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1. Introduction

Transition events in complex systems between long lived states are a key feature of
many systems arising in physics, chemistry, biology, etc. It was early recognized that
transition processes are characterized by rare but important events, i.e., transition
processes are phenomena that take place on a long time scale compared to the time
scale characterizing the states of local stability, also called metastable states. For
example, the timescale for folding of a small protein, i.e. the transition from an
unfolded in a folded state is in the range of microseconds to milliseconds, whereas
that for small-amplitude motions of amino acid side chains and water solvent is
1 femtosecond.

The first step towards an understanding of rare events was to realize that escape
from a metastable state can only happen via noise-assisted hopping events where
the amplitude of the noise reflects the finite temperature at which the process takes
place. In other words, the dynamics of the process is subject to random perturba-
tions. If we relate the fluctuation induced by the noise to an appropriate energy
scale Enoise, escape from a metastable state will be rare whenever the condition
Ebarrier/Enoise À 1 holds, where Ebarrier denotes the energy barrier height which
separates the metastable state.

Under physical assumptions on the governing dynamics of the process, the time
scale of escape from a metastable state depends exponentially on the ratio
Ebarrier/Enoise. This means that one has to wait exponentially long to observe a
single transition. On the other hand, the impact of the motion on the fastest time
scale on the global behavior of the process is not negligible. Consequently, any di-
rect numerical simulation of the dynamics in order to get a sufficient statistics on
transition events would fail. Hence, alternative and effective strategies are required
and had been developed such as Transition State Theory, Transition Path Sampling,
and more recently Transition Path Theory.

In the present work we give a unified presentation of Transition Path Theory
(TPT) for time-continuous Markov processes and we elucidate its range of applica-
bility on the example of conformational dynamics of bio-molecules.

We consider the most interesting results to include the following:

• Illustration of TPT on several low dimensional examples for Smoluchowski and
Langevin dynamics arising from the stochastic modeling of molecular dynam-
ics.

• Derivation of a stable finite discretization scheme of the committor function
equation associated with the hypoelliptic Langevin dynamics.

• Adaptation of TPT to the class of time-continuous Markov processes with
discrete state space (Markov jump processes).

• Development of efficient graph algorithms for identifying transition pathways
for Markov jump processes and in Markov chains.
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1. Introduction

• Presentation, improvement and comparison of methods to estimate an in-
finitesimal generator of a Markov jump process if only an incomplete observa-
tion of the process is available.

• Derivation of an Metropolis Monte Carlo Markov chain method to investi-
gate the error propagation in the discrete committor function computation for
Markov chains.

Rare Events in Molecular Dynamics In the classical description of molecular pro-
cesses the dynamics of the molecule’s microscopic configurations (position and mo-
menta) are mathematically modeled in terms of ordinary differential equation, result-
ing from formulations of Lagrange and Hamilton. Within these models, the physical
interactions of atoms are encoded in the interaction potential which is composed
of sums of contributions of different physical origin as the bond structure of the
molecule and electrostatic interactions. But most biomolecular processes can only
be understood within a thermodynamical context; instead of a single molecular sys-
tem as a solution of the classical equations, one is interested in statistical ensembles,
since only such ensembles can be object of experimental investigation. Throughout
this thesis we will focus on that ensemble view.

Functions of bio-molecules depend on their dynamical properties, and especially on
their ability to undergo transitions between long-living states, called conformations.
A conformation of a molecule is understood as a mean geometric structure of the
molecule which is conserved on a large time scale compared to the fastest molecular
motions where the system may well rotate, oscillate or fluctuate. From the dynamical
point of view, a conformation typically persists for a long time (again compared
to the fastest molecular motions) such that the associated subset of microscopic
configurations is almost invariant or metastable [82] with respect to the dynamics.
Hence transitions between different conformations of a molecule are rare events
compared to the fluctuations within each conformation.

A very popular model to describe molecular systems including thermal noise is
the stochastic Langevin dynamics or Smoluchowski dynamics. A Langevin system
can be regarded as a mechanical system with additional noise and friction where
the noise can be thought of modeling the influence of a heat bath surrounding the
molecule and the friction is chosen such as to counterbalance the energy fluctuations
due to the noise [45]. The Smoluchowski dynamics [87] is a Brownian motion which
results from the Langevin dynamics in the high friction limit and acts only on the
position space.

Mathematically, the Langevin and Smoluchowski dynamics are time-continuous
Markov diffusion processes on a continuous state space. Under weak conditions both
admit a unique stationary (equilibrium) distribution in configuration space which
corresponds to the stationary (canonical) ensemble in experiments under constant
volume and temperature, respectively.

As mentioned above, the problem of identifying conformations amounts to the
identification of metastable sets in configuration space. The characterization of
metastability within the canonical ensemble hence requires the mathematical de-
scription of the propagation of sub-ensembles. This is accomplished by the transfer
operator approach [80]; if we define a transition probability from a sub-ensemble C
into another sub-ensemble B in time τ , denoted by p(τ, C,B) then C will be called
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metastable on a time slice τ if the fraction of the systems in that sub-ensemble which
stays in C after time τ is almost one, i.e. p(τ, C, C) ≈ 1 [51]. Finally, the algorithmic
strategy to decompose the state space into metastable states is based on spectral
properties of the transfer operator [24].

Transition State Theory Since the 1930s transition state theory (TST) and evolu-
tions thereof based on the reactive flux formalism have provided the main theoretical
framework for the description of rare events [37, 95, 97, 7, 15]. Originally, TST was
derived in the context of analyzing the rate of chemical reactions R → P , where R
denotes the reactant and P the product. The idea behind TST is to approximate
the reaction rate k by the mean crossing frequency kTST of transitions from R to P
through a transition state, the dynamical bottleneck for the reaction. Generally, the
transition state can be any dividing surface separating the reactant state R from
the product state P . Then the TST rate, kTST , is proportional to the total flux of
reactive trajectories, i.e., trajectories from the reactant to the product side of the
dividing surface, and can be expressed in terms of thermodynamical quantities.

The TST rate is always an upper bound of the true reaction rate because reac-
tive trajectories can recross the transition state many times during one reaction.
Therefore, the true rate is given by

k = κkTST ,

where κ, the transition coefficient, is a correcting factor accounting for these re-
crossings. Due to this overestimation, several strategies have been proposed to im-
prove the TST rate. For example, the earliest one is called variational TST [50] and
amounts to choose the dividing surface which minimizes the TST rate constant (see
also [91, 94]).

Performing the computation in practice, however, may prove very challenging, and
this difficulty is related to a deficiency of the theory. TST is based on partitioning
the system into two, leaving the reactant state on one side of a dividing surface
and the product state on the other, and the theory only tells how this surface is
crossed during the reaction. As a result, TST provides very little information about
the mechanism of the transition, which has bad consequences e.g. if this mechanism
is totally unknown a priori. In this case, it is difficult to choose a suitable dividing
surface and a bad choice will lead to a very poor estimate of the rate by TST (too
many spurious crossings of the surface that do not correspond to actual reactive
events). The TST estimate is then extremely difficult to correct. The situation is
even worse when the reaction is of diffusive type, since in this case all surfaces are
crossed many times during a single reactive event and there is simply no good TST
dividing surface that exists.

Transition Path Sampling How to go beyond TST and describe rare events whose
mechanism is unknown a priori is an active area of research and several new tech-
niques have been developed to tackle these situations. Most notable among these
techniques are the transition path sampling (TPS) technique of Bolhuis, Chandler,
Dellago, and Geissler [72, 21] and the action method of Elber [35, 36] which allow to
sample directly the ensemble of reactive trajectories, i.e. the trajectories by which
the reaction occurs.

3



1. Introduction

The basic idea behind TPS is a generalization of standard Monte Carlo Markov
Chain (MCMC) [39, 56] procedures on the trajectory space of the considered dy-
namics. Generally, an MCMC procedure performs a biased random walk on the
configuration space such that the number of visits of a configuration x is propor-
tional to its probability p(x). In TPS a configuration X(T ) = (x0, x∆t . . . , xT ) is a
sequence of states representing a time-discretization of a true dynamical trajectory
of fixed length T rather than individual states of the dynamics itself. The statistical
weight p(X(T )) depends on the initial conditions and on the underlying dynamics.
Since one is only interested in reactive trajectories connecting A and B, TPS finally
performs a random walk on the transition path ensemble with respect to the reactive
path probability

pAB(X(T )) = Z−1
AB(T )1A(x0)p(X(T ))1B(xT ),

where ZAB normalizes the distribution of the transition path ensemble and the char-
acteristic 1A(x) is equal one if x ∈ A and 0 otherwise (1B(x) is defined analogously).

Following [72]:

Metaphorically, TPS is akin to ”throwing ropes over rough mountains
passes, in the dark” where ”throwing ropes” stands for shooting trajecto-
ries, attempting to reach one metastable state from another and ”in the
dark” because high-dimensional systems are so complex that it is gener-
ally impossible to make any prediction on the relevant energy surfaces.

We want to emphasize that reactive trajectories in the transition path ensemble
are true dynamical trajectories, free of any bias by non-physical forces, constraints or
assumptions on the reaction mechanism. The mechanism of the reaction and possibly
its rate can then be obtained a posteriori by analyzing the ensemble of reactive
trajectories. However, these operations are far from trivial. TPS or the action method
per se do not tell how this analysis must be done and simple inspection of the reactive
trajectories may not be sufficient to understand the mechanism of the reaction. This
may sound paradoxical at first, but the problem is that the reactive trajectories
may be very complicated objects from which it is difficult to extract the quantities
of real interest such as the probability density that a reactive trajectory be at a
given location in state-space, the probability current of these reactive trajectories,
or their rate of appearance. In a way, this difficulty is the same that one would
encounter having generated a long trajectory from the law of classical mechanics but
ignoring all about statistical mechanics: how to interpret this trajectory would then
be unclear. Similarly, the statistical framework to interpret the reactive trajectories
is not given by the trajectories themselves, and further analysis beyond TPS or the
action method is necessary (for an attempt in this direction, see [52]).

Transition Path Theory Recently, a theoretical framework to describe the statisti-
cal properties of the reactive trajectories in the context of Markov diffusion processes
has been introduced [34, 92]. This framework, termed transition path theory (TPT),
goes beyond standard equilibrium statistical mechanics and accounts for the non-
trivial bias that the very definition of the reactive trajectories imply – they must be
involved in a reaction.
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TPT allows to understand the statistical properties of the ensemble of all reactive
trajectories (not only reactive trajectories with respect to a fixed length as in TPS)
by giving precise answers to the following questions:

• What is the probability to encounter a reactive trajectory in a given state, i.e.
what is the probability density function of reactive trajectories?

• What is the net amount of reactive trajectories going through a given state,
i.e. what is the probability current of reactive trajectories?

• What is the mean frequency of transitions between two sets, say A and B, i.e.
what is the rate of reaction?

• What are the mechanisms of transitions, i.e. what are the transition tubes or
transition pathways?

The key ingredient in the main objects provided by TPT is the committor function
qAB(x) ≡ q(x) which is the probability to go rather to the set B than to the set A
conditional on the process has started in the state x. The committor function q(x)
can be seen as an abstract reaction coordinate, because under appropriate conditions
on the dynamics the levels sets of the committor function foliate the state space in
sets of equal probability to rather end up in B than A, i.e. it describes the progress
of reaction from A to B in terms of probabilities.

For Markov diffusion processes, the committor function satisfies a boundary value
problem where the involved partial differential operator is the generator of the dif-
fusion process under consideration. Solving the committor equation numerically in
high dimensions is infeasible and, hence, TPT is impractical for the analysis of high
dimensional complex processes.

As a remedy to avoid the ”curse of dimension” we will follow a two-step procedure.
Instead of considering the system in all its degrees of freedom, we will choose appro-
priate low-dimensional observables which allow to describe the effective dynamics of
the system. In the second step the dynamics in these observables is considered on a
coarse grained level, e.g. on a discretization of the image space of the observables,
and modeled as a Markov jump process. As a result the essential dynamics of the
complex system is captured in a discrete transition network (see Figure 1).

For discrete representatives of the sets A and B, discrete TPT [66] allows to
analyze the statistical properties of the associated reactive trajectories, i.e. these
trajectories by which the walkers transit on the discrete state space from A to B
driven by the underlying Markov jump process. Discrete TPT provides discrete
analogs of the probability density, the transition rate and the probability current of
reaction trajectories. Again, these objects depend on a discrete committor function
which satisfies a linear system of equations involving the infinitesimal generator of
the considered jump process. Within this discrete setting, then it is easy to compute
transition rates and, moreover, to identify transition pathways by utilizing Graph
algorithms.

Finally, it is worth to point out that TPT is the theoretical background beyond
the string method [30, 31, 32, 33, 75, 60], which is a numerical technique to compute
the statistical properties of the reactive trajectories directly (that is, without having
to identify these trajectories themselves beforehand as in TPS or the action method)
in complicated systems with many degrees of freedom.
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Figure 1.1.: In this figure we exemplify our strategy to capture the essential dynam-
ics of a bio-molecule in a coarse grained model. The top left panel shows
the ball-and-stick representation of the trialanine dipeptide analog. Top
right: Projection of the time series (all atomic positions) onto the torsion
angle space spanned by Φ and Ψ, which reveals the metastable behavior.
Bottom left: The Ramachandran plot of the torsion angle time series. At
first glance, trialanine attains three different conformations, indicated
by the three clusters. Bottom right: The discrete free energy, − log π,
associated with the stationary distribution π of a Markov jump process
which models the effective dynamics of a system in terms of the torsion
angles Φ and Ψ. The jump process was estimated from the underlying
time series with respect to a 20×20 box discretization of the torsion an-
gle space. The lighter the color of a box the more probable to encounter
the process in that box.
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2. Theory: Time-continuous Markov
Processes

The purpose of this chapter is to give an introduction to the theoretical framework
of time-continuous Markov processes on a continuous and a discrete state space.

2.1. Markov Diffusion Processes

2.1.1. Markov Processes

In this section we give a brief mathematical description of Markov processes. For a
detailed introduction see, e.g., [3],[86].

To begin at the beginning, a d-dimensional stochastic process {Xt, t ≥ 0} is a
collection of random variable assuming its values in Rd (for d ≥ 1) and the index t
is referred to as the time. Formally, {Xt, t ≥ 0} is defined on the probability space
(Ω,F ,P) with Ω = {f : [0,∞) → Rd} is the set of Rd-valued functions defined on the
interval [0,∞), F is the sigma-algebra generated by the sets {f ∈ Ω : f(s) ∈ B}, 0 ≤
s < ∞,B ∈ Bd where Bd denotes the sigma algebra of Borel sets in Rd, P is the
probability measure defined by the finite-dimensional distributions of the process
{Xt, t ≥ 0} on the space (Ω,F) and Xt(ω) = ω(t) for all ω ∈ Ω. A sample path
(realization, trajectory) Xt(ω) of the stochastic process is therefore an Rd-valued
function defined on the time interval [0,∞). In the following, we shall denote briefly
the process by Xt.

Let FT for T ≥ 0 denote the sigma-algebra which is generated by the sets {f ∈
Ω : f(s) ∈ B}, 0 ≤ s < T,B ∈ Bd. A stochastic process Xt is called Markov process
if the so-called Markov property is satisfied:

P(Xt ∈ B|Fs) = P(Xt ∈ B|Xs), ∀ 0 ≤ s < t,∀ B ∈ Bd. (2.1)

A verbal formulation of the Markov property (2.1) is as follows [3]:

If the state of the process at a particular time s (the presents) is known,
additional information regarding the behavior of the process at r < s (the
past) has no effect on our knowledge of the probable development of the
process at t > s (in the future).

A Markov process is called a homogeneous Markov process if the right hand side
in (2.1) does only depend on the time difference (t− s), i.e.

P(Xt+h ∈ B|Xt) = P(Xh ∈ B|X0), ∀ 0 ≤ t, h, ∀ B ∈ Bd.

We write X0 ∼ v0 if the Markov process Xt is initially distributed according to the
probability density v0, i.e. if P(X0 ∈ B) =

∫
B v0(x)dx for all B ∈ Bd.

9



2. Theory: Time-continuous Markov Processes

Let Xt be a homogeneous Markov process with initial distribution v0. The proba-
bility P(Xt ∈ B) to observe Xt at the time T in the subset B ⊂ Bd of the state space
is given by

P(Xt ∈ B) =
∫

Rd

p(t, x,B)v0(x)dx,

where the function p : [0,∞)×Rd×Bd → [0, 1] is called stochastic transition function
and is defined according to

p(s, x,B)
def
= P(Xs ∈ B|X0 = x), s ∈ [0,∞), x ∈ Rd,B ∈ Bd. (2.2)

The function p : [0,∞)× Rd × Bd → [0, 1] has the following properties

1. x 7→ p(s, x,B) is measurable for fixed s ∈ [0,∞) and fixed B ∈ Bd.

2. B 7→ p(s, x,B) is a probability measure for fixed s ∈ [0,∞) and fixed x ∈ Rd.

3. p(0, x,Rd \ {x}) = 0 for all x ∈ Rd.

4. the Chapman-Kolmogorov equation

p(t + s, x,B) =
∫

Rd

p(t, x, dz)p(s, z,B) (2.3)

holds for all t, s ∈ [0,∞), x ∈ Rd and B ∈ Bd.

We say that the Markov process Xt admits an invariant probability measure µ, if
∫

Rd

p(t, x,B)µ(dx) = µ(B) ∀ t ∈ [0,∞), ∀ B ∈ Bd. (2.4)

In many applications, it is important to guarantee that the Markov property (2.1)
even holds if the fixed time s is replaced by a stopping time. A random variable
ν : Ω → R+ ∪ {0} is said to be a stopping time with respect to the Markov process
Xt if

{ν ≤ t} = {ω ∈ Ω : ν(w) ≤ t} ∈ Ft, ∀t ≥ 0.

In words, it should be possible to decide whether or not ν ≤ t has occurred on the
basis of the knowledge of the process up to the time t. A time-homogeneous Markov
process Xt has the strong Markov property with respect to a stopping time ν if,

P(Xν+h ∈ B|Xν) = P(Xh ∈ B|X0), ∀t, h ≤ 0, ∀ B ∈ Bd. (2.5)

2.1.2. The Infinitesimal Operator

To every homogeneous Markov process Xt one can assign a semigroup of Markov
operators {Tt, t ≥ 0}, defined for any suitable function u : Rd → R by

Ttu(x)
def
= Ex [u(Xt)] =

∫

Rd

u(y)p(t, x,dy), (2.6)

where Ex[u(Xt)] denotes the expectation of the observable u at time t conditional
on X0 = x. Moreover, the operator T0 is the identity operator and the semigroup
property, that is,

Ts+t = TsTt = TtTs, ∀t, s ∈ [0,∞)

10



2.1. Markov Diffusion Processes

follows from the Chapman-Kolmogorov equation (2.3). The generator Lbw of a ho-
mogeneous Markov process Xt is defined by an operator representing the derivative
of the family {Tt, t ≥ 0} at the point t = 0,

Lbwu(x)
def
= lim

t↓0
Ttu(x)− u(x)

t
. (2.7)

The domain DLbw
of definition of the operator Lbw is a subset of the space of bounded

measurable scalar functions defined on Rd and consists of all functions for which the
limit in (2.7) exists. The quantity Lbwu(x) is interpreted as the mean infinitesimal
rate of change of u(X0) in case X0 = x.

2.1.3. Diffusion Processes

Diffusion processes are special cases of Markov processes with continuous sample
functions. There are basically two different approaches to the class of diffusion pro-
cesses. On the one hand, one can define them in terms of the conditions on the
stochastic transition function introduced above. On the other hand, one can study
the state Xt itself and its variation with respect to time. This leads to a stochastic
differential equation. That is what we shall do in the present section. A detailed
introduction to stochastic differential equation can be found in, e.g., [70, 40].

In what follows, we restrict ourselves to time-homogeneous Markov diffusion pro-
cesses Xt which are solutions or (or which are generated by) the stochastic differ-
ential equation (SDE) of the form

dXt = b(Xt)dt + σ(Xt)dWt, (2.8)

where Xt ∈ Rd and Wt = (W 1
t , . . . , W d

t ) is a d-dimensional standard Wiener process
(see definition A.6.1 in the Appendix). The real vector field b : Rd → Rd is called
the drift field or mean velocity field of the diffusion. The real symmetric matrix
a(x) = (aij(x)) ∈ Rd×d, defined for all x ∈ Rd via the real matrix σ(x) ∈ Rd×d

according to

a(x)
def
=

1
2
σ(x)σ(x)T (2.9)

is called the diffusion matrix. Here σT (x) denotes the transposed matrix of the real
matrix σ(x).

Assumption 2.1.1. Henceforth, we make the following additional assumptions on
the coefficients of the SDE (2.8):

• The diffusion matrix a(x) is for all x ∈ Rd non-negative definite, i.e.,

d∑

i,j=1

aij(x)ξiξj ≥ 0, ∀ξ ∈ Rd. (2.10)

• The drift field b(x) and the diffusion matrix a(x) are such that there exists an
unique solution of (2.8). (See Theorem (A.6.1) in Appendix).

11



2. Theory: Time-continuous Markov Processes

• The drift field b(x) and the diffusion matrix a(x) are such that the diffusion
process Xt is ergodic with respect to a unique invariant probability measure
dµ(x) = ρ(x)dx, i.e.,

lim
T→∞

1
T

∫ T

0
f(Xs)ds =

∫

Rd

f(y)ρ(y)dy (2.11)

for all f ∈ L1(Rd).

2.1.4. Reversed-time Diffusion Process

Let {Xt, 0 ≤ t ≤ T}, T > 0 be a Markov diffusion process, satisfying the SDE

dXt = b(Xt)dt + σ(x)dWt, 0 ≤ t ≤ T

and denote by v(t, x) the probability density of the law of Xt at time t, i.e.,

P[Xt ∈ C] =
∫

C
v(t, y)dy, ∀C ∈ Bd.

A Markov process remains a Markov process under time reversal, i.e., the reversed-
time process {XR

t , 0 ≤ t ≤ T} according to

XR
t

def
= XT−t

is again a Markov process, but in general the diffusion property is not preserved.
Under mild conditions on the drift field b(x), the matrix σ(x) and the probability
density v0(x) of the law of X0, it is proven in [47] that the reversed-time process
XR

t is again a Markov diffusion process. In particular, it is shown that XR
t satisfies

a SDE
dXR

t = bR(t,XR
t )dt + σ(XR

t )dWt (2.12)

where the time-dependent reversed drift field bR(t, x) : Rd+1 → Rd is given by

bR(t, x) = −b(x) +
2

v(T − t, x)
div

(
a(x)v(T − t, x)

)
. (2.13)

If the diffusion process {Xt, 0 ≤ t ≤ ∞} admits an invariant probability measure µ,
induced by the probability density ρ(x), then (2.13) reduces to

bR(x) = −b(x) +
2

ρ(x)
div

(
a(x)ρ(x)

)
(2.14)

and dµ(x) = ρ(x)dx is the invariant probability measure of the reversed process too.
If the diffusion process Xt is such that

b ≡ bR

then the original process Xt and the reversed process XR
t are statistically indistin-

guishable and the process Xt is called reversible.
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2.1. Markov Diffusion Processes

2.1.5. Backward and Forward Equations

For a Markov diffusion process Xt of the form (2.8), the infinitesimal operator Lbw is
a linear second order partial differential operator whose coefficients are determined
by the drift field b(x) and the diffusion matrix a(x),

Lbwu =
d∑

i,j=1

aij
∂2u

∂xi∂xj
+

d∑

i=1

bi
∂u

∂xi
(2.15)

acting formally on the space of twice partially differentiable functions u : Rd → R.
The first double sum in (2.15) is called the principle part of the differential operator.

Next, we establish the relation between the semigroup {Tt, 0 ≤ t < ∞} and the
partial differential operator Lbw.

Theorem 2.1.1. ([3], page 42-43) Let g : Rd → R denote a continuous bounded
scalar function such that the function u : [0,∞)× Rd → R according to

u(t, x)
def
= Ex [g(Xt)]

is continuous and bounded, as are its derivatives ∂u/∂xi and ∂2u/∂xi∂xj. Then
u(t, x) satisfies the Kolmogorov’s backward equation





∂u

∂t
= Lbwu in (0,∞)× Rd

u(0, ·) = g on Rd.
(2.16)

Loosely spoken, the backward equation describes the evolution of conditional ex-
pectations of observables with respect to Xt. The evolution of the probability density
of the law of a diffusion process Xt is governed by the Kolmogorov’s forward equation,
also known as Fokker-Planck equation.

Theorem 2.1.2. ([57], page 360) If the functions σij, ∂σij/∂xk, ∂2σij/∂xk∂xl, bi,
∂bi/∂xj, ∂v/∂t, ∂v/∂xi, and ∂2v/∂xi∂xj are continuous for t > 0 and x ∈ Rd, and
if bi, σij and their first derivatives are bounded, then v(t, x) satisfies the equation





∂v

∂t
= Lfwv in (0,∞)× Rd

v(0, ·) = v0 on Rd,
(2.17)

where X0 ∼ v0 and the operator Lfw is a linear second order partial differential
operator, defined according to

Lfwv
def
=

d∑

i,j=1

∂2(aijv)
∂xi∂xj

−
d∑

i=1

∂(biv)
∂xi

=
d∑

i=1

∂

∂xi




d∑

j=1

∂(aijv)
∂xj

− biv


 .

