
then are represented by aggregates containing those states that are assigned
to the same hidden state. We will present a procedure that solves the assign-
ment problem and the estimation problem for the parameters (π, L,Θ, σ)
simultaneously and iteratively via the well-known EM algorithm. This pro-
cedure will result from some HMM approach as introduced in Section 3.1.1.

The approach proposed herein (called HMMSDE in the following) can
be thought of as an extension of the HMM approach in the sense that the
“output” is assumed to result from stochastic differential equations. Equa-
tion (5.1) describes the process in continuous time; the HMM, however, al-
ready reflects the situation that the observation sequence is given in discrete
time.

5.2 Concept

Our goal is to identify optimal parameters for our model (5.1) for given
observation data (Om)m=0,...,M . That is, the states Om, the system is in
at times tm, are known already, and we have to define the functional with
respect to which we then will have to determine the optimal parameters λ.
This will be done by means of the maximum likelihood principle, i.e., the
functional will be given by a likelihood function L that will be constructed in
the following way: For given parameters λ, the likelihood L(O, Y |λ) has to
be the probability of output X(tm) = Om, m = 0, . . . ,M , and the associated
sequence of metastable states (Ym) (the state sequence of the Markov jump
process at times tm, m = 0, . . . ,M). The model structure is illustrated in
Figure 5.1. In contrast to the standard HMM the HMMSDE introduced an
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additional dependency between the observables. Thus, in order to construct
L appropriately, we have to know the probability of output of state X(tm)
under the condition of being in metastable state Ym for given parameters
λ. We will see that we can determine this probability by considering the
propagation of probability densities by the SDE associated with metastable
state Ym analogously to Chapter 4.

For this purpose let us assume again that the potentials V i, i ∈ S are of
harmonic form:

V i(X) =
1
2
Di(X − µi)2 + V i

0 .

This assumption simplifies the derivation of the parameterization algorithms
significantly. Furthermore, and also for the sake of simplicity, we will present
the derivation for a one-dimensional state space. As we will point out in
Section 5.4, both assumptions are not necessary.

5.2.1 Likelihood Function

Whenever we assume the potential to be harmonic the model is character-
ized by the parameter tuple λ = (π, L, y,Σ, A), where π denotes the initial
distribution of the Markov Chain, P its transition matrix, and y,Σ, A the
parameters of the output distributions according to (4.5). Suppose that the
observed data (Om)m=0,...,M is given with constant time stepping τ , i.e.,
tm = tm−1 + τ for all m = 0, . . . ,M . Setting t0 = 0 we have tm = mτ
and especially T = tM = Mτ . In addition to the observation sequence
O = O0, ..., OM we also have the sequence of hidden metastable states
Y = Y0, ..., YM which herein are given by the N possible states of the Markov
jump process, i.e., we have Ym ∈ S.

The restriction on equidistant time steps τ will become dispensable in
the next chapter. For the time being we assume a constant time step τ
and confine ourselves to estimating the transition matrix P instead of the
generator matrix L.

Let L be the generator matrix of jumps between the hidden states. Then
the transition probability between hidden states within two consecutive steps
of the observations, i.e., the transition probability from hidden state i to
hidden state j after time τ under the condition to be in i at time t = 0, is
given by the ij-th entry of the transition matrix

P = expm(τL).

Therefore for given model λ = (π, P, y,Σ, A) we have the following joint
probability distribution for the observation and hidden state sequences:

P(O, Y |λ) = π(Y0) ρ0(O0|Y0)
M∏

m=1

P (Ym−1, Ym) ρ(Om|Ym, Om−1),
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wherein the probability distributions ρ have the form

ρ(Om|Ym, Om−1) = A(Ym)(tm) exp
(

−
(
Om − y(Ym)(tm)

)′
Σ(Ym)(tm)(

Om − y(Ym)(tm)
))

,

where the superindex refers to the hidden state Ym of the system at time
tm, and y, Σ and A have to be computed from (4.5). As y,Σ and A actu-
ally depend on the time-independent parameters µ,D and B, we can also
formulate the model parameters as

λ = (π, P, µ,D,B). (5.2)

The joint Likelihood function for the model given the complete data reads

L(O, Y |λ) = P(O, Y |λ).

5.3 Partial Observability

Since only the diffusion process O is observable but the Markov chain Y is
hidden, the parameter estimation will be carried out by the EM algorithm
as introduced in Chapter 3.1.

5.3.1 Expectation Step

We aim to estimate the parameters that maximize the expectation Q of the
log-likelihood log[L(O, Y |λ)] of the complete data with respect to the hidden
sequence Y . According to [10] (Chap. 4.2) the expectation value Q can be
rewritten as

Q(λ, λ0) =
∑

Y ∈SM+1

P(O, Y |λ0)log[P(O, Y |λ)],

where S denotes the state space of the hidden states. As described in Chap-
ter 3.1 this form will allow us to find very efficient maximizers. To simplify
notation we will use λ = (π, P, µ,D,B) for the a posteriori parameters and
λ0=(π0, P 0, µ0, D0, B0) for the a priori parameters. The expected likelihood
has a similar shape as (3.9)

Q(λ, λ0) =
∑
i∈S

([
log[πi] + log[ρ0(O0|i)]

]
αi(t0)βi(t0)

+
M∑

m=1

log[ρ(Om, µi, Di, Bi)]αi(tm)βi(tm)
)

+
∑
i,j∈S

M−1∑
m=0

log[Pij ] αi(tm) P 0
ij ρ(Om+1, µ

0
j , D

0
j , B

0
j ) βi(tm).
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The modification only affects the output probability in ρ and ρ0. The param-
eter estimation of ρ0 is omitted since only one data point O0 is concerned.
An estimator for ρ0 would be a Dirac-delta distribution.

δ(x) =
{

1 x = O0

0 else

5.3.2 Maximization Step

To maximize the functional Q we have to determine the partial derivatives
with respect to the particular parameters and find the roots. We obtain the
maximum likelihood estimators for the hidden process π and P from the
standard Baum-Welch formulas (3.10), the parameters of the output pro-
cess are determined by the partial derivatives of Q with respect to µi, Di

and Bi. Since only the term
∑M

m=1 log[ρ(Om, µi, Di, Bi)]αi(tm)βi(tm) de-
pends on these parameters, we can neglect the remaining terms. The term∑M

m=0 log[ρ(Om, µi, Di, Bi)] is exactly the log-likelihood from (4.7). Under
consideration of the forward backward variables we obtain the estimators:

µ̂i =
X1X2 −X3X4

X1X4 −X3X5
,

D̂i =
∑M

m=1(Om −Om−1)(Om−1 − µ) αi(tm)βi(tm)

−τ
∑M

m=1(Om−1 − µ)2 αi(tm)βi(tm)

B̂i =
∑M

m=1(−Om +Om−1 −D(Om−1 − µ)τ)2 αi(tm)βi(tm)

τ
∑M

m=1 αi(tm)βi(tm)

(5.3)

with

X1 =
∑M

m=1(Om −Om−1) αi(tm)βi(tm), X2 =
∑M

m=1(O
2
m−1) αi(tm)βi(tm),

X3 =
∑M

m=1(Om −Om−1)Om−1 αi(tm)βi(tm), X4 =
∑M

m=1Om−1 αi(tm)βi(tm),

X5 =
∑M

m=1 αi(tm)βi(tm).

The resulting EM algorithm is a modification of the Baum-Welch al-
gorithm for HMMs with Gaussian output. The only difference lies in the
maximization step due to the reestimation formulas (5.3). The EM-iteration
is summarized in Algorithm 5.1 below.

5.4 Enhancements and Application

The HMMSDE as defined here is restricted to one-dimensional time series.
This approach has been enhanced in a recent publication [41], where the
HMMSDE turned out to be a special case of an HMM with output governed
by a second order Langevin dynamics. The process given by (2.16) is also
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Algorithm 5.1 EM algorithm for HMMSDE
Require: Time series O, initial guess of parameters λ0, accuracy ε.

(1) Set λ̃ := λ0.
(2) Compute forward-backward variables via (3.2).
(3) Reestimation: determine λ according to (5.3).
(4) Compute ∆L = log[L(O|λ)]− log[L(O|λ̃)] via (3.4).
if ∆L > ε then

Set λ̃ := λ.
Go to step (2)

end if
return λ

referred to as high-friction Langevin process. For this more general model
have been derived multi-dimensional parameter estimates and furthermore
in this approach no Euler discretization as in Section 4.1.1 was required any
more.

In case of full observability the optimal estimators have been derived in
section 4.3. For the partially observable case the HMMSDE results as a
special case of the HMM-Langevin. The optimal estimators are specified in
Theorem 3.1 of [41].

The HMMSDE as presented here allows for varying time steps if the
hidden process of the HMM is modified as described in Section 7.1. For
multivariate time series we can use one-dimensional projections and com-
bine them as proposed in [25]. Assume that we already applied HMMSDE
to several one-dimensional observation time series of the system under con-
sideration, but to each one independently. Suppose that the different time
series simply are resulting from different projections of the full time se-
ries in state space. In this situation one may be interested in combining
the hidden states from each of the single projections into “higher dimen-
sional” metastable states of the system. This can be done by analyzing
the Viterbi paths derived from the single one-dimensional observation time
series: Suppose we are concerned with J one-dimensional time series and
therefore J Viterbi paths. The J Viterbi paths can be understood as a J-
dimensional discrete time series. Every state of this time series lies in the
discrete state space consisting of all possible combinations of the metastable
states of the single one-dimensional time series. We obviously can take this
time series, compute its transfer matrix by counting transitions between its
discrete states, determine the dominant eigenmodes of this transfer matrix,
and again apply PCCA to identify metastable decompositions of the dis-
crete state space. The sets in such a metastable decomposition have to be
interpreted as aggregates of the metastable states from the low-dimensional
time series where the aggregation is done based on additional insight com-
ing from the combination of all of the low-dimensional information. This
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concept leads to the algorithm 5.2.

Algorithm 5.2 Metastability analysis of multi-dimensional time series with
HMMSDE
Require: Multi-dimensional time series O0, ..., OM .

(1) Determine model parameters and Viterbi paths for each one-
dimensional observation time series.
(2) Combine the Viterbi paths and compute the transfer matrix in the
discrete state space of combined metastable states.
(3) Determine metastable decompositions via PCCA.
return Metastable sets.

5.5 Illustrative Example: Three-Hole Potential
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Figure 5.2: Potential V used for illustrative example. We observe three wells in the
potential landscape (see colorbar). The tags indicate the minima and saddle points of the
potential; the numbers give the value of the potential at these points. We observe that the
leftmost minimum is the deepest well separated by the most pronounced energy barrier
from the two other ones.

In the following example we will test how HMMSDE performs in the
analysis of time series exhibiting similar features to molecular dynamics time
series. However, the potentials describing molecular force field are in general
more complex. Here we use for illustrative means the three-hole potential
V illustrated in Figure 5.2 (thus setting d = 2). Figure 5.3 shows typical
realizations of the Smoluchowski process associated with this potential (set-
ting σ = 0.131). We observe that the vicinity of the wells in the potential
energy landscape can approximately be identified with the metastable sets
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of the process; it is well-known from large deviation theory that in fact, for
small enough noise intensity, the vicinity of the wells of the potential energy
landscape is formed by the metastable sets of Smoluchowski processes (at
least such wells that are separated from each other by significant energy
barriers) [42].
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Figure 5.3: Typical realization of the Smoluchowski dynamics (both components
(left/right) of the state versus time) in the potential energy landscape V shown in Fig-
ure 5.2 for σ = 0.131.

Next, we discretized the transfer operator of the process (fine grid with
100× 100 discretization boxes in discretization domain [−3, 3]× [−3, 3]) for
different values of τ which results in the dominant eigenvalues listed in Table
5.1.

σ(P (τ)) λ1 λ2 λ3 λ4

τ = 0.01 1.000 0.999 0.997 0.959
τ = 0.10 1.000 0.994 0.975 0.656
τ = 1.00 1.000 0.937 0.776 0.015

Table 5.1: Leading four eigenvalues of transfer operator P (τ) for different values of τ for
Smoluchowski motion with potential and parameters as described in the text.

While the eigenvector of the largest eigenvalue is constant, the corre-
sponding second and third eigenvectors of P (τ) are shown in Figures 5.4
(they are identical for all values of τ because of the semi-group property).

Having computed the dominant eigenvectors we can determine the op-
timal metastable decomposition by means of PCCA as introduced above.
The results on the spectrum (see τ = 0.1 for example) exhibit a hierarchy
of metastability that is in perfect agreement with the general insight on
metastability of Smoluchowski motion: We can apply PCCA to the first
two eigenvectors of the transfer operator; this results in the metastable de-
composition that distinguishes between the vicinity of the deepest well and
the remaining state space (see Figure 5.5, left). When applying PCCA to
the first three eigenvectors, however, the resulting metastable decomposi-
tion identifies the vicinities of all three wells as the metastable regions of
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Figure 5.4: Second and third eigenvectors of the transfer operator for Smoluchowski pro-
cess in potential of Figure 5.2 (details see text).

the system (cf. Figure 5.5, right). This outcome is desirable and typical:
metastable decomposition via spectral properties of the transfer operator
are hierarchical in the sense that the process of including more and more
leading eigenvalues uncovers finer and finer details of metastability within
the system, see [66, 42].

So, what happens if we take the first four eigenvectors? This we can
immediately understand by comparing the values of the functional meta for
the optimal metastable decompositions Dm into m = 1, 2, 3, 4 sets (τ = 1)
as given in Table 5.2: Between m = 3 and m = 4 there is a significant
drop in metastability indicating that it makes no real sense to speak of four
metastable sets for the system under consideration.

m 1 2 3 4
meta(Dm) 1.000 0.967 0.899 0.613
1
k

∑m
k=1 λk 1.000 0.969 0.904 0.682

Table 5.2: Metastabilities of the optimal metastable decomposition Dm into m = 1, 2, 3, 4
sets (as computed by PCCA from the dominant eigenvectors) and its theoretical upper
bound [39].

We now assume a time series (X(t))t=t0,...,tM with tk − tk−1 = τ = 0.01
and M = 105 being given in the test system introduced above. For given
t = t0, ..., tM let Om = X(tm) ∈ R2 be the full state of the system.

For this choice of τ the transfer operator P (τ) = exp(τL) of the Smolu-
chowski motion considered above has the following dominant eigenvalues

σ(P t) = {1.000, 0.999, 0.997, 0.959, . . .}.

Let us consider the two observation time series (O(j)
m )m=0,...,M , j = 1, 2,

with O(j)
m = Xj(tm) (the first and second components of the state of system).

We first apply HMMSDE to observation time series (O(1)
m ) (see Figure 5.6

for illustration) and set N = 3. Eleven iterations of the EM algorithm result
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Figure 5.5: Optimal metastable decomposition resulting from PCCA based on the first
two (left) and first three (right) eigenvectors of the transfer operator.
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Figure 5.6: Observation time series (O
(1)
m ). Left: Entire time axis. Right: Magnification

clearly exhibiting metastability and overlapping. Color/grey scale due to Viterbi path
(see text below).
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in the following transition matrix

P =

 0.9983 0.0013 0.0004
0.0017 0.9983 0.0000
0.0008 0.0000 0.9992

 .

that has the spectrum

σ(P ) = {1.000, 0.999, 0.997},

which perfectly agrees with the results of the transfer operator approach
(that is based on the full two-dimensional information instead of on the
reduced observation time series). The HMMSDE results for the parameters
of the potential and the noise intensities are given in the table below and
are in very good agreement with the results to be expected.

parameter j = 1 j = 2 j = 3
µ(j) 0.0552 1.0169 -0.9584
σ(j)2 0.1325 0.1321 0.1302
D(j) 0.5589 1.0507 0.9324

Table 5.3: Parameters of HMMSDE for training with (O
(1)
m ).
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Figure 5.7: Observation time series (O
(2)
m ). Left: Entire time axis. Right: Magnification

clearly exhibiting metastability and overlapping. Color/grey scale due to Viterbi path
(see text below).

