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Abstract— We study Balanced Truncation for stochastic dif-
ferential equations. In doing so, we adopt ideas from large
deviations theory and discuss notions of controllability and
obervability for dissipative Hamiltonian systems with degener-
ate noise term, also known as Langevin equations. For partially-
observed Langevin equations, we illustrate model reduction by
balanced truncation with an example from molecular dynamics
and discuss aspects of structure-preservation.

I. INTRODUCTION

High-dimensional linear differential equations appear in
various contexts. For linear control systems, Balanced Trun-
cation is a rational and well established tool to reduce
the system’s dimension [1]. More data-based approaches
involve best-approximations by means of Proper Orthogonal
Decomposition or Principal Component Analysis. Latter, in
particular, is very popular in molecular dynamics as it is
believed that the modes of highest variance carry important
information, and indicate, e.g., conformational changes in a
molecule [2]. The governing equations of molecular dynam-
ics often take the form of stochastic differential equations
that have the form of controlled systems, in which the
smooth control variables have been replaced by suitable noise
processes.

A class of stochastic differential equations that is of
specific interest, e.g., in molecular dynamics, is given by
hypoelliptic diffusion processes. Hypoelliptic diffusions en-
tail certain dissipative Hamiltonian systems in which the
white noise acts only on the momenta and which models
dissipative dynamics in a heat bath. A representative of this
class is the stochastic Langevin equation, for which we will
study model reduction from the perspective of Balanced
Truncation. For this purpose we employ a large deviations
principle that allows for relating the sample paths of the
white noise process to a smooth control variable under
certain circumstances. This connection is not new indeed,
and a variety of large deviations problems boil down to
control arguments. A prominent example is, e.g., the Support
Theorem of Stroock and Varadhan [3]; see also [5], [4].

We do not claim originality for the use of large deviations
principles in studying controllability of stochastic differential
equations, nor do we claim complete mathematical rigour.
However, our analysis in Section III reveals interesting
relations between Balanced Truncation and empirical state-
space decomposition methods such as Principal Component
Analysis which, to the best of our knowledge, are not known
so far and can be used in practical applications; cf. [6].
Furthermore, applying Balanced Truncation to stochastic
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differential equations brings up interesting mathematical
questions, for example, if the negligible components are
noisy and ought to be considered as a probability distribution
rather than a point-wise process.

Another intriguing aspect that is related to structure-
preservation is taken up in Section IV: On the one hand it
has been shown recently [7] that Balanced Truncation applied
to linear port-controlled dissipative Hamiltonian system pre-
serves stability plus the Hamiltonian structure. On the other
hand it is well known that, in the limit of small masses or
high friction (dissipation), the Langevin process converges
to a purely diffusive, inertia-less motion (“diffusive limit”)
that is described by a genuine first-order equation for the
configurations. We discuss, when it may be advisable to relax
structure-preservation in favour of physical considerations.

The article concludes in Section V with an example from
molecular dynamics.

II. STOCHASTIC LANGEVIN EQUATION

A frequently used model for dissipative Newtonian dy-
namics in a heat bath is the stochastic Langevin equation

Mq̈(t) + γq̇(t) +∇V (q(t)) = ξ(t) , (1)

where q ∈ Q ⊆ Rn, and ξ(t) ∈ Rn denotes a Gaussian
white noise process with covariance matrix

Eξ(t)ξ(t)T ∝ γ ,

that is chosen so as to balance the energy dissipation due to
the viscous friction. Here and in the following we shall use
the symbol E(·) to denote the expectation of a (measurable)
stochastic process over all its possible realizations. Both
mass and friction matrices M,γ ∈ Rn×n are symmetric and
positive definite.

Equation (1) is an instance of a dissipative Hamiltonian
system that is driven by noise. Omitting the free variable t
in what follows, we shall consider systems of the form1

q̇ =
∂H

∂p

ṗ = −∂H
∂q

− γ(q)
∂H

∂p
+ σ(q)Ẇ ,

(2)

where (q, p) = (q1, . . . , qn, p1, . . . , pn) are canonical coor-
dinates on the phase space T ∗Q ∼= Q×Rn, the Hamiltonian

H(q, p) =
1
2
(g(q))ijpipj + V (q)

1Strictly speaking, the notation Ẇ (t) does not make sense as the paths of
the Brownian motion W (t) are nowhere differentiable. However we use this
notation for the sake of convenience and point out that the second equation
has to be understood in the integral sense; see, e.g., [8].



is the total energy in the system, σ, γ are appropriate n× n
matrices, and W denotes standard Brownian motion in Rn.
Note that the noise acts only on the generalized momen-
tum variables. This entails that the usual Itô-Stratonovich
dichotomy for stochastic differential equations vanishes, such
that (2) behaves as an ordinary differential equation under
point transformations [9].