(2.18)

Notice, that the probability density function ρ of the invariant measure µ is the
steady state solution of the Fokker-Plank equation (2.17), i.e.,

Lfwρ(x) = 0, ∀x ∈ Rd.

13



2. Theory: Time-continuous Markov Processes

Remark 2.1.2. The generator of a Markov diffusion process plays a key role in
Transition Path Theory. For the sake of a compact presentation, we introduce a
compact notation for differential operations on functions. Let u : Rd → R then the
Nabla-operator ∇ is defined as

∇u = (
∂u

∂x1

, . . . ,
∂u

∂xd

)

and the Laplace-operator ∆ is given by

∆u =
d∑

i=1

∂2u

∂2xi
.

Moreover, we abbreviate the divergence of a vector field b : Rd 7→ Rd by

∇ · b def
= div(b) =

d∑

i=1

∂bi

∂xi

.

The divergence ∇ · a of a matrix a(x) = (a(x)ij) ∈ Rd×d is a vector field whose ith

component is defined by

(∇ · a)i
def
=

d∑

j=1

∂aij

∂xj

, i = 1, . . . , d.

Henceforth, we will write the generator (2.15) of a diffusion process as

Lbwu = a : ∇∇u + b · ∇u, (2.19)

where we additionally abbreviate the principle part of Lbw by

a : ∇∇u
def
=

d∑

i,j=1

aij
∂2u

∂xi∂xj

and b · ∇u denotes the scalar product between the vector field b(x) and the gradient
∇u(x). In the introduced notation, the operator Lfw, defined in (2.18), takes the
form

Lfwv = ∇ · [∇ · (av)− bv] ,

where the vector field

J(x)
def
= − [∇ · (a(x)v(x)

)− b(x)v(x)
]

(2.20)

is referred to as (probability) current.

2.1.6. Partial Differential Operators

In this work we are mainly concerned with two types of linear second order partial
differential operators (PDEs): the elliptic and the degenerate elliptic type.
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2.1. Markov Diffusion Processes

Consider the general linear second order partial differential operator

Gu = a : ∇∇u + b · ∇u + cu (2.21)

with real coefficients aij(x), bi(x), c(x) defined on a domain (open and connected)
Ω ⊂ Rd. Because the Hesse matrix of a function u ∈ C2(Rd) is symmetric, we may
assume without loss of generality that the matrix a(x) = (aij(x)) is symmetric.
Second-order PDEs are classified according the behavior of a quadratic form which
is associated with their principle parts.

Definition 2.1.3. The operator G is said to be of elliptic type (or elliptic) at a
point x0 ∈ Ω if the matrix a(x0) is positive definite, i.e.,

d∑

i,j=1

aij(x0)ξiξj > 0, ∀ ξ ∈ Rd : ξ 6= 0. (2.22)

The operator G is called elliptic in Ω if the matrix a(x) is positive definite for all
x ∈ Ω. If there exists a positive constant θ > 0 such that

d∑

i,j=1

aij(x)ξiξj ≥ θ ‖ξ‖2

for all x ∈ Ω, ξ ∈ Rd, then we say that G is uniformly elliptic in Ω. If the matrix
a(x) is nonnegative definite, i.e.,

d∑

i,j=1

aij(x)ξiξj ≥ 0 (2.23)

for all x ∈ Ω, ξ ∈ Rd then G is called degenerate elliptic [90].

Remark 2.1.4. Notice that besides the elliptic operators, the class of degenerate
elliptic operators includes operators of parabolic types, first order equations, ultra-
parabolic equations, and others. In the literature, a degenerate elliptic operator is
also called semi-elliptic [70] or of nonnegative characteristic form [71].

2.1.7. Relation between Lbw and Lfw

In the language of the theory of partial differential equations, the operator Lfw (2.18)
is the formal L2-adjoint of the operator Lbw (2.15), i.e.,

∫

Rd

vLbwudx =
∫

Rd

uLfwv dx, ∀u, v ∈ L2(Rd), (2.24)

where L2(Rd) = {v : Rd → R :
∫
Rd |v(x)|2dx < ∞}. The operator Lbw is called

self-adjoint if Lbw ≡ Lfw. If the domain of integration in (2.24) is restricted to a
bounded domain Ω ⊂ Rd with a sufficiently smooth boundary ∂Ω then by virtue of
Green’s theorem the identity (2.24) takes the form

∫

Ω
vLbwu dx =

∫

Ω
uLfwv dx +

∫

∂Ω
R · n̂ dσ∂Ω(x), (2.25)
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2. Theory: Time-continuous Markov Processes

where n̂ is the unit normal to the boundary ∂Ω pointing outward Ω, dσ∂Ω is the
surface element on ∂Ω and the real vector field R : Rd → Rd (the concomitant of
Lbw [79]) is given by

R = va∇u− ua∇v + uv[b−∇ · a]. (2.26)

The identity (2.25) will be useful to define adjoint boundary conditions in Sec-
tion 2.1.9.

2.1.8. Stochastic Representation of Solutions of Boundary Value
Problems

Theorem 2.1.1 states that for any suitable function g the function

u(t, x) = Ex [g(Xt)]

satisfies the initial value problem




∂u

∂t
− Lbwu = 0 in (0,∞)× Ω

u(0, ·) = g on Ω
(2.27)

where Lbw is the generator of the considered diffusion process Xt. In other words,
the solution of (2.27) can be expressed in terms of the Markov diffusion process
Xt associated with the generator Lbw. Therefore, it is natural to ask the following
question: Given a degenerate elliptic differential operator acting on C2(Rd) of the
form

Gu = a : ∇∇u + b · ∇u,

and let Ω ⊂ Rd be a domain (open and connected). Under what conditions on
the coefficients a(x), b(x) there exists a Markov diffusion process Xt such that the
solution u ∈ C2(Ω) ∩ C(Ω) of the Dirichlet-Poisson problem for given functions
f ∈ C(Ω) and g ∈ C(∂Ω),

{
Gu = f in Ω

u = g on ∂Ω
(2.28)

can be expressed in terms of the Markov diffusion process Xt?
The idea of solution is to find a diffusion process Xt such that its generator Lbw

coincides with G on C2(Rd). This is formally achieved by setting

dXt = b(Xt)dt + σ(Xt)dWt, (2.29)

where σ(x) ∈ Rd×d is chosen such that

1
2σ(x)σ(x)T = a(x).

In order to guarantee that (2.29) admits a unique solution, we assume that the
conditions on b(x) and a(x) in Theorem A.6.1 are satisfied. In particular, conditions
which guarantee the Lipschitz-continuity of the square root of a(x) are given in [40],
Theorem 1.2, page 129.

The proof of the following uniqueness result is found in [70], page 168-169.
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Theorem 2.1.3. Suppose the function g ∈ C(∂Ω) is bounded and the function
f ∈ C(Ω) satisfies

Ex

[∫ τΩ

0
|f(Xs)|ds

]
< ∞, ∀ x ∈ Ω,

where τΩ = inf{t : Xt ∈ ∂Ω} is the first exit time from Ω. Suppose further that

τΩ < ∞, a.s. ∀x ∈ Ω.

Then if u ∈ C2(Ω) ∩ C(Ω) is a solution of the Dirichlet-Poisson problem (2.28) we
have

u(x) = Ex [g(XτΩ)]− Ex

[∫ τΩ

0
f(Xs)ds

]
. (2.30)

Next we address the question of existence of a solution of the Dirichlet-Poisson
problem in (2.28). Under the assumption that the operator G is uniformly elliptic
in Ω, the following Theorem holds:

Theorem 2.1.4 ([40], page 144). Let the conditions

• (aij), bi is uniformly Lipschitz-continuous in Ω

• f is uniformly Hölder continuous in Ω

• g is continuous on ∂Ω

• ∂Ω ∈ C2

Then (2.30) is the unique classical solution of the Dirichlet-Poisson problem in (2.28).

Unfortunately, it turned out that the existence problem for the case where G
is degenerate elliptic, but not elliptic is a difficult question. Up to our knowledge
there is no result which provides conditions under which a classical solution of (2.28)
exists. For results on the existence of weak solutions of (2.28) we refer the interested
reader to [71, 88].

2.1.9. Adjoint Boundary Condition

To motivate the concept of adjoint boundary condition, suppose we are interested
in the invariant probability distribution of a Markov diffusion process restricted on
a domain Ω ⊂ Rd. We mean by ”restricted” that we require that the process must
not escape the domain. As pointed out in Section 2.1.5, the probability density
function ρ(x) of the invariant probability distribution is the steady state solution of
the Kolmogorov forward equation (2.17), hence we are interested in the solution of
the equation

Lfwv = 0 in Ω.

In order to reflect that the process must not escape the domain Ω, we have to impose
additional conditions on the probability density function v(x) on the boundary ∂Ω.
The natural choice is to require that the probability current (2.20) is tangential to
the boundary which leads to the boundary conditions

BC(v) = (∇ · (av)− bv) · n̂ = 0 on ∂Ω, (2.31)
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where n̂ is the unit normal to ∂Ω pointing outward Ω. The adjoint boundary con-
ditions BC∗(u) = 0 are chosen such that both operator Lfw and Lbw are adjoint in
the domain Ω, i.e., ∫

Ω
vLbwudx =

∫

Ω
uLfwvdx.

Recalling the integral identity (2.25), the adjoint boundary conditions BC∗(u) = 0
are formally defined [28] as a minimal set of homogeneous conditions on u such that

BC(v) = BC∗(u) = 0 on ∂Ω =⇒ R · n̂ = 0 on ∂Ω.

A short calculation shows that the adjoint boundary conditions of the boundary
conditions (2.31) take the form

BC∗(u) = a∇u · n̂ = 0 on ∂Ω. (2.32)

Notice that in the case a = I = diag(1, . . . , 1) ∈ Rd×d the conditions (2.32) reduce
to the Neumann-conditions.

2.1.10. Langevin and Smoluchowski Dynamics

In this work, we are mainly concerned with two classes of time-homogeneous Markov
diffusion processes which arise from the stochastic modeling of the dynamics of
particles in a potential landscape. Both dynamics incorporate a physical temperature
and friction.

Langevin Dynamics

The first class of time-homogeneous diffusion process, we are interested in, is gen-
erated by the famous Langevin equation which is componentwise given in its tradi-
tional form by [76]

ẋi(t) = m−1
i pi(t),

ṗi(t) = −∂V (x(t))
∂xi

− γim
−1
i pi(t) +

√
2γiβ−1ζi(t)

(2.33)

where x = (x1, . . . , xd) is the position of the particles, p = (p1, . . . , pd) is the mo-
mentum of the particles, mi > 0 is the mass of xi, the function V (x) is the potential,
γi > 0 is the friction coefficient on xi and ζi(t) is a white noise (see Definition A.6.1
in Appendix). The inverse temperature β > 0 is related to the physical temper-
ature T by β = 1/kBT where kB is the Boltzmann-constant. A system governed
by the Langevin dynamics can be regarded as a mechanical system with additional
noise and dissipation (friction). The noise can be thought of modeling the influence
of a heat bath surrounding the molecule and the dissipation is chosen such as to
counterbalance the energy fluctuations due to the noise.

The Langevin dynamics (2.33) is ergodic with respect to the equilibrium measure
(invariant probability measure)

dµ((x, p)) = Z−1e−βH(x,p)dxdp, (2.34)
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where the Hamiltonian H(x, p) is defined as

H(x, p) = V (x) +
1
2
pT M−1p, M−1 = diag(m−1

1 , . . . ,m−1
d )

and Z =
∫
Rd×Rd e−βH(x,p) dxdp is the normalization constant. Notice that (2.33) can

be put in the form of (2.8) by setting

b(x, p) = (M−1p,−∇V (x)− ΓM−1p)T ∈ R2d,

σ =
√

2β−1

(
0 0

0 Γ
1
2

)
∈ R2d×2d,

where Γ
1
2 = diag(

√
γ1, . . . ,

√
γd).

According to (2.19), the generator of the Langevin dynamics (2.33) takes the form

Lbwu =β−1Γ : ∇p∇pu + M−1p · ∇xu

−∇xV · ∇pu− ΓM−1p · ∇pu,
(2.35)

where ∇x and ∇p act only on the positions and momenta, respectively.

Remark 2.1.5. Notice that the diffusion matrix of the Langevin dynamics

a = β−1

(
0 0
0 Γ

)
∈ R2d×2d

is not positive definite but nonnegative definite. Hence the operator Lbw is not
elliptic but degenerate elliptic. In the literature, e.g. in [74], the Langevin process
is also called a hypoelliptic diffusion process (see definition A.6.2 in Appendix)

Next, we turn our attention to the reversed time Langevin dynamics. Recalling
the relation (2.14) between the drift fields of a diffusion process and its reversed time
process, the reversed drift field of the reversed time Langevin dynamics is given by

bR((x, p)) = (−M−1p,∇V (x)− ΓM−1p)T

and the generator of the reverse-time Langevin dynamics takes the form

LR
bwu =β−1Γ : ∇p∇pu−M−1p · ∇xu

+∇xV · ∇pu− ΓM−1p · ∇pu.
(2.36)

Since b(x, p) 6= bR(x, p), the Langevin dynamics is a non-reversible diffusion process
on the phase space (x, p).

Smoluchowski Dynamics

A second important class of time-homogeneous diffusion processes is generated by
the overdamped Langevin or Smoluchowski dynamics which arises in the high friction
limit of the Langevin equation (2.33),

ẋi(t) = −γ−1
i

∂V (x)
∂xi

+
√

2γ−1
i β−1ζi, (2.37)
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where x = (x1, . . . , xd) denotes the position of the particles and the other quantities
are as in (2.33). For a sketch of the derivation of the Smoluchowski dynamics see [51].
The Smoluchowski dynamics (2.37) is ergodic with respect to the invariant measure
dµ(x) = ρ(x)dx, induced by the equilibrium probability density function

ρ(x) = Z−1e−βV (x), (2.38)

where Z =
∫
Rd e−βV (x)dx is the normalization constant. In contrast to the Langevin

dynamics, (2.37) defines a reversible diffusion process on the position space and the
generator is given by the elliptic operator

Lbwu = β−1Γ−1 : ∇∇u− Γ−1∇V · ∇u, (2.39)

where Γ−1 = diag(γ−1
1 , . . . , γ−1

d ).

2.2. Markov Jump Processes

In this section we will introduce time-continuous Markov processes on a discrete
state space and will provide the basic facts about this class of processes which will
be relevant for the derivation of discrete transition path theory. For further readings,
see e.g. [86, 13, 69].

Let {X(t), t ≥ 0} be an S-valued stochastic process on a probability space (Ω,F ,P),
with a discrete (countable) state space S and a continuous (time) parameter 0 ≤
t < ∞. We will denote by {X(t)}t∈R an equilibrium sample path (or trajectory) of
the Markov process, i.e. any path obtained from {X(t)}t∈[T,∞) by pushing back the
initial condition, X(T ) = x, at T = −∞.

A continuous-time stochastic process {X(t), t ≥ 0} with discrete state space S is
called a Markov process if for any tk+1 > tk > · · · > t0 ≥ 0 and any j, i1, · · · , ik ∈ S

P(X(tk+1) = j|X(tk) = ik, · · · , X(t1) = i1) = P(X(tk+1) = j|X(tk) = ik) (2.40)

holds. A continuous-time Markov process is called homogeneous if the right hand
side of (2.40) only depends on the time increment τk = tk+1 − tk. The probability
distribution µ0 satisfying

µ0(i) = P(X(0) = i), ∀i ∈ S

is called the initial distribution. In the following we will focus on homogeneous
continuous-time Markov processes on a finite state space S ∼= {1, . . . , d} and we will
denote that class of processes by Markov jump processes.

For a fixed time t, the transition probabilities

pij(t) = P(X(t) = j|X(0) = i)

define a transition matrix P (t) = (pij(t))i,j∈S where pij(0) = δij and δij = 1, if i = j
and zero otherwise. By definition, P (t) is a stochastic matrix, i.e,

pij(t) ≥ 0 and
∑

k∈S

pik(t) = 1, ∀i, j ∈ S, ∀t ≥ 0. (2.41)
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2.2. Markov Jump Processes

Throughout this thesis, we assume that the transition probabilities are continuous
at t = 0, i.e.

lim
t↓0

p(t, i, j) = δij , ∀i, j ∈ S. (2.42)

which guarantees, that a trajectory of {X(t), t ≥ 0} is a right continuous function
with left limits (càdlàg).

The family of transition matrices {P (t), t ≥ 0} is called the transition semigroup
of the Markov jump process which is justified by the fact that {P (t), t ≥ 0} obeys
the Chapman-Kolmogorov equation

P (t + s) = P (t)P (s), s, t ≥ 0.

with P (0) = I where I = diag(1, . . . , 1) ∈ Rd×d is the identity matrix.
Furthermore, a local characterization of the transition semigroup of a Markov

jump process can be obtained by considering the infinitesimal changes of the tran-
sition probabilities. Under the assumption made in (2.42), one can show that the
right-sided limit [13]

L = lim
t→0+

P (t)− I

t

exists (entrywise). The matrix L = (lij)i,j∈S is referred to as the infinitesimal gen-
erator of the transition semigroup {P (t), t ≥ 0} because L ’generates’ the transition
semigroup via the relation

P (t) = exp(tL) =
∞∑

n=0

tn

n!
Ln.

Due to the finite state space S, the matrix L has a special structure, namely,

0 ≤ lij < ∞ and
∑

k∈S

lik = 0 ∀ i, j ∈ S, i 6= j. (2.43)

where an entry lij , i 6= j is interpreted as a transition rate: the average number of
transitions from state i to state j per time unit. The diagonal entries of L, given by

lii = −
∑

k 6=i

lik, ∀ i ∈ S,

are called the escape rates of the states.
The Markov property (2.40) of a Markov jump process even holds for a certain

class of random times, the so-called stopping times. A real, non-negative random
variable ν is called a stopping time with respect to the process {X(t), t ≥ 0} if
for all t ≥ 0, the event {ν ≤ t} is expressible in terms of (X(s), s ∈ [0, t]), i.e. it
should be possible to decide whether or not ν ≤ t has occurred on the basis of the
knowledge of the process up to the time t.

Now let {X(t), t ≥ 0} be a Markov jump process with generator L, ν a stopping
time with respect to {X(t), t ≥ 0} and i ∈ S an arbitrary state. Then, given that
X(ν) = i,

the process after ν and the process before ν are independent, and
the process after ν is a Markov jump process with generator L.

(2.44)
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2. Theory: Time-continuous Markov Processes

The property (2.44) is called the strong Markov property.
Analogously to the case of a continuous state space, the evolution of conditional

expectations of observables is governed by the infinitesimal generator. To be more
precise, let f : S 7→ R be an observable. Then the time derivative of the conditional
expectations u(i, t) = E[f(X(t))|X(0) = i], i ∈ S satisfies the backward Kolmogorov
equations

d

dt
u(i, t) =

∑

j∈S

liju(j, t), u(i, 0) = f(i) ∀i ∈ S, t ≥ 0 (2.45)

or, in matrix-vector notation

du

dt
= Lu, u(0) = f , t ≥ 0.

Similarly, let µ(t) = (µi(t))T
i∈S = (P(X(t) = i))T

i∈S be the probability distribution
of the Markov jump process at time t. Then the distribution µ(t) evolves in time
according to the forward Kolmogorov equation

dµ

dt
= µT L, t ≥ 0, (2.46)

also known as Master equation. A probability distribution π = (πi)i∈S is called a
stationary distribution if it satisfies

0 = πT L.

In other words, π is a left eigenvector associated with the zero eigenvalue of L.
To further illuminate the characteristics of Markov Jump processes, denote by

t0 = 0 < t1 < t2 < . . . the random jump times, at which the Markov process
changes its state. For notational convenience, we denote the left-sided limit of the
process at time t by

X∗(t) def
= lim

s→t−X(s). (2.47)

Then the sequence of jump times {tn, n ∈ N ∪ {0}}, formally given by

t0 = 0, ∀n ∈ N : tn = inf{s : s > tn−1, X(s) 6= X∗(s)}.

defines according to

Xn
def
= X(tn)

the embedded process {Xn, n ∈ N0} associated with the Markov jump process. It
can be shown that {Xn, n ∈ N0} is a discrete-time Markov chain and its transition
matrix P = (pij)i,j∈S is related to the infinitesimal generator L by

pij =

{
− lij

lii
∀i 6= j

0, otherwise.
(2.48)

A Markov jump process is called irreducible if the embedded process is irreducible,
i.e., if for any pair (i, j), i 6= j of states there exists an m ∈ N such that (Pm)i,j > 0
(cf. Sect. A.6).
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2.2. Markov Jump Processes

Next, we turn our attention to the reversed time process {XR(t), t ∈ R} defined
by

XR(t)
def
= X∗(−t),

where X∗(−t) denotes the left-sided limit of the process at time−t. If we assume that
{X(t), t ∈ R} is irreducible and that it admits a unique stationary distribution π =
(πi)i∈S , then the process {XR(t), t ∈ R} is again a càdlàg Markov jump process with
the same stationary distribution as {X(t)}t∈R, π, and the infinitesimal generator
LR = (lRij)i,j∈S given by

lRij =
πj

πi
lji. (2.49)

If in particular the infinitesimal generator L satisfies the detailed balance equations

πilij = πjlji, ∀i, j ∈ S (2.50)

then LR ≡ L and hence, the direct and the reversed time process are statistically
indistinguishable. Such a process is called reversible.

We end this section by stating a strong law of large numbers for Markov jump
processes, which says that the time average of an observable f : S 7→ R with respect
to the process equals the expectation of f with respect to the stationary distribution.
Formally, we have

lim
t→∞

1
t

∫ t

0
f(X(s))ds =

∑

i∈S

f(i)πi (2.51)

almost sure for all initial distributions µ0 where π is the stationary distribution
of the Markov jump process. In particular, the Markov jump process is said to be
ergodic if it satisfies (2.51).
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2. Theory: Time-continuous Markov Processes

24



3. Transition Path Theory for Diffusion
Processes

As explained in the introduction of this thesis, Transition Path Theory (TPT) pro-
vides a powerful framework to describe the statistical properties of the ensemble of
reactive trajectories. In this chapter, we will recall the theoretical aspects of TPT in
the context of Markov diffusion processes (Sect. 3.1) and, in particular, we will derive
the main objects of TPT for the case of the Smoluchowski dynamics (Sect. 3.2) and
for the Langevin dynamics (Sect. 3.3), respectively. The remainder of this chapter
is devoted to illustrate TPT via several low dimensional examples where we will
also explain briefly how the various quantities of TPT were computed on the simple
examples. For the details of the numerical considerations, especially how we numer-
ically solved the committor equation see Section A.1 in the Appendix. For more
details, we refer the reader to the original references [34, 92, 65].

3.1. Theory: Transition Path Theory

Consider a system whose dynamics is governed by the following stochastic differential
equation

dXt = b(Xt)dt + σdWt, (3.1)

where Xt ∈ Rd, b(x) = (b1(x), . . . , bd(x))T ∈ Rd is the drift vector, σ ∈ Rd×d is
a real matrix and Wt is a d-dimensional, standard Wiener process. The generator
associated with the dynamics (3.1) is given by

Lbwu(x) =
d∑

i,j=1

aij
∂2u(x)
∂xi∂xj

+
d∑

i=1

bi(x)
∂u(x)
∂xi

= a : ∇∇u(x) + b(x) · ∇u(x),

(3.2)

where a = 1
2σσT is the diffusion matrix.

3.1.1. Ensemble of Reactive Trajectories

Let X(t),−∞ < t < ∞ be an infinity long trajectory solution of (3.1) which is
ergodic with respect to the equilibrium probability density function ρ(x), i.e. given
any suitable observable φ(x), we have

lim
T→∞

1
2T

∫ T

−T
φ(X(t))dt = Z−1

∫

Rd

φ(x)ρ(x)dx, (3.3)

where Z =
∫
Rd ρ(x)dx. (3.3) is a property of any generic trajectory in the system

which, during the time-interval [−T, T ], will be involved in any given reaction many
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3. Transition Path Theory for Diffusion Processes

BA

Figure 3.1.: Schematic representation of the reactant state A, the product state B
and a piece of an equilibrium trajectory (shown in thin black). The sub-
pieces connecting ∂A to ∂B (shown in thick black) are each a reactive
trajectory, and the collection of all of them is the ensemble of reactive
trajectories.

times when T is large (and infinitely often as T →∞). Suppose however that one is
not interested in the statistical properties of such a generic trajectory, but rather in
the statistical properties that this trajectory displays while involved in a reaction.
This question can be made precise as follows. Suppose that A ⊂ Rd and B ⊂ Rd

are two regions in configuration space that characterize the system while it is in the
reactant and the product states, respectively, of a given reaction. Then, given any
generic trajectory, x(t), −∞ < t < ∞, we can prune this trajectory as illustrated
in Figure 3.1 to consider only the pieces of this trajectory that connect ∂A (the
boundary of A) to ∂B (the boundary of B). Each such piece is a reactive trajectory
and the collection of all of them is the ensemble of reactive trajectories. By ergodicity,
the statistical properties of this ensemble are independent of the particular trajectory
used to generate the ensemble, and these properties are the object of TPT.