Next we apply HMMSDE to observation time series (O(2)
m ) (see Fig-

ure 5.6) and set N = 3. Nine iterations of the EM algorithm result in the
following transition matrix

P =

 0.9987 0.0013 0.0000
0.0014 0.9981 0.0005
0.0000 0.0007 0.9993

 .

with spectrum
σ(P ) = {1.000, 0.999, 0.997}.
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parameter j = 1 j = 2 j = 3
µ(j) 1.5526 -0.0084 -0.6693
σ(j)2 0.1318 0.1347 0.1343
D(j) 1.0607 0.5018 1.1037

Table 5.4: Parameters of HMMSDE for training with (O
(2)
m ).

The HMMSDE results now are again in good agreement with the results to
be expected.

Next we compute the Viterbi paths for the two HMMSDE results based
on (O(1)

m ) or (O(2)
m ) respectively. This renders the assignment to metastable

states as illustrated in Figs. 5.6 and 5.7, and in a two-dimensional repre-
sentation in Figure 5.8. We observe that the agreement of the assignment
with the metastable states resulting from the transfer operator approach
(see Figure 5.4) is good. However, as the picture shows, the assignment
of the points in the transition regions gets ambiguous. The algorithm for
combining the results of our two different projections (as of page 20) yields
the results shown in Figure 5.9, where all points which are not clearly as-
signed to any of the metastable states are identified as belonging to some
”transition state”.
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Figure 5.8: Visualization of the assignment of states to the three metastable states as

resulting from the Viterbi paths computed via HMMSDE based on (O
(1)
m ) (left) and (O

(2)
m )

(right).
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Figure 5.9: Visualization of the assignment of states to the three metastable states (points
of three different grey tones) and transition states (black crosses) as resulting from the
clustering of both one-dimensional Viterbi paths computed according to the transfer op-
erator approach.

52



6 Parameter Estimation for Markov Jump Pro-
cesses

In this section we will define a maximum likelihood estimator for a time-
continuous Markov chain. For the sake of illustration we firstly assume that
the discrete Markov process X(t0) = Y0, ..., X(tM ) = YM is directly observ-
able. In the next Chapter the Markov jump process will be combined with
HMMs either as output process in section 7.2 or as hidden process in section
7.1. In the latter case even the discrete data points are hidden. However,
for the time being we assume the data points Y0, ..., YM to be known and are
interested in the underlying time-continuous Markov process. To determine
a maximum likelihood estimator we will first set up the likelihood function.

We will begin with the likelihood of a discrete Markov chain Y0, ..., YM

and then develop the likelihood for a continuous Markov process, which is of
course only partially (namely at discrete time points) observable. Next we
will state an EM algorithm for the parameter estimation of a Markov jump
process and finally compare it with two other estimation approaches.

Figure 6.1: Time-continuous Markov process Z with discrete observed data points
Ym−1, Ym and Ym+1.

6.1 Discrete Likelihood

Let t0, ..., tM be a series of time points and Ym,m = 0, ...,M be a discrete
Markov chain. The log-likelihood function in this case is simply

L(Y ) =
M−1∑
m=0

log[PYmYm+1 ] =
∑
i,j∈S

log[Pij ]Cij , (6.1)
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where C denotes the frequency matrix

Cij =
M−1∑
m=0

11{Ym=i,Ym+1=j}. (6.2)

Taking into account that
∑

j Pij = 1 holds, the MLE for the discrete Markov
chain can be easily identified by counting the relative frequencies:

P̂ij =
Cij∑
j Cij

. (6.3)

But for a discrete Markov P̂ chain it is not clear whether or not an underlying
continuous process P (t) exists, such that for certain time increments ∆t P̂ =
P (∆t) holds (see 2.1.2). In particular we are interested in the underlying
continuous Markov process X(t) with X(tm) = Ym for a discrete Markov
chain Y . Therefore a reformulation of the likelihood in terms of P (t) =
expm(tL) is required

log[L(Y )] =
M−1∑
m=0

log[expm((tm+1 − tm)L)YmYm+1 ]. (6.4)

For the sake of simplicity we assume equidistant time points tm+1 − tm =
τ,∀m. This way we can write (6.4) as

log[L(Y )] =
∑
i,j∈S

log[expm(τL)ij ]Cij . (6.5)

In case of different time increments τk we have to compute a frequency
matrix for each τk and sum up (6.5) over k.

Even for this simplified case, the derivative of (6.5) with respect to the
entries of L

∂

∂L
log[L] =

∞∑
n=1

n∑
q=0

τn

n!
(L)q−1Z(L′)n−q,

has such a complicated form that the root can not be found analytically.
Hence no analytical expression for the MLE with respect to L is available.
The notation L′ denotes here the transpose of the matrix L and Z is a
matrix with entries Zij = Cij/ exp (τL)ij .

6.2 Continuous Likelihood

The authors of [3, 11] took as a remedy the likelihood of the whole continuous
process X(t){t∈[0,T ]} into account. Let [0, T ] be the entire time interval,
t0 = 0 < t1 < ... < tM = T the time points at which the process is observable
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and t0 ≤ τ1 < ... < τM ′ ≤ T the number of jump times at which the Markov
jump process performs the state transitions. In (2.1) the probability density
for a single jump was stated. If the whole process contains M ′ jumps the
likelihood results as

L(X) =
M ′∏

m=0

(
KX(τm)X(τm+1)λ exp (−(τm+1 − τm)λ)

)
exp (−(T − τM ′)λ) .

(6.6)
The last term exp (−(T − τM ′)λ) comprises the probability density that no
jump between the last jump time τM ′ and T occurs. Now we set

Nij(τm+1 − τm) = {Number of jumps from i to j within [τm, τm+1]} (6.7)

and
Ri(τm+1 − τm) =

∫ τm+1

τm

11X(s)=i ds. (6.8)

Since τm and τm+1 are consecutive jump times, (6.7) is either 0 or 1 and
(6.8) is either 0 or τm+1 − τm. For arbitrary time points (6.7) denotes the
number of transitions i→ j in that time interval and (6.8) the sojourn time
in i. The likelihood becomes

L(X) =
M ′∏

m=0

( ∏
i,j∈S

(Kijλ)Nij(τm+1−τm)
∏
i∈S

exp (−Ri(τm+1 − τm)λ)
)

∏
i∈S

exp (−Ri(T − τM ′)λ) .

Since [τm, τm+1],m = 0, ...,M ′ − 1 and [τM ′ , T ] is a disjoint decomposition
of [0, T ] and further the Nij(τm+1 − τm) as well as the Ri(τm+1 − τm) are
independent for each m, (6.7) and (6.8) are additive. We get

L(X) =
∏

i,j∈S

(Kijλ)Nij(T )
∏
i∈S

exp (−Ri(T )λ) .

Finally unify both products,

L(X) =
∏

i,j∈S

(Kijλ)Nij(T ) exp (−Ri(T )λKij)

exploit (2.3) and obtain the likelihood function in terms of the generator
matrix L:

L(X) =
∏

i,j∈S

(Lij + δijλ)Nij(T ) exp (−(Lij + δijλ)Ri(T )) . (6.9)

If we make furthermore the assumption that no self transitions occur in the
Markov jump process, that is no jumps from i to i take place, we can write
instead of (2.3)

L = Λ(K̃ − Id).
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K̃ is a stochastic matrix with K̃ii = 0,∀i ∈ S and jump rate λ turned into
a diagonal matrix Λ = diag(λi)i∈S . In this case Nii(T ) = 0 and Lii = −λi

holds, thus we obtain exactly the likelihood from [11]

L(X) =
∏

i, j ∈ S
j 6= i

(Lij)Nij(T ) exp (−(Lij)Ri(T )) . (6.10)

Remark 6.1. Since for the maximum likelihood estimation the derivatives of
the likelihood with respect to Lij , i 6= j suffice, we obtain the same estima-
tors regardless whether (6.9) or (6.10) was taken.

To obtain the maximum likelihood estimator we derive the log-likelihood

log[L(X)] =
∑

i, j ∈ S
j 6= i

Nij(T )log[Lij ]− (Lij)Ri(T )

with respect to Lij and find the root

Nij(T )
Lij

−Ri(T ) = 0.

The MLE is simply

L̂ij =
Nij(T )
Ri(T )

. (6.11)

The estimator for the diagonal entries follows simply from the generator
constraint

L̂ii = −
∑
j 6=i

L̂ij .

6.3 Finding an Optimal Generator under Partial (Discrete)
Observation

The likelihood (6.10) takes the whole continuous process X(t) into account.
If we want to estimate the Maximum likelihood estimator with respect to
discrete data Y0 = X(t0), ..., YM ′ = X(tM ′), we can not compute (6.11)
since neither N nor R are available. On the other hand the discrete like-
lihood function (6.1) does not allow for an analytical maximum likelihood
estimator.

In short, we want to maximize the likelihood L(Y |L) = P(Y |L), which
is the marginal distribution of the continuous likelihood L(X|L) = P(X|L),
but we can only observe the discrete data points Y .

A standard technique to determine the MLE under partial observability
is the EM algorithm (see Chap. 3.1). As a first step we will show that
L(Y |L) is indeed the marginal distribution of L(X|L).
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In the following let Y denote the discrete Markov chain, X the continuous
process and Z = X\Y the continuous process between the observable data
points Y (see also Figure 6.1).

Ym = X(tm), m = 0, ...,M ′; t0 = 0, tM ′ ≤ T the discrete observed random variables
X(t), t ∈ [0, T ] the entire continuous process
Z = X(t), t ∈ [0, T ]\{t0, ..., tM ′} ”the hidden continuous random variables”
Z Zt σ − algebra over S Filtration generated by Z

Theorem 6.1. With the above notation as well as (6.1) and (6.10) holds

L(Y |L) =
∫

z∈Z
L(z, Y |L)dz.

Proof. To show that (6.1) is the marginal distribution of (6.10), we integrate
over all realizations Z of the continuous process between the observables Y .
Due to the Markov property we have

P(Y |L) =
M ′−1∏
m=0

P(Ym+1|Ym, L).

On the right side even inter-independence between the intervals

Z(tm,tm+1) = Z(t) : t ∈ (tm, tm+1).

is fulfilled. Hence it is factorizable analogously:∫
z∈Z

P(z, Y |L)dz =
M ′−1∏
m=0

∫
z∈Z(tm,tm+1)

P(z, Ym+1|Ym, L)dz.

Thus it is sufficient to show for each interval that

L(Ym+1|Ym, L) =
∫

z∈Z(tm,tm+1)

L(z, Ym+1|Ym, L)dz,

wherein Z(tm,tm+1) denotes the filtration Z restricted on the interval (tm, tm+1).
For this purpose we assume that during the time interval [tm, tm+1] occur

M ′ jumps. By construction of a Markov jump process a realization Z is fully
determined by the jump times τ1, ..., τM ′ together with the states Z(τm)
visited at the times τm, for m = 1, ...,M ′. We set tm = τ0 < τ1 < ... <
τM ′ ≤ tm+1 and are now able to formulate L(z, Ym+1|Ym, L) as

P(Ym+1, Z((tm, tm+1))|Ym)

=
M ′−1∏
n=0

KZ(τn)Z(τn+1) λ exp(−(τn+1 − τn)λ) exp(−(tm+1 − τM ′)λ)

=

(
M ′−1∏
n=0

KZ(τn)Z(τn+1)

)
λM ′

exp(−(tm+1 − tm)λ),
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(cf. 6.6). All possible realizations from Z(tm,tm+1) with M ′ jumps are ob-
tained by integrating over all possible jump times τ1, ..., τM ′ and further by
summing up over all possible states Z(τ1), ..., Z(τM ′).∫ τM′+1

tm

...

∫ τ2

tm

∑
Z(τ1)∈S

...
∑

Z(τM′ )∈S

(
M ′−1∏
n=0

KZ(τn)Z(τn+1)

)
︸ ︷︷ ︸

KN
YmYm+1

λM ′

exp(−(tm+1 − tm)λ)dτ1...dτM ′

= KN
YmYm+1

λM ′
exp(−(tm+1 − tm)λ)

∫ τM′+1

tm

...

∫ τ2

tm

dτ1 ... dτM ′

= KN
YmYm+1

(λ(tm+1 − tm))M ′

M ′!
exp(−(tm+1 − tm)λ)

In the underbraces the discrete version of the theorem of Chapman-Kolmogorov
([15], p.330) was used and in the second equation the independence of the
jump times τn from the states Z(τn), resp. Ym was exploited. This way we
have determined the likelihood for all possible realizations with M ′ jumps.
Eventually summing up this likelihood over M ′ = 0, ...,∞ leads to the
marginal distribution:

∞∑
M ′=0

(Kλ(tm+1 − tm))N
YmYm+1

M ′!
exp(−(tm+1 − tm)λ)

= expm ((tm+1 − tm)λ(K − Id))YmYm+1

= expm ((tm+1 − tm)L)Ym,Ym+1
= L(Ym+1|Ym, L).

To maximize the discrete likelihood we introduce again the expected
log-likelihood

Q(L,L0) = E
[
log[L(X|L)]|Y, L0

]
=

∫
log[L(X|L)] L(Z|Y, L0).

To build the expectation was chosen L(Z|Y, L0) as prior probability measure.
This is the main difference to the Baum-Welch algorithm, where the prior
probability measure was L(O, Y |λ0) instead of L(Y |O, λ0). The observables
are the argument not the condition of the likelihood. However, both terms
differ only by the factor L(O|λ0), which is independent on the hidden vari-
ables. The analog prior probability measure in the time-continuous Markov
process context would be L(Z, Y |L0) = L(X|L0). That the EM algorithm
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still works if L(Z|Y, L0) is taken will be proven later in Chapter 7.1. If we
insert (6.10) now into the Q-functional we obtain

Q(L,L0) =
∫ d∑

i=1

∑
j 6=i

log[Lij ] Nij(T ) L(Z|Y, L0)dZ

−
∫ d∑

i=1

∑
j 6=i

Lij Ri(T ) L(Z|Y, L0)dZ

=
d∑

i=1

∑
j 6=i

log[Lij ] E [Nij(T )|Y, L0]

−
d∑

i=1

∑
j 6=i

Lij E [Ri(T )|Y, L0] .

(6.12)

6.3.1 The Expectation Step

The non-trivial task which remains will be to evaluate the conditional ex-
pectations E [Nij(T )|Y, L0] and E [Ri(T )|Y, L0] respectively. In the follow-
ing two different approaches for that will be discussed. The first one is due
to [11] and [3], the second one was presented in [56] and [36]. The first step
towards their computation is the observation that by the Markov property,
the homogeneity of the Markov jump process and a constant time lag τ the
conditional expectations in (6.12) can be expressed as sums

E [Ri(T )|Y, L0] =
d∑

k=1

d∑
l=1

Ckl E [Ri(τ)|X(τ) = l,X(0) = k, L0] ,

E [Nij(T )|Y, L0] =
d∑

k=1

d∑
l=1

Ckl E [Nij(τ)|X(τ) = l,X(0) = k, L0] ,

(6.13)

where C denotes the frequency matrix (6.2).

Remark 6.2. In (6.13) we have assumed a constant time lag τ . If the time
lags are different, say τ1, ..., τn, we have to sum up the expressions above
(6.13) over τ1, ..., τn. Note that also the frequency matrix depends on the
time lag Ckl(τ), for τ = τ1, ..., τn.

Before we will elucidate the two proposed methods for the computation
of the expectation values, we will describe in more detail the meaning of
these expectations.

Recall the definition of R (6.8). The expected sojourn time is

E [Ri(t)|X(t) = l,X(0) = k, L0] =
∫ t

0
P(X(s) = i|X(t) = l,X(0) = k, L0) ds.
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Due to the Markov property and the Bayesian theorem this can be trans-
formed to∫ t

0

P(X(s) = i|X(0) = k, L0)P(X(t) = l|X(s) = i, L0)
P(X(t) = l|X(0) = k, L0)

ds

=
∫ t

0

Pki(s)Pil(t− s)
Pkl(t)

ds,

with P (s) = expm(sL0). To compute the expectation value for N we specify
at first the probability for a direct jump from i to j at the time s, given
that the process is in the state k at 0 and in the state l at t. For a regular
Markov jump process we can express this probability as limit from the left

lim
ν→s

P(X(ν) = i,X(s) = j|X(t), X(0) = k, L0).