From now on we call (2) a Langevin equation with (1)
appearing as a special case. Is is convenient to write (2) in
the form of a port-controlled Hamiltonian system,

ẋ = (J −D(x))∇H(x) + S(x)Ẇ , (3)

where we have used the shorthand x = (q, p). The matrix
J = −JT is the canonical skew-symmetric matrix

J =
(

0 1
−1 0

)
,

and

D =
(

0 0
0 γ

)
, S =

(
0
σ

)
.

By the particular assumption of γ being symmetric positive
definite the system is stable, i.e., for all stable critical points
e ∈ T ∗Q of the energy function H , the eigenvalues of
(J −D(e))∇2H(e) lie in the open left half complex plane
(cf. [10]). An important entity associated with the Langevin
equation is its infinitesimal generator

L =
1
2
SST : ∇2 + (J −D)∇H · ∇ (4)

that generates the semigroup of solutions, where A : B =
tr(ATB) denotes the matrix inner product. As has been
shown in [11], the operator L is hypoelliptic and satisfies
a strong Hörmander condition. As a consequence, (2) has
a unique, ergodic invariant measure dρ that is obtained as
the solution of the stationary adjoint equation L∗ρ = 0. If
moreover friction and noise coefficients satisfy the relation

2γ = σσT ,

then the solution of (2) is ergodic with respect to the
Boltzmann measure dρ ∝ exp(−H). Hence, assuming that
H is smooth such that exp(−H) is strictly positive, all states
x ∈ T ∗Q are visited according to their Boltzmann weight
by any infinitely long realization of the white noise process
and for almost all initial conditions.

A. Linear Langevin equation

In this article we will consider only linear Langevin
equations. That is, given a quadratic Hamiltonian

H(x) =
1
2
xTQx

with Q = QT positive definite, we consider a Langevin
equation (3) with D and S being constant matrices. The
reader may think of this linear Langevin system as, e.g.,
the Markovian limit of an optimal prediction strategy of a
linearized Hamiltonian system or simply as a linearization of
a nonlinear Langevin equation around a stable equilibrium

(see the example below). With D ∈ R2n×2n as given
above, the drift matrix A = (J − D)Q is Hurwitz, i.e., all
eigenvalues have strictly negative real part. Hence x = 0 is
the unique stable equilibrium of the deterministic dynamics.

Given X0 = x, the solution Xt, t > 0 of the linear
Langevin is given by the stochastic integral [8]

Xt = x+
∫ t

0

AXt dt+
∫ t

0

S dWt ,

where A = (J −D)Q. As is straightforward to verify using
Itô’s formula, the last equation is equivalently expressed as

Xt = eAtx+
∫ t

0

eA(t−s)S dWs . (5)

We stress that some of the considerations in this article carry
over to the nonlinear case as well, such as the large deviations
principle — at least on a formal level. However the analysis
may differ in the details and we feel that most of the ideas can
be stated in a more transparent way for the linear problem;
so we shall stick to this case here. For balancing of nonlinear
control systems we refer to, e.g., [12].

III. A LARGE DEVIATIONS PRINCIPLE

The strong Hörmander property of the Langevin equation
essentially guarantees that the noise in the system spreads
over the full phase space as the system evolves in time. This
suggest that the system (2) is completely reachable in the
sense of control theory [13]. However we have to bear in
mind that here the ”control variable” is given by a white
noise process which is neither smooth nor even of bounded
variation.