Formally, the ensemble of reactive trajectories is defined in

Definition 3.1.1 (ensemble of reactive trajectories).

ensemble of reactive trajectories
= {X(t) : t ∈ R} where t ∈ R if and only if

X(t) 6∈ A ∪B, X(t+AB(t)) ∈ B and X(t−AB(t)) ∈ A
(3.4)

where
t+AB(t) = smallest t′ ≥ t such that X(t′) ∈ A ∪B,

t−AB(t) = largest t′ ≤ t such that X(t′) ∈ A ∪B.
(3.5)

Each continuous piece of the trajectory going from A to B in the ensemble (3.1.1)
is a specific reactive trajectory. The main objects of TPT are then defined in terms of
the reactive trajectories and expressed in terms of ρ(x) and the committor functions
q(x) and qb(x) which will be defined in the next section.

3.1.2. Committor Function

We will see in the next sections that the forward committor function q(x), defined
as the probability that the trajectory starting from x 6∈ A∪B reaches first B rather
than A and the backward committor function qb(x), defined as the probability that
the trajectory arriving at x 6∈ A∪B came rather from A than from B are the crucial
objects to express, e.g., the probability density function of reactive trajectories.
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3.1. Theory: Transition Path Theory

Formally, the forward committor function q(x) satisfies the backward Kolmogorov
equation associated with (3.1):





Lbwq = 0 in Rd \ (A ∪B),
q = 0 on ∂A,

q = 1 on ∂B,

(3.6)

where Lbw is the operator in (3.2). To see (3.6) notice that the committor function
q(x) can be expressed in terms of a conditional expectation, i.e,

q(x) = Ex [1B(X(τA∪B))] ,

where τA∪B is the first hitting time of the process Xt with respect to the set A∪B.
If we define the auxiliary function g : ∂A ∪ ∂B → R by

g(x) =

{
0, if x ∈ ∂A

1, if x ∈ ∂B

and set f ≡ 0 then by virtue of Theorem 2.1.3 follows that if (3.6) possesses a
(classical) solution, say u(x), then we have q ≡ u, and therefore, q(x) satisfies (3.6).
For conditions on the differential operator Lbw and the boundary of the set A ∪ B
which ensure the existence of a classical solution, see Theorem 2.1.4.

A similar reasoning as above shows that the backward committor function qb(x)
satisfies the backward Kolmogorov equation associated with the reversed-time pro-
cess (cf. Sect. 2.1.4):





LR
bwqb = 0 in Rd \ (A ∪B),

qb = 1 on ∂A,

qb = 0 on ∂B,

(3.7)

where
LR

bwqb = a : ∇∇qb(x) + bR(x) · ∇qb(x) (3.8)

with the drift field (cf. Theorem A.6.2)

bR(x) = −b(x) +
2

ρ(x)
div

(
a(x)ρ(x)

)
.

Notice that if the process Xt is reversible than in particular we have Lbw ≡ LR
bw and

it follows that the backward committor function qb(x) can be expressed in terms of
the forward committor function:

qb(x) = 1− q(x). (3.9)

In large dimensional systems, the main question of interest then becomes how
to solve (3.6), which is a highly nontrivial problem since (3.6) involves a partial
differential equation for a function of many variables. The string method is a way
to deal with this issue. In the context of the two-dimensional examples considered
in this chapter, however, standard numerical techniques based on discretizing (3.6)
by finite differences can be applied, as briefly explained in detail in the Appendix,
Section A.1.
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3. Transition Path Theory for Diffusion Processes

Remark 3.1.2. Let r(x) denote the mean first passage time (mean first hitting
time) of the process Xt with respect to the set S ⊂ Rd, conditional on X(0) = x.
Formally, r(x) is given by

r(x) = Ex[τS ],

where τS is the hitting time of the process Xt with respect to the set S. If we set
g ≡ 0 and f ≡ −1 then a similar reasoning as for the committor function shows that
r(x) satisfies

{
Lbwr = −1 in Rd \ S,

r = 0 on ∂S,
(3.10)

where Lbw is the operator in (3.2).

3.1.3. Probability Density Function of Reactive Trajectories

Let A ⊂ Rd and B ⊂ Rd denote the reactant and product states, respectively. What
is the probability density to observe a reactive trajectory at position x 6∈ A ∪ B at
time t, conditional on it being reactive at time t?

Intuitively, it should be clear that the probability density to observe any reactive
trajectory is given by the probability density to observe any trajectory (reactive
or not) at point x, which is ρ(x), times the probability qb(x) that the trajectory
came rather from A than from B and times the probability q(x) that the trajectory
reaches first B rather than A.

Formally, the probability density function of reactive trajectories ρAB(x) is defined
such that, giving any observable φ(x), we have

lim
T→∞

∫
R∩[−T,T ] φ(X(t))dt∫

R∩[−T,T ] dt
=

∫

ΩAB

φ(x)ρAB(x)dx, (3.11)

where ΩAB = Rd \ (A ∪ B). Indeed, it is proven in [34] that by exploiting both
ergodicity and the strong Markov property of the dynamics the intuitive picture is
right, namely that ρAB(x) can be expressed in terms of ρ(x), q(x) and qb(x) as

ρAB(x) = Z−1
ABq(x)qb(x)ρ(x), (3.12)

where the normalization constant ZAB,

ZAB =
∫

ΩAB

q(x)qb(x)ρ(x)dx, (3.13)

is the total probability to encounter a reactive trajectory.

3.1.4. Probability Current and Transition Rate

The probability density ρAB(x) is not the only quantity of interest as it may not
be sufficient to characterize the reaction pathway. To get a better understanding of
this pathway, we may also ask about the probability current of reactive trajectories.
Roughly, this current is such that, integrated over any surface in ΩAB, it gives the
probability flux of reactive trajectories across this surface, that is, the net balance
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3.1. Theory: Transition Path Theory

between the number of trajectories that cross this surface in one direction minus
the number of them that cross this surface in the opposite direction during an
infinitesimal time-interval.

More precisely, the probability current JAB(x) of reactive trajectories is the vector
field defined in ΩAB such that given any surface ∂S which is the boundary of a region
S ⊂ ΩAB, we have

lim
s→0+

1
s

lim
T→∞

1
2T

∫

R∩[−T,T ]

(
1S(X(t))1Rd\S(X(t + s))

− 1Rd\S(X(t))1S(X(t + s))
)
dt

=
∫

∂S
n̂∂S(x) · JAB(x)dσ∂S(x),

(3.14)

where n̂∂S(x) is the unit normal on ∂S pointing outward S and dσ∂S(x) is the surface
element on ∂S. We want to emphasize that JAB(x) is independent of the surface ∂S.
As shown in Section A.4 in the Appendix, JAB(x) can be expressed componentwise
as

JAB,i(x) = q(x)qb(x)Ji(x)

+ qb(x)ρ(x)
d∑

j=1

aij(x)
∂q(x)
∂xj

− q(x)ρ(x)
d∑

j=1

aij(x)
∂qb(x)
∂xj

,

(3.15)

where J(x) = (J1(x), . . . , Jd(x))T is the equilibrium probability current (recall that
ρ(x) is the equilibrium probability density function of the process):

Ji(x) = bi(x)ρ(x)−
d∑

j=1

∂

∂xj
(aij(x)ρ(x)). (3.16)

The current JAB(x) is divergence free, and its integral over any dividing surface
∂S ⊂ ΩAB gives the reaction rate:

kAB =
∫

∂S
n̂∂S(x) · JAB(x)dσ∂S(x), (3.17)

where n̂∂S(x) is the unit normal to ∂S pointing toward B. Letting NR
T be the number

of reactive trajectories observed during the time interval [−T, T ] in the ensemble of
reactive trajectories, kAB is the limit

kAB = lim
T→∞

NR
T

2T
, (3.18)

i.e. it gives the exact mean frequency at which the reactive trajectories are observed
within a given trajectory.

The expression (3.17) for the rate can be simplified and transformed into a volume
integral over ΩAB:

kAB =
∫

ΩAB

ρ(x)
d∑

i,j=1

aij(x)
∂q(x)
∂xi

∂q(x)
∂xj

dx. (3.19)

For a derivation of (3.19) see Section A.4 in the Appendix.
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3. Transition Path Theory for Diffusion Processes

3.1.5. Transition Tubes

Another quantity of interest which can be extracted from the probability current of
reactive trajectories are the streamlines of this current. These are the solutions of

dxi(τ)
dτ

= JAB,i(x(τ)). (3.20)

(The “time” τ in this equation is artificial and unrelated to the physical time t).
Solving (3.20) with the initial condition x(0) ∈ ∂A one obtains a streamline con-
necting A to B; the ensemble of streamlines associated with all initial conditions
x(0) ∈ ∂A forms a bundle of curves in ΩAB whose union is ΩAB itself. The stream-
lines of the current are an indicator of the average trend of the reactive trajectories,
and they allow to define reaction (or transition) tubes connecting A to B carrying
a certain percentage of the probability flux of reactive trajectories. Indeed, suppose
that ∂′A ⊂ ∂A is a subset of the boundary of the reactant state A across which p%
of the probability flux of reactive trajectories go, i.e.

∫

∂′A
n̂∂A(x) · JAB(x)dσ∂A(x)

=
p

100

∫

∂A
n̂∂A(x) · JAB(x)dσ∂A(x) ≡ p

100
kAB,

(3.21)

where we used (3.29) and the fact that ∂A is a dividing surface between A and B.
Then, the ensemble of streamlines obtained by solving (3.20) for all initial conditions
x(0) ∈ ∂′A forms a reaction tube connecting A and B which carries p% of the
probability flux of reactive trajectories. Sometimes, a rather localized tube can be
found which carries a high percentage of the flux: then, the reactive trajectories must
remain inside this tube with high probability, i.e. it is the preferred channel for the
reaction.

3.2. TPT in the Smoluchowski Case

In this section we summarize the objects of TPT for a system which is governed by
the Smoluchowski dynamics introduced in Section 2.1.10:

ẋi(t) = −γ−1
i

∂V (x(t))
∂xi

+
√

2β−1γ−1
i ηi(t), (3.22)

where x = (x1, x2, . . . , xd) ∈ Rd denotes the position of the particles, V (x) is the
potential, γi is the friction coefficient on xi, β is the inverse temperature and ηi(t)
is a white noise.

Recalling that the backward generator of the Smoluchowski dynamics in (3.22)
takes the form

Lbwu = β−1Γ−1 : ∇∇u− Γ−1∇V · ∇u, (3.23)

the forward committor function q(x) satisfies the committor equation [29] (see also
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3.3. TPT in the Langevin Case

Theorem 2.1.4)




0 = Lbwq

= β−1Γ−1 : ∇∇q − Γ−1∇V · ∇q in ΩAB = Rd \ (A ∪B),
q = 0 on ∂A,

q = 1 on ∂B,

(3.24)

where Γ−1 = diag(γ−1
1 , . . . , γ−1

d ). Since the Smoluchowski dynamics is reversible,
the backward committor function is given via the relation in (3.9). The probability
density to observe a reactive trajectory at point x 6∈ A ∪B at time t is

Z−1e−βV (x)q(x)(1− q(x)). (3.25)

This means that the total probability that the trajectory be reactive at time t is

ZAB = Z−1

∫

ΩAB

e−βV (x)q(x)(1− q(x))dx, (3.26)

and the probability density to observe a reactive trajectory at point x 6∈ A ∪ B at
time t conditional on it being reactive at time t is

ρAB(x) = Z−1
ABZ−1e−βV (x)q(x)(1− q(x)). (3.27)

This expression was first derived in [52]. Furthermore, the probability current of
reactive trajectories in (3.15) reduces to

JAB(x) = Z−1β−1e−βV (x)Γ−1∇q(x) (3.28)

and, consequently, the expressions for the rate in (3.17) and (3.19) take the form

kAB = Z−1β−1

∫

∂S
n̂∂S(x) · e−βV (x)Γ−1∇q(x)dσ∂S(x), (3.29)

and
kAB = Z−1β−1

∫

ΩAB

e−βV (x)∇q(x)T · Γ−1∇q(x)dx, (3.30)

respectively, where n̂∂S(x) denotes the unit normal to the dividing surface ∂S point-
ing toward B and dσS(x) is the surface element on ∂S.

3.3. TPT in the Langevin Case

The results of TPT can be generalized to systems described by the Langevin equation
introduced in Section 2.1.10:

ẋi(t) = m−1
i pi(t),

ṗi(t) = −∂V (x(t))
∂xi

− γim
−1
i pi(t) +

√
2γiβ−1ζi(t),

(3.31)

where p = (p1, p2, . . . , pd) ∈ Rd is the momentum of the particles, mi is the mass of
xi and the other quantities are as in (3.22).
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3. Transition Path Theory for Diffusion Processes

As mentioned earlier, the main difference is that the Langevin equation in (3.31)
defines a non-reversible diffusion process on the phase space (x, p) and the associated
generator Lbw is a degenerated partial differential operator.

Let A ⊂ R2d be the reactant and B ⊂ R2d be the product state in phase-space
(x, p). For the Langevin dynamics, the forward committor equation in (3.6) reduces
to





0 =Lbwq

=β−1Γ : ∇p∇pq + M−1p · ∇xq,

−∇xV · ∇pq − ΓM−1p · ∇pq in R2d \ (A ∪B)
q =0 on ∂A,

q =1 on ∂B,

(3.32)

whereas the backward committor function qb(x, p) satisfies the backward committor
equation





0 =LR
bwqb

=β−1Γ : ∇p∇pqb −M−1p · ∇xqb

+∇xV · ∇pqb − ΓM−1p · ∇pqb in R2d \ (A ∪B),
qb =1 on ∂A,

qb =0 on ∂B.

(3.33)

Notice that q(x, p) can be related to qb(x, p) by

qb(x, p) = 1− q(x,−p), (3.34)

provided that the sets A and B are point symmetric to each other with respect to
the origin.

Remark 3.3.1. The uniform ellipticity of the operator Lbw in the Smoluchowski
case is essential for the existence a classical solution of the associated committor
equation (cf.Theorem 2.1.4). Unfortunately, in case of the Langevin dynamics the
backward operator Lbw is degenerate, but not elliptic (cf. Sect. 2.1.6) and up to our
knowledge there does not exist any general theorem which states conditions for the
existence of classical solutions of (3.32) and (3.33). Nevertheless, our numerical
investigations on the committor equations in the Langevin case (as presented in
Sect. 3.9) will show that at least for low-dimensional simple domains Ω ⊂ R2 and
reasonable parameters there exist sufficiently smooth solutions of (3.32) and (3.33).

In terms of these quantities, the probability density to observe a reactive trajectory
at (x, p) at time t conditional on the trajectory being reactive at time t now becomes
(cf. (3.27))

ρAB(x, p) = Z−1
ABZ−1e−βH(x,p)q(x, p)qb(x, p), (3.35)

where H(x, p) = V (x) + 1
2pT M−1p is the Hamiltonian, Z =

∫
Rd×Rd e−βH(x,p)dxdp

is the partition function and ZAB is the total probability that the trajectory be
reactive at time t (cf. (3.26)):

ZAB = Z−1

∫

ΩAB

e−βH(x,p)q(x, p)qb(x, p)dxdp, (3.36)
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where ΩAB = R2d \ (A∪B). The probability current of the reactive trajectories can
be obtained as well (cf. (3.28)):

JAB(x, p) = Z−1e−βH(x,p)
(
Jx

AB(x, p), Jp
AB(x, p)

)
, (3.37)

where Jx
AB(x, p) and Jp

AB(x, p) are the components of the current in the directions
of x and p, respectively, and given by

Jx
AB(x, p) =q(x, p)qb(x, p)p,

Jp
AB(x, p) =− q(x, p)qb(x, p)∇V (x)

+ β−1qb(x, p)Γ∇pq(x, p)− β−1q(x, p)Γ∇pqb(x, p).

Out of the current the reaction rate can be computed (cf. (3.29))

kAB =
∫

∂S
n̂∂S(x, p) · JAB(x, p)dσ∂S(x, p), (3.38)

where ∂S is any dividing surface in phase-space between A and B, n̂S(x, p) is the
unit normal on ∂S pointing toward B and dσS(x, p) is the surface element on ∂S.
(3.38) can be re-expressed via (3.19) as a volume integral as (cf. (3.30))

kAB = Z−1β−1

∫

ΩAB

∇pq(x, p)T · Γ∇pq(x, p)

× e−βH(x,p)dxdp.

(3.39)

The streamlines of the probability current of reactive trajectories can also be defined
as the ensemble of solutions of (cf. (3.20))





dx(τ)
dτ

= Jx
AB(x(τ), p(τ)),

dp(τ)
dτ

= Jp
AB(x(τ), p(τ)),

(3.40)

and they can be used to define reaction tubes carrying a given percentage of the
probability flux of reactive trajectories as in the overdamped case.

The only additional difficulty with (3.32) absent with (3.24) is that, because the
differential operator in (3.32) is degenerate (i.e. hypo-elliptic but not elliptic), in
order to be able to impose the Dirichlet boundary conditions on ∂A and ∂B, the unit
normal to these sets at (x, p) must span the velocity degrees of freedom everywhere
except maybe on a set of zero measure on ∂A and ∂B. How to solve (3.32) in the
context of the simple example considered in Section 3.9, is discussed in Section A.1
in the Appendix.

3.4. Numerical Aspects

Here we briefly discuss how we performed the numerics on the examples discussed
below. In order to get an accurate approximation of the committor functions q(x) and
q(x, p), we derived a stable finite differences scheme for the discretization of (3.24)
and (3.32) and implemented the resulting scheme in MATLAB. In all numerical
computations involving (3.24) we choose a rectangular domain Ω ⊂ R2 and a uniform
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mesh. The Dirichlet conditions for q(x) are included into our scheme by defining
discrete sets A and B via the mesh. For the details of the respective finite difference
schemes and the proofs of stability and convergence see Section A.1 in the Appendix.

Remark 3.4.1. We want to emphasize here that our extensive numerical experi-
ments have shown that the results which will be presented in the next sections are
stable under refinement of the underlying discretization meshes.

To compare and test the predictions of TPT, we also computed some of the sta-
tistical quantities provided by TPT by means of direct numerical simulation (DNS)
of the dynamical equations (3.22) and (3.31). As explained earlier, an ensemble of
reactive trajectories can be computed by pruning a sufficiently long trajectory. This
was done by discretizing (3.22) and (3.31) in such a way that long-term stability
is achieved. The results presented below are based on the Euler-Maruyama-scheme
for the Smoluchowski dynamics and an appropriate second order scheme for the
Langevin dynamics [93] which both have been used with sufficiently small discretiza-
tion time steps to guarantee stability. From the long trajectory generated by DNS,
the approximation of the probability density function of reactive trajectories was
obtained by binning the region between the reactant and product state and com-
puting the ratio between the time spent by the reactive trajectories in each bin and
the total time the long trajectory was reactive. The reaction rate was obtained by
counting the number N of transitions from A to B in the long trajectory of length T ,
and dividing this number by T . It should be stressed that the trajectory must be
extremely long in order to obtain a statistically accurate estimate of q(x), q(x, p)
and kAB by DNS, which makes the DNS much more expensive than the numerical
solution of (3.24) and (3.32).

3.5. Diffusion in the Double-Well Potential

For our first example, we choose the two-dimensional potential (here and below we
denote (x, y) = (x1, x2)):

V (x, y) = 5
2(x2 − 1)2 + 5y2 (3.41)

which is a combination of a double well potential in x-direction and a harmonic
potential in y-direction. The local minima at (−1, 0) and (0, 1) are separated by
a saddle point at (0, 0). We choose the inverse temperature β = 1 such that the
process spends most of its time within the two wells, and we also set γx = γy = 1. The
equilibrium distribution of the Smoluchowski dynamics (3.22) associated with (3.41)
is depicted in Figure 3.2.

For the reactant and product states, A and B, we choose the two neighborhoods
of the two minima of the potential at (−1, 0) and (1, 0) such that they include all
states x that satisfy V (x, y) < 0.4; as in all subsequent computations these sets are
replaced by the sets of all mesh points satisfying this condition. We also restricted
the computation to the domain Ω = [−1.5, 1.5] × [−1, 1], which is large enough
so that the potential is high at the boundaries (and hence the Boltzmann-Gibbs
probability density is very small there). To discretize Ω, we used a uniform mesh of
consisting of 500× 500 mesh points.
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Figure 3.2.: Left: Contour plot of the double-well potential. Right: Contour plot of
the Boltzmann-Gibbs probability density function Z−1e−βV (x,y). Results
for β = 1. The regions around the minima at (−1, 0) and (1, 0) contain
most of the probability, i.e. they are metastable.
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Figure 3.3.: Contour plot of the committor function solution q(x, y) of (3.24) at
inverse temperature β = 1. The white regions are the reactant state
A and product state B (A is the left, B at the right). The level sets
(isolines) of q(x, y) are the regions from which the probability to reach
first A rather B is uniform.

3.5.1. Committor Function

Figure 3.3 shows the level sets (isolines) of the committor function q(x, y) obtained
by solving (3.24) for this example. The left-right symmetry of the level sets of q(x, y)
with respect to the piece of the vertical axis S = {(0, y)|−1 ≤ y ≤ 1} which includes
the saddle point (0, 0) is a consequence of the choice of domain Ω, the symmetry
of the potential (3.41) and the symmetry between A and B. In particular, it is
clear that the probability to reach A before B should be 1

2 for all points on S, i.e.
q(0, y) = 1

2 for all −1 ≤ y ≤ 1. This prediction is confirmed by the numerics.

3.5.2. Probability Density Function of Reactive Trajectories

Knowing q(x, y) we can compute the probability density function of reactive tra-
jectories ρAB(x, y) via (3.27). This probability density function is shown in Figure
3.4. The density ρAB(x, y) is peaked around the saddle point (0, 0) which indicates
that the region around the saddle point is the dynamical bottleneck (transition state
region) for the reaction.

For comparison, the probability density function of reactive trajectories ρAB(x, y)
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Figure 3.4.: Contour plot of the probability density function ρAB(x, y) of reactive
trajectories obtained via (3.27). Results for β = 1.
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Figure 3.5.: Left: A typical reactive trajectory. Right: Probability density function
of reactive trajectories computed via DNS based on 300 reactive trajec-
tories and represented on a 40× 40 box-discretization of the domain Ω.
Results for β = 1.
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was also computed by DNS. In the left panel of Figure 3.5 a typical reactive trajec-
tory is shown.

In the right panel of Figure 3.5 the probability density function of reactive trajec-
tories as computed via DNS is shown. The result of DNS agrees with the prediction
of TPT shown in Figure 3.4. Notice however that the probability density ρAB(x, y)
obtained by DNS is subject to significantly larger errors of statistical origin.

3.5.3. Probability Current of Reactive Trajectories and its Streamlines

Knowing q(x, y), we can also compute the probability current of reactive trajecto-
ries via (3.28) and its streamlines via (3.20). These streamlines are shown in the
right panel of Figure 3.6.

In order to better visualize the probability current as well as the reaction tubes
mentioned in Section 3.1, we did the following: First we computed the intensity
of the probability current on a dividing surface of interest, for which we choose the
isocommittor 1

2 surface, S1/2 = {(x, y) : q(x, y) = 1
2}. Since the isocommittor surface

S1/2 is simply the piece of the y-axis in Ω, the intensity JAB · n̂S1/2
of the probability

current on S1/2 can be expressed by

JAB,1(0, y) · n̂S1/2
= β−1Z−1e−βV (0,y) ∂q(0, y)

∂x
. (3.42)

This intensity on S1/2 is shown in the left panel of Figure 3.6. We observe that
the intensity of the current is maximum at (0, y) = (0, 0) which corresponds to the
saddle point. This means that most reactive trajectories cross S1/2 near the saddle
point or, equivalently, that the probability flux of reactive trajectories across S1/2 is
concentrated near the saddle point.

Next, from each point (0, y) on S1/2 we transported the value of the current inten-
sity JAB(0, y) · n̂S1/2

backwards and forwards along each streamline of the current
JAB(x, y) until it enters the states A and B. With this procedure, we give each point
along a streamline the value of the current intensity evaluated at the point on S1/2

through which the streamline goes. This is how the coloring in the right panel of
Figure 3.6 was obtained: the darker the region, the higher the current intensity is.
Regions in this figure which include all the greys down to a certain level form reac-
tions tubes carrying a given percentage of the probability flux of reactive trajectories
(the lower the level of grey, the higher the percentage; in this example, the tube in
black already carries 42% of the flux).

3.5.4. Reaction Rate

Now we turn our attention to the reaction rate kAB. Choosing S1/2 as dividing
surface in (3.29), this expression for the reaction rate reduces to

kAB = β−1Z−1

∫ 1

−1
e−βV (0,y) ∂q(0, y)

∂x
dy. (3.43)

Alternatively, we can compute kAB via (3.30):

kAB =β−1Z−1

∫

ΩAB

((∂q(x, y)
∂x

)2
+

(∂q(x, y)
∂y

)2)

× e−βV (x,y)dxdy.

