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We consider the problem of inferring a Markov model with transition matrix P̂ ∈ Rn×n from a discrete-
state time series X = (x1, ..., xT ), where T is the number of time steps. The posterior probability of
a Markov chain with transition matrix P given X is:

P(P |X) ∝ P(P )P(X|P )

where P(P ) is the transition matrix prior and P(X|P ) is the likelihood, i.e. the probability that the
sequence X was generated by transition matrix P . If X has been generated by a Markov chain, then
the count matrix C(τ) = (cij(τ)) ∈ Rn×n at lag time τ with elements

cij(τ) =

T∑
t=1

1i(xt) 1j(xt+τ ) (1)

where 1i(x) is the characteristic function with:

1i(x) =

{
1 x = i

0 else.

is a sufficient statistics for inferring the transition probabilities at lag time τ . For now, let’s assume
τ = 1 because X is a Markovian sequence. The likelihood of transition matrix P = P (τ) is then given
by

P(X|P ) ∝
n∏

i,j=1

p
cij
ij . (2)

It is well-known that the maximum likelihood estimator P̂ = arg maxP P(X|P ), i.e. the matrix P that
maximizes the likelihood under the constraint that P is a transition matrix, is given by:

p̂ij =
cij
ci
,

where we have defined the row sum ci =
∑
j cij . The mean and the variance of pij under the likelihood

(2) are

p̄ij =
cij + 1

ci + n

Var[pij ] =
p̄ij(1− p̄ij)
(ci + n+ 1)

, (3)

which asymptotically (for T →∞) decreases proportionally to n−1 as usual for Monte Carlo methods.
If a uniform prior is used these expressions are also identical to the posterior mean and posterior
variance. The latter is important to assess the uncertainty of estimation. More generally, one can
sample (2) by generating Dirichlet-distributed random variables for the independent row distributions
p(ci1, ..., cin|pi1, ..., pin) =

∏
j p

cij
ij and then compute sample distributions of arbitrary functions of P ,

such as the distribution of eigenvalues or other quantities of interest.
The same approach of maximum likelihood estimation and Bayesian estimation can be followed when
additional constraints on P are made, such as detailed balance [4, 9, 8, 1, 17] and detailed balance with
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respect to a fixed stationary distribution [9, 16, 17]. These aspects have been extensively discussed in
the field of Markov models of molecular kinetics from molecular dynamics (MD) simulations [14, 15,
3, 11, 2]. In this field, the choice of suitable prior has also been discussed.
In this note, our main question is: how should we infer Markov chains if X is not Markovian? This is
the realm of Markov models, i.e. now the transition matrix P (τ) has a finite systematic error that will
not vanish as a function of trajectory length. For MD simulation, and for many other simulations or
experiments of physical systems, it is now well understood that this systematic error can be controlled
by choosing a sufficiently large τ [13, 5, 10]. It is much less understood, however, how the count
matrix C(τ) should be obtained at a given τ such that the statistical error, e.g. (3), can be correctly
estimated. This is precisely the question addressed in this paper.

Transition counting mode

Consider these three options for the transition counting mode:

1. Sample count: perform one count per τ , thus generating bT/τc transition counts:

csample
ij (τ) =

bT/τc−1∑
k=0

1i(xkτ )1j(xkτ+τ )

2. Sliding window count: use all possible T − τ transition counts as given in (1).

3. Scaled sliding window count: Use the sliding window counts cij(τ) but scale them with some
factor Iij ≤ 1 called statistical inefficiency. A choice that has been previously suggested is
Iij = τ−1.

All three choices converge to the same maximum likelihood estimator in the limit of good statistics
(T →∞). However, the width of the likelihood and thus the size of standard deviations and confidence
intervals, are vastly different under these different choices.
For Markov models fromMD simulations, the standard approach was so far to use sample counts (choice
1) [6, 9, 11]. This choice is based on the argument that when the sequence X appears approximately
Markovian at lag time τ , then transition counts are approximately independent at this lag time.
However this approach is statistically inefficient: If S is also Markovian for shorter lag times than τ ,
then we are using less information than we could. Even if S only becomes Markovian at lag times of τ
or longer, transitions such as 1→ τ + 1 and τ/2→ τ + τ/2 are usually only partially correlated, such
that discarding the second transition is also not fully exploiting the data. In practical MD simulations,
the lag times required such that a Markov model is a good approximation need to be quite long (often
in the the range of nanoseconds), such that subsampling the data at τ will create severe problems with
data and connectivity loss.
Using the sliding window approach (choice 2) exploits all data, but harvests too many counts as
transitions t → t + τ and t + 1 → t + τ + 1 are generally not independent for non-Markovian data.
Therefore the error estimates will be too small with this approach.
The scaled sliding window count (choice 3) offers a solution to the problems faced by choices 1 and 2.
We always obtain the count matrix cij in a sliding window mode. We formally correct the overcounting
problem by introducing a statistical inefficiency Iij(τ) for every count at a given lag time, such that
ceff
ij (τ) = Iij(τ) cij(τ) is the effective number of counts. The determination of statistical inefficiencies
for univariate signals is well established [7]. Determining sij(τ) for transition count matrices is an open
problem and a first approach is made in this paper. Herein, we make an approach to to determine
statistical inefficiencies by row, Ii(τ) = Iij(τ) for all j, resulting in the likelihood:

P(C|P ) ∝
∏
i

∏
j

p
cij
ij

Ii

(4)
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If we can determine a global statistical inefficiency that is constant for all states, I(τ) = Iij(τ) for all
i, j, we obtain:

P(C|P ) ∝

 τ∏
t=1

∏
i, j

p
c
(t)
ij

ij

I

=
∏
i, j

p
ceffij

ij . (5)

where c(t)ij is the count matrix for the t-shifted subsequence, i.e. {st, st+τ , ...}. For the choice I = τ−1

(see above) the likelihood is given by a geometric mean of the likelihoods at t-shifted subsequences and
equivalently as the likelihood of the arithmetic mean count matrix, ceff

ij = cij/τ . For different choices
of I we can interpret the likelihood as a weighted geometric mean of shifted sequences.

Conditional statistical inefficiencies

Let us consider again the discrete trajectory {xt}. We can write:

pij(τ) =
cij
ci

=
1

ci

∑
t

1i(xt) 1j(xt+τ )

Now we filter our sequence into n sequences of target states with the same starting state i:

Y (i) = (xt+τ |xt = i)t=1, ..., T−τ .

For example, if our sequence is X = (1, 0, 0, 0, 0, 1, 1, 1, 0, 0), then, at lag time τ = 1 we arrive at the
sequences:

Y (0) = (0, 0, 0, 1, 0)

Y (1) = (0, 1, 1, 0)

The sequence Y (i) has ci elements. The transition probability is now given as:

pij(τ) =
1

ci

∑
t

1j(y
(i)
t ). (6)

Using Y (1) and Y (2) from in the above example in (6), we get

P (τ = 1) =

[
0.8 0.2
0.5 0.5

]
which is indeed identical to the maximum likelihood estimator computed from X directly. Thus, we
have transformed our data to a family of signals 1j(y

(i)
t ) from which our quantity of interest, P , can

be calculated as an ordinary arithmetic average of the signal. This makes the framework of statistical
inefficiency [7] available to estimate the effective number of counts in the denominators, ceff

i = ciIi.
This framework is briefly described in the Appendix. First, we compute the damped autocorrelation
time ∆i,j of each signal 1j(y

(i)
t ) as:

∆ij =
1

2
+

N∑
t=2

Aij(t)

(
1− t

N

)

where Aij(t) is the normalized autocorrelation function of the sequence 1j(y
(i)
t ). In practice we compute

∆ij by only computing the sum until Aij(t) first passes through 0, in order to avoid integrating noise
at large values of t. The statistical inefficiency of each signal is now given by (2∆ij)

−1. However,
we won’t apply the effective counts to individual transitions but rather to individual rows. This is
because (1) the estimate of an individual ∆ij itself involves significant statistical error and is thus
better averaged over multiple transition pairs, and (2) we want to be able to apply Eq. (6) and must
therefore take the effective number of counts per row:

ceff
i =

∑
j

cij
2∆ij
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The row-wise statistical inefficiency is

Ii =
ceff
i

ci
.

Finally, we rescale the count matrix to obtain the effective count matrix Ceff as:

ceff
ij = Iicij .

The most significant approximation made by the present approach is that we only use correlation times
of the individual signals 1j(y

(i)
t ) and neglect correlations between these signals. This approximation is

currently made for both computational and conceptual reasons.
Now we use the transition counts ceff

ij and pass the result to the estimator (MLE or Bayesian).

Illustration

As an illustration consider the calculation of relaxation times for a Dynamin protein domain motion
computed from 40 trajectories of 100 ns, as described in [12]. In that publication, errors of similar
magnitude have been computed by bootstrapping trajectories. Shown below are the eight longest
relaxation timescales computed from a Markov model estimated at a lag time between 0 and 60
nanoseconds (details of Markov model construction in [12]). Note that a Bayesian approach to sampling
errors in that data has as previously been unfeasible as the question of transition counting had not
been addressed. The two traditional counting modes described above both fail - the sliding window
approach vastly overcounts transitions and thus error bars are very tightly around the maximum
likelihood estimate, while the lag-sampling approach loses almost all of the data (retaining 120 out of
40000 time steps at a lag time of 50 ns), with the consequence of losing connectivity and rendering any
estimation impossible. The effective count matrix estimation described herein for the first time allows
us to estimate error bars of reasonable size for such data using a Bayesian approach. Shown below are
95% error intervals that surround the maximum likelihood estimator (solid) for most estimates - both
the maximum likelihood estimator and the error bars have been computed using the effective count
matrix estimated at each lag time. The error intervals are obtained from running 250 samples with 20
intervening steps using the reversible transition matrix sampler described in [17] and implemented in
pyEMMA - www.pyemma.org.