The appropriate tools to study even the stronger property
of controllability of stochastic differential equations is pro-
vided by large deviations theory; see, e.g., [14]. Let us briefly
recall some basic concepts: For ε > 0, we consider the family
of stochastic Langevin equations

ẋ = (J −D)∇H(x) +
√
εSẆ (6)

with x(0) = x that have the solutions

Xε
t = eAtx+

√
ε

∫ t

0

eA(t−s)S dWs ,

again with the abbreviation A = (J − D)∇2H(x). Let
further C([0, T ]) be the space of continuous functions taking
values in Q × Rn, and H1([0, T ]) the space of absolutely
continuous functions with values in Q × Rn and square-
integrable derivatives. We assume that for all t < ∞ the
solutions Xε

t of (6) are continuous, and we denote by Pε
x the

probability measure induced on C([0, T ]) by the processes
Xε

t starting at Xε
0 = x. We introduce the rate function

Ix(f) = inf
u∈H1, f=F (u)

1
2

∫ T

0

|u̇(t)|2 dt (7)

with u(0) = 0 and f = F (u), where F : H1([0, T ]) →
C([0, T ]) is given by

F (u)(t) = eAtx+
∫ t

0

eA(t−s)Su̇(s) ds . (8)



We declare that Ix(f) = ∞ if there is no u ∈ H1 such
that f = F (u). The idea of the thus defined rate function
is to replace Wt by its polygonal approximation. Due to
the scaling of the noise term in (6) the approximation error
‖f(t) −Xε

t ‖ vanishes as ε goes to zero, so we may expect
that the smooth approximation does not influence the final
result. We state the large deviations principle (LDP) that can
be found in [15]:

Proposition 3.1: Let Xε
t : [0, T ] → Q×Rn with T <∞

be the random solution of (6) with Xε
0 = x fixed. Then the

rate function Ix(·) is lower semi-continuous, and Xε
t satisfies

a LDP. That is, for each open set A ⊂ C([0,∞])

lim inf
ε→0

log P (Xε
t ∈ A) ≥ − inf

f∈A
Ix(f) ,

whereas for each closed set B ⊂ C([0,∞])

lim sup
ε→0

log P (Xε
t ∈ B) ≤ − inf

f∈B
Ix(f) .

Notice that the infinum in the rate function Ix(·) is taken
over functions u ∈ H1 that are smoother than the ordinary
realizations of the Brownian motion. Roughly speaking,
the LDP makes an assertion concerning the probability of
smooth solutions of the Langevin equation in the limit of
weak noise. In other words, we may treat the white noise
process Ẇ (t) in (3) like a smooth control variable, provided
that the matrix S is sufficiently small in any appropriate
matrix norm. For details we refer to [3].

A. Controllability and observability

The above considerations suggest that a controllability
function for (3) can be defined in the following fashion:

Lc(y) = inf
f(T )=y

I0(f) , (9)

where the rate function Ix=0(f) is given by (7) and f =
F (u) is defined according to (8) with x = 0. The function Lc

describes the minimal energy that is needed for the process
to reach y ∈ Q×Rn after time t = T , when it was started
at x = 0 at time t = 0. Note that, by definition, Lc = ∞
when u /∈ H1. Now we can state:

Proposition 3.2: Consider the Langevin equation (3) with
constant D,S ∈ R2n×2n and quadratic Hamiltonian H , such
that A = (J −D)∇2H(x) is Hurwitz. Then, for all y 6= 0,
the controllability function Lc(y) > 0 is given by

Lc(y) =
1
2
yTK−1

T y , (10)

where KT = cov(XT ) is the covariance matrix of the
unscaled Langevin process (5) at time t = T .

Proof: We start by revisiting the well-known property
of linear control systems to have a quadratic controllability
function, and then show that it can be expressed in terms
of the covariance matrix. Regarding the first, let f = F (u)
with u ∈ H1 be such that f(T ) = y and consider the linear
mapping C : H1([0, T ]) 7→ Q×Rn defined by

Cu =
∫ T

0

eA(T−s)Su̇(s) ds .

Clearly, y = Cu. The adjoint map C∗ : Q × Rn →
H1([0, T ]) is defined by means of the inner products

〈y, Cu〉R2n = 〈C∗y, u〉H1 .

Hence,

(C∗y) (t) = ST eAT (T−t)y

gives an admissible polygonal approximation to Ẇ , such that
the process reaches y at time T . Since A is Hurwirtz, (3)
is completely controllable and C is onto. Consequently, the
map CC∗ : Q×Rn → Q×Rn is invertible. Now consider
any u ∈ H1 with y = Cu. The optimal such u is given by
minimizing ‖u‖2H1 = ‖u̇‖2L2 subject to the constraint y =
Cu. The answer to this problem is known and is

u̇0 = C∗ (CC∗)−1
y .