Note that at the time s a direct jump from i to j is claimed. The regularity
conditions in Definition 2.2, in particular the right continuity, prevent in-
stantaneous state transitions, therefore the probability is expressible by the
limit above. In this way we can state

E [Nij(t)|X(t) = l,X(0) = k, L0]

= lim
ν→s

∫ t

0
P(X(ν) = i,X(s) = j|X(t), X(0) = k, L0) dt

= lim
ν→s

∫ t

0

P(X(ν) = i,X(s) = j,X(t)|X(0) = k, L0)
P(X(t) = l|X(0) = k, L0)

ds

= lim
ν→s

∫ t

0

P(X(ν) = i|X(0) = k, L0) P(X(s) = j|X(ν) = i, L0) P(X(t)|X(s) = j, L0)
P(X(t) = l|X(0) = k, L0)

ds.

As mentioned above, limν→s P(X(s) = j|X(ν) = i, L0) denotes the proba-
bility for a direct jump, thus it is given by (2.1) instead of (2.4). Altogether
we get

lim
ν→s

∫ t

0

Pki(ν) λ exp(−λ(s− ν)) Kij Pjl(t− s)
Pkl(t)

ds

=
∫ t

0

Pki(s) λ Kij Pjl(t− s)
Pkl(t)

ds

=
∫ t

0

Pki(s) L0ij Pjl(t− s)
Pkl(t)

ds.

In the last equation the relation (2.3) was exploited.
These integrals can be solved analytically under certain conditions, but

first we will have a closer look at the first approach, in which the expectations
are propagated as system of ODEs. The conditional expectations in the right
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hand sides in (6.13) can be decomposed further by using the identities

E [Ri(t)|X(t) = l,X(0) = k, L] =
E
[
Ri(t) 11X(t)=l|X(0) = k, L

]
Pkl(t)

,

E [Nij(t)|X(t) = l,X(0) = k, L] =
E
[
Nij(t) 11X(t)=l|X(0) = k, L

]
Pkl(t)

.

(6.14)

Finally the auxiliary functions defined by

M i
kl(t) := E

[
Ri(t) 11X(t)=l|X(0) = k, L

]
,

F ij
kl (t) := E

[
Nij(t) 11X(t)=l|X(0) = k, L

]
satisfy systems of ordinary differential equations. The vectors M i

k(t) =
(M i

k1(t), . . . ,M
i
km(t)) and F ij

k (t) = (F ij
k1(t), . . . , F

ij
km(t)) respectively satisfy

the two systems of ODEs

d

dt
M i

k(t) = M i
k(t)L+Ai

k(t), M i
k(0) = 0

with Ai
k(t) = Pki(t)ei,

d

dt
F ij

k (t) = F ij
k (t)L+Aij

k (t), F ij
k (0) = 0

with Aij
k (t) = LijPki(t)ej ,

(6.15)

where ei and ej are the i-th and j-th unit vectors. To summarize, the
computation of the function Q(L,L0) in the E-step reduces to solving the
systems of ODEs given in (6.15). Solving these ODEs numerically, however,
causes prohibitive computational costs when the number of states of the
system is large. Another option is to approximate the matrix-exponentials
which are involved in the analytic solutions of (6.15)

M i
k(t) =

∫ t

0
Ai

k(s) exp((t− s)L)ds,

F ij
k (t) =

∫ t

0
Aij

k (s) exp((t− s)L)ds

via the so-called uniformization method [61]. Choose α = maxi=1,...,d{−Lii},
and define B = Id+ α−1L. Then M i(t) = (M i

kl(t))k,l∈S is given by

M i(t) = exp(−αt)α−1
∞∑

n=0

(αt)n+1

(n+ 1)!

n∑
j=0

Bj(eie′i)B
n−j ,

and F ij(t) = (F ij
kl (t))k,l∈S by

F ij(t) = Lij exp(−αt)α−1
∞∑

n=0

(αt)n+1

(n+ 1)!

n∑
j=0

Bj(eie′j)B
n−j ,
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with e′i denoting the transpose of the unit vector ei. However, this expan-
sion is fairly time consuming and for high dimensional matrices intractable.
Moreover the infinite sum has to be cut off at a finite n which entails inac-
curacies.

In [56] and [36] an alternative way to compute the left hand sides in (6.14)
was chosen, which avoids the use of ODEs. It will be explained in detail
now.

It has been shown above that the conditional expectations
E [Nij(t)|X(t) = l,X(0) = k, L] and E [Ri(t)|X(t) = l,X(0) = k, L] can be
expressed in terms of the generator L. Recalling the notation of the transi-
tion matrix P (s) = exp(sL), we have the identities

E [Ri(t)|X(t) = l,X(0) = k, L] =
1

Pkl(t)

∫ t

0
Pki(s)Pil(t− s)ds,

E [Nij(t)|X(t) = l,X(0) = k, L] =
Lij

Pkl(t)

∫ t

0
Pki(s)Pjl(t− s)ds.

(6.16)

The crucial observation is now that a spectral decomposition of the generator
L leads to closed form expressions of the integrals in (6.16). To be more
precise, consider the spectral decomposition of a generator L, that is

L = UDλU
−1

where the columns of the matrix U consist of all eigenvectors to the cor-
responding eigenvalues of L in the diagonal matrix Dλ = diag(λ1, . . . , λm).
Consequently, the expression of the transition matrix P (t) simplifies to

P (t) = exp(tL) = U exp(tDλ)U−1

and we finally end up with a closed form expression of the integrals in (6.16),
that is ∫ t

0
Pab(s)Pcd(t− s)ds =

N∑
p=1

UapU
−1
pb

N∑
q=1

UcqU
−1
qd Ψpq(t), (6.17)

where the symmetric matrix Ψ(t) = (Ψpq(t))p,q∈S is defined as

Ψpq(t) =

{
tetλp if λp = λq

etλp−etλq

λp−λq
if λp 6= λq.

Putting (6.16) and (6.17) together we can compute the expectation values
for N and R by

E [Ri(t)|X(t) = l,X(0) = k, L] =
1

Pkl(t)

N∑
p=1

UkpU
−1
pi

N∑
q=1

UiqU
−1
ql Ψpq(t),

E [Nij(t)|X(t) = l,X(0) = k, L] =
Lij

Pkl(t)

N∑
p=1

UkpU
−1
pi

N∑
q=1

UjqU
−1
ql Ψpq(t).

(6.18)
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6.3.2 The Maximization Step

At last the maximization step of the EM algorithm has to be focussed on.
We have to determine the parameter L such that

∂Q(L,L0)
∂L

= 0.

Since L has to fulfill the generator constraints it suffices to derive (6.12) with
respect to Lij for all i, j 6= i and set the diagonal entries Lii to −

∑
i6=j Lij

afterwards. We obtain

∂Q(L,L0)
∂Lij

=
1
Lij

E [Nij(T )|Y, L0]− E [Ri(T )|Y, L0] .

The root is consequently in analogy to the fully observable case (6.11)

L̂ij =
E [Nij(T )|Y, L0]
E [Ri(T )|Y, L0]

. (6.19)

This reestimation formula is effectively computable by (6.15) or (6.18) re-
spectively. Finally we will give the EM algorithm for a generator estimation
in the pseudocode below (Algorithm 6.1).

Algorithm 6.1 EM algorithm for a generator estimation
Require: Time series Y , initial guess of parameters L0, accuracy ε.

(1) Set L̃ := L0.
(2) Compute the expectation values for transitions and sojourn times
via (6.18) or alternatively by solving the ODEs (6.15), if L0 is not diago-
nizable.
(3) Reestimation: determine L according to (6.19).
(4) Compute ∆L = log[L(Y |L)]− log[L(Y |L̃)] via (6.1).
if ∆L > ε then

Set L̃ := L.
Go to step (2)

end if
return L

6.4 Comparison and Discussion of the Maximum Likelihood
Estimator

Besides the MLE approach literature provides other possibilities to identify
the generator of a Markov jump process from a given time series Y . Two of
them shall be described in the next two sections.

The first one is the resolvent approach, which interpolates the Laplace
transform. It is possible to compute the generator matrix directly from the
resolvent estimator obtained by numerical quadrature.

63



The second one is a quadratic optimization method to determine a gener-
ator whose eigenvalue decomposition corresponds best to the logarithmized
eigenvalue decomposition of a empirical transition matrix. The best corre-
spondence is measured by the lowest Euclidian distance.

6.4.1 Resolvent Method

For any generator L ∈ G the parameter-dependent matrix

R(α) = (αId− L)−1, α > 0 (6.20)

is called the resolvent of L. The inverse exists for all α > 0 since the
real parts of the eigenvalues of a generator L ∈ G are non-positive. An
alternative formula representing the resolvent in terms of the propagator
P (t) = exp(tL) is given by the Laplace transform

R(α) =
∫ ∞

0
exp(−αt)P (t) dt, α > 0. (6.21)

The integral exists since ‖P (t)‖ = 1 holds for all t ≥ 0, and the equivalence
of (6.21) and (6.20) follows from

(αId− L)R(α) = −
∫ ∞

0

d

dt

(
exp(−αt)P (t)

)
dt = Id.

The main idea of the resolvent method is to approximate the resolvent us-
ing its integral representation (6.21) and then to estimate the underlying
generator via the identity

L = αId−R−1(α). (6.22)

Computing the integral in (6.21), however, requires an approximation of
the propagator P (t). Suppose that the process X(t) has been observed
at equidistant time points tk = kτ with some fixed time lag τ > 0 and
k = 0, . . . ,K.

A simple estimate P̃ (k) ≈ P (tk) is provided by

P̃ (k) =
(
P̃

(k)
ij

)
i,j

with entries P̃
(k)
ij =

C
(k)
ij∑d

j=1C
(k)
ij

, (6.23)

with frequency matrix C as defined in (6.2). In the approach of [59] and
[58] these estimates are used to approximate P (t) in the interval [tn, tn+1]
by linear interpolation:

P (t) ≈ P (tn) + (t− tn)
P (tn+1)− P (tn)

τ
≈ P̃ (n) + (t− tn)

P̃ (n+1) − P̃ (n)

τ
.
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Substituting this into the integral representation (6.21) gives

R(α) =
m−1∑
n=0

∫ tn+1

tn

exp(−αs)P (s) ds+
∫ ∞

tm

exp(−αs)P (s) ds

≈
m−1∑
n=0

∫ tn+1

tn

exp(−αs)

(
P̃ (n) + (s− tn)

P̃ (n+1) − P̃ (n)

τ

)
ds

+
∫ ∞

tm

exp(−αs)P (tm) ds.

(6.24)

Since all integrals in (6.24) can be solved analytically, this yields an ap-
proximation R̃(α) ≈ R(α) to the resolvent, and, using equation (6.22), an
estimate L̂(α) = αId − R̃−1(α) for the generator. Of course the estimate
depends on the particular choice of α, but the optimal value of α can be
determined by a maximum likelihood approach; see [59] and [58] for details.

It can easily be shown that for any α the entries L̂(α)
ii of the estimated

generator L̂(α) satisfy the condition L̂
(α)
ii = −

∑
j 6=i L̂

(α)
ij . However, L̂(α) is

in general not a generator in the sense of (2.7), because L̂(α) can contain
negative or even complex off-diagonal elements. This happens if some of
the estimated transition matrices P̃ (n) do not belong to set P. The fact
that L̂(α) 6∈ G is a severe drawback of the resolvent method. This method is
rather designed to estimate a generator that best reflects the given discrete
propagators, which belong indeed (albeit to different) transition semigroups.
It is applied for instance to the molecular sequence analysis and the recon-
struction of phylogenetic trees. However, this method ties up a resolvent
function between several estimators of a transition semi-group but it is not
the method of choice if a generator for a more general transition matrix is
sought-after.

6.4.2 Quadratic Optimization Method

In contrast to the resolvent method, the approach introduced by Crommelin
and Vanden-Eijnden [18] provides an estimate that does belong to the set
G. As in the resolvent approach, first an approximative propagator P̃ (1) ≈
P (t1) = P (τ) is computed by Equation (6.23). Now suppose an eigenvalue
decomposition

P̃ (1) = UΛU−1

with a diagonal matrix Λ = diag(λ1, . . . , λd) containing the eigenvalues ex-
ists, and that λk 6= 0 for all k. Then, the matrix

L̃ = UZU−1 with Z = diag(z1, . . . , zd), zk =
log[λk]
τ

(6.25)
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can be defined, and the approximative propagator can be expressed in terms
of the matrix exponential

exp(τL̃) = exp
(
U log[Λ]U−1

)
= UΛU−1 = P̃ (1).

In spite of this relation, L̃ cannot be considered as a reasonable estimate for
the generator because L̃ 6∈ G in many cases. In order to find an estimate with
the correct structural properties, Crommelin and Vanden-Eijnden propose
to compute the generator L̂ ∈ G which is in maximal accordance with the
eigenvalue decomposition (6.25). This is motivated by the fact that many
properties of a continuous-time Markov chain (such as, e.g., its stationary
distribution) depend strongly on the eigenvalues and eigenvectors of its gen-
erator. Therefore, in [18] the generator is estimated by solving the quadratic
minimization problem

L̂ = argminL∈G

d∑
k=1

(
αk |U−1

k L− zkU
−1
k |2 + βk |LUk − zkUk|2

+ γk |U−1
k LUk − zk|2

)
.(6.26)

Uk denotes here the k-th column of U , U−1
k is the k-th row of U−1, and

αk, βk and γk are normalization constants with suitably chosen coefficients
ak, bk, ck: αk = ak|zkU−1

k |−2, βk = bk|zkUk|−2 and γk = ck|zk|−2. The
problem (6.26) can be solved by quadratic programming (QP). A standard
quadratic optimizer is implemented by the matlab quadprog command after
reformulating (6.26) as

L̂ = argminL∈G
1
2
〈L,HL〉+ 〈F,L〉+ E0

with a tensor H ∈ Rd×d×d×d and a matrix F ∈ Rd×d; see [18] for details.

6.4.3 Pros and Cons

In order to compare these three approaches, we first of all take the compu-
tational complexity into consideration.

The resolvent method requires as input several estimators of the transi-
tion matrices at different time points P (tk), k = 1, ...,K. Their computation
requires an effort of O(K(M + d)), where M is the length of the time series
and d the number of states. The summation over the analytically solved in-
tegrals requires O(MN2) and finally the computation of L from R(α) needs
a matrix inversion and costs thus O(d3). Altogether the effort amounts to
O(TM + d3 +MN2).

For the QP approach suffices one estimated transition matrix O(M +d).
Its eigenvalue decomposition is carried out in O(d3). The more costly part
is the quadratic minimization. The minimization problem has d2−d degrees

66



Resolvent QP MLE
O(TM + d3 +MN2) O(M + d3) O(M + d3)

+ O((d2 − d)3) per iteration + O(d6) per iteration

Table 6.1: Complexity of the three estimation methods.

of freedom and hence is the Hessian a (d2−d)× (d2−d) matrix. For the op-
timization can be used standard algorithms. The matlab routine quadprog
for instance uses active sets methods. Though the speed of convergence for
this algorithm is exponential in the worst case, in the average case it be-
haves linearly in the number of degrees of freedom. Another class of QP
algorithms, the interior point methods, has in the worst case polynomial
complexity and needs even in the average case less iterations than the active
sets methods. But the computational cost in each iteration is significantly
higher. The dominant cost of an iteration in the active sets approach is the
solution of a system of linear equations, which is cubic in the number of
degrees of freedom O((d2 − d)3). A short overview about the complexity of
optimization problem is to be found in [35].