Discussion

The method proposed here presents a first step towards effective count matrix estimation for non-
Markovian discrete time series. Addressing this problem is essential for being able to estimate correct
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error bars of Markov model, and it is thus surprising that it has not yet been addressed at all while
a significant number of papers have been published on how to estimate error bars assuming that a
matrix of statistically independent transition counts is at hand.
We are fully aware that the proposed method is only a first approach to a problem and still has
significant deficiencies. For this reason we present the approach in the form of a preprint and hope that
it will stimulate scientific discussion in the community, and eventually lead to a more refined method.
In particular, the current method does not take cross-correlations between different transition pairs
into account, and therefore probably estimates the effective count matrix inaccurately. We have initial
data suggesting that the errors estimated by our method are somewhat (roughly a factor of 1.5 to 2)
underestimated, but this depends on the system studied and we have therefore not shown such data
here.
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Appendix A: Estimators and autocorrelation times

Here we give a short derivation of statistical inefficiencies, following the presentation in [7].
Suppose we have a data sequence {xt} (discrete or continuous) of length N , e.g. generated by molecular
dynamics or Monte Carlo. An estimator for the expectation value is the arithmetic mean:

x̄ =
1

N

N∑
t=1

xt (7)

If the samples are taken such that they are all uncorrelated, all N samples are effective in reducing
the uncertainty of the estimator. The variance of the estimator would then be:

σ2
x̄ =

σ2
x

N

where σ2
x is the variance of the signal.

However, if the sequence {xt} is time-correlated, the variance of the estimator depends on a smaller
number of effective counts and therefore the uncertainty diminishes slower. Using (7), we can express
the variance of the mean as follows:

σ2
x̄ = 〈x̄2〉 − 〈x̄〉2

=

〈(
1

N

N∑
t=1

xt

)2〉
−

〈
1

N

N∑
t=1

xt

〉2

=
1

N2

〈
N∑

s,t=1

xsxt

〉
− 1

N2

〈
N∑
s=1

xt

〉〈
N∑
t=1

xt

〉

=
1

N2

N∑
s,t=1

〈xsxt〉 −
1

N2

N∑
s,t=1

〈xs〉〈xt〉

Collecting diagonal and offdiagonal terms yields:

σ2
x̄ =

1

N2

N∑
s=1

(〈x2
s〉 − 〈xs〉2) +

1

N2

∑
s6=t

(〈xsxt〉 − 〈xs〉〈xt〉)

=
1

N

[
σ2
x +

2

N

N∑
s=1

N∑
t=s+1

(〈xsxt〉 − 〈xs〉〈xt〉)

]
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where we have used that the first term is equal to the data variance, and in the second term we have
used the s↔ t symmetry.
Now we use time invariance of the expectation value, i.e. 〈xt〉 = 〈xt+k〉 and 〈xtxt+k〉 = 〈x1x1+k〉, and
write the second term as:

S =

N∑
s=1

N∑
t=s+1

(〈xsxt〉 − 〈xs〉〈xt〉)

=

N∑
t=2

(〈x1xt〉 − 〈x1〉〈xt〉) +

N∑
t=3

(〈x2xt〉 − 〈x2〉〈xt〉)

+...+ (〈xN−1xN 〉 − 〈xN−1〉〈xN 〉)

=

N∑
t=2

(〈x1xt〉 − 〈x1〉〈xt〉) +

N−1∑
t=2

(〈x1xt〉 − 〈x1〉〈xt〉)

+...+ (〈x1x2〉 − 〈x1〉〈x2〉)

=

N∑
t=1

(N − t)(〈x1xt〉 − 〈x1〉〈xt〉).

Resubstituting this expression allows us to write the variance of the estimator as:

σ2
x̄ =

1

N

[
σ2
x + 2

N∑
t=1

(〈x1xt〉 − 〈x1〉〈xt〉)
(

1− t

N

)]

Factoring out the variance yields:

σ2
x̄ =

σ2
x

N

[
1 + 2

N∑
t=2

A(t)

(
1− t

N

)]

where A(t) is the normalized autocorrelation function A(0) = 1:

A(t) =
〈xsxs+t〉 − 〈xt〉2

〈x2
t 〉 − 〈xt〉2

.

The damped autocorrelation time is defined by:

τd =
1

2
+

N∑
t=2

A(t)

(
1− t

N

)
Yielding the variance of the mean:

σ2
x̄ =

σ2
x

Neff

with the effective sample count:

Neff =
N

2τd

The factor 1/2τd is called statistical inefficiency.
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