Obviously u0 ∈ H1 and we can use (9) together with the
definition of the rate function to obtain

Lc(y) =
1
2
yT (CC∗)−1

y .

This completes the first part of the proof. As for the identity
CC∗ = cov(X(T )), consider the solution

Xt =
∫ t

0

eA(t−s)S dWs

of the Langevin equation for initial value X0 = 0. Since
EXt = 0, the covariance matrix turns out to be

cov(Xt) = EXtX
T
t

= E
(∫ t

0

eA(t−s)SdWs

∫ t

0

dWT
s S

T eAT (t−s)

)
which, by use of Itô isometry, can be recast in

cov(Xt) =
∫ t

0

eA(t−s)SST eAT (t−s) ds

=
∫ t

0

eAsSST eAT s ds .

The assertion follows upon noting that CC∗ = cov(XT ).
Although we started with the scaled Langevin equation (6),

the covariance matrix is independent of the small parameter
ε and so is the controllability function. This can be rephrased
by saying that the controllability of a stochastic differential
equation is basically ensured by those zero-measure realiza-
tions of the white noise process that have higher regularity
than the standard paths.

As T goes to infinity, the Gramian CC∗ converges to the
equilibrium covariance matrix of the Langevin process that
is well-defined for A being Hurwitz. Using integration by
parts in the expression of KT = cov(XT ), the equilibrium
covariance K is the unique and symmetric positive-definite
solution of the Lyapunov equation

AK +KAT = −SST .

Observability of the stochastic Langevin equation can be
established in the standard way as for any other controlled
ordinary differential equation; see [1]. To this end, we write



the observed Langevin equation in the common form of a
port-Hamiltonian system [16]

ẋ = (J −D)∇H(x) + SẆ

y = R∇H(x) .
(11)

We can now define the observability function by disregarding
the noise contribution, viz.,

Lo(x) =
1
2

∫ T

0

|y(t)|2 dt , (12)

where y(t) = R∇H(f(t)) with f = F (0) being the solution
of the deterministic dynamics with initial condition f(0) =
x. Since f(t) = exp(At)x, the observability function reads

Lo(x) =
1
2
xTOTx ,

where QT denotes the finite-time observability Gramian

OT =
∫ T

0

eAT tGTGeAt dt , G = R∇2H(x) .

Again, as we let T go to infinity, the observability Gramian
can be represented as the unique positive-definite symmetric
solution of the Lyapunov equation

ATO +OA = −GTG .

IV. BALANCED TRUNCATION

Controllability and observability Gramians both have sug-
gestive physical interpretations: The controllability Gramian
K measures to which extend states are excitable by the noise
process. Given two states x1 and x2 with |x1| = |x2|, x1 is
more sensitive to the noise than x2, if xT

1 Kx1 > xT
2 Kx2.

Conversely, disregarding the noise, x1 is better to observe
than x2, if it produces a higher output energy — in other
words: if xT

1 Ox1 > xT
2 Ox2.

Balancing now consist in finding a coordinate trans-
formation, such that states can be simultaneously ordered
according to the excitability and their output energy. This is
achieved by finding a transformation x 7→ Tx that makes
both Gramians equal and diagonal, viz.,

T−1KT−T = TTOT = diag(σ1, . . . , σ2n) .

A basis result is that such a transformation exists, whenever
the Gramians are positive definite. Moreover the Hankel
singular values σ1, . . . , σ2n are invariant under coordinate
changes. In the balanced coordinates those states that are
least excitable also give the least output which legitimates
to neglect them, provided the corresponding Hankel singular
values are sufficiently small (Truncation).

The linear Langevin equation (11) resembles a stable port-
controlled Hamiltonian system. In [7] it has been demon-
strated that constraining the system to the even-dimensional
subspace U ⊂ Q × Rn of the most controllable and
observable states results again in a stable port-Hamiltonian
system. In point of fact, the problem reduces to imposing
a holonomic constraint on a Hamiltonian system, either
directly by restriction or by employing singular perturbation
techniques. If the constraint U ⊂ Q×Rn is holonomic (i.e.

integrable), imposing constraints for the stochastic Langevin
equation works in the same manner as for any other Hamil-
tonian systems; we refer to [9] for the details regarding the
constraint problem for stochastic differential equations.