Eventually, in the MLE approach first the frequency matrix in O(M)
and the eigenvalue decomposition of L0 in O(d3) is computed. The costly
part is again the iteration procedure. In each iteration step have to be
computed the expectations for Rkl

i in (O(d3)) and Nkl
ij in (O(d2(d2 − d)))

as prescribed in (6.16) via (6.17), which takes also (O(d2)). Altogether it
amounts to O(d2(d2(d2 − d) + d3)) = O(d6). Finally the reestimation for L
as prescribed in (6.19) by (6.13) needs O(d4) operations. This does not alter
the effort per iteration of O(d6). The speed of convergence depends on the
initial value L0 and on the likelihood landscape. We have little knowledge
about its convergence behavior, but some examples are discussed in [56].

For the sake of lucidity we summarize the complexity in the Table 6.1.
The resolvent method has clearly the lowest complexity, but its severe draw-
back is the fact that L̂ ∈ G is not guaranteed. The complexity of the MLE
and the QP method are both O(d6) per iteration. In most observations
the QP method seemed to have a better convergence rate. However, for
a high-dimensional state space the matlab routine quadprog becomes in-
tractable since a (d2 − d) × (d2 − d) matrix is required as input unlike the
MLE method, where only d× d matrices have to be handled. The accuracy
of the estimators obtained by either method are comparable. For the appli-
cation to HMMs, of course the MLE approach is the method of choice. In
the EM algorithm the maximum likelihood estimation of the discrete transi-
tion matrix is simply replaced by the maximum likelihood estimation of the
generator. The increase of the likelihood is still ensured, this is not the case
in the QP method. In practice the estimators of MLE and QP correspond
at large, but it is still conceivable, that the quadratic optimization yields an
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estimator that decreases the likelihood of the entire HMM.
All of the presented methods provide an estimator for a Markov process.

If it is applied to a time series, which is not a realization of a Markov process
or which is not Markovian at all, the quality of the estimator becomes worse.
It is up to the user to choose the time increment appropriately, such that
non-Markovian effects are avoided.

6.4.4 Perturbation Theory

We have discussed several approaches to estimate a generator matrix L from
a given time series. In this section we will focus on the question how good
a generator can be approximated based on a time series of finite length.

Let Y0, ..., YM be a realization from a Markov process P (τ) = expm(τL).
For the MLE of the transition matrix P̂ (τ), which is obtained from the
relative frequencies (cf. 6.3), the asymptotic behavior is well-known [18, 2]:

√
M(P̂ (τ)− P (τ)) → Q(τ).

Q(τ) is normal distributed with mean 0 and covariance matrix

E
[
Qx,y(τ)Qx′,y′(τ)

]
=
Pxy(τ)
π(x)

(
δ(y, y′)− Px′y′(τ)

)
δ(x, x′).

This way we can determine the distribution of the perturbation error of the
propagator depending on the length of the time series M . If the time series
is long enough and thus the error

ε = P (τ)− P̂ (τ)

is small enough, the condition of Proposition 2.1

τ−1‖P−1(τ)‖‖ε‖ ≤ min
i,j∈S

|Lij |

is fulfilled and hence, the perturbed generator is imbeddable as well. The
error of the generator matrix is bounded by 2.12∥∥∥τ(L̂− L)

∥∥∥ ≤ ‖ε‖
∥∥P−1(τ)

∥∥ .
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6.5 Numerical Examples

6.5.1 Generator Estimation under Perturbation

In this example, we consider the transition matrix P (τ) with τ = 0.2 which
is generated by the matrix

L =



−4.293 0.678 0.301 0.819 0.592 0.149 0.543 0.411 0.774 0.023
0.033 −3.833 0.633 0.260 0.636 0.878 0.485 0.527 0.147 0.231
0.857 0.995 −5.466 0.704 0.532 0.021 0.441 0.920 0.148 0.845
0.682 0.499 0.005 −4.691 0.208 0.923 0.626 0.379 0.639 0.726
0.801 0.430 0.816 0.082 −4.268 0.632 0.077 0.638 0.093 0.694
0.917 0.829 0.690 0.875 0.241 −5.584 0.544 0.173 0.928 0.383
0.388 0.116 0.981 0.077 0.720 0.632 −4.667 0.785 0.485 0.479
0.472 0.598 0.069 0.741 0.400 0.753 0.270 −4.435 0.163 0.967
0.088 0.221 0.045 0.125 0.394 0.769 0.291 0.776 −3.495 0.783
0.925 0.398 0.740 0.443 0.411 0.808 0.822 0.342 0.131 −5.022


.

In order to investigate the impact of perturbations due to, e.g., sampling
from a time series, we estimate a generator based on a perturbed transition
matrix

Pε(τ) = exp(τL) + kε, k = 0, ..., 19,

where ε is the perturbation matrix

ε = 10−5·



4.055 −3.552 1.754 0.805 −4.090 −3.519 4.719 0.047 0.696 −0.917
3.104 −3.508 −1.609 2.874 1.319 −0.671 2.020 1.459 1.272 −6.261
−3.22 −0.978 −2.611 5.673 −3.653 2.386 5.726 −2.478 0.154 −0.993
4.467 −1.238 −5.225 1.944 −1.021 −3.496 2.433 −2.047 2.687 1.497
4.698 −4.188 −1.271 1.949 −4.191 −0.450 −0.850 3.649 −4.336 4.991
4.376 −2.336 −1.603 3.415 1.556 1.850 −4.529 −2.277 4.355 −4.808
1.200 −2.234 5.509 −4.121 −1.151 −0.133 −3.341 −3.631 4.118 3.785
2.836 −1.009 2.731 −3.009 −1.067 −4.559 2.699 2.614 3.194 −4.432
−1.478 4.040 −0.318 −3.722 −0.412 1.249 0.450 −2.992 −2.153 5.336
−1.460 −1.569 5.235 −0.772 −2.618 4.252 −2.006 −0.251 0.705 −1.514


.

The upper panel of Figure 6.2 shows the deviation of the estimated genera-
tors from the unperturbed generator as a function of the perturbation factor
k. The QP-method performs slightly better but both errors ‖L− L̃QP ‖ and
‖L − L̃MLE‖ are of the same order of magnitude. Furthermore, the errors
scale linearly with the perturbation factor k. This observation is plausible
since for small perturbations the logarithm log[P + ε] can be approximated
by log[P ] + P−1ε + o(ε) as stated in equation (2.12). The lower panel of
Figure 6.2 illustrates the behavior of the errors of the estimated transition
matrices exp(τL̃QP ) and exp(τL̃MLE) respectively. A similar reasoning as
above explains the linear scaling.

Finally, we consider the error of the estimated transition matrices exp(τL̃QP )
and exp(τL̃MLE) with respect to the perturbed transition matrix Pε(τ) =
exp(τL)+kε, depicted in Figure 6.3. Notice that the error ‖Pε(τ)−exp(τL̃)‖
is bounded from above, namely

‖Pε(τ)− exp(τL̃)‖ ≤ ‖ exp(τL)− exp(τL̃)‖+ k‖ε‖.

69



Figure 6.2: Upper: Approximation error of the generator estimates L̃QP and L̃MLE with
respect to the unperturbed generator as a function of the perturbation factor k. Lower:
Error of the estimated transition matrices exp(τL̃QP ) and exp(τL̃MLE) with respect to
the unperturbed transition matrix exp(τL) as a function of the perturbation factor k.
Results for τ = 0.2.
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Figure 6.3: Error of the estimated transition matrices exp(τL̃QP ) and exp(τL̃MLE) with
respect to the perturbed transition matrix Pε(τ) = exp(τL) + kε as a function of the
perturbation factor k. The upper bound was computed via L̃MLE .

Indeed Figure 6.3 shows that both errors obey that bound. For the pertur-
bation factors up to k = 5, the matrix logarithm of Pε is still a generator
whereas for k = 6, . . . , 19 the perturbation is apparently high enough to
destroy the generator structure of the matrix logarithm of Pε. Indeed the
condition of Corollary 2.1

τ−1‖P−1(τ)‖‖ε‖ ≤ min
i,j∈S

|Lij |

is fulfilled up to k = 5. However, the accuracy of both methods is again of
the same order of magnitude.

6.5.2 A Metastable Generator

In a second example we investigate a generator matrix with a strong metastable
character. The matrix L consists of two metastable blocks.

L =



−0.9426 0.4860 0.4565 0.0001 0 0
0.2311 −0.2497 0.0185 0 0.0001 0
0.6068 0.7621 −1.3690 0 0 0.0001
0.0001 0 0 −1.3276 0.9218 0.4057

0 0.0001 0 0.6154 −1.5510 0.9355
0 0 0.0001 0.7919 0.1763 −0.9683


For the sake of simplicity has been chosen a small 6× 6-matrix. Typical

realizations of molecular dynamics time series require of course a larger
number of discretization boxes. However, a better insight into the quality
of the estimated parameters provide small test examples.
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The off-block-diagonal entries are close to zero. A perturbation of these
can violate easily the generator condition. And indeed we obtain from a
realization as in Figure 6.4 by counting a transition matrix P̃ , which is not
in P.

Besides from that for sufficiently small τ quasi-zero entries occur also in
the transition matrix P (τ). During the estimation procedure Pij(τ) has to
be inverted for each pair i, j, for which a state transition was observed. If
an entry Pij(τ) is too close to machine accuracy the quality of the estimator
could be perturbed. For an actual zero entry no i → j transition was
observed and hence no inversion is necessary. Consequently, zero entries are
no problem, though quasi-zeros are.

Figure 6.4: Realization from the generator L stated above. The time lag was set constantly
to 1.

P̃ =



0.4716 0.3705 0.1577 0.0002 0.0001 0
0.1423 0.8245 0.0331 0.0001 0 0.0001
0.2483 0.4400 0.3114 0 0.0002 0
0.0001 0.0002 0 0.4357 0.2760 0.2880

0 0.0001 0 0.2891 0.3387 0.3722
0 0.0001 0 0.3180 0.1698 0.5120



log[P̃ ] =



−0.9482 0.4974 0.4505 0.0005 -0.0001 -0.0001
0.2360 −0.2538 0.0178 0.0000 -0.0000 0.0001
0.6041 0.7389 −1.3433 -0.0004 0.0010 -0.0004
0.0002 0.0003 -0.0001 −1.2850 0.8901 0.3945
-0.0000 0.0000 0.0000 0.5793 −1.5392 0.9599
-0.0001 0.0001 0.0000 0.7739 0.1763 −0.9502


The generator estimation by the MLE and the QP method show rather

slight differences. The distance to the original generator is measured by
‖L − L̂‖, in Table 6.2 are listed the distances as well as the likelihood of
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MLE QP
‖L− L̂‖ 0.0723 0.0720
Likelihood -85902 -85903

Table 6.2: Comparison of the distance to the original generator and the likelihood.

Original L -1.9234 + 0.3052i -1.9234 - 0.3052i -1.7001 -0.8611 -0.0002 0
L̂MLE -1.8869 + 0.3309i -1.8869 - 0.3309i -1.6813 -0.8637 -0.0003 0
L̂QP -1.8871 + 0.3309i -1.8871 - 0.3309i -1.6810 -0.8629 -0.0003 0

Table 6.3: Eigenvalues of the generator matrices.

the data. While the distance to the original generator is a little smaller for
the QP-estimator the likelihood is slightly higher for the MLE-estimator.
Table 6.3 contains the eigenvalues that are recovered satisfactory by both
methods.
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7 HMM with Generator Estimation

We will call the combination of the HMM framework with an Markov jump
process HMM-MJP. A Markov jump process can be integrated into an
HMM in two ways: as output process and as hidden process. In this chapter
we will discuss both by means of several examples. In both cases we will
recover an HMM-MJP from time series that were generated themselves by
an HMM-MJP.

Furthermore, HMMs with Markov jump output process will be applied to
metastable time series where each metastable set is expressed by a separate
Markov jump process. This approach will be compared to the estimation of
one large metastable generator matrix in a second example. Eventually we
will compare the HMM-MJP estimation with the HMMSDE approach in a
final example.

The combination of a hidden Markov jump process with different output
processes is possible as well. We will discuss this topic in Section 7.1.2.

There are models in literature that exhibit some similarities to the HMM-
MJP with hidden Markov jump process. For example in [13, 12] a more gen-
eral case of an infinite-dimensional state space is presented. They approach
the problem in a more technical way without specifying an implementa-
tion. The model described in [57] additionally requires the jump times to
be known. For the HMM-MJP presented here, this assumption is not nec-
essary. Also in [62] an HMM is defined, which they call continuous time
Bayesian network. But the design differs from ours as follows: The observ-
ables are discrete points of a Markov jump process and the hidden variables
are the continuous time intervals between the observables. This way a single
Markov process only can be modeled. The generator estimation is similar
to our approach with slight differences in specifying the likelihood function.

7.1 Hidden Markov Jump Process

First, let the Markov jump process be a hidden process. While so far we con-
fined ourselves to estimating the transition matrix of the hidden process, we
next aim at estimating a generator as parameter of a hidden Markov model.
This allows for modeling time-continuity. The observables are random vari-
ables O0, ..., OM . Each Om only depends on the hidden state Ym. However,
Y = Y0, ..., YM is no longer a realization of a time-discrete Markov chain
but consists of discrete data points of a time-continuous Markov process
realization (cf. Figure 7.1). To estimate a generator for the discrete transi-
tions between the hidden states Y we have to face the problem that even
the discrete data points Y0, ..., YM are not observable. We need a twofold
expectation step:

• First, estimate the occupancy probabilities for each time point and
each state. This results in an estimated frequency matrix (or several
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in case of varying time steps respectively).

• Second, use the estimated frequency matrices to maximize (6.12).

The first step is realized by a well-known HMM technique: the forward-
backward algorithm (3.2). For the second step an expectation value for
the frequency matrix is needed. Instead of observable states we only have
occupancy probabilities. That is, the characteristic function 11{Ym=i,Ym+1=j}
from (6.2) is converted to the probability P(O0, ..., OM , Ym = i, Ym+1 = j),
where O0, ..., OM denote the observables. Thus we obtain

Ĉij =
M−1∑
m=1

P(O0, ..., OM , Ym = i, Ym+1 = j) = E [Cij ] . (7.1)

This proceeding leads to a nested EM algorithm: in each estimation step the
estimators for the observable distributions as well as the estimator for the
hidden Markov process with respect to (7.1) are computed. For the latter
estimator another EM algorithm is applied.

Figure 7.1: Hidden Markov model with hidden Markov jump process. The observable data
points are O0..., Om−1, Om, Om+1, ..., OM . The hidden Markov chain is time-continuous.
In the nested EM algorithm, first the discrete hidden states Ym at the time points tm are
estimated, and based on this, the entire hidden continuous process Z ∪ Y .

7.1.1 Concept

Now we focus on a more detailed description of both steps: First, we reca-
pitulate the standard expected likelihood

Q1(λ, λ0) = E
[
log[L(O, Y |λ)]|λ0

]
.