(3.44)
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Figure 3.6.: Left: Intensity 3.42 of the probability current of reactive trajectories on
the isocommittor surface S1/2 = {(x, y) : q(x, y) = 0.5} = {(0, y) : −1 ≤
y ≤ 1}. Right: Streamlines of the probability current JAB(x, y) colored
according to the intensity of the current on the isocommittor surface
S1/2. Results for β = 1. The darker the color, the higher the intensity
of the probability current of reactive trajectories through this region.

kAB via (3.43) 1.225 · 10−1

kAB via (3.44) 1.226 · 10−1

kAB via DNS (1.230± 0.029) · 10−1

Table 3.1.: Reaction rate computed for the double-well potential for β = 1. The rate
predicted by TPT is consistent with the rate computed via DNS (out of
N = 105 reactive trajectories). The error given on the rate computed via
DNS is the estimated statistical error. There is an additional error (not
given) on all rates due to discretization of the domain; this error can be
estimated from the difference between the rates obtained via (3.43) and
via (3.44).

We approximate the partial derivatives ∂q/∂x and ∂q/∂y which are involved in both
expressions for the rate on the mesh used to compute the committor function.

We compare the rate kAB computed via DNS with the rates obtained from (3.43)
and (3.44). Table 3.1 shows that the agreement of all different results is very good.

3.6. Entropic Barriers: Pure Diffusion

In our next example we consider pure diffusion in a square Ω = [0, 1]× [0, 1] with two
obstacles such that the domain becomes the S-shaped region shown in Figure 3.7.
By pure diffusion we mean that we consider the Smoluchowski dynamics in a flat
potential, V (x, y) = 0 in (3.22), except for the presence of hard walls at the boundary
of the domain. We are interested in the statistics of the reactive trajectories starting
in a region near the upper-right corner (set A) and ending in a region near the
bottom-left corner (set B), see Figure 3.7. In contrast with the previous example
where the transition between A and B is constrained by a potential barrier, here the
dynamics has to overcome an entropic barrier : it has to find its way between the two
obstacles. Suppose we start the dynamics in A. The closer the dynamics gets to the
region enclosed by the obstacles the higher the probability that the dynamics will
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Figure 3.7.: Contour plot of the committor function q(x, y) for the pure diffusion
in the S-shaped domain. The reactant state A and product state B
are the two squares in the upper-right and bottom-left corners, respec-
tively. The two thin white rectangular regions connected to the vertical
sides of the domain are hard walls. Results for β = 1. In this example,
the Boltzmann-Gibbs probability density Z−1e−βV (x,y) is uniform in the
domain since V (x, y) = 0 except at the walls where it is infinity.
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Figure 3.8.: Left: A typical reactive trajectory. Right: Contour plot of the probability
density function of reactive trajectories ρAB(x, y). Results for β = 1.

finally reach the left-down corner before returning to A because the probability to
end up in B depends only on the distance between the current position and the set
B. Figure 3.7 shows the committor function q(x, y) as computed for this example; its
isolines nicely illustrate the particular behavior of the dynamics. From the symmetry
of the domain Ω\(A∪B) it is clear that the isocommittor 1

2 surface goes through the
point (0, 0). Therefore it is very likely to encounter a reactive trajectory between the
obstacles, in the vicinity of isocommittor 1

2 surface. In the left panel of Figure 3.8 we
depict a typical reactive trajectory. One can see that the reactive trajectory spends
most of its time between the obstacles. This is also obvious from the contour plot
of the probability density function of reactive trajectories ρAB(x, y) shown in the
right hand panel of Figure 3.8. Notice how complicated the reactive trajectory is in
this example and how much simpler ρAB(x, y) is. The probability current of reactive
trajectories (not shown) can also be computed in this example but it turns out to
be very simple (basically, the streamlines follow the S-shape). In order to complete
our observation for this example, Table 3.2 gives the values of the transition rates
computed via TPT and via DNS. Again the values agree within numerical accuracy.

This example clearly shows that TPT is not restricted to situations in which the
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rate via (3.29) 4.455·10−2

rate via (3.30) 4.443·10−2

rate via DNS (4.425±0.144) · 10−2

Table 3.2.: The reaction rate kAB for the pure diffusion in the S-shaped domain.
Results for β = 1 and N = 105 in the DNS.
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Figure 3.9.: Left: Contour plot of the three-hole potential. Right: Contour plot of the
Boltzmann-Gibbs probability density function Z−1e−βV (x,y) at β = 1.67.

reaction pathway is determined by energy effects, as in the example in Section 3.5,
but it also allows one to handle situations where entropic effects dominate.

3.7. Entropic Switching

3.7.1. Diffusion in a Three-Hole Potential

In the next example, we study an example with two different reaction channels. For
this purpose, we choose the three-hole potential

V (x, y) =3e−x2−(y−1
3 )2 − 3e−x2−(y−5

3 )2

− 5e−(x−1)2−y2 − 5e−(x+1)2−y2

+ 0.2x4 + 0.2(y − 1
3)4

(3.45)

which has already been considered in [73, 25].
As one can see in the left panel of Figure 3.9 the potential (3.45) has two deep

minima approximately at (±1, 0), a shallow minimum approximately at (0, 1.5),
three saddle points approximately at (±0.6, 1.1), (−1.4, 0) and a maximum at (0, 0.5).
Thus, the two deep minima are connected by an upper and a lower channel, and the
upper channel contains the additional, less-pronounced minimum. The dynamical
bottlenecks in the upper channel are the two saddle points with equal potential
energy whereas the dynamics in the lower channel has only to overcome one saddle
point whose potential energy is higher compared to the other two. It is known from
large deviation theory [38] that in the limit β → ∞ the reaction will occur via the
upper channel with probability 1 since the energy barrier is lower there. Therefore
we expect that the dynamics prefers the upper channel at low (finite) temperature.
At higher temperature, however, the lower channel should be preferred (since it
is direct). This entropic switching effect was first discovered and analyzed in [73].
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Figure 3.10.: Contour plot of the committor function q(x, y) at β = 1.67. The iso-
lines of the committor function are spread in the upper region of the
potential because reactive trajectories get trapped in the upper shallow
minima. The symmetry of the domain and the sets A and B implies
that the isocommittor surface 1

2 is S1/2 = {(0, y) : −2 ≤ y ≤ 2}.
Results for a 350× 350 mesh discretization.
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Figure 3.11.: Left: Contour plot of the eigenvector associated with the first non-
trivial right eigenvalue of the discretization matrix Dh resulting from
the finite differences discretization of the generator Lbw on the entire
domain Ω together with Neumann boundary condition. Right: Contour
plot of the MFPT with respect to the set A as also analyzed in [73].
Results for β = 1.67 and a 350× 350 mesh discretization.

There the authors used the gradient of the mean first passage time (MFPT) (cf.
Remark 3.1.2) with respect to a given state to detect the transition channels and
their dependence on the temperature.

In this example, we performed experiments at two inverse temperature β = 6.67
(low temperature), which is such that the upper channel is the preferred reaction
tube, and β = 1.67 (high temperature), which is such that the lower channel is the
preferred reaction tube.

In Figure 3.10 we show the contour plot of the committor function at β = 1.67.
As in the previous examples the symmetry of the domain ΩAB explains that the
isocommittor surface 1

2 is S1/2 = {(0, y) : −2 ≤ y ≤ 2}. Notice how the presence
of the shallow minima in the upper channel spreads the level sets of q(x, y) in this
region. This follows from the fact that the reactive trajectories going through the
upper channel get trapped in the shallow well for a long period of time before exiting
towards the set B. Notice that it also implies that the isocommittor 1

2 surface goes
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Figure 3.12.: Left: A typical reactive trajectory at a high temperature β = 1.67 tak-
ing the upper channel with the two saddle points with lowest energy.
Right: Contour plot of the probability density function of reactive tra-
jectories computed via DNS at β = 1.67 from 500 reactive trajectories
using a 40×40 box-discretization of the domain Ω = [−2, 2]×[−1.5, 1.5].
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Figure 3.13.: Contour plots of the density ρAB(x, y) for two different temperatures.
Left: low temperature β = 6.67; Right: high temperature β = 1.67. In
both cases ρAB(x, y) attains its maximum in the shallow minima.

through the shallow minima and not through one of the two upper saddle points. The
committor function at β = 6.67 (not shown) is very similar to the one at β = 1.67
(though, as we will see below, the probability density function and the probability
current of reactive trajectories are very different). The left panel of Figure 3.11
reveals the similarity between the (forward) committor function and the eigenvector
associated with the first non-trivial right eigenvalue of the discretization matrix Dh

resulting from the finite differences discretization of the generator Lbw on the domain
ΩAB. Furthermore, the right panel of Figure 3.11 illustrates the similarity between
the forward committor function and the MFPT with respect to the set A which is
a specialty of this example and will not be guaranteed in general.

Now we turn our attention to the probability density function of reactive tra-
jectories ρAB(x, y) for this example. The panels in Figure 3.12 illustrate this sit-
uation for β = 1.67 (high temperature) as computed via DNS. In Figure 3.13 we
depict the probability density function of reactive trajectories from TPT computed
at two different temperatures. The left panel shows the density for a low temper-
ature (β = 6.67) and the lower one for a high temperature (β = 1.67). The first
observation is that both densities attain their maximum in the shallow minima.
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Figure 3.14.: Streamlines of the probability current of reactive trajectories colored
according to the intensities of the probability current on the isocom-
mittor 1

2 surface for two different temperatures. Left: At the low tem-
perature β = 6.67 the upper channel is the preferred reaction channel.
Right: At the high temperature β = 1.67 most of the reactive trajec-
tories take the lower channel.

This is because the shallow minima catches the dynamics on its way from A to B.
As a consequence, the reactive trajectories spend a long time within this region and
therefore the probability to encounter a reactive trajectory there increases. How-
ever, one can see that at the high temperature that there is a certain probability
to encounter a reactive trajectory in the lower channel. But which reaction channel
does the dynamics prefer depending on the temperature? From the viewpoint of the
density ρAB(x, y) we cannot answer this question since the long residency of reactive
trajectories in the vicinity of the shallow minima spoils the information about the
relative number of reactive trajectories going there.

To answer the question of which reaction channel is preferred at different temper-
atures we must consider the probability current of reactive trajectories JAB(x, y). In
Figure 3.14 we show the transition tubes computed via its streamlines with colors
induced by the intensity of the probability current on the isocommittor surface 1

2 , us-
ing the procedure explained in Section 3.5.3. One can clearly see that the transition
tubes give the desired information. At the low temperature (left panel) the preferred
transition channel is the upper one and at the high temperature (right panel) it is the
lower one. This result is consistent with observations made in [73]. We complete this
example by stating the reaction rate for the two temperatures in Table 3.3. As in the
previous examples we choose the isocommittor surface 1

2 for the rate computations
via (3.43).

This example shows that TPT is able to handle situations with multiple reaction
channels, possibly with intermediate metastable states along them, and can distin-
guish which channel is preferred depending on the temperature (entropic switch-
ing). It also shows that all the objects provided by TPT – the probability density
of the reactive trajectories, their probability current and the associated streamlines
– are necessary (and sufficient) to understand the mechanism of the reaction, while
ρAB(x, y) alone is not.

43



3. Transition Path Theory for Diffusion Processes

β = 6.67 β = 1.67
rate via (3.29) 9.47 · 10−8 1.912 · 10−2

rate via (3.30) 9.22 · 10−8 1.924 · 10−2

rate via DNS (1.918± 0.052) · 10−2

Table 3.3.: Reaction rates for the three-hole potential for β = 6.67 and β = 1.67.
One can see that for β = 1.67 the rate computed via DNS (N = 105) is
consistent with those predicted from TPT. For β = 6.67 the rate is so
small that any computation via DNS would lead to totally unreasonable
effort (to obtain N = 105 reactive trajectories, it would require to gener-
ate a long trajectory of length T ≈ 105/kAB = 1012). The computations
via finite difference discretization of (3.24) take only a few seconds on a
standard PC.
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Figure 3.15.: Left: Contour plot of the perturbed three-hole potential in (3.46).
Right: Contour plot of the associated Gibbs probability density func-
tion Z−1e−βṼ (x,y) at β = 1.67. Results for the perturbation parameters
n = 5 and δ = 0.05.

3.7.2. Diffusion in a Rough Three-Hole Potential

In this section we are interested in the ensemble of reactive trajectories and its
statistical properties for a Smoluchowski process in a rough potential landscape. To
make things comparable, we perturbed the three-hole potential from the previous
section by adding a periodic function with randomly drawn coefficients. To be more
precise, we consider the potential

Ṽ (x, y) = V (x, y) +
n∑

k,l=1

[
ckl cos(2π(kx + ly)) + dkl sin(2π(kx− ly))

]
, (3.46)

where V (x, y) is the three-hole potential in (3.45) and the real coefficients ckl, dkl, 1 ≤
k, l ≤ n are drawn from a normal distribution N (0, δ2) with variance δ2. For our nu-
merical experiments, we chose n = 5 and δ = 0.05. As one can see in Figure 3.15 the
perturbed potential still exhibits three regions of attraction separated by a multitude
of small barriers.

The guiding question is whether the entropic switching behavior is conserved
despite the perturbation and, in particular, in which way the transition channels
deviate from those resulting in a smooth potential (cf. Fig. 3.14). As the sets A
and B, we chose the same sets as in the smooth three-hole potential example. The
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Figure 3.16.: Contour plot of the committor function q(x, y) at low temperature β =
6.67 (upper left panel) and at high temperature β = 1.67 (upper right).
The second row shows the contour plot of the eigenvector associated
with the first non-trivial right eigenvalue of the discretization matrix
Dh: left lower panel at β = 6.67 and right lower panel at β = 1.67.
Obviously, the geometry of the level sets of the eigenvector and the
level sets of the committor function is very similar, respectively.

first row in Figure 3.16 shows the (forward) committor function at low temperature
β = 6.67 (left upper panel) and at high temperature β = 6.67 (right upper panel).
As expected, the lower the temperature the bigger the impact of the roughness of
the potential landscape on the committor function because at low temperature the
dynamics gets trapped in any local minima. Notice that even for the perturbed
potential, the geometry of the level sets of the eigenvector associated with the first
non-trivial right eigenvalue of the discretization matrix1 Dh (shown in the second row
of Figure 3.16) is very similar to the geometry of the level sets of the corresponding
committor function, respectively.

We have seen that in the smooth three-hole potential example in Section 3.7.1,
the distribution ρAB of reactive trajectories does not allow to make any prediction
about the preferred reaction channel. As one can see in the panels of Figure 3.17, in
the case of a rough potential landscape the distribution ρAB does not even give an
idea of a single reaction channel. However, as illustrated in the panels of Figure 3.18,
the streamlines of the probability current of reactive trajectories reveal the reaction
channels and, furthermore, show that despite the perturbation of the landscape the
global transition behavior is comparable to the transition behavior in the smooth
potential landscape.

1Dh is meant to be the matrix which results from the finite difference discretization of the operator
Lbw on the entire domain Ω under incorporation of the Neumann boundary conditions.
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Figure 3.17.: In this figure we illustrate the probability density function ρAB(x, y) of
the reactive trajectories in the perturbed three-hole potential for two
different temperatures. Left: low temperature β = 6.67; Right: high
temperature β = 1.67.

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−0.5

0

0.5

1

1.5

Figure 3.18.: Streamlines of the probability current of reactive trajectories in the
perturbed three-hole potential colored according to the intensities of
the probability current on the isocommittor 1

2 surface for two different
temperatures. Left: Despite the perturbation, at the low temperature
β = 6.67 the upper channel is the preferred reaction channel whereas
at the high temperature β = 1.67 (right panel) most of the reactive
trajectories still take the lower channel.
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δ2 0.01 0.05 0.1 0.2 0.5
kAB 1.91 · 10−2 1.79 · 10−2 1.08 · 10−2 4.45 · 10−3 2.42 · 10−5

Table 3.4.: The transition rate kAB computed via (3.30) as a function of the variance
δ2. Results for β = 1.67 and n = 5.

We end this example by stating in Table 3.4 the transition rate kAB (computed
via (3.30)) as a function of the variance δ2 of the normal distribution N (0, δ2). The
decrease of the transition rate as δ2 increases can be explained by noting that in
a rough potential landscape the dynamics gets trapped in each local minima and,
thus, as the roughness increases it becomes more difficult for the dynamics to make
a transition from A to B.

3.8. Different Time-Scales: Fast-Slow Diffusion in a
Double-Well Potential

In the last example for the Smoluchowski dynamics we consider a diffusion process
with two variables subject to different friction coefficients leading to two different
time scales. For this purpose we consider a process generated by

ẋ(t) = −∂V (x(t), y(t))
∂x

+
√

2β−1 ηx(t)

εẏ(t) = −∂V (x(t), y(t))
∂y

+
√

2β−1ε ηy(t).
(3.47)

This system is a special case of (3.22) with γx = 1 and γy ≡ ε > 0. For ε ¿ 1,
the variable y is fast compared to x. For details see [83]. Despite the different time
scales, the equilibrium distribution still is given by the Boltzmann-Gibbs density
Z−1e−βV (x,y) for every value of ε > 0. For the potential V , we choose a double-well
potential in y-direction which is coupled to a harmonic potential in x-direction

V (x, y) = 5(y2 − 1)2 + 1.25(y − 1
2x)2. (3.48)

The potential attains two local minima at (−2,−1) and (2, 1) which are separated by
a saddle point at (0, 0). For our computations we choose ε = 0.1, so that the dynamics
in the y-direction is roughly ten times faster than in the x-direction. The potential
energy surface is shown in Figure 3.19 together with equilibrium probability density
function for β = 1.

The key for understanding the reaction is to realize that the important barriers
for the dynamics are the barriers in the y-direction. Suppose we fix an x = x0 and
consider the restricted potential V (x0, y), which then only depends on y. Due to the
separation of time scale, this is the potential that the y-variable effectively feels while
the x-variable is quasi-frozen and evolving only on a longer time scale. Consider the
energy barriers for different x0 in V (x0, y); denoting these barriers by ∆V (x0), it
can be seen that ∆V (x0) attains a local maximum at x0 = 0, and decreases as |x0|
increases which is illustrated in Figure 3.20.

Because of this feature, one expects that the reactive trajectories will tend to wait
near the reactant state A until they reach a fiber in the y-direction with a low barrier
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Figure 3.19.: Left: Contour plot of the potential (3.48). Right: Contour plot of
Boltzmann-Gibbs equilibrium probability density function. Results for
β = 1.
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Figure 3.20.: The potential V (x0, y) of the fast-slow example as a function of y for
x0 = 0, |x0| = 1 and |x2| = 2. Thus, the barrier to overcome increases
as |x0| increases.
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Figure 3.21.: Contour plot of the isocommittor function for the fast-slow example
with β = 1 and ε = 0.1.
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Figure 3.22.: Left: A typical reactive trajectories in (3.47). Right: Probability density
function of reactive trajectories. Results for β = 1 and ε = 0.1.

∆V (x0) to hop over. Since there is two groups of such fibers on either sides of the
y-axis, there should be two predominantly vertical reaction channels. Let us now
confirm this intuitive picture via TPT.

The contour plot of the committor function is shown in Figure 3.21. Consistent
with the separation of time-scale it shows that the isocommittor surfaces are pre-
dominantly vertical except in a narrow strip around the x-axis.

A typical reactive trajectory is shown in the left panel of Figure 3.22. Consistent
with the intuitive picture given above, because of the separation of time-scale, the
trajectory spends a relatively long amount of time in the vicinity of the states A and
B and a relatively short amount of time transiting between these states (the latter
motion being predominantly in the fast y-direction). As explained in the previous
example, this behavior of the dynamics affects the probability density function of
the reactive trajectories which is peaked in the regions where the trajectories spend
most time. The right panel of Figure 3.22 shows this effect. The probability density
function ρAB(x) is bimodal and attains local maxima in regions close to the states
A and B. Notice that ρAB(x) does not give much information about the reaction
channels.

To visualize the reaction channels we proceed similarly as in the previous examples
and choose the dividing surface S = {(x, 0) : −1.5 ≤ x ≤ 1.5} to compute the
intensity of the probability current used to color the streamlines of this current. The
results are shown in Figure 3.23. Consistent with the intuitive picture given above,
there are two predominantly vertical channels. Notice that most of the flux across S
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Figure 3.23.: Streamlines of the probability current colored according to the inten-
sities on the dividing surface S = {(x, 0) : −1.5 ≤ x ≤ 1.5}. Result for
β = 1.

kAB via (3.38) 3.278 · 10−2

kAB via (3.39) 3.239 · 10−2

kAB via DNS (3.189± 0.076) · 10−2

Table 3.5.: Reaction rate computed for the fast-slow potential at β = 1. Results of
DNS based on N = 105 reactive trajectories.

goes either at the left or the right of the saddle point.
Finally, the reaction rates predicted by TPT and computed by DNS are given in

Table 3.5.
This example illustrates the subtle effects that time-scale separation may have on

the reaction pathway and shows that TPT is able to capture these effects.

3.9. Langevin Dynamics

In this section we apply TPT to an example of the Langevin equation (3.31). Before
we present in detail our numerical experiments, we want to point out again, that
we can not analytically guarantee the differentiability of the forward and backward
committor function as a solution of a hypoelliptic, mixed-boundary value problem of
the form in A.3. However, the following numerical results show that for the particular
choice of the domain Ω and the parameters of the Langevin dynamics the committor
functions are sufficiently smooth.

Here we assume that (x, v) ∈ R × R and we set γ1 = m1 = 1 (Notice that if the
mass is equal to one, the momentum is identical with the velocity of the particle).
We also assume that the potential is the double-well potential given by

V (x) = (x2 − 1)2 (3.49)

with minima at x = −1 and x = 1 and a local maximum at x = 0. In Figure 3.24
we show the Hamiltonian function H(x, v) associated with the double-well potential
in (3.49) and the Boltzmann-Gibbs equilibrium probability density function for β =
1. Although the structure of the potential is very simple, it allows us to illustrate how
the reaction pathway depends on the friction constant γ. Keeping the temperature
constant, we study three different scenarios: the high, medium and low friction cases.
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Figure 3.24.: Left: The contour plot shows the Hamiltonian H(x, v) associ-
ated with the double-well potential in (3.49). Right: Contour plot
of the Boltzmann-Gibbs equilibrium probability density function
Z−1e−βH(x,v). Results for β = 1.

kAB via DNS kAB via (3.39) kAB via (3.38)
γ = 1 (3.833± 0.061) · 10−2 3.778 · 10−2 3.721 · 10−2

γ = 2 (4.019± 0.171) · 10−2 3.918 · 10−2 3.898 · 10−2

γ = 5 (2.634± 0.106) · 10−2 2.523 · 10−2 2.483 · 10−2

γ = 10 (1.534± 0.032) · 10−2 1.460 · 10−2 1.361 · 10−2

Table 3.6.: Reaction rates computed for several friction coefficients via DNS of the
Langevin dynamics and via TPT using (3.39) or (3.38). All computations
are done for the same temperature β = 1.

For reasons of numerical stability we have to introduce a coordinate transformation
which amounts to rotate the mesh by π/4 and solve the committor equation (3.32)
on this mesh, see Appendix: Section A.1.3. This explains our unusual choice of the
diamond-shaped domain Ω as visible in Figure 3.24. The reactant state A and the
product state B are determined in a similar way as in the previous section, i.e., their
union include all states (x, v) with H(x, v) < 1.

Before we start with a detailed description of the reaction pathways, we state the
reaction rates in Table 3.6 computed for different friction coefficients via TPT and
compare them with those obtained via direct numerical simulation of the Langevin
dynamics (3.31). As one can see in Table 3.6 the rates agree within numerical error.

3.9.1. High Friction Case, γ = 10

As mentioned in Section 2.1.10, Langevin leads to Smoluchowski dynamics in the
high friction limit γ → ∞. In the present case, the overdamped equation is the
one-dimensional equation

ẋ(t) = 4γ−1(x(t)− x3(t)) +
√

2β−1γ−1 η(t) (3.50)

Since (3.50) involves the position x(t) but not the velocity v(t), in this limit the
probability to reach the set B before the set A conditional on starting at point
(x0, v0) must be independent of the velocity v0. In other words, for large enough γ,
q(x, v) ≈ q(x) where q(x) is the committor function of (3.50) and the level sets of
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Figure 3.25.: Left: Contour plot of the committor function q(x, v). Right: Contour
plot of the backward committor function qb(x, v) = 1−q(x,−v). Results
for β = 1, γ = 10.
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Figure 3.26.: Left: Probability density function of reactive trajectories ρAB(x, v).
Right: Reaction tube based on streamlines of the probability current
colored according to the intensity of the probability current on the
dividing surface S = {(0, v) : −3 ≤ v ≤ 3}. Results for β = 1, γ = 10.

the committor function are (almost) parallel to the velocity axis. This is confirmed
by the results shown in Figure 3.25. The little deviations near the upper and lower
corners are due to the Neumann boundary conditions which forces the level sets of the
committor function to be perpendicular to the boundaries. Notice that q(x, v) ≈ q(x)
also implies that qb(x, v) ≈ 1− q(x). This is also confirmed by the results shown in
Figure 3.25.