The considerations in [7] carry over to the Langevin
problem – at least partially. Given coordinates z =
(z1, . . . , z2k), k < n on U ⊂ Q×Rn, the truncated version
of the Langevin equation (11) reads

ż = (Jr −Dr)∇Hr(z) + SrẆ

y = Rr∇Hr(z) ,
(13)

with Jr −Dr = P1(J −D)PT
1 , Sr = P1S and Rr = RPT

1 ,
where P1 contains the first 2k < 2n rows of P = T−1. The
reduced Hamiltonian is obtained simply by restriction, i.e.,

Hr =
1
2
zTQrz , Qr = TT

1 QT1 .

Here T1 consists of the first 2k columns of T . The reduced
system is stable, i.e., the matrix Ar = (Jr − Dr)∇2Hr(z)
is Hurwitz. Moreover Jr = −JT

r is skew-symmetric as is
easily seen. Note that, if that the original system satisfied the
fluctuation-dissipation relation 2D = SST , then the same is
true for the truncated system.

Nonetheless some care is needed in the interpretation of
the noise term, for the dimension of the Brownian motion
W (t) ∈ Rn has not changed. Consequently, the process
is no longer a hypoelliptic diffusion if 2k < n, and it
matters whether we regard the equation either as an Itô or
an Stratonovich equation.

A final remark is in order. The usual singular perturbation
argument of Balanced Truncation does not directly apply in
the presence of unbounded white noise; cf. [7]. If the noise is
acting on the subsystem that corresponds to the smallest sin-
gular values contains noise, the dynamics does not contract to
the controllable and observable subspace as the small Hankel
singular values go to zero. In fact, the variables become
distribution-valued (in the sense of probability theory) which
brings us into the realm of averaging techniques [14].

A. Diffusive limit

Balanced Truncation as carried out in the just described
way preserves the port-Hamiltonian structure of the Langevin
equation, let alone the exact meaning of the noise term. How-
ever there may be situations in which structure-preservation
may be relaxed in favour of a physical considerations.

An interesting object in this respect the diffusive limit
of the Langevin equation that also known by the name of
diffusive limit or Smoluchowski equation. The following
remarkable result is due to Nelson [17]; we have adapted
it so as to fit our framework.

Proposition 4.1: Let (Qε
t, P

ε
t ) denote the solutions of

q̇ =
∂Hε

∂p

ṗ = −∂H
ε

∂q
− γ

∂Hε

∂p
+ σẆ ,



where friction and noise coefficients satisfy 2γ = σσT , and
Hε is a family of Hamiltonians given by

Hε(q, p) =
1
2ε
pTM−1p+

1
2
qTLq .

Then, as ε → 0, the process Qε
t converges with probability

1 to a diffusion process Q0
t that is the solution of

γq̇ = −Lq + σẆ . (14)
The diffusive limit of the Langevin equation is an exam-

ple of a model reduction procedure, in which the reduced
equations have a genuinely different structure (second-order
vs. first-order). Nonetheless we can interpret the above result
nicely in terms of Balanced Truncation as we shall illustrate
with a simple example. For x1 ∈ R, consider the equation

εẍ1 = −x1 − ẋ1 +
√

2Ẇ , (15)

that describes damped oscillations of a stochastic particle of
mass ε. If we rescale the free variable according to t 7→ εt
the last equation turns out to be equivalent to the system2

ẋ1 = x2

ẋ2 = −εx1 − x2 +
√

2εẆ .
(16)

By standard perturbation arguments, we might guess that, as
ε→ 0, the dynamics degenerates to the system

ẋ1 = x2

ẋ2 = −x2 ,

which implies x2 ≈ exp(−t)x2,0 and x1 ≈ −x2 for ε� 1.
However we have to be careful in neglecting terms involving
ε, for the white noise is unbounded and, hence, both εẋ1 and√

2εẆ can be become arbitrarily large, no matter what ε is.
Now suppose that we observe only the position component

y = x1 of the system (16). As the noise amplitude is small
for ε� 1 the large deviations principle of Section III applies,
thus we can study controllability and observability of the
system. The two Gramians are easily found, viz.,

K =
(

1 0
0 ε

)
, O =

1
2ε

(
1 + ε 1

1 1

)
.