75



For the sake of simplicity a Gaussian is used as output distribution in the
model design. However, the output distribution is exchangeable. The ex-
pected likelihood can be transformed to

E
[
log[L(O|Y, (µk)k∈S , (Σk)k∈S)]|λ0

]
+ E

[
log[L(Y |L)]|λ0

]
, (7.2)

where λ = ((µk)k∈S , (Σk)k∈S , L). The parameters (µk)k∈S and (Σk)k∈S

denote the mean and the covariance matrix of the output process and L the
generator matrix determining the hidden process. For the standard HMM
with discrete transition matrix P the maximum likelihood estimator is

Pij =
Ĉij∑
j Ĉij

,

where Ĉ is the expected frequency matrix as given in (7.1). This is exactly
the reestimation formula for P as stated in the Baum-Welch formulas (3.10).
With the expected frequency matrix the second step is straightforward. As
pointed out in [56], L(Y |λ) can also be formulated as L(C|λ). We restate
the second term of (7.2) as

E
[
log[L(Y |L)]|λ0

]
= log[L(Ĉ|L)]. (7.3)

log[L(Ĉ|L)] is, analogous to (6.1), the discrete likelihood and the marginal
distribution of the continuous likelihood (6.10). The maximization of (7.3)
is now carried out with a second EM algorithm, where in each iteration

Lk+1 = max
L

Q2(L,Lk)

for

Q2(L,Lk) = E
[
log[L(Y, Z|L)]|Ĉ, Lk

]
= E

[
log[L(Y, Z|L)]|Y, Lk

]
is determined. Here Z denotes the continuous process between the discrete
data points t0, ..., tM , while Y = Y0, ..., YM denotes the discrete process at
the specified time points. The expected continuous likelihood Q2 is con-
ditioned on the expected frequency matrix Ĉ and the current parameter
guess Lk. The expected log-likelihoods Q1 and Q2 differ in the conditions:
while Q1 only depends on the parameters λ, Q2 depends on the parameters
L as well as on the observables Ĉ. However, the well-known relation from
EM-theory [5, 22]

Q(λk+1, λk) ≥ Q(λk, λk) ⇒ L(λk+1) ≥ L(λk) (7.4)
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holds in both cases. For the standard HMM case this was shown in [5] by
the following calculation:

log
[

P(O|λk+1)
P(O|λk)

]
= log

[∫
P(O, Y |λk+1) dq

P(O|λk)

]
= log

[∫
P(O, Y |λk)

P(O|λk)
P(O, Y |λk+1)
P(O, Y |λk)

dq

]
≥

∫
P(O, Y |λk)

P(O|λk)
log
[

P(O, Y |λk+1

P(O, Y |λk)

]
dq

=
1

P(O|λk)

∫
P(O, Y |λk)

[
log[P(O, Y |λk+1)]− log[P(O, Y |λk)]

]
dq

=
1

P(O|λk)
[Q1(λk+1, λk)−Q1(λk, λk)] .

In line 4 Jensen’s inequality is applied. Thus, if Q1(λk+1, λk)−Q1(λk, λk) ≥
0, log

[
P(O|λk+1)
P(O|λk)

]
≥ 0 follows immediately. This is equivalent to P(O|λk+1) ≥

P(O|λk). Now we perform the same calculation for the expected likelihood
stated in Q2.

log
[

P(Y |Lk+1)
P(Y |Lk)

]
= log

[∫
P(Y, Z|Lk+1) dZ

P(Y |Lk)

]
= log

[∫
P(Y, Z|Lk)
P(Y |Lk)

P(Y, Z|Lk+1)
P(Y, Z|Lk)

dZ

]
≥

∫
P(Y, Z|Lk)
P(Y |Lk)

log
[

P(Y, Z|Lk+1

P(Y, Z|Lk)

]
dZ

=
∫

P(Z|Y, Lk)
[
log[P(Y, Z|Lk+1)]− log[P(Y, Z|Lk)]

]
dZ

= [Q2(Lk+1, Lk)−Q2(Lk, Lk)] .

The only difference occurs in line 5, where the Bayesian formula was applied
and hence the likelihood measure in the Q-functional becomes conditional
on Y . For both calculations holds: equality is achieved only in a critical
point of L(λ) (resp. L(L)), which is a fixed point of the EM-iteration. In
particular, from

Q2(Lk+1, Lk) ≥ Q2(Lk, Lk) ⇒ L(Ĉ|Lk+1) ≥ L(Ĉ|Lk) (7.5)

also follows an increase of the right term in (7.2). Furthermore, we get a
maximization of the left term of (7.2) by the standard reestimation of the
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output parameters. Altogether, we get

Q1(λ, λ0)
= E

[
log[L(O|Y, (µk)k∈S , (Σk)k∈S)]|λ0

]
+ E

[
log[L(Y |L)]|λ0

]
≥ E

[
log[L(O|Y, (µ0

k)k∈S , (Σ0
k)k∈S)]|λ0

]
+ E

[
log[L(Y |L0)]|λ0

]
= Q1(λ0, λ0),

and with (7.4), L(O|λ) ≥ L(O|λ0) follows. This shows that both EM-
algorithms can be linked without affecting the correctness of the algorithm.
In the next section we will state the implementation for an HMM with a
time-continuous hidden Markov process.

7.1.2 Parameter Estimation

Eventually, we will point out the reestimation procedure following the scheme
as introduced in Section 3.1.

Likelihood. First, we state the joint likelihood of the observable process
O and the hidden continuous process consisting of the discrete time series
Y = Y0, ..., YM and the continuous part Z = Z(t), t ∈ [t0, tM ]\{t0, ..., tM}
between the time points tm

L(O, Y, Z|λ) = P(Y0|λ) ψ(O0|Y0, λ)
M∏

m=1

P(Z(tm−1, tm), Ym|Ym−1, λ) ψ(Om|Ym, λ).

We will denote the output distribution, which can stand for any prob-
ability distribution by ψ(Om|Ym). Here we take a Gaussian. Without loss
of generality ψ(Om|Ym) can also be substituted by ρ(Om|Om−1, Ym) from
Section 5.2.1 or ϕ(Om|Om−1, Ym) from Section 7.2.2.

To make the parameter estimation feasible instead of the time-discrete
transition probability the time-continuous variant from (6.10) will be used.

P(Z(tm−1, tm), Ym|Ym−1 = i, λ) =
∏

k,l∈S,l 6=k

((Li)kl)
Nikl

(tm−tm−1)

exp
(
− ((Li)kl) Rik(tm − tm−1)

)
,

with N and R as specified in (6.7) and (6.8).

Expectation step. Since amongst the random variables O, Y, Z only O is
observable, we have to build the expectation value over Y and Z. We obtain
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the expected likelihood as combination of Q1 and Q2 from the foregoing
Section 7.1.1.

Q(λ, λ0) = EY

[
EZ

[
log[L(O, Y, Z|λ)]

∣∣Y, L0

] ∣∣λ0

]
= EY

[
log[L(O|Y, λ)]

∣∣λ0

]
+ EY

[
EZ

[
log[L(Y, Z|λ)]

∣∣Y, L0

]∣∣λ0

]
=

∑
i∈S

(
(log[πi] + log[ϕ0(O0|Y0)]) αi(t0)βi(t0) +

M∑
m=1

log[ψ(Om|Ym = i)] αi(tm)βi(tm)
)

+

∑
i,j∈S

M−1∑
m=1

(
EZ

[
log[P(Z(tm−1, tm), Ym|Ym−1 = i, λ)]

∣∣Y, L0

]
αi(tm) (P0(tm+1 − tm))ij ψ(Om+1|Ym+1 = j) βi(tm)

)
.

Note that the transition probability, which also enters the forward backward
variables, is no longer independent from the time step. This is indicated by
the time increment in the brackets (P0(tm+1−tm))ij = expm((tm+1−tm)L)ij .
The adapted forward-backward recursion is given by

αi(tm) =
∑

Ym−1∈S

αYm−1(tm−1) PYm−1i(tm − tm−1) ψ(Om|Ym = i) (7.6)

βi(tm) =
∑

Ym+1∈S

PiYtm+1
(tm+1 − tm) ψ(Om+1|Ym+1 = j) βYm+1(tm+1).

Maximization step. The estimators of the output distribution are ob-
tained by the reestimation formulas derived above (e.g. µ and Σ from 3.10).
We will derive now the reestimation formula for L. The part of Q depending
on L is

∑
i,j∈S

M−1∑
m=1

EZ

[
log[P(Z(tm−1, tm), Ym|Ym = i, Ym−1 = i, λ)]|Y, L0

]
αi(tm) (P0(tm+1 − tm))ij ψd(Om+1|Ym+1 = j) βi(tm).

Using the frequency matrix Ĉ from (7.1)

Ĉij =
M∑

m=1

αi(tm) (P0(tm+1 − tm))ij ψd(Om+1|Ym+1 = j) βi(tm),
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the expression above simplifies to

∑
i,j∈S

 ∑
k, l ∈ S
l 6= k

log[Lkl]E [Nkl(τ)|Y, L0]− LklE [Rk(τ)|Y, L0]

 Ĉij .

By applying the frequency matrix a constant time increment τ is assumed.
This is not necessary, but in case of varying time steps a frequency matrix
C for each time increment is required, which is computed by

Ĉij(τn) =
M∑

m=1

αi(tm) (P0(tm+1 − tm))ij ψd(Om+1|Ym+1 = j)

βi(tm) 11{tm+1−tm=τn}.

The root of the partial derivative with respect to Lij leads to the reesti-
mation formula

Lij =

∑
x,y∈S E [Nij(τ)|x, y, L0]Cxy∑
x,y∈S E [Ri(τ)|x, y, L0]Cxy

.

We conclude this section with a summary of the EM algorithm in pseu-
docode notation (see Algorithm 7.1). The output process, here a Gaussian,
is replaceable by several other processes like a Markov jump process (Sec-
tion 7.2) or an Ornstein-Uhlenbeck process (Section 5). However, not every
process can handle varying time lags. The multi-dimensional HMMSDE as
presented in [41] for example requires a time series with a constant time lag.
Thus it can be combined with a hidden Markov jump process, however, only
with equidistant time steps.

7.1.3 Numerical Examples

In the following examples we investigate an HMM with four hidden states
that has a continuous hidden process and Gaussian output. The output
distributions are overlapping considerably. The models in both examples
differ only in the transition matrix from each other. From either model a
time series with 500 000 steps was generated. But we do not take the entire
time series into consideration but only certain time points, such that the
time lag between two observables is one, two or three. The time lags were
chosen at random with probability 0,6 for time lag 1 and 0,2 for time lag 2
and 3, respectively.

Model with generator. As a first example we consider a model with a
transition matrix that has an underlying generator. The output distribu-
tions reveal a noticeable overlap (see Fig. 7.2).
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Algorithm 7.1 EM algorithm for an HMM with hidden Markov jump pro-
cess.
Require: Time series O0, . . . , OM ,

initial guess of parameters λ0 = (π, L, (µi)i∈S , (Σi)i∈S), accuracy ε.
(1) Set λ̃ := λ0.
(2) Compute observation likelihood N (Om, µi,Σi) and forward-backward
variables αi(tm), βi(tm), for i ∈ S,m = 1, ..,M via (7.6).
(3) Compute for each τn a frequency matrix

Ĉkl(τn) =
M−1∑
m=1

(
αk(tm) Pkl(τm) N (Om+1, µl,Σl)

βl(tm+1)11{tm+1−tm=τn}

)
(4) M-Step: Reestimate model parameters:

Estimate L̃ij via Algorithm 6.1.
Estimate output parameters via (3.10).

if L(λ̃)− L(λ0) > ε then
λ0 = λ̃
Go to Step (2).

else
return λ̃.

end if
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Original model parameters

L =


−1.7930 1.4312 0.1865 0.1753
1.4397 −1.4519 0.0072 0.0050
0.0271 0.0517 −0.1083 0.0295
0.0123 0.0095 0.0097 −0.0315


µ1 =

(
1.0
2.0

)
µ2 =

(
2.0
2.0

)
µ3 =

(
1.0
1.0

)
µ4 =

(
2.0
1.0

)
Σ1 =

(
0.5 −0.3
−0.3 0.5

)
Σ2 =

(
0.5 0.3
0.3 0.5

)
Σ3 =

(
0.5 0.0
0.0 0.5

)
Σ4 =

(
0.5 0.0
0.0 0.5

)

Figure 7.2: Original distributions. Two-dimensional data points generated from a hidden
Markov model together with the output distributions for each of the four states as contour
plots.

The EM algorithm requires as input the number of hidden states and an
initial guess of the model parameters. The number of states – four – was
assumed to be known, the initial guess for the HMM estimator was generated
from the data, by drawing the forward-backward variables at random and
run the estimation step once. After 174 iterations the EM converged with
an accuracy of 1e-2. The estimated model is given below (see Fig. 7.3).

82



Figure 7.3: Estimated distributions. Two-dimensional data points generated from a hid-
den Markov model together with the estimated output distributions for each of the four
states as contour plots.

Estimated model parameters

L̂ =


−1.8540 1.4908 0.1836 0.1796
1.4947 −1.5041 0.0094 0.0000
0.0276 0.0533 −0.1081 0.0272
0.0138 0.0077 0.0101 −0.0315


µ̂1 =

(
1.0191
1.9736

)
µ̂2 =

(
1.9892
1.9904

)
µ̂3 =

(
1.0043
1.0029

)
µ̂4 =

(
2.0024
1.0043

)
Σ̂1 =

(
0.5227 −0.3195
−0.3195 0.5291

)
Σ̂2 =

(
0.5084 0.3105
0.3105 0.5058

)
Σ̂3 =

(
0.5069 −0.0037
−0.0037 0.5032

)
Σ̂4 =

(
0.4998 6.0E − 4

6.0E − 4 0.5029

)

Figure 7.4: Evolution of the log-likelihood during the course of the EM-iterations.
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The transition matrix has not been estimated, it is computed from the
generator matrix as

P̂ (1) = expm(L̂).

The proximity to the transition matrix based on the original generator is
evident:

P (1) =


0.398 0.395 0.1041 0.1029
0.3951 0.4902 0.0585 0.0562
0.0298 0.0396 0.9003 0.0302
0.01 0.0099 0.01 0.9701



P̂ (1) = expm(L̂) =


0.3962 0.3985 0.1024 0.1029
0.3974 0.4878 0.0598 0.0550
0.0307 0.0406 0.9006 0.0281
0.0102 0.0092 0.0104 0.9701

 .

Figure 7.4 almost reveals a saddle point in the likelihood. Due to this
behavior it is important to choose the convergence threshold small enough.
However, a comparison of the estimator with the original model shows a
good correspondence. Hence the EM algorithm seems to have converged in
the right (global) maximum of the likelihood. The output distributions are
nearly identical (see Fig. 7.5). The estimators exhibit a good approximation

Figure 7.5: Deviation of the estimator from the original distribution – exemplarily for the
second state.

to the original output parameters and the transition matrix as Table 7.1
shows. Alone the generator matrix reveals a noticeable deviation. Yet a
closer look to the entrywise distances suggests a weighting of the estimators
with the stationary distribution of the several states.

|L− L̂| =


0.0610 0.0596 0.0029 0.0043
0.0550 0.0522 0.0022 0.0050
0.0005 0.0016 0.0002 0.0023
0.0015 0.0018 0.0004 0


84



‖L− L̂‖ ‖P (1)− P̂ (1)‖ ‖P (2)− P̂ (2)‖ ‖P (3)− P̂ (3)‖
0.1144 0.0056 0.0051 0.007

‖µ1 − µ̂1‖ ‖µ2 − µ̂2‖ ‖µ3 − µ̂3‖ ‖µ4 − µ̂4‖
0.0066 0.0157 0.0058 0.0037

‖Σ1 − Σ̂1‖ ‖Σ2 − Σ̂2‖ ‖Σ3 − Σ̂3‖ ‖Σ4 − Σ̂4‖
0.0133 0.0034 0.0077 9.7027e-04

Table 7.1: Unweighted distance of the estimated parameters from the original parameters
in 2-norm.

‖ρ(L− L̂)‖ ‖ρ(P (1)− P̂ (1))‖ ‖ρ(P (2)− P̂ (2))‖ ‖ρ(P (3)− P̂ (3))‖
0.0015 7.1703e-04 0.0012 0.0017

‖ρ1(µ1 − µ̂1)‖ ‖ρ2(µ2 − µ̂2)‖ ‖ρ3(µ3 − µ̂3)‖ ‖ρ4(µ4 − µ̂4)‖
5.1886e-04 0.0014 0.0012 0.0024

‖ρ1(Σ1 − Σ̂1)‖ ‖ρ2(Σ2 − Σ̂2)‖ ‖ρ3(Σ3 − Σ̂3)‖ ‖ρ4(Σ4 − Σ̂4)‖
0.0010 2.9915e-04 0.0015 6.1652e-04

Table 7.2: Distance in 2-norm of the estimated parameters from the original parameters
weighted by the stationary distribution ρ of the Markov chain.

The larger deviations arise in rarely visited states. The stationary distribu-
tion of the Markov chain is

ρ = (0.0784, 0.0885, 0.1978, 0.6354).

The weighting with the stationary distribution is reasonable since for more
frequently visited states more accurate estimators are available. Table 7.2
shows the weighted distances between the original and the estimated pa-
rameters. For comparison, we also compute the generator estimator from
the path of the Markov chain states directly. With 312 EM iterations, an
accuracy of 1e − 2 in the likelihood was achieved. The distance between
estimator and original generator are similar to the HMM estimation (see
Table 7.3).