The left panel of Figure 3.26 is a contour plot of the probability density function
of reactive trajectories ρAB(x, v). This density is peaked around the saddle point of
the Hamilton function H(x, v) at (x, v) = (0, 0) and only shows a slight up-down
asymmetry, consistent with the velocity playing no role in the mechanism of the
reaction. In the right panel of Figure 3.26 we show the streamlines of the probability
current (3.37) of reactive trajectories colored as in the previous example in function
of the intensity of the current on S = {(0, v) : −3 ≤ v ≤ 3}. The reaction channel is
predominantly horizontal.

3.9.2. Medium Friction Case, γ = 1

In the medium friction case, the reaction pathway changes dramatically and now
involve the velocity as well as the position. This is apparent from the contour plot
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Figure 3.27.: Left: Contour plot of the committor function q(x, v) for β = 1, γ = 1.
Right: Decomposition of the domain Ω in phase-space into the two
regions {(x, v) : q(x, v) < 0.5} (light regime) and {(x, v) : q(x, v) > 0.5}
(dark regime). The dividing curve is the isocommittor 1

2 surface where
q(x, v) = 1

2 .

of the committor function q(x, v) shown in the left panel of Figure 3.27 and the
partition of the domain by the isocommittor 1

2 surface shown in the right panel.
Clearly, the committor function q(x, v) now depends crucially on the velocity, unlike
in the high friction case. In fact, the partition of the domain by the isocommittor 1

2
surface is simple to understand: it is the ghost of the partition of the domain by the
deterministic dynamics





ẋ(t) = v(t),

v̇(t) = −∂V (x(t))
∂x

− γv(t).
(3.51)

Because γ > 0 in this equation, every trajectory initiated at a point (x, v) ∈ R2d \
(A ∪ B) will asymptotically end up either in state A or in state B. Figure 3.28
shows the partition of phase-space that this induces: the dark grey region contains
all the points which end up in B and the light grey region those which end up in
A. Clearly, the resulting partition is close to the one by the isocommittor function
1
2 shown in Figure 3.27, which indicates that the temperature is small enough so
that it does not really affect this partition, except for wiping out the most external
strips in the left and right corner in Figure 3.28 (though this wiping effect is also
due to the external boundary conditions imposed when solving for q(x, v) and is less
pronounced in the low friction case, see Figure 3.31). Of course, in the absence of
noise, there is no reaction, so the noise-free Langevin equation (3.51) is limited in
the information that it can provide about the reaction and the full arsenal of TPT
remains necessary to understand it.

The probability density function of reactive trajectories ρAB(x, v) is shown in
Figure 3.29. As expected we observe that the distribution is peaked around a point
with x = 0 and v > 0, that is, around the maximum of the potential but in the
region of positive velocities since these are needed to go from A to B.

The reaction tube from A to B is shown in Figure 3.30. This tube too indicates that
the reaction pathway is asymmetric in the velocity (and in particular the reaction
from A to B studied here is different from the one from B to A – the reaction
tube for the latter can be visualized by flipping Figure 3.30 upside-down, that is, by
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Figure 3.28.: Partition into regions that are asymptotically attracted to sets A or
B, respectively, for the noise free Langevin equation (3.51). Notice the
similarity in the core with the partition by the isocommittor 1

2 surface
shown in the right panel in Figure 3.27.
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Figure 3.29.: Contour plot of the probability density function of reactive trajecto-
ries ρAB(x, v) when β = 1, γ = 1. Top left: Result via DNS based on
300 reactive trajectories and a 40 × 40 box decomposition of the do-
main. Top right: Results from TPT. Bottom middle: A typical reactive
trajectory embedded into the contour plot of ρAB(x, v)
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Figure 3.30.: Reaction tube based on streamlines of the probability current colored
according to the intensity of the probability current on the dividing
surface S = {(0, v) : −3 ≤ v ≤ 3}. Results for β = 1, γ = 1.
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Figure 3.31.: Left: Contour plot of the committor function q(x, v) in the low friction
case. Right: Decomposition of the domain into the two regions {(x, v) :
q(x, v) < 0.5} (light regime) and {(x, v) : q(x, v) > 0.5} (dark regime).
The dividing curve is the isocommittor 1

2 surface. Results for β = 1,
γ = 0.001.

reverting the velocity.)

3.9.3. Low Friction Case, γ = 0.001

When the friction is as low as γ = 0.001, Langevin dynamics is now close to Hamilto-
nian dynamics. Nevertheless, at sufficiently long time scales the damping will force
the dynamics to get attracted to the vicinity of the minima of the energy land-
scape which lie inside the states A and B, and the noise will eventually induce
reactions between these states. Figure 3.31 shows the committor function q(x, v)
and the decomposition of the domain into the two regions {(x, v) : q(x, v) < 0.5}
and {(x, v) : q(x, v) > 0.5} (dark grey) in the low friction case. Figure 3.32 shows
the probability density function of reactive trajectories ρAB(x, v) and the reaction
tube. In the present case, the streamlines of the probability current of the reactive
trajectories (not shown) are very winding around the states A and B and turn out
to be difficult to compute accurately.
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Figure 3.32.: Contour plot of the probability density function of reactive trajectories
ρAB(x, v). Result for β = 1, γ = 0.001.

3.9.4. Rough Potential Landscape

In the last example, we study the Langevin dynamics (β = 1, γ = 1) in a perturbed
double-well potential given by

Ṽ (x) = (x2 − 1)2 +
n∑

k=1

[
ak cos(kx) + bk sin(kx)

]
, (3.52)

where the real coefficients ak, bk, k = 1, . . . , n are drawn from a normal distribution
N (0, δ2) with variance δ2 and mean zero. For our numerical example we chose n = 20
and δ = 0.01. In the left top panel of Figure 3.33 we show the graph of the perturbed
double-well potential together with the associated Hamiltonian (right top panel) and
the associated Gibbs probability density function (bottom panel). To make things
comparable, we chose the same mesh discretization of the phase-space domain Ω
and the same sets A and B as in the unperturbed double-well potential case. One
can see in the left panel of Figure 3.34 that the level sets of the forward committor
function and, in particular, the 1

2 -committor surface (right panel) are rough but
their overall shape is more or less comparable to the shape of the level sets depicted
in Figure 3.27, respectively. As in opposite to the smooth case, here the probability
density function of reactive trajectories ρAB(x, v) (see top left panel of Figure 3.35)
exhibits several peaks which are due to the several local minima in the perturbed
potential landscape in which reactive trajectories get trapped on their way from A
to B. A typical AB-reactive trajectory is given in the top right panel of Figure 3.35.
Finally, we illustrate the resulting transition tube in the bottom panel of Figure 3.35.
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Figure 3.33.: Top left: The graph of the perturbed double-well potential in (3.52).
Top right: Contour plot of the Hamiltonian H̃(x, v) associated with the
perturbed double-well potential. Bottom: Contour plot of the Gibbs
equilibrium probability density function Z̃−1e−βH̃(x,v). Results for β =
1.
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3. Transition Path Theory for Diffusion Processes
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Figure 3.35.: Top left: Contour plot of the probability density function of reactive
trajectories ρAB(x, v). Top right: A typical reactive trajectory em-
bedded in the contour plot of ρAB(x, v). Bottom middle: Reaction
tube based on streamlines of the probability current colored accord-
ing to the intensity of the probability current on the dividing surface
S = {(0, v) : −3 ≤ v ≤ 3}. Results for β = 1, γ = 1.
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4. Transition Path Theory for Markov
Jump Processes

Continuous-time Markov chains on discrete state-space have an enormous range of
applications. In recent years, especially, with the explosion of new applications in
network science, Markov chains have become the tool of choice not only to model
the dynamics on these networks but also to study their topological properties [2, 68].
In this context, there is a need for new methods to analyze Markov chains on large
state-space with no specific symmetries, as relevant for large complex networks.

A natural starting point to analyze a Markov chain is to use spectral analysis. This
is especially relevant when the chain displays metastability, as was shown in [12, 24]
in the context of time-reversible chains. By definition, the generator of a metastable
chain possesses one or more clusters of eigenvalues near zero, and the associated
eigenvectors provide a natural way to partition the chain (and hence the underlying
network) in cluster of nodes on which the walker remains for a very long time before
finding its way to another such cluster. This approach has been used not only in
the context of Markov chains arising from statistical physics (such as e.g. glassy
systems [4, 11] or bio-molecules [81]), but also in the context of data segmentation
and embedding [84, 62, 78, 6, 26, 16, 55]. The problem with the spectral approach,
however, is that not all Markov chains of interest are time-reversible and metastable,
and when they are not, the meaning of the first few eigenvectors of the generator is
less clear.

In this chapter, we take another approach which does not require metastability
and applies for non-time-reversible chains as well. The basic idea is to single out
two disjoint subsets of nodes of interest in the state-space of the chain and ask what
is the typical mechanism by which the walker transits from one of these subsets to
the other? We can also ask what is the rate at which these transitions occur, etc.
The first object which comes to mind to characterize these transitions is the path of
maximum likelihood by which they occur. However, this path can again be not very
informative with respect to its relevance for the transition process. For an attempt
to characterize transition pathways by means of the likelihood by which they occur
see Chapter 6.

The main objective of this chapter, however, is to adapt the framework of transi-
tion path theory (TPT) on discrete state space which allows to give a precise meaning
to the question of finding typical the mechanism and rate of transition even in chains
which are neither metastable nor time-reversible. We will focus only on continuous-
time Markov chains, but we note that the results can be straightforwardly extended
to the case of discrete-time Markov chains.

Besides the illustration of the output of the theory on a test example, we will apply
discrete TPT in order to study the conformational dynamics of the bio-molecule
glycine as well as the dynamics of a genetic toggle switch model.

We want to point out that tools of TPT presented here can be used for data
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4. Transition Path Theory for Markov Jump Processes

segmentation as well. In this context, TPT provides an alternative to Laplacian
eigenmaps [78, 6] and diffusion maps [16] which have become very popular recently
in data analysis. In this thesis, we will not, however, develop these ideas any further.

4.1. Theoretical Aspects

4.1.1. Preliminaries: Notations and Assumptions

We will consider a Markov jump process on the countable state-space S with in-
finitesimal generator (or rate matrix) L = (lij)i,j∈S :

{
lij ≥ 0 for all i, j ∈ S, i 6= j∑

j∈S lij = 0 for all i ∈ S.

as introduced in Section 2.2. We assume that this process is irreducible and ergodic
with respect to the unique, strictly positive stationary distribution π = (πi)i∈S . We
will denote by {X(t)}t∈R an equilibrium sample path (or trajectory) of the Markov
jump process, i.e. any path obtained from {X(t)}t∈[T,∞) by pushing back the initial
condition, X(T ) = x, at T = −∞. Throughout that chapter, we do not assume
reversibility.

For the algorithmic part of this chapter, it will be convenient to use the notations
and concepts of Graph Theory. We will mainly consider directed graphs G = G(S, E)
where the vertex set S is the set of all states of the Markov jump process and two
vertices i and j are connected by a directed edge if (i, j) ∈ E ⊆ (S ×S). Let E′ ⊂ E
be a subset of edges of a graph G = G(S,E), then we denote by G(S′, E′) the induced
subgraph, i.e. the graph which consists of all edges in E′ and the vertex set

S′ = {i ∈ S : ∃j ∈ S s.t. (i, j) ∈ E′ or (j, i) ∈ E′}.

We also recall that:

Definition 4.1.1. A directed pathway w = (i0, i2, . . . , in), ij ∈ S, j = 0, . . . , n in
a graph G is a finite sequence of vertices such that (ij , ij+1) ∈ E, j = 0, . . . , n − 1.
A directed pathway w is called simple if w does not contain any self-intersections
(loops), i.e. ij 6= ik for j, k ∈ {0, . . . , n}, j 6= k.

We will later consider several forms of weight-induced directed graphs:

Definition 4.1.2. Whenever a |S|× |S|-matrix C = (Cij) with non-negative entries
is given, the weight-induced directed graph is denoted by G{C} = G(S, E). In
this graph the vertex set S is the set of all states of the Markov jump process and
two vertices i and j are connected by a directed edge (i, j) ∈ E ⊆ (S × S) if the
corresponding weight Cij is positive.

4.1.2. Reactive Trajectories

Let A and B be two nonempty, disjoint subsets of the state space S. By ergodicity,
any equilibrium path {X(t)}t∈R oscillates infinitely many times between set A and
set B. We are interested in understanding how these oscillations happen (mechanism,
rate, etc). If we view A as a reactant state and B as a product state, each oscillation
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4.1. Theoretical Aspects

from A to B is a reaction event, and so we are asking about the mechanism, rate,
etc. of these reaction events. To properly define and characterize the reaction events,
we proceed by pruning a long ergodic trajectory {X(t)}t∈R into pieces during which
it makes a transition from A to B, and ask about various statistical properties of
these pieces, see Fig. 4.1. The pruning is done as follows.

First, given a trajectory {X(t)}t∈R we define a set of exit and entrance times
σ = {tAn , tBn }n∈Z as:

Definition 4.1.3 (Exit and entrance times). Given a trajectory {X(t)}t∈R, the
exit time tAn and the entrance time tBn belong to σ if and only if

limt→tAn−X(t) = xA
n ∈ A, X(tBn ) = xB

n ∈ B,

∀t ∈ [tAn , tBn ) : X(t) 6∈ A ∪B.
(4.1)

By ergodicity, we know that the cardinal of σ is infinite. It is also clear that the
times tAn and tBn form an increasing sequence, tAn ≤ tBn ≤ tAn+1 for all n ∈ Z. Notice
however that we may have tAn = tBn for some n ∈ Z corresponding to events when
the trajectory jumps directly from A to B. If, on the other hand, tAn < tBn , then
the trajectory visits states outside of A and B when it makes a transition from the
former to the latter.

Next, given the set σ, we define:

Definition 4.1.4 (Reactive times). The set R of reactive times is defined as

R =
⋃

n∈Z
(tAn , tBn ) ⊂ R. (4.2)

Finally, we denote by t1n ≡ tAn ≤ t2n ≤ · · · ≤ tkn
n ≤ tBn the set of all the successive

jumping times of X(t) in [tAn , tBn ], i.e. all the times in [tAn , tBn ] such that

lim
t→tkn−

X(t) 6= X(tkn) =: xk
n, k = 1, . . . , kn ∈ N (4.3)

and we define:

Definition 4.1.5 (Reactive trajectories). The ordered sequence

Pn = [xA
n , x1

n, x2
n . . . , xkn

n ≡ xB
n ]

consisting of the successive states visited during the nth transition from A to B
(including the last state in A, xA

n , and the first one in B, xB
n ≡ xkn

n ) is called the
nth reactive trajectory. The set of all such sequences,

P =
⋃

n∈Z
{Pn} (4.4)

is called the set of reactive trajectories.

(Note that we have kn = 1 when the trajectory hops directly from A to B at time
tAn = tBn , in which case Pn = [xA

n , xB
n ].)

In the next sections we obtain various statistical properties of the objects defined
in this section. Note that, because of the way we defined these objects they do depend
on the particular trajectory {X(t)}t∈R used to generate them. However, their law
does not.
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Figure 4.1.: Schematic representation of a piece of an ergodic trajectory. The sub-
piece connecting A to B (shown in thick black) is a reactive trajectory,
and the collection of reactive trajectories is the ensemble of reactive
trajectories.

4.1.3. Probability Distribution of Reactive Trajectories

A first object relevant to quantify the statistical properties of the reactive trajectories
is:

Definition 4.1.6. The distribution of reactive trajectories mR = (mR
i )i∈S is defined

so that for any i ∈ S we have:

lim
T→∞

1
2T

∫ T

−T
1{i}(X(t))1R(t)dt = mR

i , (4.5)

where 1C(·) denotes the characteristic function of the set C.

The distribution mR gives the equilibrium probability to observe a reactive tra-
jectory at state i and time t.

How can we find an expression for mR? Suppose we encounter the process X(t) in
a state i ∈ S. What is the probability that X(t) be reactive? Intuitively, this is the
probability that the process came rather from A than from B times the probability
that the process will reach B rather than A in the future. This indicates that the
following objects will play an important role:

Definition 4.1.7. The discrete forward committor q+ = (q+
i )i∈S is defined as the

probability that the process starting in i ∈ S will reach first B rather than A. Anal-
ogously, we define the discrete backward committor q− = (q−i )i∈S as the probability
that the process arriving in state i came last from A rather than B.

In the next section we show that the forward and backward committor satisfy a
discrete Dirichlet problem, respectively.

We have

Theorem 4.1.1. The probability distribution of reactive trajectories defined in (4.5)
is given by

mR
i = πiq

+
i q−i , i ∈ S. (4.6)
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Proof. Denote by xAB,+
i (t) the first state in A∪B reached by X(s), s ≥ t, conditional

on X(t) = i. Similarly, denote by xAB,−
i (t) the last state in A∪B left by X(s), s ≤ t,

conditional on X(t) = i or, equivalently, the first state in A ∪B reached by XR(s),
s ≥ −t. In terms of these quantities, (4.5) can be written as

mR
i = lim

T→∞
1

2T

∫ T

−T
1{i}(X(t))1A(xAB,−

i (t))1B(xAB,+
i (t))dt.

Taking the limit as T → ∞ and using ergodicity together with the strong Markov
property, we deduce that

mR
i = πi Pi(τ+

B < τ+
A )PR

i (τ−B > τ−A )

which is (4.6) by definition of q+ and q−.

Notice that mR
i = 0 if i ∈ A ∪ B. Notice also that mR is not a normalized

distribution. In fact,
ZAB =

∑

j∈S

mR
j =

∑

j∈S

πjq
+
j q−j ≤ 1

is the probability that the trajectory is reactive at some given instance t in time, i.e.

ZAB = P(t ∈ R). (4.7)

The distribution
mAB

i = Z−1
ABmR

i = Z−1
ABπiq

+
i q−i (4.8)

is then the normalized distribution of reactive trajectories which gives the probability
to observe a reactive trajectory at state i at time t conditional on the trajectory being
reactive at time t.

Remark 4.1.8. If the Markov process is reversible (i.e. πilij = πjlji), then q+
i =

1− q−i and the probability distribution of reactive trajectories reduces to

mR
i = πiq

+
i (1− q+

i ) (reversible process). (4.9)

4.1.4. Discrete Committor Equations

The discrete forward and backward committors play a central role in TPT. Recall,
that for a state i ∈ S the discrete forward committor q+

i is defined as the probability
that the Markov jump process starting in state i will reach B rather than A. In other
words, q+

i is the first entrance probability of the process {X(t), t ≥ 0, X(0) = i})
with respect to the set B avoiding the set A. The usual step in dealing with entrance
or hitting probabilities with respect to a certain subset of states is the modification
of the process such that these states become absorbing states. Let L = (lij)i,j∈S be
the infinitesimal generator of a Markov jump process and A ⊂ S be a non-empty
subset. Suppose we are interested in the process resulting from the declaration of the
states in A to be absorbing states. Then the infinitesimal generator L̂ = (l̂ij)i,j∈S of
the modified process is given by, [89]

l̂ij =

{
lij i ∈ Ac, j ∈ S

0 i ∈ A, j ∈ S
(4.10)

From this viewpoint, now it is simple to prove the following theorem.
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4. Transition Path Theory for Markov Jump Processes

Theorem 4.1.2. Let q+
i be the probability to reach B before A provided that the

process has started in state i ∈ S. Then the discrete forward committor q+ = (q+
i )i∈S

satisfies the equations





∑
k∈S likq

+
k = 0, ∀i ∈ (A ∪B)c

q+
i = 0, ∀i ∈ A

q+
i = 1, ∀i ∈ B

(4.11)

Proof. If we make the states in the set A absorbing states then the discrete forward
committor q+ is the first entrance probability with respect to the set B under the
modified process. Thus q+ satisfies the discrete Dirichlet problem [89]

{∑
k∈S l̂ikq

+
k = 0, ∀i ∈ Bc

q+
i = 1, ∀i ∈ B

or, equivalently, 



∑
k∈S likq

+
k = 0, ∀i ∈ (A ∪B)c

q+
i = 0, ∀i ∈ A

q+
i = 1, ∀i ∈ B

which ends the proof.

Observe that if we substitute the “boundary conditions” into the equations in (4.11)
we end up with a linear system

Uq+ = v, (4.12)

where the matrix U = (uij)i,j∈(A∪B)c is given by

uij = lij i, j ∈ (A ∪B)c

and an entry of the vector v = (vi)i∈(A∪B)c on the right hand side of (4.12) is defined
by vi = −∑

k∈B lik,∀i ∈ (A ∪B)c. Now we can prove

Lemma 4.1.9. If the matrix U is irreducible then the solution of (4.11) is unique.

Proof. By the definition of the matrix U there exists at least an index k ∈ (A∪B)c

such that
|ukk| >

∑

j 6=k

ukj .

But this implies that U is weakly diagonally dominant (see Definition A.58). To-
gether with its assumed irreducibility, Theorem A.6.6 in the Appendix implies that
it is invertible.

Next, we turn our attention to the discrete backward committor q−i , i ∈ S which
is defined as the probability that the process arriving at state i came rather from
A than from B. The crucial observation is now that q− = (q−i )i∈S is the discrete
forward committor with respect to the reversed time process.
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Theorem 4.1.3. The discrete backward committor q− = (q−i )i∈S satisfies the linear
system of equations





∑
k∈S lRikq

−
k = 0, ∀i ∈ (A ∪B)c

q−i = 1, ∀i ∈ A

q−i = 0, ∀i ∈ B,

(4.13)

where π = (πi)i∈S is a stationary distribution and lRik = πklki/πi is the generator
of the reversed time process (see (2.49)). Moreover, if the Markov jump process is
reversible then the backward committor is simply related to the forward committor
by

q− = 1− q+. (4.14)

Proof. The derivation of (4.13) is a straightforward generalization of the one of (4.11).
To derive (4.14), note that if the Markov jump process is reversible, then the detailed
balance 2.50 condition is satisfied and the discrete backward committor solves




∑
k∈S likq

−
k = 0, ∀i ∈ (A ∪B)c

q−i = 1, ∀i ∈ A

q−i = 0, ∀i ∈ B.

(4.15)

On one hand the solution of the discrete Dirichlet problem (4.15) is unique (see
Lemma 4.1.9). On the other hand, a short calculation shows that 1−q+ also satisfies
(4.15). Consequently, we have q− = 1− q+ which ends the proof.

Remark 4.1.10. The committor q+
i is related to hitting times with respect to the

sets A and B by
q+
i = Pi(τ+

B < τ+
A ). (4.16)

Here Pi denotes expectation conditional on X(0) = i, τ+
A = inf{t > 0 : X(t) ∈ A}

denotes the first entrance time of the set A and τ+
B = inf{t > 0 : X(t) ∈ B} the

first entrance time of the set B; q−i can be defined similarly using the time-reversed
process as

q−i = PR
i(τ−B > τ−A ), (4.17)

where PR
i denotes expectation with respect to the time-reversed process conditional

on XR(0) = i, τ−A = inf{t > 0 : XR(t) ∈ A} denotes the last exit time of the subset
A and τ−B = inf{t > 0 : XR(t) ∈ B} the last exit time of the subset B.

4.1.5. Probability Current of Reactive Trajectories

In this section we are interested in the average current of reactive trajectories flowing
from state i to state j per time unit. More precisely:

Definition 4.1.11. The probability current of reactive trajectories fAB = (fAB
ij )i,j∈S

is defined so that for all pairs of states (i, j), i, j ∈ S, i 6= j we have

lim
s→0+

1
s

lim
T→∞

1
2T

∫ T

−T
1{i}(X(t))1{j}(X(t + s))

×
∑

n∈Z
1(−∞,tBn ](t)1[tAn ,∞)(t + s)dt = fAB

ij .
(4.18)

In addition, we set fAB
ii = 0 for all i ∈ S.
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We have

Theorem 4.1.4. The discrete probability current of reactive trajectories is given by

fAB
ij =

{
πiq

−
i lijq

+
j , if i 6= j

0, otherwise
(4.19)

Proof. Using the same notations as in the proof of Theorem 4.1.1, equation (4.18)
can also be written as

fAB
ij = lim

s→0+

1
s

lim
T→∞

1
2T

∫ T

−T
1{i}(X(t))1{j}(X(t + s))

× 1A(xAB,−
i (t))1B(xAB,+

j (t + s))dt.

(4.20)

Taking the limit T →∞ and using ergodicity, we deduce that

fAB
ij = lim

s→0+

1
s
πiq

−
i Ei[q+

X(s),1{j}(X(s))],

where Ei denotes the expectation conditional on X(0) = i. To take the limit s → 0+

we use
∀Φ : S 7→ R : lim

s→0+

1
s
(Ei[Φ(X(s))]− Φ(i)) =

∑

j∈S

lijΦ(j)

and we are done since i 6= j.

This result implies an expected property, the conservation of the discrete proba-
bility current or flux in each node:

Theorem 4.1.5. For all i ∈ (A ∪B)c the probability current is conserved, i.e.
∑

j∈S

(fAB
ij − fAB

ji ) = 0, ∀i ∈ (A ∪B)c. (4.21)

Proof. By definition of fAB for i ∈ (A ∪B)c:

∑

j∈S

(fAB
ij − fAB

ji ) = πiq
−
i

∑

j 6=i

lijq
+
j − πiq

+
i

∑

j 6=i

πj

πi
ljiq

−
j

= −q−i q+
i πilii + q−i q+

i πil
R
ii = 0,

where we used
∑

j∈S lijq
+
j = 0 if i ∈ (A ∪ B)c from (4.11) and

∑
j∈S lRijq

−
j = 0 if

i ∈ (A ∪B)c from (4.15).