The corresponding Hankel singular values are

σ1/2 =
1
2

√
1 + 2ε±

√
1 + 4ε

ε

yielding σ1 ∼ 1/
√
ε and σ2 ∼

√
ε for ε → 0. Computing

the balancing transformation and truncating the low energy
modes for ε� 1, we obtain the diffusion equation

ξ̇1 = −εξ1 +
√

2εẆ

with the single balanced variable ξ1 = x1 as the reduced
form of the scaled Langevin equation (16). If we scale back
to the original time scale by εt 7→ t, we find that x1 in
the original problem (15) is best described by the diffusion
process Xε=1

t that is the solution of

ẋ1 = −x1 +
√

2Ẇ ,

2Notice that the white noise scales according to Ẇ (t) 7→
√

εẆ (t/ε).

Fig. 1. Helical conformation of 8-alanine

which in fact is of the diffusive limit form (14). The last
equation defines a Gaussian diffusion process Xt with

EXt = e−tx1,0 , cov(Xt) = 1− e−2t .

V. MOLECULAR DYNAMICS

We want to study Balanced Truncation for a realistic
molecular system: the backbone angle dynamics of 8-alanine
in water at 300K. The corresponding Hamiltonian is clearly a
nonlinear function in the dihedral angles and their conjugate
momenta, so we linearize around a stable fixed point. Such a
fixed point is, e.g., given by the stable helical conformation
of the alanine molecule (see Fig. 1).

As the system’s Hamiltonian is typically given in Cartesian
coordinates rather than dihedral angles, we employ a data-
based ansatz, whereupon the right-hand side of the Langevin
equation is estimated from an observation time series consist-
ing of 7 backbone angles pairs q = (φ2, ψ1, . . . , φ8, ψ7) and
their angular velocities q̇ = dq/dt. The molecular dynamics
simulation is performed with the GROMOS force field and
implicit solvent with a 1fs time step and total length of
1 nanoseconds. The angular velocities are obtained rather
accurately via force field evaluations within the GROMOS
package. The dynamics was restricted to the helical confor-
mation such that the assumption of linear Langevin dynamics
seems reasonable. The parameters of the respective linear
Langevin equation

Mq̈ = −Lq − γq̇ + σẆ (17)

are estimated using the maximum-likelihood routine de-
scribed in [18], assuming dissipation-fluctuation relation
2γ = σσT to hold. From the optimal parameters (see Fig. 2)
we then compute the Hankel singular values that are shown
in Fig. 3 where, as before, we have chosen the observable
y = q. We see that the singular values are quickly decaying
with three dominant ones.



Fig. 2. Optimal model parameters of the linearized Langevin equation
around the helical conformation. Upper panel: mass M and stiffness matrix
L. Lower panel: friction and noise coefficients, γ and σ.

By looking at the corresponding transformation matrix
(upper panel in Fig. 3) we see that the most pronounced
modes are essentially configuration variables (i.e., angles),
where the largest contributions to these modes come from
the central dihedral angles of the alanine backbone. The last
observation might probably be caused by lower mobility of
the (implicit) solvent in the central regime of the peptide.

The finding that the most pronounced modes are essen-
tially configuration variables is in agreement with our finding
about the diffusive limit: As Fig. 2 shows mass and the
friction matrix are about two orders of magnitude larger
than the stiffnesses. In order to understand the effects of
this difference in scaling let uns introduce

M =
1
ε
M0 , γ =

1
ε
γ0 , σ =

1√
ε
σ0 ,

and define the ”compressed” time τ = εt, we see that the
Langevin equation (17) is indeed of the form (15), namely,

εM0
d2q

dτ2
= −Lq − γ0

dq

dτ
+ σ0Ẇ ,

where M0, L, γ, σ are all of order 1. To further emphasize the
effect of scale separation we compare the computed Hankel
singular values and the balancing transform for the estimated
parameters M,L, γ, σ with the upscaled parameters M 7→
µM and γ 7→ µγ (accordingly: σ 7→ √

µσ), while keeping
the stiffness matrix L fixed. The result for µ = 100 is shown
in the lower panel of Fig. 3. It turns out that as µ increases,
half of the Hankel singular values goes to zero (uniformly
proportional to 1/

√
µ). In the same way the contribution

of the momenta to the dominant modes disappears, and the
dominant modes become purely configurational.
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Fig. 3. Hankel singular values and the corresponding inverse balancing
transformation. Upper panel: Hankel SV and the first three rows of T−1

for µ = 1 (estimated parameters). Lower panel: Hankel SV and the first
three rows of T−1 for µ = 100 (the largest SV has been scaled to unity).
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