Model without generator. In the following example we proceed just as
described above but with a different original model. The difference to the
foregoing example is that the transition matrix has one negative eigenvalue

‖L− L̂‖ ‖ρ(L− L̂)‖
HMM Estimation 0.1144 0.0015
Observable Markov Chain 0.1054 0.0028

Table 7.3: Comparison between the generator estimator obtained by HMM estimation
and by direct estimation from the state path.
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and therefore has no underlying generator (cf. Corollary 2.1). The model is
given below, the generated output data is shown in Figure 7.6.

Figure 7.6: Original distributions. Two-dimensional data points generated from a hidden
Markov model together with the output distributions for each of the four states as contour
plots.

Original model parameters

P (1) =


0.0 0.4 0.6 0.0
0.5 0.0 0.0 0.5
0.03 0.07 0.9 0.0
0.08 0.02 0.0 0.9


µ1 =

(
1.0
2.0

)
µ2 =

(
2.0
2.0

)
µ3 =

(
1.0
1.0

)
µ4 =

(
2.0
1.0

)
Σ1 =

(
0.5 −0.3
−0.3 0.5

)
Σ2 =

(
0.5 0.3
0.3 0.5

)
Σ3 =

(
0.5 0.0
0.0 0.5

)
Σ4 =

(
0.5 0.0
0.0 0.5

)
After 272 EM iterations the likelihood has converged up to an accuracy of
1e− 2. Again a quasi saddle point was overcome as Figure 7.8 shows. But
even if we iterate the EM algorithm up to an accuracy of 1e− 7, there is no
big difference in the results. Thus we can assume that the EM algorithm
has converged. The estimated model is given below (see also Fig. 7.7).
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Figure 7.7: Estimated distributions. Two-dimensional data points generated from a hid-
den Markov model together with the estimated output distributions for each of the four
states as contour plots.

Estimated model parameters

L̂ =


−1.9476 1.0969 0.8506 0.0000
1.4270 −2.1983 0.0000 0.7713
0.0003 0.1028 −0.1031 0.0000
0.1094 0.0000 0.0000 −0.1094


µ̂1 =

(
0.9351
2.0973

)
µ̂2 =

(
2.1210
2.1376

)
µ̂3 =

(
1.0047
1.0265

)
µ̂4 =

(
2.0038
1.0271

)
Σ̂1 =

(
0.4914 −0.3007
−0.3007 0.4767

)
Σ̂2 =

(
0.4545 0.2652
0.2652 0.4418

)
Σ̂3 =

(
0.4899 0.0038
0.0038 0.5134

)
Σ̂4 =

(
0.4917 −0.0034
−0.0034 0.5073

)

Figure 7.8: Evolution of the log-likelihood in the course of the EM-iterations.
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‖ρ(P (1))− P̂ (1))‖ ‖ρ(µ1 − µ̂1)‖ ‖ρ(µ2 − µ̂2)‖ ‖ρ(µ3 − µ̂3)‖ ‖ρ(µ4 − µ̂4)‖
0.0231 0.0094 0.0134 0.013 0.01

‖ρ(Σ1 − Σ̂1)‖ ‖ρ(Σ2 − Σ̂2)‖ ‖ρ(Σ3 − Σ̂3)‖ ‖ρ(Σ4 − Σ̂4)‖
0.0019 0.0064 0.0067 0.0033

Table 7.4: Distance in 2-norm of the estimated parameters from the original parameters
weighted by the stationary distribution ρ of the Markov chain.

‖ρ(P (1))− expm(L̂))‖ ‖ρ(L̃− L̂)‖
HMM Estimation 0.0231 0.0258
Observable Markov Chain 0.0053 0.0039

Table 7.5: Comparison between the generator estimator obtained from the HMM esti-
mation and from direct estimation from the state path. For comparison was used the
transition matrix and the nearest existing generator to the spectrum of logm(P (1)). This
generator is denoted by L̃.

In this example the distance between the original transition matrix and
the estimated one is per construction greater than that in the previous ex-
ample since here for the original model does not even exist a generator. The
estimated transition matrix

P̂ (1) = expm(L̂) =


0.2689 0.1927 0.4071 0.1312
0.2462 0.2279 0.1871 0.3388
0.0228 0.0454 0.9104 0.0215
0.0522 0.0186 0.0267 0.9025


has an underlying generator and therefore necessarily another structure. But
the changes mainly affect the zeros in the original matrix and hence states
with a minor part of the stationary distribution. Thus, in Table 7.4 we only
compare the weighted distances.

Finally we compare the generator estimate from the HMM approach
with that one estimated from the observable state path. Since no original
generator is available, we compute following Crommelin and Vanden-Eijnden
[18] that one, which is closest in a spectral sense to the logarithm of the
transition matrix. This generator will be denoted with L̃.

In Table 7.5 it becomes apparent that the generator that was estimated
directly from the state path approximates L̃, as expected, better than the
HMM estimator. The influence of the twofold estimation step accounts
for a decimal place in accuracy. But the main structure of the transition
matrix (two metastable states and two conductive states) is still reproduced
correctly.
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7.2 Markov Jump Output Process

At last we will define an HMM with a kinetic output process, which is
a Markov jump process. In contrast to HMM with Gaussian output, we
define here an HMM with kinetic patterns that are encoded also in the
output parameters. The structure is similar to HMMSDE, but here the
output process has a discrete state space. To apply this on continuous
(possibly even multivariate) data, at first a box-discretization as described
in several publications [23, 24, 21, 67] is carried out: The state space is
divided in boxes and each (multi-dimensional) data point is assigned to a
box and the resulting time series reflects the transition behavior between the
particular boxes. Denote the discrete observation space by B, the Markov
jump process takes values from B

X(t) ∈ B, ∀t ∈ [0, T ].

The discrete observable data points we denote by Om = X(tm) ∈ B, for m =
0, ...,M , the states of the hidden Markov chain by Ym, for m = 0, ...,M . The
model structure is illustrated in Figure 7.9. The EM algorithm is introduced

Figure 7.9: Hidden Markov model with Markov jump output process. The observable
data points are O0..., Om−1, Om, Om+1, ..., OM . The continuous process between these
data points X(t) is hidden as well as the states Y0, ..., Ym−1, Ym, Ym−1, ..., YM .

again following the scheme from Section 3.1.
Later it is applied in several examples. In a first example we consider a

time series generated by an HMM with varying time lags. In a second and
third example we restrict ourselves to constant time lags and investigate time
series exhibiting strong metastability. In the second example we reconsider
the generator matrix from Section 6.5.2 and compare the direct generator
estimation to the HMM-MJP approach. In the third example we estimate
an HMM-MJP from a time series generated by Smoluchowski dynamics like
in Section 5.5. Finally, the results are compared to the HMMSDE approach.
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7.2.1 Model Design

For the application of an HMM with Gaussian output or HMMSDE we have
to make certain assumptions on the data, i.e. the data is supposed to be
normal distributed. If this is not the case, miscellaneous problems can occur
during the estimation procedure. The advantage of HMMs with Markov
jump output (HMM-MJP) is that we do not have to specify a distribution of
the observed data. Only the transition behavior between the discretization
boxes is relevant for the likelihood.

The output process is completely parameterized by its generator matrix
Lout and an initial distribution ϕ0 for each hidden state. The entire HMM-
MJP is hence specified by the model parameters

λ = (π, P, (ϕ0i)i∈S , (Lout
i )i∈S). (7.7)

7.2.2 Likelihood

Let ϕ(Om|Om−1, Ym = i) denote the likelihood of the observed process. The
discrete likelihood has the simple form

ϕ̄(Om|Om−1, Ym = i) = expm((tm − tm−1)Lout
i )Om−1Om . (7.8)

Yet for aforementioned reasons, the discrete likelihood is not feasible for
maximization (cf. Section 6.1). Therefore the continuous likelihood (6.10)
will be used

ϕ(O([tm−1, tm])|Om−1, Ym = i) =∏
k, l ∈ S
l 6= k

((Lout
i )kl)Nkl(tm−tm−1) exp

(
−((Lout

i )kl)Rk(tm − tm−1)
)
. (7.9)

Here X([0, T ]) denotes the continuous process which is observed only at
discrete time points Om = X(tm),m = 0, ...,M . Now we can express the
joint likelihood of the continuous process X (observed at discrete points)
and the hidden data Y by the model parameters defined in (7.7):

P(X,Y |λ) = π(Y0)ϕ0(O0|Y0)
M∏

m=1

P (Ym−1, Ym)ϕ(O([tm−1, tm])|Om−1, Ym),

where ϕ0 denotes an initial distribution which for each Y0 ∈ S simply is

ϕ0(x) =
{

1, x = O0

0 else
, x ∈ B.
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7.2.3 Partial Observability

Expectation step. Additional to the hidden process Y most of the con-
tinuous process X is not observable. Thus we have to build the expectation
over Y and X. As Figure 7.9 illustrates the data points Om solely are ob-
servable, the continuous data X in between are hidden as well as the hidden
states Y are hidden. For this purpose we combine the results from (3.9)
and (6.12) and obtain the expected likelihood

Q(λ, λ0) =
∑
i∈S

(
(log[πi] + log[ϕ0(O0|Y0)]) αi(t0)βi(t0) +

M∑
m=1

log
[
E[ϕ(O([tm−1, tm])|Ym = i)|Om−1, Om, L

out
0i

]
]
αi(tm)βi(tm)

)
+∑

i,j∈S

∑M−1
m=1 log[Pij ] αi(tm) (P0)ij ϕ̄(Om+1|Om, Ym+1 = j) βi(tm),

with

log
[
E
[
ϕ(O([tm−1, tm])|Ym = i)|Om−1, Om, L

out
0i

] ]
=

d∑
k=1

∑
l 6=k

log[Lout
ikl

]E
[
Nikl

([tm−1, tm])|Om−1, Om, L
out
0i

]
−

d∑
k=1

∑
l 6=k

Lout
ikl

E
[
Rik([tm−1, tm])|Om−1, Om, L

out
0i

]
.

(7.10)

Maximization step. Again the maximum likelihood estimators can be
obtained by the partial derivatives with respect to the parameters π, P and
Lout

i . The initial distribution of the output process ϕ0 is negligible since
it is already determined by O0. While π and P follow from the standard
Baum-Welch formulas (3.10), we still have to derive Lout

i . The relevant term
in Q is

M∑
m=1

log
[
E[ϕ(O([tm−1, tm])|Ym = i)|Om−1, Om, L

out
0i

]
]
αi(tm)βi(tm).

Note that by homogeneity of the Markov process, the expected likelihood
does not depend on O([tm−1, tm]), since Om−1 and Om are given, but only
on the length of the time interval tm − tm−1. In case of equidistant time
steps tm − tm−1 = τ this term simplifies to∑

x,y∈S

log
[
E[ϕ(τ, i)|x, y, Lout

0i
]
]
Cxy

i , (7.11)
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where Ci is the frequency matrix

Cxy
i =

M∑
m=1

11{Om=x,Om+1=y}αi(tm)βi(tm).

For non-equidistant time steps a frequency matrix for each different time-lag
τk has to be computed separately and instead of (7.11) we use the expression

n∑
k=1

∑
x,y∈S

log
[
E[ϕ(τk, i)|x, y, Lout

0i
]
]
Cxy

i (τk).

Remark 7.1. To handle a time series with non-equidistant time steps we
modify the hidden process as described in Section 7.1 in more detail.

Using (7.10) in (7.11) and deriving it with respect to Lout
ikl
, k 6= l yields

the reestimation formula:

Lout
ikl

=

∑
x,y∈S E

[
Nikl

([τ ])|x, y, Lout
0i

]
Cxy

i∑
x,y∈S E

[
Rik([τ ])|x, y, Lout

0i

]
Cxy

i

.

The expectations of N and R can be computed according to (6.18). The
diagonal entries of Lout

ikl
are determined by the generator property (2.7).

Finally, we state the Algorithm 7.2 in pseudocode.

7.2.4 Example: Recovering an HMM-MJP from a Realization
with Varying Time Lag

In this example we consider model parameters estimated from a time series
which in turn has been generated from an HMM. We investigate two cases.
In the first case the observation space can be separated clearly in two differ-
ent regions. In the second case no spatial separation is possible. For both
hidden states the output process stays in the same region.

Case 1: separate regions. The original model has two hidden states and
a 10-dimensional observation state space. As in the previous example from
Section 7.1.3 the time lag was chosen randomly: τ = 0.1 with probability 0.6
and τ = 0.2 respectively τ = 0.3 either with probability 0.2. The generator
of the hidden process was chosen as

Lhidden =
(
−0.01 0.01
0.02 −0.02

)
.

The generators of the output Markov process have the shape

Lout
1 =

(
L1 A
B C

)
Lout

2 =
(
C B
A L2

)
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Algorithm 7.2 EM algorithm for an HMM with Markov jump output pro-
cess.
Require: Time series O0, . . . , OM ,

initial guess of parameters λ0 = (π, P, (Lout
i )i∈S), accuracy ε.

(1) Set λ̃ := λ0.
(2) Compute observation likelihood ϕ̄(Om|Om−1, Ym = i) via (7.8) and
forward-backward variables αi(tm), βi(tm), for i ∈ S,m = 1, ..,M via
(3.2).
(3) Compute for each state i a frequency matrix

Cxy
i =

∑M
m=1 11{Om=x,Om+1=y}αi(tm)βi(tm)

(4) M-Step: Reestimate model parameters:
Estimate π, P via (3.10).
Estimate output parameters via Lout

i via Algorithm 6.1 with input
Ci,

for each i ∈ S.
if L(λ̃)− L(λ0) > ε then
λ0 = λ̃
Go to Step (2).

else
return λ̃.

end if

with

A =

 0 ... 0
...

...
0 ... 0

B =

 0.1 ... 0.1
...

...
0.1 ... 0.1



C =


−0.5 0 0 0 0

0.1 −0.6 0 0 0
0.1 0.1 −0.7 0 0
0.1 0.1 0.1 −0.8 0
0.1 0.1 0.1 0.1 −0.9



L1 =


−13 5 2 2 4
2 −11 2 4 3
2 16 −23 2 3
5 2 2 −11 2
3 4 3 3 −13



L2 =


−59 16 16 3 24
3 −10 3 2 2
3 3 −10 2 2
2 4 2 −10 2
9 7 2 3 −21

 .
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Figure 7.10 shows the resulting time series as realization of the described
model. In each state a different region of the observation space was visited.
Next, we estimate from this time series model parameters by means of the

Figure 7.10: Realization of the original model.

EM algorithm. The initial parameters were generated at random. After 552
iterations the EM algorithm converged up to an accuracy of 1e − 3. The
resulting estimator for the generator of the hidden process is

L̂hidden =
(
−0.0126 0.0126
0.0199 −0.0199

)
.

The submatrices of the output generator for the first state

L̂out
1 =

(
L̂1 Â

B̂ Ĉ

)
were estimated as follows:

L̂1 =


−13.3711 5.0817 2.0166 2.0615 4.2114
1.7908 −10.9387 2.1680 4.1706 2.8093
2.6818 16.6118 −23.0632 1.6711 2.0985
5.3415 2.2331 1.6901 −11.2154 1.9506
3.1645 3.4948 2.7751 2.8445 −12.2789

 ,

the zero matrix A was recovered correctly

Â =

 0 ... 0
...

...
0 ... 0

 ,

whereas B̂ and Ĉ exhibit higher deviations. However, the lower triangular
structure of C was mostly reflected, except from line 2. The matrices B̂
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and Ĉ express the transition behavior between two metastable sets only.
Accordingly for these states the least statistical data is available.

B̂ =


0.1808 0.0908 0 0.5621 0
0 0.6027 0 0 0.0877
0 0 0.1256 0.0283 0.2886
0 0.4463 0 0 0
0.0424 0 0.0039 0.1919 0



Ĉ =


−0.8337 0 0 0 0
0.1190 −0.8786 0.0379 0.0313 0
0.1156 0.1425 −0.7007 0 0
0.1377 0 0.2120 −0.7960 0
0.0801 0 0.1666 0 −0.4849

 .