For later use we should also mention that conservation of the current in every state
i ∈ (A ∪B)c immediately implies the following total conservation of the current,

∑

i∈A,j∈S

fAB
ij =

∑

j∈S,i∈B

fAB
ji , (4.22)

where we used that fAB
ij = 0 if i ∈ S and j ∈ A, and fAB

ij = 0 if i ∈ B and j ∈ S.
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4.1.6. Transition Rate and Effective Current

In this section we derive the average number of transitions from A to B per time
unit or, equivalently, the average number of reactive trajectories observed per time
unit. More precisely, let N−

T , N+
T ∈ Z be such that

R ∩ [−T, T ] =
⋃

N−
T ≤n≤N+

T

(tAn , tBn ), (4.23)

that is, N+
T − N−

T is the number of reactive trajectories in the interval [−T, T ] in
time.

Then:

Definition 4.1.12. The transition (reaction) rate kAB is defined as

kAB = lim
T→∞

N+
T −N−

T

2T
. (4.24)

We have:

Theorem 4.1.6. The transition rate is given by

kAB =
∑

i∈A,j∈S

fAB
ij =

∑

j∈S,k∈B

fAB
jk . (4.25)

Proof. From (4.20) we get

∑

i∈A,j∈S

fAB
ij = lim

s→0+

1
s

lim
T→∞

1
2T

(4.26)

×
∫ T

−T
1A(X(t))

∑

j∈S

1B(xAB,+
j (t + s))dt.

Let us consider the integral; we can always restrict our attention to generic values
of T such that there is no n ∈ Z for which T = tAn or T = tBn . The integrand in this
expression is nonzero iff X(t) ∈ A, X(t+ s) ∈ Ac and t+ s ∈ R, i.e. if tAn ∈ (t, t+ s)
for some n ∈ Z. But this means that the integral of 1A(X(t))1B(xAB,+

j (t + s)) on
every interval t ∈ (tAn − s, tAn ) is equal to s and the only contributions to the integral
in (4.26) come from the intervals in [−T, T ]∩∪n∈Z(tAn −s, tAn ). But these are exactly
N+

T −N−
T intervals such that the whole integral amounts to (N+

T −N−
T )s. From (4.26)

and (4.23), this implies the first identity for the rate kAB. The second identity follows
from (4.22).

Notice that the rate can also be expressed as

kAB =
∑

i∈A,j∈S

f+
ij , (4.27)

where:

Definition 4.1.13. The effective current is defined as

f+
ij = max(fAB

ij − fAB
ji , 0). (4.28)
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Identity (4.27) follows from (4.25) and the fact that ∀i ∈ A : f+
ij = fAB

ij since
fAB

ji = 0 and fAB
ij > 0 if i ∈ A. The effective current gives the net average number

of reactive trajectories per time unit making a transition from i to j on their way
from A to B. The effective current will be useful to define transition pathways in
Section 4.1.8.

Remark 4.1.14. If the Markov process is reversible, then the effective current re-
duces to

f+
ij =

{
πilij(q+

j − q+
i ), if q+

j > q+
i

0, otherwise
(reversible process) (4.29)

and the reaction rate can be expressed as

kAB = 1
2

∑

i,j∈S

πilij(q+
j − q+

i )2. (reversible process) (4.30)

The last identity can also be written as kAB = −∑
i∈S,j∈B πilijq

+
i (for reversible

processes!) which in turn is identical to the expression that we know from Theo-
rem 4.1.6

kAB =
∑

i∈S,j∈B
i 6=j

πilij(1− q+
i ). (reversible process)

4.1.7. Relations with Electrical Resistor Networks

Before proceeding further, it is interesting to revisit our result in the context of
electrical resistor networks [27]. Recall that an electrical resistor network is a directed
weighted graph G(S, E) = G{C} where C = (cij) is an entry-wise nonnegative
symmetric matrix (cf. Def. 4.1.2), called conductance matrix of G. The reciprocal rij

of the conductance cij is called the resistance of the edge (i, j). Establishing a voltage
va = 0 and vb = 1 between two vertices a and b induces a voltage v = (vi)i∈S\{a,b}
and an electrical current Fij which are related by Ohm’s Law

Fij =
vi − vj

rij
= (vi − vj)cij , i, j ∈ S, i 6= j. (4.31)

Furthermore, the Kirchhoff’s Current Law, that is
∑

j∈S

Fij = 0 ∀i ∈ S \ {a, b} (4.32)

requires that the voltages have the property

vi =
∑

j 6=i

cij

ci
vj , ∀i ∈, S \ {a, b}, (4.33)

where ci =
∑

j∈S cij . A reversible Markov jump process, given by its infinitesimal
generator L, can be seen as an electrical resistor network by setting up the conduc-
tance matrix C via

cij = πilij ,
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where π = (πi)i∈S is the unique stationary distribution. Now observe that equa-
tion (4.33) reduces to

0 =
∑

j∈S

lijvj , ∀i ∈ S \ {a, b}.

But this means that the forward committor q+ with respect to the sets A = {a} and
B = {b} can be interpreted as a voltage. Moreover, a short calculation shows that
the effective flux, defined in (4.28), pertains to the electrical current.

4.1.8. Dynamical Bottlenecks and Reaction Pathways

The transition rate kAB is a quantity which is important to describe the global tran-
sition behavior. In this section we characterize the local bottlenecks of the ensemble
of reactive trajectories which determine the transition rate. In order to get a de-
tailed insight into the local transition behavior we characterize reaction pathways
by looking on the amount of reactive trajectories which is conducted from A to B
by a sequence of states.

We use the notations of Graph Theory introduced at the end of Section 4.1.1. Let
G(S,E) = G{f+} be the weight induced directed graph associated with the effective
current f+ = (f+

ij ), ij ∈ S. A simple pathway in the graph G, starting in A ⊂ S
and ending in B ⊂ S, is the natural choice for representing a specific reaction from
A to B because any loop during a transition would be redundant with respect to
the progress of the reaction.

Definition 4.1.15. A reaction pathway w = (i0, i1, . . . , in), ij ∈ S, j = 0, . . . , n
from A to B is a simple pathway such that

i0 ∈ A, in ∈ B, ij ∈ (A ∪B)c j = 1, . . . , n− 1.

The crucial observation which leads to a characterization of bottlenecks of reaction
pathways is that the amount of reactive trajectories which can be conducted by a
reaction pathway per time unit is confined by the minimal effective current of a
transition involved along the reaction pathway.

Definition 4.1.16. Let w = (i0, i1, . . . , in) be a reaction pathway in G{f+}. We
define the min-current of w by

c(w) = min
e=(i,j)∈w

{f+
ij }. (4.34)

The dynamical bottleneck of a reaction pathway is the edge with the minimal effective
current

(b1, b2) = arg min
e=(i,j)∈w

{f+
ij }. (4.35)

We call such an edge (b1, b2) a bottleneck.

Here and in the following we somewhat misuse our notation by writing e = (i, j) ∈
w whenever the edge e is involved in the pathway w = (i0, i1, . . . , in), i.e. if there is
an m ∈ {0, . . . , n− 1} such that (i, j) = (im, im+1).

Now it is straightforward to characterize the “best” reaction pathway, namely,
that is the one with the maximal min-current.
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BA

b1 b2

wL

wR

G[L] G[R]

G[WD]

Figure 4.2.: Schematic representation of the decomposition of WD. A reaction path-
way w (shown in thick black) can be decomposed into two simple path-
ways wL and wR.

Remark 4.1.17. Notice that the problem of finding a pathway which maximizes the
minimal current is known as the maximum capacity augmenting path problem [1]
in the context of solving the maximal flow problem in a network.

In general, one cannot expect to find a unique “best” reaction pathway because
the bottleneck corresponding to the maximal min-current could be the bottleneck
of other reaction pathways too.

Definition 4.1.18. Let W be the set of all reaction pathways and denote the maxi-
mal min-current by cmax. Then we define the set of the dominant reaction pathways
WD ⊂ W by

WD = {w ∈ W : c(w) = cmax}.
Remark 4.1.19. To guarantee uniqueness of the bottleneck, we henceforth assume
that the positive currents of the effective current f+ are pairwise different, i.e. f+

e 6=
f+

e′ for all pairs of edges e = (i, j), e′ = (i′, j′). Nevertheless, we are aware that
in applications the situation could show up where more than one bottleneck exists
because the corresponding currents are more or less equal. This ambiguity is taken
into account in an hierarchical decomposition of the set of all reaction pathways
described at the end of this section.

Let G[WD] = G(SD, ED) be the directed graph induced by the set WD, i.e.,
the graph whose vertex/edge set is composed of all vertices/edges that appear
in at least one of the pathways in WD. The next Lemma shows that the graph
G[WD] = G(SD, ED) possesses a special structure which is crucial for the definition
of a representative dominant reaction pathway.

Lemma 4.1.20. Let b = (b1, b2) denote the unique bottleneck in G[WD]. Then the
graph G(SD, ED \ {b}) decomposes into two disconnected parts G[L] and G[R] such
that every reaction pathway w ∈ WD can be decomposed into two pathways wL and
wR

w = (il1 , . . . , iln = b1︸ ︷︷ ︸
=wL

, b2 = ir1 , . . . , irm︸ ︷︷ ︸
=wR

),

where wL ∈ L is a simple pathway in G[L] starting in il1 ∈ A and ending in {b1}
and wR is a simple pathway in G[R] starting in {b2} and ending up in irm ∈ B.
Whenever we have L = ∅ then G[L] = ({il1}, ∅); for R = ∅ likewise.
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Here and in the following we write wL ∈ L (and wR ∈ R, respectively) if we want
to express that for every edge e ∈ wL we have e ∈ L.

Proof. It immediately follows from the definition of WD that the bottleneck b is
involved in every dominant reaction pathway because otherwise there would exist a
pathway w ∈ WD such that c(w) > cmax which leads to a contradiction. By defini-
tion, a reaction pathway does not possess any loops. Consequently, the bottleneck b
separates WD which proofs the assertion.

According to the Lemma, the set of dominant reaction pathways WD can be
represented as

WD = L×R := {(wL, wR) : wL ∈ L, wR ∈ R} . (4.36)

In Figure 4.2 we give a schematic representation of the decomposition of WD.
Next, we address the most likely case in applications where more than one dom-

inant reaction pathway exists. By definition, each dominant reaction pathway con-
ducts the same amount of current from A to B but they differ with respect to the
maximal amount of current which they conduct, e.g., from the set A to the bot-
tleneck, respectively. Now observe that the simple pathways in the set L could be
seen as reaction pathways with respect to the set A and the B-set {b1}. Hence, L

possesses itself again a set of dominant reaction pathways WD(L) and so on. This
motivates the following recursive definition of the a representative dominant reaction
pathway.

Definition 4.1.21. Let WD = L × R and suppose b = (b1, b2) is its (unique)
bottleneck. Then we define the representative dominant reaction pathway w∗ of WD
by

w∗ = (w∗L, w∗R), (4.37)

where w∗L is the representative dominant pathway of the set WD(L) with respect to
the set A and the B-set {b1} and w∗R is the representative of WD(R) with respect to
the A-set {b2} and the set B. If L = ∅ and G[L] = ({i}, ∅) then w∗L = {i}; if R = ∅
then w∗R is defined likewise.

Notice that the representative w∗ is unique under the assumption made in Re-
mark 4.1.19. Furthermore, it follows immediately from the recursive definition of w∗

that

w∗ =arg max
w∈WD

min
e=(i,j)∈w,

(i,j)6=(b1,b2)

{f+
ij }

=arg max
w∈WD

min
e=(i,j)∈w,

(i,j)6=(b1,b2)

{f+
ij − cmax}.

(4.38)

Finally, we turn our attention to the residuum current which results from updating
the effective current of each edge along the representative pathway w∗1 = w∗ by
subtracting the min-current c

(1)
max = cmax. That is, the residuum current is defined

as

f r,1
ij =

{
f+

ij − c
(1)
max, if (i, j) ∈ w∗1

f+
ij , otherwise.

(4.39)
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The graph G1 = G{f r,1
ij } induced by the residuum current satisfies the current

conservation property in analogy to (4.21). It possesses again a bottleneck, say b̃, a
set of dominant pathways and a representative pathway, say w∗2. If we denote the
min-current of w∗2 with respect to the residuum current by c

(2)
max then it should be

clear that cmax = c
(1)
max > c

(2)
max holds. The property (4.38) of w∗1 guarantees that c

(2)
max

is maximal with respect to all possible residuum currents. We can obviously repeat
this procedure by introducing the residuum current f r,2

ij by subtracting c
(2)
max from

f r,1
ij along the edges belonging to w∗2, and so on. The resulting iteration terminates

when the resulting induced graph GM+1 = G{f r,M+1
ij } no longer contains reaction

pathways and leads to a hierarchical enumeration (w∗1, w
∗
2, . . . , w

∗
M ) of the set W of

all reaction pathways such that

c(i)
max > c(j)

max, 0 ≤ i < j ≤ M,

M∑

i=1

c(i)
max = kAB,

(4.40)

where the last identity simply follows from the following equation for the rates
kAB(Gi) associated with the graphs G1, . . . , GM :

kAB(Gi) = kAB(Gi−1)− c(i)
max,

where G0 denotes the original graph G{f+
ij }, and kAB(GM+1) = 0.

Remark 4.1.22. The composition of the total rate into fraction coming from cur-
rents along reactive pathways is a quite general concept in graph theory. We herein
just presented a specification of it. We refer the interested reader to, e.g. [1], Section
3.5.

4.1.9. Relation with Laplacian Eigenmaps and Diffusion Maps

Let us briefly comment about the relevance of our results in the context of data
analysis (in particular data segmentation and embedding, i.e., low dimensional rep-
resentation). Recently, two classes of methods have been introduced to this aim:
Laplacian eigenmaps [84, 62, 78, 6, 26] and diffusion maps [16, 55]. The idea behind
these approaches is quite simple. Given a set of data points, say S = {x1, x2, . . . , xn},
one associates a weight induced graph with weight function w(x, y). This graph is
constructed locally, e.g. by connecting all points with equal weights that are below a
cut-off distance from each other. These weights are then renormalized by the degree
of each node, which means that w(x, y) can be re-interpreted as the stochastic ma-
trix of a continuous Markov chain. Alternatively, it is also possible to interpret the
weights as rates and thereby build the generator of a continuous-time Markov chain.
In both cases, the properties of the chain are then investigated via spectral analysis
of the stochastic matrix or the generator. In particular, the first N eigenvectors with
leading eigenvalues, say, φj(x), j = 1, . . . , N can be used to embed the chain into
RN via: x 7→ (φ1(x), . . . , φN (x)). The eigenvectors can also be used to segment the
original data set into important components (segmentation).

As explained in the introduction, the spectral approach is particularly relevant
if the Markov chain displays metastability, i.e. if their exists one or more clusters
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of eigenvalues which are either very close to 1 (in the case of discrete-time Markov
chains) or 0 (in the case of continuous-time Markov chains). When the chain is
not metastable, however, the meaning of the first few eigenvectors is less clear,
which makes the spectral approach less appealing. In these situations, TPT may
provide an interesting alternative. For instance, if several points (or groups of points)
with some specific properties can be singled out in the data set, by analyzing the
reaction between pairs of such groups, one will disclose global information about
the data set (for instance, the committor functions between these pairs may be
used for embedding instead of the eigenvectors). The current of reactive trajectories
and dominant reaction pathways will also provide additional information about the
global structure of the data set which are not considered in the spectral approach.

4.2. Algorithmic Aspects

In this section we explain the algorithmic details for the computation of the various
quantities in TPT. Given the generator L and the two sets A and B, the station-
ary distribution π = (πi)i∈S is computed by solving πT L = 0, whereas the discrete
forward and backward committors, q+ = (q+

i )i∈S and q− = (q−i )i∈S , are computed
by solving (4.11) and (4.15). Solving these equations numerically can be done using
any standard linear algebra package. These objects allow one to compute the prob-
ability distribution of reactive trajectories mR = (mR

i )i∈S in (4.6), its normalized
version mAB = (mAB

i )i∈S in (4.8), the probability current of reactive trajectories
fAB = (fAB

ij )i,j∈S in (4.19), and the effective current f+ = (f+
ij )i,j∈S in (4.28). This

also gives the reaction rate kAB via (4.25) or (4.27). Next we focus on the computa-
tion of the bottlenecks and representative dominant reaction pathways which is less
standard.

4.2.1. Computation of Dynamical Bottlenecks and Representative
Dominant Reaction Pathways

From the definition in (4.35) of the bottleneck b = (b1, b2) associated with the set of
dominant reaction pathways WD, it follows that

f+
e > f+

b , ∀e ∈ ED, e 6= b,

where f+ = (f+
ij )i,j∈S is the effective current and ED is the edge set of the induced

graph G = G[WD]. This observation leads to a characterization of the bottleneck
which is algorithmically more convenient. Let Esort = (e1, e2, . . . , e|E|) be an enu-
meration of the set of edges of G = G{f+} sorted in ascending order according
to their effective current. Then the edge b = em in Esort is the bottleneck if and
only if the graph G(S, {em, . . . , e|E|}) contains a reaction pathway but the graph
G(S, {em+1, . . . , e|E|}) does not. The bisection-algorithm stated in Algorithm 1 is
a direct consequence of this alternative characterization of the bottleneck and is
related to the capacity scaling algorithm ([1], section 7.3) for solving the maximum
flow algorithm. For an alternative algorithm in the context of distributed computing
which is based on a modified Dijkstra algorithm see [43].

We also have:
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Algorithm 1 Computation of the bottleneck
Input: Graph G = G{f+}.
Output: Bottleneck b = (b1, b2).

(1) Sort edges of G according to their weights in ascending order
=⇒ Esort = (e1, e2, . . . , e|E|).

(2) IF the edge e|E| connects A and B THEN RETURN bottleneck b := e|E|.
(3) Initialize l := 1,r := |E|.
(4) WHILE r − l > 1
(5) Set m := b r−l

2 c, E′(m) := {em, . . . , e|E|}.
(6) IF there exists an reaction pathway in G(S,E′(m))
(7) THEN l := m ELSE r := m.
(8) ENDWHILE
(9) RETURN bottleneck b := el.

Lemma 4.2.1. The computational cost of Algorithm 1 in the worst case is O(n log n)
where n = |E| denotes the number of edges of the graph G = G{f+}.

Proof. Assume that n = 2k, k > 1. First notice that the sorting of the edges of
G = G{f+} can be performed in O(n log n). In the worst case scenario, the edge
e1 ∈ ESort is the bottleneck.1 When this is the case, the number of edges in the jth

repetition of the while-loop would be

n

2j
,

and we would have k− 1 repetitions. The cheapest way to determine whether there
exists an reactive trajectory is to perform a breadth-first search starting in A; the
computational cost of that step depends only linearly on the number of edges to be
considered, such that we deduce for the worst case effort T (n) of the entire procedure

T (n) = O(kn) +O(
n

2
) +O(

n

4
) + . . . +O(

n

2k−1
)

= O
(
kn + n(

1
2

+
1
4

+ . . . +
1

2k−1
)
)

= O(kn)

which by noting that k = log(n) ends the proof.

The algorithm for computing the unique representative pathway w∗ of the set of
dominant reaction pathways is a direct implementation of the recursive definition
of w∗ given in (4.37). Recalling that WD can be decomposed as stated in (4.36)
and assuming that f+ takes different values for every edge (i, j), we end up with
the Algorithm 2. A rough estimation of the computational cost of this algorithm is
O(mn log n) where m is the number of edges of the resulting representative pathway
w∗ and n = |E|.

1We are aware that the edge e1 could never be the bottleneck unless all effective currents are equal
which is by Remark 4.1.19 excluded. Nevertheless, the following reasoning with respect to e1

leads only to a slight over-estimation of the computational cost.
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Algorithm 2 Representative Pathways
Input: Graph G = G{f+}, set A, set B.
Output: Representative w∗ = (w∗L, w∗R) of WD(G).

(1) Determine bottleneck b = (b1, b2) in G via Algorithm 1.
(2) Determine all edges EAB of dominant reaction pathways in G.

(3) Set w∗L :=

{
b1, if b1 ∈ A

result of the recursion with (G[EAB], A, {b1}), if b1 /∈ A.

(4) Set w∗R :=

{
b2, if b2 ∈ B

result of the recursion with (G[EAB], {b2}, B), if b2 /∈ B.

(5) RETURN (w∗L, w∗R)

4.3. Illustrative Examples

In this section we illustrate the discrete transition path theory on three examples.
The first is the discrete equivalent of a diffusion process in the three-hole potential,
which we chose because the results of discrete TPT can directly be compared with
the results in Section 3.7.1. This example also establishes a link to the case of
continuous state space. The second example deals with a problem from molecular
dynamics, the glycine-molecule, and shows that TPT allows to characterize reaction
pathways between molecular conformations. In this example we follow two different
approaches: In the first approach the dynamics of glycine is given by an incomplete
observation of the system in a certain time interval, meaning that we have to deal
with the issue of reconstructing the generator of the process given the time series.
In the second approach we utilize a discrete analog of diffusion in a free energy
landscape to approximate the effective dynamics of glycine in the torsion angle space.
The third example arise from the modeling of a genetic toggle switch in chemical
kinetics.

4.3.1. Discrete Analog of a Diffusion in a Potential Landscape

In Chapter 3, TPT for diffusion processes was illustrated on the example of a particle
whose dynamics is governed by the Smoluchowski dynamics





dx(t) = −∂V (x(t), y(t))
∂x

dt +
√

2β−1 dWx(t)

dy(t) = −∂V (x(t), y(t))
∂y

dt +
√

2β−1 dWy(t),
(4.41)

where (x(t), y(t)) ∈ R2 denotes the position of the particle, V (x, y) is the potential,
and the remaining parameters are as in (3.22).

For V (x, y) we chose again the three-hole potential

V (x, y) = 3e−x2−(y−1
3 )2 − 3e−x2−(y−5

3 )2

− 5e−(x−1)2−y2 − 5e−(x+1)2−y2

+
2
10

x4 +
2
10

(y − 1
3)4

(4.42)
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which has been already considered in Section 3.7.1. As one can see in Figure 4.3 the
potential (4.42) has two deep minima approximately at (±1, 0), a shallow minimum
approximately at (0, 1.5), three saddle points approximately at (±0.6, 1.1), (−1.4, 0)
and a maximum at (0, 0.5). As already mentioned, the process defined by (4.42) is
ergodic with respect to the invariant measure

dµ(x, y) = Z−1 exp (−βV (x, y))dxdy, (4.43)

where Z =
∫
R2 exp (−βV (x, y))dx dy is a normalization constant. If β is small

enough, the measure is strongly peaked on the deep minima of the potential (see
the left panel of Figure 4.4), and the system displays metastability, i.e. the parti-
cle makes transitions between the vicinity of these minima only very rarely. In it
was shown that TPT can be used to describe the mechanism of the transition and
compute their rates. In particular, it was shown that transitions preferably occur by
the upper channel visible in Figure 4.3 when β is very small, but that they proceed
by the lower channel when β is somewhat increased. The reasons for this entropic
switch were elucidated in Section 3.7.1 and we refer the reader to this section for
details. Our purpose here is to apply TPT on a discrete analog of (4.41).

In order to construct this analog, we exploit the well-known fact that a diffusion
process can be approximated by a Markov jump process after discretization of state
space. For details on the derivation of the generator, given in (4.44), see Section A.3
in the Appendix. Here we approximate the dynamics (4.41) on a two dimensional,
rectangular domain Ω = [a, b]× [c, d] ⊂ R2 via a Birth-Death process on the discrete
state space (mesh) S = (a + hZ × b + hZ) ∩ ([a, b] × [c, d]) where the mesh width
h > 0 is chosen such that the corners of Ω are covered by the mesh S. The generator
is given by

(Lf)(x, y) = k+
x (x + h, y)(f(x + h, y)− f(x, y))

+ k−x (x− h, y)(f(x− h, y)− f(x, y))
+ k+

y (x, y + h)(f(x, y + h)− f(x, y))

+ k−y (x, y − h)(f(x, y − h)− f(x, y)),

(4.44)

where

k+
x (x + h, y) =





β−1

h2
− 1

2h

∂V (x, y)
∂x

, if x ∈ (a, b) ∩ (a + hZ)

0, if x = b
1
h

, if x = a

k−x (x− h, y) =





β−1

h2
+

1
2h

∂V (x, y)
∂x

, if x ∈ (a, b) ∩ (a + hZ)

0, if x = a
1
h

, if x = b

and the coefficients k+
y and k−y are defined analogously with respect to ∂V (x, y)/∂y.

In the left panel of Figure 4.4 we show the level sets of the density function
exp(−βV (x, y)) associated with the Gibbs measure (4.43). In the right panel of
Figure 4.4 we illustrate the stationary distribution π = (πi)i∈S of the Birth-Death
process as a box plot.

We now present the results of TPT on this example. The panels in Figure 4.5
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Figure 4.3.: The figure shows the level sets of the three-hole potential given in (4.42).
In principal, the dynamics can make a transition between the two main
minima via the direct lower channel or via the upper channel through
the shallow minima.
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Figure 4.4.: Left: Contour plot of the equilibrium density function
exp(−βV (x)). Right: Box-plot of the stationary distribution (πi)i∈S .
Results for β = 1.67 and a 20× 20 mesh discretization.
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Figure 4.5.: Box-plot of the discrete committors. Left: Forward committor q+. Right:
Backward committor q−. Results for β = 1.67 and a 20 × 20 mesh
discretization.
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Figure 4.6.: Left: Box-plot of the discrete probability distribution of reactive tra-
jectories mAB. Right: Visualization of the effective current f+ between
mesh points (boxes). An edge (i, j) with positive effective current f+

ij is
depicted by a triangle pointing from the box which corresponds to the
state i towards the box identified with j ∈ S. The darker the color of a
triangle, the higher the effective current is.

show the box plots of the forward committor q+ (left panel) and the backward
committor q− (right panel). The set A ⊂ S is chosen such that it sufficiently cov-
ers the region around the left minimum. The set B is defined analogously for the
right minimum. The symmetry of the potential together with the symmetry of the
sets A and B implies that the particular 1

2 -committor surface, defined as the set
{i ∈ S : q+

i = 0.5}, should correspond to the symmetry axis in y-direction, which
is confirmed in Figure 4.5. Notice how the presence of the shallow minima in the
upper part of the potential spreads the “level sets” of q+ in this region. This fol-
lows from the fact that the reactive trajectories going through the upper channel
get trapped in the shallow well for a long period of time before exiting towards the
set B. Next, we turn our attention to the probability distribution of the reactive
trajectories, shown in the left panel of Figure 4.6. One can see that the distribution
has a peak in the upper shallow minima whereas the effective current, visualized in
the right panel of Figure 4.6, suggests that most of the reactive trajectories prefer
the lower channel. This again can be explained by the fact that the reactive trajec-
tories going through the upper channel get trapped in the shallow well whereas the
reactive trajectories in the lower channel just need to overcome the barrier. We end
this example by discussing the family of dominant reaction pathways resulting from
the procedure described in the end of Section 4.2.1. In Figure 4.7 we plot the fam-
ily of reaction pathways which covers about 50% of the probability flux of reactive
trajectories for two different temperature, respectively. The pathways are colored
according to the values of their min-currents. The darker the color, the larger the
current conducted by the corresponding reaction pathway is. At the high temper-
ature (β = 1.67, left panel), the reaction happens mostly via the lower channel,
whereas at low temperature (β = 6.67, right panel) it occurs mostly via the upper
channel. This is consistent with the results presented in [73] and in Section 3.7.1.
Finally, we present in Figure 4.8 the family of dominant reaction pathways in the
perturbed three-hole potential which has already been considered in Section 3.7.1.
We used the same perturbation of three-hole potential as well as the same (discrete)
sets A and B as for the smooth three-hole potential above. As one can see, the
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Figure 4.7.: Reaction pathway families for two different temperatures. Both fam-
ilies cover about 50% of the probability flux of reactive trajectories,
respectively. The pathways are colored according to the values of their
min-currents. The darker the color the more current is conducted by
the corresponding reaction pathway. Left: Reaction pathway family at
a high temperature β = 1.67. Right: Reaction pathway family at a low
temperature β = 6.67. Results for a 60× 60 mesh discretization; for the
sake of illustration the mesh is chosen finer than before.

transition behavior described in Section 3.7.1 is recovered by the discrete TPT.

4.3.2. Molecular Dynamics : Glycine

In this example we use discrete TPT to study conformation changes of the glycine-
molecule which is shown in ball-and-stick representation in the left panel of Fig-
ure 4.9. We have seen that the essential object in discrete TPT is the generator
of the considered Markov jump process. Unlike in the previous example, here the
generator of the process is not directly available. Nevertheless, we will present two
approaches both yielding a generator of a Markov jump process which describes the
dynamics of glycine in terms of the torsion angles Φ and Ψ at room temperature
300K.

In the first approach the dynamics of the glycine-molecule in solvent is given by a
time series of the two torsion angles Φ and Ψ. The main challenge here was to esti-
mate a generator of a Markov jump process representing the dynamics on a coarse
grained state space of the torsion angle space (Φ, Ψ). The details of the estimation
procedure are described in Chapter 5. For a more detailed analysis of the confor-
mation see [61]. In the second approach we apply the technique presented in the
previous section in order to approximate the dynamics of glycine in an interpolated
discrete free energy landscape via a Birth-Death process.

Time Series Approach

The time series used herein was extracted out of a molecular simulation of the
glycine-molecule embedded in a cubic box of edge length 3.51 nm with 1402 water
molecules. The integration of the trajectory with total length T = 5 nanoseconds was
realized with τ = 2 fs time steps in the Leapfrog-integration scheme with GROMACS
force field [8, 59] at room temperature of 300K. In the right panel of Figure 4.9 we
give a snapshot of a trajectory where the glycine-molecule is shown together with
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Figure 4.8.: Reaction pathway families in the perturbed three-hole potential in (3.46)
at high temperatures β = 1.67 (left panel) and at low temperature
β = 6.67 (right panel). We used the same perturbation of the potential
as in Section 3.7.1. Both families cover about 50% of the probability flux
of reactive trajectories, respectively. The pathways are colored according
to the values of their min-currents. The darker the color the more current
is conducted by the corresponding reaction pathway. Results for a 60×60
mesh discretization.

Φ

Ψ

Figure 4.9.: Left: The glycine-molecule shown in ball-and-stick representation and
the two torsion angles Φ and Ψ. Right: This panel shows a snapshot of
the respective trajectory where the glycine-molecule is shown together
with the nearest water molecules.
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Figure 4.10.: Left: Projection of the time series (all atomic positions) onto the torsion
angle space spanned by Φ and Ψ. Right: The Ramachandran plot of
the time series in the torsion angle space (Φ,Ψ) reveals the metastable
behavior of the dynamics. At first glance, the molecule attains four
main conformations where each conformation could be decomposed
further into four conformations. We will focus, however, on the four
main conformations.

the nearest water molecules. In order to ensure the Markov property later on, we
considered only every 100th step of the original trajectory. Before explaining how
we constructed a Markov jump process with discrete state space (and especially its
generator) out of this time series, let us give some background about this example.

Metastability and Conformation states A conformation of a molecule is under-
stood as a mean geometric structure of the molecule which is conserved on a large
time scale compared to the fastest molecular motions. From the dynamical point of
view, a conformation typically persists for a long time (again compared to the fastest
molecular motions) such that the associated subset of configurations is metastable [82].
In the left panel of Figure 4.10 we show the projection of the time series of the torsion
angles Φ and Ψ which clearly reveals the metastable behavior. The Ramachandran
plot of the time series in the right panel of Figure 4.10 illustrates the dependency
of the conformation states on the two torsion angles. At first glance, the molecule
attains four main conformations in the torsion angle space.

Generator Estimation The first step towards the application of discrete TPT is to
determine a coarse grained model of the dynamics in the torsion angle space based
on the given time series. We discretized the two-dimensional torsion angle space
with a 20×20 equidistant box discretization and identified each element of the time
series with the box by which it is covered. Assuming that the resulting discrete time
series is Markovian, we estimated a reversible Markov jump process on the discrete
state space of boxes which most likely explains the discrete time series. This is done
by using an efficient generalization of the maximum-likelihood method presented in
detail in Chapter 5. For details on the estimation of the generator for this example
see Section 5.4.5.

In the following, we denote by L̃MLE = (l̃ij)i,j∈S the infinitesimal generator of the
estimated Markov jump process. For the sake of illustration, we show in the left panel
of Figure 4.11 the discrete free energy, −log πi, where (πi)i∈S is the stationary distri-
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Figure 4.11.: Left: Box plot of the discrete free energy, −log(πi), where (πi)i∈S is the
stationary distribution computed from the estimated generator L̃MLE .
The lighter the color of a box is the more probable to encounter the
equilibrated jump process in the corresponding state. Right: The de-
composition of the torsion angle space into four metastable subsets
resulting from PCCA .

bution computed from the estimated generator L̃MLE with respect to a 20× 20 box
discretization. The lighter the color of a box is the more probable it is to encounter
the equilibrated process in the corresponding state. In order to determine the num-
ber of metastable subsets and the subsets itself, we have to look at the dominant
eigenvalues of the transition matrix P̃ (τ) = exp(τL̃MLE), τ = 2 · 10−13 as listed
in Table 5.3 in Section 5.4.5). The gap between the fourth and the fifth dominant
eigenvalue suggests a decomposition of the state space (torsion angle space) into
four metastable subsets. Algorithmically, the decomposition was performed via the
Perron Cluster Cluster Analysis (PCCA) [24, 17]. The symmetry of the resulting
four metastable subsets, as illustrated in the left panel of Figure 4.11, shows that
the estimated generator captures the dynamics in the coarse grained torsion angle
space.

Analysis within Transition Path Theory We were interested in the reaction path-
ways between two main conformations - the upper left one and the lower right one.
As the set B we chose the box in which the discrete free energy restricted on the
upper left conformation attains its minimum. The set A was selected analogously
with respect to the lower right conformation. The discrete forward committor q+

is given in the left panel of Figure 4.12. Comparison of the distribution of reactive
trajectories mAB (illustrated in the right panel of Figure 4.12) with the family of
dominant reaction pathways (right panel of Figure 4.13) reveals again that mAB is
insufficient to describe the effective dynamics from A to B. To see this, notice that
since we deal with a periodic boundary the distribution of reactive trajectories mAB

does not tell anything about the orientation of the direction in which a reaction
takes place.

The family of dominant reaction pathways which cover about 20% of the transition
rate is given in the left panel of Figure 4.13. The darker the color of a pathway the
more current it conducts from A to B. Each of the two darkest reaction pathways
covers about 6% of the rate which shows that the upper and lower reaction channel
are more or less equivalent. That observation is consistent with the symmetry of the
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Figure 4.12.: Left: This figure shows the forward committor q+ computed via (4.11).
As the set A we chose the box (shown as a white box with black bound-
ary) which covers the peak of the restricted stationary distribution on
the lower right conformation. The set B for the upper left conformation
(shown as a white box) was chosen analogously. Right: Box plot of the
discrete probability distribution of reactive trajectories mAB.Results
are for an equidistant discretization of the torsion angle space into
20× 20 boxes.

glycine-molecule in terms of the considered torsion angles. The family of dominant
reaction pathways with respect to 30% of the reaction rate (shown in the right panel
of Figure 4.13) reveals that there exists an additional third reaction pathways with
an opposite orientation.

Free Energy Landscape Approach

In the timeseries approach we consider the dynamical information (the trajectory)
to derive the generator of the underlying process. In the free energy approach we
assume that the dynamics of the observables (here the two torsion angles) can be
described by a Smoluchowski dynamics in a free energy landscape associated with
these observables. For a short account to free energy with respect to Smoluchowski
dynamics see Section A.5 in the Appendix.

Suppose that we are given a periodic potential landscape V (Φ, Ψ) : [0, 2π] ×
[0, 2π] → R such that the dynamics in the torsion angles Φ and Ψ is governed by





dΦ(t) = −∂V (Φ(t),Ψ(t))
∂Φ

dt +
√

2β−1 dWΦ(t)

dΨ(t) = −∂V (Φ(t), Ψ(t))
∂Ψ

dt +
√

2β−1 dWΨ(t).
(4.45)

Our crucial observation now is that the approach presented on the three-hole ex-
ample in Section 4.3.1 can straightforwardly be generalized to that situation. The
only difference for the approximation of the dynamics in (4.45) via a Birth-Death
process is that we have to incorporate periodic boundary conditions instead of re-
flecting boundary conditions. To be more precise, we discretized the square Ω =
[0, 2π)× [0, 2π) with a total uniform mesh

Ωh = {(Φ0 + ih,Ψ0 + jh) : 0 ≤ i, j ≤ N}
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Figure 4.13.: Family of dominant reaction pathways which cover about 20%
(left panel) and 30% (right panel) of the reaction rate kAB. The darker
the color of a pathway the more current it conducts from A to B. For
the sake of illustration, the dominant reaction pathways are embedded
in the box plot of the discrete free energy. Each of the two darkest
reaction pathways covers about 6% of the rate which shows that the
upper and lower reaction channel are more or less equivalent which
is consistent with the symmetry of the glycine-molecule. The family
shown in the right panel reveals that there exists an additional third
reaction pathway, indicated by the long edge in the upper part of the
panel.

such that

Φ0 ≡ (Φ0 + (N + 1)h) mod 2π and Ψ0 ≡ (Ψ0 + (N + 1)h) mod 2π.

The condition on the boundary mesh points accounts for the periodicity of the
torsion angle space. Then the generator L of the Birth-Death process is given by (cf.
(4.44) and Sect. A.3))

(Lf)(Φ,Ψ) = k+
Φ (Φ + h,Ψ)(f(Φ + h,Ψ)− f(Φ, Ψ))

+ k−Φ (Φ− h,Ψ)(f(Φ− h,Ψ)− f(Φ,Ψ))
+ k+

Ψ(Φ, Ψ + h)(f(Φ, Ψ + h)− f(Φ,Ψ))
+ k−Ψ(Φ, Ψ− h)(f(Φ, Ψ− h)− f(Φ,Ψ)),

(4.46)

where

k+
Φ (Φ + h,Ψ) =

β−1

h2
− 1

2h

∂V (Φ, Ψ)
∂Φ

, if Φ ∈ (0, 2π) ∩ (Φ0 + hZ)

k−Φ (Φ− h,Ψ) =
β−1

h2
+

1
2h

∂V (Φ, Ψ)
∂Φ

, if Ψ ∈ (0, 2π) ∩ (Φ0 + hZ)

and the coefficients k+
Ψ and k−Ψ are defined analogously with respect to ∂V (Φ, Ψ)/∂Ψ.

Analysis within Transition Path Theory Our crucial step towards the comparison
of the time series approach with the free energy approach is to interpolate the
discrete free energy on a mesh consisting of the box centers of the torsion angle
space decomposition.
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Figure 4.14.: Left: The discrete free energy, − log πi, resulting from the time series
approach with respect to the decomposition of the torsion angle space
(Φ, Ψ) into 20× 20 boxes. Right: The continuous representation of the
discrete free energy via a Fourier ansatz.

To be more precise, consider the 20 × 20 box-decomposition of the torsion an-
gle space (Φ, Ψ) from the analysis of the time series in the previous section. Let
(Φi, Ψi), i = 1, . . . , 202 denote the centers of a decomposition boxes. Since the time
series does not visit all boxes of the decomposition, the free energy for the empty
boxes (depicted as the white regions in left panel of Figure 4.14) is not defined. For
the numerical interpolation, however, we set the free energy of not visited boxes to
a sufficiently high value such that they result in a barrier for the diffusion dynamics.

Due to the periodicity of the torsion angle space, we can use a Fourier ansatz for
the numerical interpolation:

V (Φi,Ψi) = πi =
M∑

k,l=0

[
(ak sin(kΦi) + bk cos(kΦi))(cl sin(lΨi) + dl cos(lΨi))

]
,

where i = 1, , . . . , 202 and determine the coefficients ak, bk, cl, dl, 0 ≤ l, k ≤ M by
means of the least square method. The right panel in Figure 4.14 illustrates the
interpolated discrete free energy landscape2. For our numerical experiment we set
M = 12.

The main question is now if the Birth-Death process (given via the construction
in (4.46)) in the interpolated landscape exhibits the same transition behavior as
detected with the time series approach? To answer this question, we constructed
a generator L via (4.46) on a 70 × 70 (periodic) mesh discretization of the square
[0, 360] × [0.360]. The inverse temperature β was set such that it corresponds to
room temperature of 300K. As the set A, we chose the set of mesh points which
are covered by the single discretization box associated with the reactant state in
the time series approach. The B was chosen analogously. The forward committor q+

and the distribution mAB of reactive trajectories are given in Figure 4.15.
Finally, we present in the panels of Figure 4.16 two families of reaction pathways,

one family with respect to 10% (left panel) of the rate kAB and the other family is
with respect to 20% (right panel). In comparison to the time series approach, one
can see that the symmetry of the two dominant reaction channels is reproduced and

2For illustrative convenience, we present the results in a continuous manner (contour plots) rather
than using box plots as in the previous sections.
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Figure 4.15.: The left panel shows the committor function q+ with respect to the sets
A (bottom right) and B (top left). The distribution mAB is illustrated
via a contour plot in the right panel.
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Figure 4.16.: In this figure we illustrate two families of reaction pathways. The family
which covers 10% of the transition rate (left panel) reveals that there
are two dominant symmetric reaction channels. In the family with re-
spect to 20% (right panel) two additional reaction channels appear but
with opposite orientation.

more or less their spatial relation to each other (cf. right panel of Figure 4.13). The
family with respect to 20% of reaction rate clearly reveals two additional channels
where the upper one is consistent with the third channel in the time series approach.

At the end of this example, we want to point out that the (infinitesimal) generator
L in (4.46) can also be used to compute the objects of the continuous TPT since L
results from the finite differences discretization of the generator Lbw associated with
the diffusion process in (4.45). For example, in Figure 4.17 we show the transition
tubes resulting from the streamlines associated with the probability current in (3.28)
(cf. Sect. 3.1.5). As a dividing surface we chose a circle with radius r = 1 around the
center of the set A. The resulting tubes are consistent with the reaction pathways
found within the discrete setting.

The results of this section have shown that discrete TPT can be used to analyze
transition events in conformational dynamics. We have presented two different ap-
proaches - TPT in combination with the generator estimation and the free energy
approach. Both approaches lead to reasonably and comparable results.
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Figure 4.17.: The transition tubes resulting from the streamlines associated with the
probability current in (3.28). Results for .

4.3.3. Chemical Kinetics

In the last example, we consider a Markov jump process which arises as a stochastic
model of a genetic toggle switch consisting of two genes that repress each others’
expression [77].

The expression of the each of the two respective genes results in the production
of a specific type of protein; gene GA produces protein PA and gene GB protein PB.
Denote the number of available proteins of type PA by x and of type PB by y, the
model for the toggle switch proposed in [77] is a Birth-Death process on the discrete
state space S = (Z× Z) ∩ ([0, d1]× [0, d2]), d1, d2 > 0, whose generator is given by:

(Lf)(x, y) = c1(x + 1, y)(f(x + 1, y)− f(x, y))

+
x

τ1
(f(x− 1, y)− f(x, y))

+ c2(x, y + 1)(f(x, y + 1)− f(x, y))

+
y

τ2
(f(x, y − 1)− f(x, y)),

(4.47)

where

c1(x + 1, y) =





a1

1 + (y/K2)n
, if x ∈ [0, d1)

0, if x = d1,

c2(x, y + 1) =





a2

1 + (x/K1)m
, if y ∈ [0, d2)

0, if y = d2.

We refer to [77] for the biological interpretation of the parameters in (4.47). For
our numerical experiments, we used the parameters a1 = 156, a2 = 30, n = 3,m =
1,K1 = K2 = 1, τ1 = τ2 = 1, consistent with [77]. With these parameters the
system’s dynamical behavior is as follows: There are two ”metastable” states; in the
first of these only gene GA is expressed and protein PA is produced until a certain
number (around x = 155 for the parameters chosen) is reached which then is rather
stable, while gene GB is repressed and almost no protein PB is produced (so that
typically y = 0 or y = 1). After some rather long period of fluctuation in this
metastable state the system is able to exit from it which leads to expression of gene
GB and repression of GA. Then the system gets into a metastable state where the
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Figure 4.18.: Left: Contour plot of the discrete free energy, −logπi, of the Birth-
Death process (4.47) on the state space S = Z×Z∩ ([0, 200]× [0, 60]).
The white region in the right upper part of the panel indicates the
subset of states with almost vanishing stationary distribution (all
boxes with distribution less than machine precision have been colored
white). Right: Contour plot of the eigenvector of the first non-trivial
right eigenvalue of L. Results for a1 = 156, a2 = 30, n = 3,m = 1,K1 =
K2 = 1, τ1 = τ2 = 1.

number of protein PB fluctuates around a certain non-vanishing number (y = 30 for
our parameters) and PA is rather not produced (typically x = 0 or x = 1).

It is well-known that in the limit of large protein numbers the dynamics of the
jump process or, more precisely, of the associated Master equation is given by a
deterministic model of the biochemical kinetics in terms of the associated concen-
trations. The authors in [77] also consider this deterministic model in order to get
a rough understanding of the switch dynamics. The model consists of two coupled
ordinary differential equations,

ẋ =
a1

1 + (y/K2)n
− x

τ1
,

ẏ =
a2

1 + (x/K1)m
− y

τ2
,

(4.48)

where the parameters are the same as in the stochastic model (4.47). For our par-
ticular choice of parameters the deterministic dynamics in (4.48) has two stable
stationary points approximately at (x, y) = (155, 0) and (x, y) = (0, 30).

For the sake of illustration, we illustrate in the left panel of Figure 4.18 the Gibbs
energy, − log π, of the Birth-Death process instead of its stationary distribution π
itself. Moreover, we neglected all states with almost vanishing stationary distribution
(depicted by the white region) and in order to emphasize the states of interest, we
chose a log-log representation. The color scheme is chosen such that the darker
the color of a region the more probable to find the process there. One can clearly
see that the process spends most of its time near the two metastable core sets
(x, y) ∈ {(155, 0), (155, 1)} and (x, y) ∈ {(0, 30), (1, 30)}.

We were interested in the reaction from the set A = {(155, 0), (155, 1)} towards the
set B = {(0, 30), (1, 30)}. The different shapes of the level sets of the discrete forward
and backward committor, as shown in the left and right panel of Figure 4.19, indicate
the high non-reversibility of the Birth-Death process. Notice that the geometry of
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Figure 4.19.: Contour plots of the discrete forward and backward committor. Due to
the logarithmic scaling, the set A = {(155, 0), (155, 1)} is depicted as a
vertical black line and the set B = {(0, 30), (1, 30)} as an ellipsoid. Left:
Discrete forward committor q+. Right: Discrete backward committor
q−.
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Figure 4.20.: Left: Contour plot of the distribution of reactive trajectories
mAB. Right: Edge plot of the three dominant reaction pathways which
cover about 6% of the current.

the level sets of the forward committor q+ looks very similar to the geometry of the
eigenvector associated with the first non-trivial right eigenvalue of L, as plotted in
the right panel of Figure 4.18. Finally, the edges of the three most dominant reaction
pathways are plotted in the right panel of Figure 4.20. Again, the reaction pathways
deviate from the channel which is suggested by the distribution mAB of reactive
trajectories, shown in the left panel of Figure 4.20.
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5. Generator Estimation of Markov Jump
Processes

We have seen that discrete TPT is a powerful tool for the investigation of the
ensemble of reaction trajectories of Markov jump processes. The central object of
discrete TPT is the committor function which satisfies a system of linear equation
involving the infinitesimal generator of the process. In applications, however, the
generator is not given but only an incomplete observation of the process is available.
This chapter is devoted to the problem of finding a generator of a Markov jump
process based on an incomplete observation of the process. The results of this chapter
are published in [63, 64].

We will focus on two methods for the estimation of a generator. The maximum
likelihood method (MLE-method) introduced by Asmussen 1996 in [5] and rein-
vented by Bladt and Sørensen 2005 in [9] finds a generator via an EM-algorithm
which maximizes the likelihood of the given incomplete observation. Furthermore,
we will discuss a significant algorithmic improvement of the MLE-method, we call
it enhanced MLE-method, which was independently derived by Holmes and Rubin
2002 in [49]. Moreover, we introduce an adaption of the enhanced MLE-method to
the case of reversible Markov jump processes. The quadratic programming approach
introduced by Crommelin and Vanden-Eijnden in [19], determines a generator via
the approximation of the eigenstructure of the empirical transition matrix.

After a comparison of both methods via their numerical performance on small
test examples, we will apply the enhanced MLE-method to data from a molecular
dynamics simulation of glycine in water. The resulting estimated generator is the
basis for the investigation of the conformational dynamics of glycine via discrete
TPT (cf. Chap. 4). Finally, we will demonstrate the performance of the enhanced
MLE-method on an example with non-constant observation time steps.

5.1. The Embedding Problem

Let {X(t), t ≥ 0} be a Markov jump process on a finite state space S ∼= {1, . . . , d}
and let L ∈ Rd×d be its generator. Then the time-dependent transition matrix P (t)
of the process can be expressed as the matrix exponential (cf. Sect. 2.2)

P (t) = exp(tL) =
∞∑

k=0

tk

k!
Lk.

In the following, the set of all generators with respect to a fixed dimension d will be
denoted by

G =



L = (lij)i,j ∈ Rd×d : lij ≥ 0 for all i 6= j, lii = −

∑

j 6=i

lij



 . (5.1)
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Now suppose that a process is only partially observed, i.e. the process is only
given by a finite sampling Y = {y0 = X(t0), . . . , yN = X(tN )} at discrete times
t0 < t1 < . . . < tN . In this chapter we consider the problem of how to determine the
generator if only an incomplete observation Y is available.