For the second state the following parameters were estimated:

L̂out
2 =

(
L̂2 Â

B̂ Ĉ

)
with

L̂2 =


−39.3496 9.2831 11.5246 5.2381 13.3038
2.4133 −9.7114 2.9157 2.1413 2.2410
1.7389 3.3495 −9.4933 2.0471 2.3577
1.0729 4.1116 2.4152 −10.4174 2.8178
6.1767 8.6161 2.6222 2.0193 −19.4344


Â =

 0 ... 0
...

...
0 ... 0



Ĉ =


−0.4843 0 0 0 0
0.0799 −0.5949 0 0 0.0086
0 0.3489 −0.9198 0 0
0.1530 0.1368 0.2046 −0.9887 0
0.1867 0.2791 0.0739 0 −1.0912



B̂ =


0 0.3214 0.0963 0.0667 0
0 0 0.2451 0.0027 0.2586
0 0.5709 0 0 0
0 0.3245 0 0 0.1698
0 0.1106 0.3591 0.0818 0

 .

The zero matrix A was recovered correctly again, the matching of B̂ and Ĉ
is also comparable to the first state.

The lower triangular structure of C was almost preserved, all entries
upside the diagonal but the last entry of the second row are zero. Altogether
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the estimated parameters reflect the original parameters satisfactory. The
essential dynamical behavior within a metastable state is expressed in the
blocks L1 and L2. We compare the generator matrices for both states as

Figure 7.11: Original generator matrix for state 1 of the output process (left top) for state
2 of the output process(right top). Estimated generator matrices for state 1 (left bottom)
and for state 2 (right bottom).

boxplots in Figure 7.11, which mainly reflect the occupation structure of L1
resp. L2. The highest distance from the original parameters is exhibited
by the first row of L̂2. A closer look on the histogram explains the bad
approximation since state 5 was visited least. However, the propagator

Figure 7.12: Histogram of the time series from Figure 7.10. State 5 (the first state of the
second metastable set) exhibits the fewest hits.

matrices are still fitted well to the data. Let denote

Pi(τ) = expm(τLout
i )
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τ 0.1 0.2 0.3
‖P1(τ)− P̂1(τ)‖ 0.0458 0.0816 0.1143
‖P2(τ)− P̂2(τ)‖ 0.0497 0.0710 0.0947
maxkl{|P1(τ)kl − P̂1(τ)kl|} 0.0387 0.0723 0.1012
maxkl{|P2(τ)kl − P̂2(τ)kl|} 0.0235 0.0424 0.0587

Table 7.6: Distance of the estimated propagator from the original component-wise and
norm-wise.

and
P̂i(τ) = expm(τL̂out

i ).

Table 7.6 compares the distances in terms of the Euclidian norm ‖Pi(τ) −
P̂i(τ)‖ and maximal component-wise distance maxkl{|Pi(τ)kl − P̂i(τ)kl|}.
Although the second generator matrix deviates most from the original pa-
rameters, the components with high deviance do not carry much weight.
The distances of the propagator have the same order of magnitude. The
second propagator was even slightly better approximated than the first one.

Finally, we compare the assignment of the hidden states based on the
estimated model parameters – the Viterbi path – with the hidden Markov
chain of the realization from the original parameters in Figure 7.13. The
Viterbi path mostly corresponds to the original Markov chain, which is a
further indicator of the reliability of the estimated parameters. But after

Figure 7.13: Realization of the hidden Markov process based on the original model and
Viterbi path based on the estimated model.

all the occurrence of zero-entries in the generator matrix can easily lead to
numerical difficulties as pointed out in Section 6.5.2.

Case 2: overlapping regions. In the previous example was considered a
time series, in which for both states different regions of the observation space
{0, ..., 4} respectively {5, ..., 9} have been visited. But even if these regions
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τ 0.1 0.2 0.3
‖P1(τ)− P̂1(τ)‖ 0.0184 0.0117 0.0114
‖P2(τ)− P̂2(τ)‖ 0.0293 0.0153 0.0161
maxkl{|P1(τ)kl − P̂1(τ)kl|} 0.0143 0.0068 0.0050
maxkl{|P2(τ)kl − P̂2(τ)kl|} 0.0183 0.0093 0.0075

Table 7.7: Distance of the estimated propagator from the original component-wise and
norm-wise.

are totally overlapping, similar results have been achieved. Consider the
same model as above, with the modified generators for the output process

Lout
1 = (L1) Lout

2 = (L2) ,

with the matrices L1, L2 as defined above. Here, the effective dynamics
for both states happen in the whole observation state space B = {0, ..., 4}.
However, the HMM-MJP analysis produced similar results as in the first
case:

L̂hidden =
(
−0.0115 0.0115
0.0215 −0.0215

)

L̂1 =


−12.7709 5.0287 1.9135 2.0687 3.7599
1.9081 −10.9242 1.7867 3.9065 3.3228
2.2971 14.5782 −21.8340 2.3274 2.6312
5.3409 2.2011 1.8514 −11.2902 1.8969
2.7348 4.1294 2.9082 3.2056 −12.9779



L̂2 =


−37.4506 11.9836 10.5426 2.3710 12.5535
2.1157 −9.3554 3.1659 2.0046 2.0691
1.8149 3.5233 −9.8443 1.9437 2.5624
1.8365 3.8118 1.7382 −9.7991 2.4125
4.3896 6.6814 3.4167 3.3046 −17.7921

 .

Again the occupation structure of the matrices L̂1 and L̂2 are comparable
to the first example and the poorest fit was achieved at the first row of ma-
trix L̂2. But the EM algorithm took 452 iterations only to converge with
an accuracy of 1e − 3 and recurrent executions showed it was less vulner-
able to numerical difficulties since the generator matrices did not contain
entries that are close to zero. Also the algorithm did not come up with local
maxima, which happened in the previous example several times.

We again compare the distances of the original and the estimated ma-
trices L1 and L2 in Table 7.7 and observe that the match is clearly better
than in the first example. Also for increasing τ the distance remains small
since the propagator is already close to the equilibrium, albeit far enough
to fulfill det(Pi(τ) > 0).
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Eventually we come to the conclusion: in case of strong metastability
in the hidden process, parameters can be identified even if the state space
for the particular metastable states are largely overlapping. At last the
comparison of the original hidden path with the estimated Viterbi path
ratifies the quality of the model. Except for a few differences they reveal a
high agreement (cf. Figure 7.14).

Figure 7.14: Realization of the hidden Markov process based on the original model with
overlapping metastable regions and Viterbi path based on the respective estimated model.

7.2.5 Example: A Metastable Generator Revisited

For the next example we reconsider the generator from Section 6.5.2. The
quasi zero entries beyond the metastable blocks led to numerical difficulties
(c.f. Section 6.5.2). At this point we wish to design a more stable model by
the means of HMMs. The output parameters consist of smaller generator
matrices corresponding to the metastable blocks and the transition behavior
between the metastable blocks is encoded in the hidden process. However,
the problem of this model design is the dependency of the output likelihood
on the previous time step

ϕ(Om|Om−1, Ym = i).

If a transition between two metastable sets say M1 = {1, 2, 3} and M2 =
{4, 5, 6} occurs, the generator matrices describing the output process have
to be defined on the entire state space rather than only on one metastable
set.

Our initial assumption was that an HMM that describes the data from

99



example 6.5.2 best, would have the following shape:

Lhidden =
(
−0.0001 0.0001
0.0001 −0.0001

)

Lout
1 =



−0.9426 0.4860 0.4565 0.0001 0 0
0.2311 −0.2497 0.0185 0 0.0001 0
0.6068 0.7621 −1.3690 0 0 0.0001

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



Lout
2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0.0001 0 0 −1.3276 0.9218 0.4057
0 0.0001 0 0.6154 −1.5510 0.9355
0 0 0.0001 0.7919 0.1763 −0.9683

 .

But the EM algorithm with an a priori model initialized at random yields
the following model:

Lhidden =
(
−0.3529 0.3529
0.5393 −0.5393

)

Lout
1 =



−1.1788 0.6330 0.5452 0.0006 0 0
0.2206 −0.2397 0.0191 0 0 0
0.1737 1.2769 −1.4511 0 0.0005 0

0 0.0005 0 −1.2662 0.9016 0.3641
0 0.0000 0 0.7469 −1.7590 1.0122
0 0.0001 0 1.2459 0.2522 −1.4982



Lout
2 =



−0.7174 0.3517 0.3657 0 0 0
0.2764 −0.2884 0.0118 0.0001 0 0.0002
1.0210 0.1501 −1.1711 0 0 0
0.0002 0 0 −1.4572 0.9249 0.5322

0 0 0 0.2180 −1.2489 1.0309
0 0 0 0.4417 0.1100 −0.5517

 .

The generator of the hidden process is highly mixing, and the output gen-
erators are a rather arbitrary split of the original generator matrix with
1
2(Lout

1 + Lout
2 ) ≈ L. Figure 7.15 illustrates the distance of the arithmetic

mean of both output generators from the original generator.
But what about the likelihood? It turns out that the likelihood of the

second model is indeed higher than the one of the expected model. To point
it out we perform another EM algorithm with our expectation as a priori
model parameter. After 37 iterations the EM converged up to an accuracy
of 1e − 3 and the likelihood was still below the likelihood of the second
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Figure 7.15: Distance between the original generator and the arithmetic mean of the HMM
output generators |L− 1

2
(Lout

1 + Lout
2 )|.

model. During the 37 iterations, only a slight adjustment of the a priori
parameters happened. As a third test we execute a further EM algorithm,
this time with initial parameters that were computed from the time series
with a predetermined hidden path. This path is easy to determine in our
example since both metastable regions are completely disjoint.

Y (m) =
{

1 if O(m) ≤ 3
2 else

We finally set the weights αi(m)βi(m) to 11{Ym=i} and compute the reesti-
mation formulas according to step (3) and (4) in algorithm (7.2). With the
resulting initial parameters we obtain another model, that recognizes the
particular metastable sets as different hidden states:

Lhidden = 1.0e− 003 ∗
(
−0.1560 0.1560
0.1452 −0.1452

)

Lout
1 =



−1.8470 0 0 1.8470 0.0000 0
0 −4.8759 0 0.8003 0 4.0756
0 0 −2.7548 0 2.7548 0
0 0 0 −1.2848 0.8931 0.3917
0 0 0 0.5789 −1.5414 0.9625
0 0 0 0.7742 0.1750 −0.9493



Lout
2 =



−0.9480 0.4975 0.4505 0 0 0
0.2359 −0.2537 0.0178 0 0 0
0.6041 0.7389 −1.3430 0 0 0
1.0282 5.2101 0 −6.2383 0 0

0 0.5528 0 0 −0.5528 0
0 5.1975 0 0 0 −5.1975

 .

The metastability is recovered by the generator of the hidden process and the
metastable blocks enter each in a different output generator. A comparison

101



A priori model Likelihood iterations
λ1 expected parameters -85957.968 37
λ2 random -85894.674 1712
λ3 predetermined hidden path -85904.455 115

Table 7.8: Likelihood and speed of convergence of the models obtained by EM algorithm
with different a priori parameters.

of the likelihood is to be found in Table 7.8. The likelihood is maximized
by the second model. Both other models converged much sooner, but this is
due to the fact, that we have put some knowledge into the initial parameters.
However, each of the three models is a maximum in the likelihood landscape.
To illustrate this we consider a one-dimensional projection of the parameter
space along the straight line between two parameter tuples. Figure 7.16
shows the likelihood conditioned on the parameters along the line between
two EM results λi and λj at the points

λi + k
λj − λi

n
,

for k = −20, ..., n + 100 and n = 100. The kinks in the figures are due
to the generator condition that has to be obeyed. In some cases negative
off-diagonal entries for k < 0 or k > n occurred, those have been set to
zero. So every kink in the likelihood landscape corresponds to a kink in the
parameter space. Overall, the likelihood has a complicated shape. The EM

Figure 7.16: Likelihood landscape projected on the line λ2+η(λ3−λ2) (left), λ1+η(λ3−λ1)
(middle) and λ1 + η(λ2 −λ1) (right), with η ∈ [−0.2, 2]. The red dots mark the likelihood
at the points λ1, λ2 and λ3.

algorithm tends to return local maxima. This phenomenon is not surprising
as the specification of the output process in terms of generator matrices
implies a large number of parameters. Yet, the more structure goes into the
model, the more complex becomes the likelihood structure and hence the
number of extrema grows.

However, the resulting parameters λ3 with the predetermined hidden
path are able to express the main features of the time series. It reflects the
dynamics within the particular metastable states as well as the transition
behavior between these states in terms of Lhidden and Lout. Note, that the
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columns of Lout beyond the metastable blocks are zero (except from the
diagonal entries). This structure ensures that after a hidden state change
the time series moves towards the appropriate metastable set.

State space restriction. The success of an EM parameter estimation
depends on the nature of the likelihood landscape. The problems in the
present example are due to a number of local maxima on the same altitude.
It is not trivial to decide, which model provides the best description of the
time series. Surely the dynamical behavior and the metastable sets should be
expressed by the estimated model. This is not taken into account by the EM
algorithm, if the likelihood does not reflect the dynamics properly. In this
case the parameters λ2, which do not reflect the metastability at all, have
nearly the same (or even a slightly higher) probability as the models λ1 and
λ3 with inherent metastability. Now, if we know some metastable regions
of the process a priori – or recognize it from the time series by eye – it can
be reasonable to restrict the observation space from the beginning. That is,
certain columns will be set to zero (the off-diagonal entries only). We apply
the state space restriction to the EM algorithm. The initial parameters of
the prior model are generated at random, the convergence threshold is set
to 1e−3 as above. If we proceed this way in the present example, we obtain
after 119 iterations the following model:

Lhidden = 1.0e− 003 ∗
(
−0.1452 0.1452
0.1560 −0.1560

)

Lout
1 =



−0.9480 0.4975 0.4505 0 0 0
0.2359 −0.2537 0.0178 0 0 0
0.6041 0.7389 −1.3430 0 0 0
1.0295 5.2187 0 −6.2482 0 0

0 0.5531 0 0 −0.5531 0
0 5.1975 0 0 0 −5.1975



Lout
2 =



−1.8479 0 0 1.8474 0.0006 0
0 −4.7317 0 0.8546 0 3.8771
0 0 −2.7569 0 2.7569 0
0 0 0 −1.2831 0.8873 0.3958
0 0 0 0.5795 −1.5386 0.9591
0 0 0 0.7723 0.1784 −0.9507

 .

The resulting parameter estimator is nearly identical to the third estimated
model λ3. Especially the likelihood −85904.457 matches up to two deci-
mal places. Thus, if the metastable regions are known, we do not need any
knowledge about the hidden state path to achieve suitable results. The re-
striction of the observation space will also be applied to the next example.
We conclude this example with a comparison of the estimated metastable
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metastable set metastable set
{1, 2, 3} {4, 5, 6}

generator estimation 0.0370 0.0723
without HMMs
HMM-MJP with predetermined 0.0370 0.0724
hidden path
HMM-MJP with restricted 0.0370 0.0742
state space

Table 7.9: Deviation from the metastable blocks of the estimators to the metastable block

of the original generator given by the norm ‖B − B̂‖. B denotes the metastable block of
the original generator B̂ the metastable block of the particular estimators.

blocks for the parameters obtained by the EM algorithm with predeter-
mined path, the observation space restriction approach, and the generator
estimation without HMMs as carried out in Section 6.5.2. In Table 7.9 we
compare the normwise distance of both metastable blocks ‖B− B̂‖ from the
estimators to the original generator.

The metastable blocks of the resulting estimators are indeed similar, but
the off-block diagonal entries of the generator without HMM contain more
entries that are close to zero. Thus the HMM-MJP approach is the method
of choice to avoid numerical difficulties.

7.2.6 Example: A Discrete Generator for an Smoluchowski Pro-
cess

In a last example we will compare the HMM-MJP with the HMMSDE esti-
mation for a time series that was generated by propagation of Smoluchowski
dynamics given by the SDE

Ẋ(t) = −∇XV (X(t)) + σ Ẇ (t). (7.12)

In simulations of biomolecules the potential describes a molecular force field.
However, here we use for illustrative reasons a small double well potential
with minima at 1 and −1

V (x) = (x2 − 1)2

as test example. If the potential was harmonic, the SDE above would de-
scribe an Ornstein-Uhlenbeck process (cf. Chapter 4).

The generator of the process is given by the Fokker-Planck equation

L = 4xV (x) +∇xV (x) · ∇x +
1
2
∇x ·B∇x.

Its discretization can be found at [55]. However, in our case we use the trivial
Dirichlet boundary conditions Lij = 0 for i, j < 0, or i, j > N respectively,
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where N denotes the number of boxes. We obtain the discrete generator

L00 = −β
−1

h2
− V ′(x0)

2h

LNN = −β
−1

h2
+
V ′(xN )

2h

Lij =


β−1

h2 + V ′(xi)
2h , if i = j − 1, 0 < i ≤ N

−2β−1

h2 , if i = j, 0 < i, j < N
β−1

h2 − V ′(xi)
2h , if i = j + 1, 0 ≤ j < N

0 else.

(7.13)

The parameter β is defined by the noise intensity σ according to the relation

β =
1
σ2
. (7.14)

The time series propagated by (7.12) is shown in Figure 7.17. The noise
intensity σ was set to 1√

2
.

Figure 7.17: Time series generated by Smoluchowski dynamics (7.12) with noise intensity
σ = 1√

2
and step size τ = 1e− 2 (for details see below).

Now we estimate an HMM with MJP output process and two hidden
states. For each state we obtain an generator that describes an output
process. As will turn out, it is reasonable to assume the associated potentials
being harmonic. Thus the described process is Ornstein-Uhlenbeck. Before
we compare the resulting estimates with the HMMSDE estimators we will
shortly describe the proceeding of the HMM-MJP approach:

At first we estimate an HMM-MJP with a Markov jump output process.
Since we have chosen a constant time lag, we take for the hidden process a
discrete Markov chain.

The output process stays in different subregions depending on the hid-
den state. If we restrict the observation space for the particular states
on subregions, the effort reduces clearly. A number of columns is set to
zero, thus no transition out of the subregion is possible without an hidden
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state change. The data was discretized rather coarse grained into 32 boxes.
The observations space was restricted a priori to {1, ..., 22} for the first and
{15, ..., 32} for the second state. This way a considerable reduction of effort
was achieved and simultaneously the observation spaces for both states are
still overlapping, so that the transition behavior between both hidden states
can be expressed properly.

After 51 iterations the EM algorithm converged up to an accuracy of
1e − 3. The estimated generators have tridiagonal structure. We estimate
the potential parameters for the resulting generator not directly as specified
in (7.13) since the discretization has to be very small to ensure, that the
generator condition is fulfilled. Here we used a discretization step h = 0.1.
With this boxsize the generator condition in (7.13) is violated as there exist
some negative entries Lij . That is why we estimate the potential parameters
rather by means of the free energy. The exact proceeding will be pointed
out in the following:

The stationary distribution of a process like (7.12) is given by the Boltz-
mann distribution

π(x) =
1
Z

exp(−βV (x)).

The constant Z is a normalization constant

Z =
∫

x∈R
exp(−βV (x)) dx,

such that π(x) becomes a probability measure. Its discretization with re-
spect to the boxes (or intervals) Bi is defined as

π̄i =
1
Z

∫
x∈Bi

exp(−βV (x)) dx.

The discretized stationary distribution π̄ then specifies the discretized free
energy

F̄i = −β−1log[π̄i].

In the continuous case the free energy

F (x) = −β−1log[π(x)] = V (x)− log[Z]

is exactly the potential energy itself up to a constant.
This way we can compute the continuous and discrete stationary distri-

bution π and π̄ as well as the continuous and discrete free energy F and F̄ .
The discretized parameters we will compare with our estimators. From an
estimated generator L̂ we obtain the free energy as the solution of

π̂′L̂ = 0
F̂ = −β−1 log(π̂).
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In our example we have the HMM parameters L̂1 and L̂2 – since we have
assumed two hidden states – and based on these we obtain π̂1, π̂2, F̂1 and
F̂2.

Each of the estimated free energy vectors F̂1 and F̂2 reflect one well of
the double well potential as Figure 7.18 shows. Accordingly, the estimated
stationary distributions π̂1 and π̂2 approximate one peak of the stationary
distribution π each.

Finally, we can fit to the estimated free energy F̂1 and F̂2 a harmonic
potential by the least squares method

argminµ,D∈R

√√√√∑
i

∣∣∣∣(1
2
D̂(xi − µ̂)2 − F̂k(i)

)
π̂k(i)

∣∣∣∣2.
The sum index i here indicates the boxes, and the points xi denote the box-
centers. The Euclidian norm was weighted with the estimated stationary
distribution, to achieve a better fit to the highly frequented states. Further-
more, to avoid some asymmetric effects we take only the states {1, ..., 16} of
F̂1 and the states {17, ..., 32} of F̂2 into account. Although the state space
restriction was set to {1, ..., 22} for the first and {15, ..., 32} for the second
state to ensure a certain overlap.

Figure 7.18: Discretized free energy F̄ (solid line) and estimators F̂1 and F̂2 for both
hidden states (dashed line).

This way we have transformed the model parameters from λ = (A, (Lout
k )k∈S)

to λ = (A, (µk, Dk, βk)k∈S), which correspond exactly to the HMMSDE pa-
rameters (5.2). The only difference are the parameters β in the HMM-MJP
and B in the HMMSDE approach. Both arise from the noise intensity σ of
the SDE (7.12) as β = 1

σ2 and B = σ2.
We could not estimate the parameter β with the proceeding described

above. It was set to β = 4. We made use of the a priori knowledge of
the noise intensity since we have set it to 1√

2
propagating the SDE (7.12).

The parameter B on the other hand was estimated by HMMSDE as B̂1 =
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Figure 7.19: Discretized stationary distribution π̄ (solid line) and estimators π̂1 and π̂2

for both hidden states (dashed line).

µ̂1 D̂1

HMM-MJP -0.9656 5.5756
HMMSDE -0.9318 5.2720

µ̂2 D̂2

HMM-MJP 0.9688 5.8889
HMMSDE 0.9312 5.3035

Table 7.10: Comparison of the potential parameters and noise intensities estimated by the
HMM-MJP and the HMMSDE approach for state 1 at the top and state 2 at the bottom.

0.5024 and B̂2 = 0.5066, which approximates the square of the a priori noise
intensity B = σ2 = 0.5 up to an accuracy of two decimal places.

The other resulting parameters, which were estimated in both approaches
are listed in the Table 7.10. The EM algorithm in the HMMSDE approach
took 41 iterations to achieve a convergence threshold of 1e− 3. The poten-
tial parameters are similar to the estimates resulting from the HMM-MJP
approach. However, the HMM-MJP approximated the double well potential
slightly better. The minima µ̂1 and µ̂2 are closer to −1 and 1 (cf. Figure
7.20).

Figure 7.20: Discretized free energy and estimated harmonic potentials based on the
HMMSDE approach (left) and on the HMM-MJP approach (right).

Altogether both models were able to describe the dynamical behavior
within the metastable states. HMM-MJP provides a tool to recover the
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local dynamics even for coarse-grained discretizations. On the other hand it
requires more effort since more parameters have to be estimated. HMMSDE
requires the estimation of three parameters (µ,D,B) for each hidden state,
HMM-MJP of an M × N – matrix per each state, where N is the number
of boxes in the entire and M the number of boxes in the restricted state
space. In this case the matrix was tridiagonal. Thus we have to estimate
just 2(M − 1) matrix entries.

Another possibility would be the estimation of one large generator matrix
containing metastable blocks instead of hidden states. But this variant
implies numerical difficulties as already discussed in the previous example.

To get rid of the small transition rates, we considered generators that
describe the transition behavior within a metastable subregion and swapped
the transition behavior between the metastable sets out to the hidden pro-
cess.

7.3 Alternative Approaches to HMM Variants

There exist articles focussing on HMMs combined with Markov jump pro-
cesses [13, 12] but they consider a more general case of an infinite-dimensional
state space. However, the modification of HMMs presented herein provides a
directly implementable algorithm for a finite-dimensional state space, which
is not the case by existing approaches in aforementioned papers. Further,
in contrast to [57] no additional assumption about the jump times are nec-
essary in the presented expectation maximization (EM) algorithm. In the
article [62] was designed a dynamical Bayesian network with continuous
time. Dynamical Bayesian networks are actually hidden Markov models,
but the authors designed the model such that the observables are discrete
points of the Markov process and the hidden variables are the continuous
time intervals between the observables. The continuous time Bayesian net-
work describes therefore only a Markov process not – as in our case – also
an associated output process. However, the generator estimation follows the
same procedure as we use in Chapter 6, but the authors take a slightly differ-
ent likelihood function into account with generator estimators as specified in
[3, 36], whereas we keep with [11]. These approaches consider HMMs with
purely geometrical output parameters. In this work are designed HMMs
with kinetic output processes focussing on the transition behavior of the ob-
servables. In [75] kinetic models have been applied for a better description
of MD systems. However, the combination of HMMs kinetic models is new.

We call the combination of HMMs with a Markov jump process HMM-
MJP and with Ornstein-Uhlenbeck processes HMMSDE. The algorithmic
concept of HMMSDE has some similarities with other approaches based on
the concept of HMMs or hidden Markov processes, in particular approaches
presented in [29, 32, 60]. However, the fundamental difference is that the
HMMSDE approach suggested herein combines some discrete hidden process
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with generally continuous stochastic differential equation (SDE) output.
That is, the concept behind HMMSDE and HMM-MJP can be expressed

shortly in the following way:

HMMSDE
HMM-MJP

}
= kinetic parameterization + HMM metastability analysis.

Concerning HMM-based metastability analysis several other approaches ex-
ist, all of them with different focus: For example, [29] considers stationary
output behavior only, and [32] global SDE models with hidden data but
without discrete metastable states.
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8 Summary

In this thesis a set of procedures for the analysis of time series was de-
veloped. The models introduced here are based on the concept of Hidden
Markov models. A hidden Markov model (HMM) consists of two stochastic
processes. However, only one of these is observable. The HMM variants pre-
sented herein have been developed with regard to a prospective application
to biomolecular time series.

Therefore, the investigated time series are realizations of processes that
can be characterized as follows: They jump between metastable states. The
correlation times are small with respect to the exit times from a metastable
state. On a time scale, chosen in such a way that the process is Markovian,
these jumps occur instantaneously. That is: Transitions between metastable
states in equilibrium take place in one or very few time steps.

By means of the presented methods in particular, the question how
metastable states can be distinguished by kinetic patterns is addressed. The
local dynamics are modeled either by a space-discrete Markov jump process
or by a continuous diffusion process.

Both concepts are discussed by means of several examples. Particularly
we focussed on the issue of generator estimation. The combination of the
generator estimation with the concept of the hidden Markov model is new.
It allows for analyzing time-continuous processes with standard HMM tech-
niques. Especially the time-continuity of the model makes the analysis of
time series with varying time lags possible. Furthermore, a model with
Markov jump output process has the advantage that the process is deter-
mined by the generator matrix only. Hence no additional assumption about
the distribution of the data is required. Beyond this in the examples we ob-
served that even if the box-discretization is rather coarse-grained, the local
dynamics still can be expressed satisfactorily by an HMM-MJP.

In the scope of this thesis HMM-MJP was applied to small systems, gen-
erated by Smoluchowski dynamics, by a discrete generator or by an HMM
itself. However, the algorithms are applicable to the high-dimensional case.
How HMM-MJP performs in the application to larger systems – such as
the simulation of biomolecules – has to be clarified in further investigations.
Difficulties arising with larger systems are on the one hand computational
costs and on the other hand cumulations of small entries in the generator
matrix. Too many small entries close to zero can lead to numerical instabil-
ities. One approach to handle these problems is the restriction of the state
space as described in the examples 7.2.5 and 7.2.6.
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9 Zusammenfassung

In dieser Arbeit wurde ein Verfahrenskatalog zur Zeitreihenanalyse metasta-
biler Systeme entwickelt. Die hier eingeführten Modelle basieren auf dem
Konzept der Hidden Markov Modelle. Ein Hidden Markov Modell (HMM)
besteht aus zwei stochastischen Prozessen, von denen nur einer beobachtbar
ist. Die HMM-Varianten in dieser Arbeit wurden im Hinblick auf die spätere
Anwendung auf Biomolekülzeitreihen entwickelt.

Deshalb sind die zu analysierenden Zeitreihen Realisierungen von Pro-
zessen, die sich wie folgt charakterisieren lassen: Sie springen zwischen
metastabilen Zuständen. Die Korrelationsszeiten sind im Vergleich zu den
Austrittszeiten aus einem metastabilen Zustand klein. Auf einer Zeitskala,
die so gewählt ist, dass der Prozess Markovsch ist, passieren diese Sprünge
”plötzlich”. Das heißt: Übergänge zwischen metastabilen Zuständen im
Gleichgewicht passieren in einem oder in sehr wenigen Zeitschritten.

Mit den vorgestellten Verfahren lässt sich insbesondere die Frage, wie
metastabile Zustände anhand kinetischer Muster zu unsterscheiden sind, be-
handeln. Die lokale Dynamik wird entweder duch einen räumlich diskreten
Markovschen Sprungprozess oder aber durch einen kontinuierlichen Diffu-
sionsprozess modelliert.

Diese beiden Konzepte wurden anhand von Beispielen diskutiert. Ins-
besondere die Frage der Generatorschätzung wurde in dieser Arbeit einge-
hend behandelt. Die Kombination der Generatorschätzung mit dem Konzept
des Hidden Markov Modells ist neu. Sie ermöglicht die Analyse zeit-konti-
nuierlicher Prozesse mit bewährten HMM-Techniken. Die Darstellung durch
zeit-kontinuierliche Modelle erlaubt insbesondere die Analyse von Zeitrei-
hen mit unterschiedlicher Zeitschrittweite. Desweiteren hat ein HMM mit
beobachtbarem Markovschen Sprungprozess den Vorteil, dass der Prozess
allein durch die Generatormatrix bestimmt wird und keine zusätzliche An-
nahme über die Verteilung der Daten notwendig ist. Darüber hinaus hat sich
in den Bespielen gezeigt, dass sich selbst bei groben Boxdiskretisierungen die
lokale Dynamik durch ein HMM-MJP noch gut beschreiben lässt.

Im Rahmen dieser Arbeit wurde das HMM-MJP auf kleine Systeme
angewandt, die von einer Smoluchowski Dynamik, einem diskreten Gene-
rator oder einem HMM generiert wurden. Die Algorithmen sind jedoch auf
den hochdimensionalen Fall übertragbar. Wie sich das HMM-MJP in der
Anwendung auf größere Systeme – etwa der Simulation von Biomolekülen –
bewährt, ist noch in weiterführenden Arbeiten zu untersuchen. Die Schwierig-
keiten, die größere Systeme mit sich bringen, sind zum einen der Rechen-
aufwand und zum anderen die Häufung sehr kleiner Einträge in der Genera-
tormatix, die zu numerischer Instabilität führen können. Ein Ansatz, diese
Probleme zu bewältigen, ist die Einschränkung des Zustandsraumes, wie in
den Beispielen 7.2.5 und 7.2.6 beschrieben.
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Abbreviations

MD molecular dynamics
HMM hidden Markov model
MJP Markov jump process
EM expectation maximization (algorithm)
SDE stochastic differential equation
HMMSDE HMM with an output process that is determined by a SDE
HMM-MJP HMM with a Markov jump process either as output or as hidden process
MLE maximum likelihood estimation
a.s. almost sure
pdf probability density functions
FPE Fokker-Planck equation
PCCA Perron cluster analysis
ODE ordinary differential equation
QP quadratic programming
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