Several difficulties must be taken into account. First, from a finite number of
samples it is impossible to tell if the underlying process is actually Markovian.
Second, it is not clear if the observed data originates indeed from discrete samples
of a continuous-time Markov chain with some generator L, or rather from a discrete-
time Markov chain which cannot be embedded into a time-continuous counterpart.
In the latter case, a generator does not exist because the transition matrix of the
discrete chain does not belong to the set

P =
{

P ∈ Rd×d : there is a L ∈ G such that P = exp(L)
}

.

It is well-known that P is a subset of all stochastic matrices, but the so-called
embedding problem, i.e. the question what characterizes the elements of P, is widely
open for d > 3 (cf. [9, 19] and references therein). A third difficulty is the fact that
the matrix exponential function is not injective if the eigenvalues of the generator are
complex. Hence, some matrices P ∈ P can be represented as P = exp(L) = exp(L̄)
with two different generators L 6= L̄. And finally, the question whether the time
points tn of the observations are equidistant plays an important role. In case of
a constant time lag τ = tn+1 − tn an estimate of the transition matrix P (τ) is
available by counting the number of transitions between each pair of states, but in
case of variable time lags the sampled data is typically not sufficient for reasonable
approximations of the transition matrix.

Due to these problems the above question has to be modified: how can we find the
generator that “agrees best” with a finite observation Y = {y0 = X(t0), . . . , yN =
X(tN )} of a process?

5.2. The Maximum Likelihood Method

In this section we explain in detail the maximum likelihood method introduced in [5]
and elaborated further in [9]. Furthermore, we present in detail the enhanced MLE-
methods which is based on results in [49]. The idea behind the MLE-method is to
find a generator L̃ such that it maximizes the discrete likelihood of the given time
series.

5.2.1. Continuous and Discrete Likelihood Functions

The basis objects in the MLE-method is the continuous and discrete likelihood func-
tion. Suppose that the Markov jump process X(t) has been observed continuously in
a certain time interval [0, T ]. Let the random variable Ri(T ) be the time the process
spent in state i before time T

Ri(T ) =
∫ T

0
1{i}X(s)ds

and denote by Nij(T ) the number of transitions from state i to state j in the time
interval [0, T ]. The continuous time likelihood function Lc of an observed trajectory
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{Xt : 0 ≤ t ≤ T} is given by [9]

Lc(L) =
d∏

i=1

∏

j 6=i

l
Nij(T )
ij exp(−lijRi(T )), L = (lij). (5.2)

By definition, the maximum likelihood estimator (MLE) L̃ maximizes the likelihood
function (5.2). Exploiting the monotonicity of the log-function, L̃ is also the maxi-
mizer of

logLc(L) =
d∑

i=1

∑

j 6=i

[Nij(T ) log(lij)− lijRi(T )] , (5.3)

i.e. L̃ is the null of the partial derivatives of logLc(L) with respect to lij and the
Hessian matrix of logLc(L) evaluated at L̃ is negative definite. A short calculation
shows

∂ logLc(L̃)
∂lij

= 0 ⇐⇒ l̃ij =
Nij(T )
Ri(T )

(5.4)

and

∂ logLc(L̃)
∂lij∂lkl

= −Nij(T )
l̃2ij

1{k}(i)1{l}(j) ≤ 0.

In the case where the process has only been observed at discrete time points 0 =
t0 < t1 < . . . < tN = T the discrete likelihood function Ld of a time series Y = {y0 =
X(t0), . . . , yN = X(tN )} is given in terms of the transition matrix P (t) = exp(tL),

Ld(L) =
N−1∏

k=0

pyk,yk+1
(∆tk) =

r∏

s=1

∏

i,j∈S

[pij(τs)]
cij(τs) , (5.5)

where pyk,yk+1
(∆tk) is the probability that the process makes a transition from state

yk to the state yk+1 in time ∆tk, τs ∈ {τ1, . . . , τr} = ∪N−1
k=1 {∆tk} is an observed time

lag and the entry cij(τs) in the frequency matrix C(τs) = (cij(τs)), i, j ∈ S, defined
according to

cij(τs)
def
=

N−1∑

n=1

1{i}(X(tn))1{j}(X(tn+1))1{τs}(∆tn), (5.6)

provides the number of consecutively observed transitions in Y from state i to state
j in time τs.

Unfortunately, even in the simplified case of a constant time lag, i.e. τ = const,
the derivative of the discrete log-likelihood function,

logLd(L) =
N−1∑

k=0

log pyk,yk+1
(τ) =

∑

i,j∈S

[log pij(τ)]cij(τ) , (5.7)

with respect to the entries of L, that is

∂
∂L logLd(L) =

∑∞
n=1

∑n
k=1

τn

n! (L
T )k−1Z(LT )n−k,

with Z = (zij)i,j∈S , zij = cij/ exp (τL)ij ,
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has such a complicated form that the null cannot be found analytically. Hence no
analytical expression for the MLE with respect to L is available. The derivative of
logLd with respect to the transition matrix P (τ) can analytical be obtained and the
maximizer is simply given by

P̂ = (p̂ij)i,j with entries p̂ij =
cij(tau)∑d

j=1 cij(tau)
, (5.8)

where cij = cij(τ). Notice that reversibility of the transition matrix P̂ can easily be
achieved by considering the symmetric frequency matrix CREV (τ) = (cREV

ij ) with
entries given by

cREV
ij (τ) = cij(τ) + cji(τ).

Then the transition matrix which results via 5.8 on the basis of CREV (τ) is reversible
with respect to the probability distribution

π = Z−1

(
d∑

k=1

cREV
1k (τ), . . . ,

d∑

k=1

cREV
dk (τ)

)
,

where Z =
∑d

i,j=1 cREV
ij is the normalization constant.

In the following neither we assume a constant observation time lag nor we assume
reversibility.

5.2.2. Likelihood Approach Revisited

In the likelihood approach, introduced by Bladt and Sørensen in [9], a generator L̃
for a given time series is determined such that L̃ maximizes the discrete likelihood
function (5.5) for the time series. As pointed out in the previous section the discrete
likelihood function Ld does not permit an analytical maximum likelihood estimator.
On the other hand, the MLE (5.4) for a continuous time observation can be ob-
tained analytically but for an incomplete observation the information between two
consecutive observations is hidden and, hence, the observables Ri(T ) and Nij(T ) are
unknown.

Nevertheless, the discrete likelihood Ld can iteratively be maximized by means of
an Expectation-Maximization algorithm (EM-algorithm). The idea is to approximate
the hidden (not observed) information between the incomplete observations in Y by
the expected (averaged) information conditional on the data and on a given guess
of the hidden process. This step is called expectation step (E-Step) and formally
consists of the computation of the conditional log-likelihood function

G : L 7→ EL̃0
[logLc(L)|Y ] , (5.9)

where L ∈ G and for reasons of algebraical simplicity and without loss of generality
the log-likelihood function logLc is considered. The crucial observation is now that
the maximizer (M-step),

L̃1 = argmax
L∈G

G(L; L̃0)

, of the conditional log-likelihood function G(L; L̃0) satisfies [23]

Ld(L̃1) ≥ Ld(L̃0).
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Hence, taking the maximizer as a new guess of the hidden process, the iteration of
the two described steps allows to approximate a (local) maximum of the discrete
likelihood function Ld. The resulting algorithm is stated in Algorithm 3.

Algorithm 3 General EM-algorithm
Input: Time series Y = {y0 = X(t0), . . . , yN = X(tN )}, initial guess of generator

L̃0.
Output: MLE L̃.

(1) Expectation step (E-step):
Compute the function L 7→ G(L; L̃k).

(2) Maximization step (M-Step):
L̃k+1 = argmaxL∈G G(L; L̃k)

(3) Go to Step (1), unless a certain convergence criterion is satisfied.

For our particular likelihood function in (5.2) the conditional log-likelihood func-
tion G in the E-Step reduces to

G(L; L̃0) =
d∑

i=1

∑

j 6=i

[
log (lij)EL̃0

[Nij(T )|Y ]− lijEL̃0
[Ri(T )|Y ]

]
(5.10)

and the maximizer L̃ = (l̃ij), i, j ∈ S of (5.10) takes the form (cf. (5.4))

l̃ij =





EL̃0
[Nij(T )|Y ]

EL̃0
[Ri(T )|Y ]

, i 6= j

−∑
k 6=i l̃ik, otherwise.

(5.11)

The non-trivial task which remains is to evaluate the conditional expectations
EL̃0

[Nij(T )|Y ] and EL̃0
[Ri(T )|Y ], respectively. The first step towards their com-

putation is the observation that by the Markov property and the homogeneity of
the Markov jump process the conditional expectations in (5.10) can be expressed as
sums [9]

EL̃0
[Ri(T )|Y ] =

r∑

s=1

d∑

k,l=1

ckl(τs)EL̃0
[Ri(τs)|X(τs) = l, X(0) = k] ,

EL̃0
[Nij(T )|Y ] =

r∑

s=1

d∑

k,l=1

ckl(τs)EL̃0
[Nij(τs)|X(τs) = l, X(0) = k] .

(5.12)

Next, the conditional expectations in the right hand sides in (5.12) can be decom-
posed further by using the identities

EL [Ri(t)|X(t) = l,X(0) = k] =
EL

[
Ri(t)1{l}(X(t))|X(0) = k

]

pkl(t)
,

EL [Nij(t)|X(t) = l,X(0) = k] =
EL

[
Nij(t)1{l}(X(t))|X(0) = k

]

pkl(t)
.

(5.13)

Finally, the authors in [5, 9] realized that the auxiliary functions defined by

M i
kl(t)

def
= EL

[
Ri(t)1{l}(X(t))|X(0) = k

]
,

F ij
kl (t)

def
= EL

[
Nij(t)1{l}(X(t))|X(0) = k

] (5.14)
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satisfy systems of ordinary differential equations. For example, let i, j ∈ S be fixed.
Then the vectors M i

k(t) = (M i
k1(t), . . . , M

i
kd(t)) and F ij

k (t) = (F ij
k1(t), . . . , F

ij
kd(t))

satisfy the two systems of ODEs

d
dt

M i
k(t) = M i

k(t)L + Ai
k(t), M i

k(0) = 0

with Ai
k(t) = pki(t)ei,

d
dt

F ij
k (t) = F ij

k (t)L + Aij
k (t), F ij

k (0) = 0

with Aij
k (t) = lijpki(t)ej ,

(5.15)

where ei and ej are the ith and jth unit vectors. To summarize, the computation of the
function G(L; L̃) in the E-step reduces to solving the systems of ODEs given in (5.15).
Solving these ODEs numerically, however, causes prohibitive computational costs
when the number of states of the system is large. Another option is to approximate
the matrix-exponentials which are involved in the analytic solutions of (5.15)

M i
k(t) =

∫ t

0
Ai

k(s) exp((t− s)L)ds,

F ij
k (t) =

∫ t

0
Aij

k (s) exp((t− s)L)ds

(5.16)

via the so-called uniformization method [67]. Choose α = maxi=1,...,d{−lii}, and
define B = I + α−1L. Then, e.g., M i(t) = (M i

kl(t))k,l∈S is given by

M i(t) = exp(−αt)α−1
∞∑

n=0

(αt)n+1

(n + 1)!

n∑

j=0

Bj(eie
T
i )Bn−j .

with eT
i denoting the transpose of the unit vector ei. However this expansion is fairly

time consuming and for high dimensional matrices intractable. Moreover the infinite
sum has to be cut off at a finite n which entails inaccuracies.

We will choose an alternative way to compute the left hand sides in (5.13) which
avoids the treatment of the ODEs. We will explain the approach in detail in the
next subsection. In Algorithm 4, we state the resulting EM-algorithm due to [9].

5.2.3. Enhanced Computation of the Maximum Likelihood Estimator

In [48], the authors showed that the conditional expectations EL [Nij(t)|X(t) = l, X(0) = k]
and EL [Ri(t)|X(t) = l, X(0) = k] can analytically be expressed in terms of the gen-
erator L. Recalling the notation of the transition matrix P (s) = exp(sL), they
proved the identities

EL [Ri(t)|X(t) = l, X(0) = k] =
1

pkl(t)

∫ t

0
pki(s)pil(t− s)ds,

EL [Nij(t)|X(t) = l, X(0) = k] =
lij

pkl(t)

∫ t

0
pki(s)pjl(t− s)ds.

(5.17)

The crucial observation is now that an eigendecomposition of the generator L leads
to closed form expressions of the integrals in (5.17). To be more precise, consider

96



5.2. The Maximum Likelihood Method

Algorithm 4 MLE-method (Bladt,Sørensen,[5, 9])
Input: Time series Y = {y0 = X(t0), . . . , yN = X(tN )}, initial guess of generator

L̃0.
Output: MLE L̃.

(1) E-step: FOR ALL τs ∈ {τ1, . . . , τr} DO
i) Compute for i, j, l, k = 1, . . . , d the conditional expectations

EL̃k
[Ri(τs)|X(τs) = l, X(0) = k],

EL̃k
[Nij(τs)|X(τs) = l, X(0) = k] , i 6= j via (5.15),(5.13).

END FOR
ii) Compute EL̃k

[Ri(T )|Y ] and EL̃k
[Nij(T )|Y ] via (5.12).

(2) M-Step: Setup the next guess L̃k+1 of the generator by

l̃ij =

{
EL̃k

[Nij(T )|Y ] /EL̃k
[Ri(T )|Y ], i 6= j

−∑
k 6=i l̃ik, otherwise.

(3) Go to Step (1), unless a certain convergence criterion is satisfied.

the eigendecomposition of a generator L, that is

L = UDλU−1, (5.18)

where the columns of the matrix U consist of all eigenvectors to the corresponding
eigenvalues of L in the diagonal matrix Dλ = diag(λ1, . . . , λd). Consequently, the
expression of the transition matrix P (t) simplifies to

P (t) = exp(tL) = U exp(tDλ)U−1

and we finally end up with a closed form expression of the integrals in (5.17), that
is [49]

∫ t

0
pab(s)pcd(t− s)ds =

d∑

p=1

uapu
−1
pb

d∑

q=1

ucqu
−1
qd Ψpq(t), (5.19)

where the symmetric matrix Ψ(t) = (Ψpq(t))p,q∈S is defined as

Ψpq(t) =

{
tetλp if λp = λq

etλp−etλq

λp−λq
if λp 6= λq.

(5.20)

Remark 5.2.1. We are aware of the fact that in general an eigenvalue decomposi-
tion does not have to exist. For example, consider the matrix

L =



−4 2 2
1 −4 3
1 1 −2


 ∈ G.

The characteristic polynomial of L is −x(x + 5)2, hence −5 is an eigenvalue with
multiplicity two but the dimension of the corresponding eigenspace is one. However,
in all of our numerical experiments this non-decomposable case did not show up.
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For the convenience of the reader we state the resulting enhanced MLE-method
in Algorithm 5. In a single iteration step for each single observation time lag, d2

conditional expectations have to be computed where each one is decomposed into d2

conditional expectations. Hence, the computational cost of a single iteration step in
Algorithm 4 and in Algorithm 5 is O(r ·d4 ·TE) where r is the number of the different
observed time lags and TE denotes the computational cost to compute a single condi-
tional expectation in the E-Step. The numerical considerations in [9] lead to a total
computational cost per iteration in Algorithm 4 of at least O(r ·d6). According to the
closed form expressions for the expectations (5.19), the computational cost of a single
iteration in the enhanced MLE-method (Algorithm 5) is O(r · d5) which is achieved
by a simultaneously computation of the unknowns via matrix multiplication. For
example, define for a fixed i ∈ S the matrix M i

kl = EL [Ri(τ)|X(τ) = l, X(0) = k].
Let U−1

i denote the ith row of the matrix U−1 and Ui the ith column of U . Then M i

can be computed by
M i = U

[
(U−1

i Ui) ∗Ψ
]
U−1,

where A ∗ B is the Hadamard (entrywise) product of two matrices A and B. We
want to emphasize that the algorithm works in principal even in the case of pairwise
different time lags, i.e. r = N − 1 where N is the number of observations, but in
practise this would lead to unacceptable computational costs.

Algorithm 5 Enhanced MLE-method
Input: Time series Y = {y0 = X(t0), . . . , yN = X(tN )}, the set of observed time

lags {τ1, . . . , τr}, the tolerance TOL, initial guess of generator L̃0.
Output: MLE L̃.

(1) Compute eigendecomposition (5.18) of L̃k.
(2) E-step: FOR ALL τs ∈ {τ1, . . . , τr} DO

i) Compute the auxiliary matrix Ψ(τs) (5.20).
ii) Compute for i, j, l, k = 1, . . . , d the conditional expectations

EL̃k
[Ri(τs)|X(τs) = l, X(0) = k],

EL̃k
[Nij(τs)|X(τs) = l,X(0) = k] , i 6= j via (5.19),(5.17).

END FOR
iii) Compute EL̃k

[Ri(T )|Y ] and EL̃k
[Nij(T )|Y ] via (5.12).

(3) M-Step: Setup the next guess L̃k+1 of the generator by

l̃ij =

{
EL̃k

[Nij(T )|Y ] /EL̃k
[Ri(T )|Y ], i 6= j

−∑
k 6=i l̃ik, otherwise.

(4) Go to Step (1) unless ‖L̃k+1 − L̃k‖ < TOL.

5.2.4. Reversible Case

In the reversible case the homogeneous Markov jump process, given by its genera-
tor L, admits a unique stationary distribution π = (πi)i∈S and, moreover, detailed
balance holds:

lji =
πi

πj
lij .

This has two important consequences for the EM-algorithm. The first one is that
detailed balance guarantees a special representation of L which improves the stability
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and accuracy of the EM-algorithm. Furthermore, one has to take into account that
the M-step in general does not preserve the reversibility. To understand the first
issue, notice that L can be written as

L = D−1/2
π SD1/2

π (5.21)

with a symmetric matrix S which can be decomposed as

S = V DλV T ,

where λ1, . . . , λd ∈ R are the eigenvalues of S and V is an orthogonal matrix, i.e.
V V T = I. Combining things, we end up with [48]

P (t) = D−1/2
π V exp(Dλ)V T D1/2

π ,

where D
1/2
π = diag(

√
π1, . . . ,

√
πd). Consequently, the integrals in (5.17) reduce to

∫ t

0
pab(s)pcd(t− s)ds =

(
πbπd

πaπc

)1/2 d∑

p=1

vapvbp

d∑

q=1

vcqvdqΨpq(t), (5.22)

where Ψ is defined in (5.20).
Next, we turn our attention to the problem of the non-preservation of the re-

versibility in the M-Step. The first idea could be to exploit the fact that detailed
balance implies the bisection of the unknowns because lji is determined by πi, πj

and lij . Then one could proceed as follows: Firstly, compute the MLE L̃ via the
EM-algorithm as usual and then define a reversible generator L̃REV = (l̃REV

ij )i,j∈S

by

l̃REV
ij =





l̃ij if i ≤ j
πj

πi
l̃ji otherwise.

This would work in principle but it does not guarantee that the resulting generator
L̃REV is the MLE subject to the space of reversible generators. As a remedy, we
include the restriction to that space explicitly in the log-likelihood function (5.10)
via Lagrange multiplier:

GREV (L; L̃0) = G(L; L̃0) +
d∑

i=1

d∑

j>i

µij (πilij − πjlji) .

Performing the usual steps, we end up with the MLE L̃REV , given by

l̃REV
ij =





EL̃0
[Nij(T )|Y ]

−µijπi + EL̃0
[Ri(T )|Y ]

, i < j

πi

πj
l̃REV
ij , otherwise

(5.23)

where the Lagrange multiplier can be determined by

µij =

[
EL̃0

[Rj(T )|Y ]
πjEL̃0

[Nji(T )|Y ]
− EL̃0

[Ri(T )|Y ]
πiEL̃0

[Nij(T )|Y ]

]

×
[
− EL̃0

[Nij(T )|Y ] · EL̃0
[Nji(T )|Y ]

EL̃0
[Nij(T )|Y ] + EL̃0

[Nji(T )|Y ]

]
.

(5.24)

Combining both issues leads to Algorithm 6.
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Algorithm 6 Enhanced MLE-method for the reversible case
Input: Time series Y = {y0 = X(t0), . . . , yN = X(tN )}, the set of observed time

lags {τ1, . . . , τr}, the tolerance TOL, initial guess of reversible generator L̃REV
0 .

Output: Reversible MLE L̃REV .
(1) Compute eigendecomposition (5.21) of L̃REV

k .
(2) E-step: FOR ALL τs ∈ {τ1, . . . , τr} DO

i) Compute the auxiliary matrix Ψ(τs) (5.20).
ii) Compute for i, j, l, k = 1, . . . , d the conditional expectations

EL̃REV
k

[Ri(τs)|X(τs) = l,X(0) = k],
EL̃REV

k
[Nij(τs)|X(τs) = l, X(0) = k] , i 6= j via (5.22),(5.17).

END FOR
iii) Compute EL̃REV

k
[Ri(T )|Y ] and EL̃REV

k
[Nij(T )|Y ] via (5.12).

(4) Compute Lagrange multipliers µij via (5.24).
(5) M-Step: Setup the next guess L̃REV

k+1 of the generator via (5.23).
(4) Go to Step (1) unless ‖L̃REV

k+1 − L̃REV
k ‖ < TOL.

5.2.5. Scaling

We prove that the maximizer (5.11) in the (enhanced) MLE-method respects the
time invariance of the semigroup P (t) = exp(tL). Consequently, in the case of a
constant observation time step τ we can estimate a generator L̃(τ ′) with respect to
τ ′ = 1 and regain the generator with respect to τ by L̃(τ) = L̃(1)/τ .

Lemma 5.2.2. Let L̃(τ) be the MLE with respect to the time lag τ and L̃(1) with
respect to τ ′ = 1. Then for both cases the general and the reversible case the following
relation holds:

L̃(τ) =
1
τ
L̃(1). (5.25)

Proof:
A short calculation shows that

∫ τ

0
pab(s)pcd(τ − s)ds = τ

∫ 1

0
[exp(sL̄)ab(exp((1− s)L̄)cd]ds,

where L̄ = τL. But this immediately implies

EL [Ri(τ)|X(τ) = l, X(0) = k] = τEL̄ [Ri(1)|X(1) = l, X(0) = k]

and, by noting that lij = 1
τ l̄ij ,

EL [Nij(τ)|X(τ) = l, X(0) = k] = EL̄ [Nij(1)|X(1) = l, X(0) = k]

which proves (5.25). In the reversible case, the same reasoning shows that the La-
grange multipliers scale linearly with τ and therefore (5.25) also holds.

5.2.6. Enhanced MLE-Method vs. MLE-Method

The eigendecomposition approach has several advantages compared to the numerical
considerations proposed in [9]. Let d be the dimension of the discrete state space. As
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explained in Section 5.2.2, the computational cost is reduced toO(r·d5) thanks to the
closed form expression (5.19). Moreover, there is no longer an explicit dependency
on the length of the time series. The second advantage is the exact computation of
the conditional expectations involved in the E-step of the EM-algorithm. The steps
which introduce numerical errors are the eigendecomposition and the computation
of U−1. As before, the explicit inversion of U can be avoided by considering the
left eigenvectors of L̃. We are aware that the eigendecomposition of non-symmetric
matrices can be ill-conditioned, but any reliable numerical solver should indicate
this. Nevertheless, the computational cost of both steps (O(d3)) and their numerical
stability are superior compared to any numerical approximation scheme for solving
the ODEs in (5.15).

5.3. An Alternative Approach: The Quadratic Optimization
Method

The approach introduced by Crommelin and Vanden-Eijnden [19] yields an esti-
mate L̃ such that the spectral properties of the empirical transition matrix P̂ , i.e.
eigenvalues and eigenvectors, are well approximated by the spectral properties of
exp(τL̃).

Let P̂ ≈ P (τ) be the approximative transition matrix computed by Equation
(5.8). Now suppose an eigendecomposition

P̂ = UΛU−1 (5.26)

with a diagonal matrix Λ = diag(λ1, . . . , λd) containing the eigenvalues exists, and
that λk 6= 0 for all k. (Note that U−1 can be obtained without explicit matrix
inversion since its rows are the left eigenvectors of P̂ .) Then, the matrix

L̃ = UZU−1 with Z = diag(z1, . . . , zd), zk =
log(λk)

τ
(5.27)

can be defined, and the approximative transition matrix can be expressed in terms
of the matrix exponential

exp(τL̃) = exp
(
U log(Λ)U−1

)
= UΛU−1 = P̂ .

In spite of this relation, L̃ cannot be considered as a reasonable estimate for the
generator because L̃ 6∈ G in many cases. In order to find an estimate with the
correct structural properties, Crommelin and Vanden-Eijnden propose to compute
the generator L̃ ∈ G which agrees best with the eigendecomposition (5.27). This
is motivated by the fact that many properties of a continuous-time Markov chain
(such as, e.g., its stationary distribution) depend strongly on the eigenvalues and
eigenvectors of its generator. Therefore, in [19] the generator is estimated by solving
the quadratic minimization problem

L̃QP = arg min
L∈G

d∑

k=1

(
αk|U−1

k L− zkU
−1
k |2 + βk|LUk − zkUk|2

(5.28)
+ γk|U−1

k LUk − zk|2
)
,
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where Uk denotes the kth column of U , U−1
k is the kth row of U−1, and

αk = ak|zkU
−1
k |−2, βk = bk|zkUk|−2 and γk = ck|zk|−2

are weights with suitably chosen coefficients ak, bk, ck. The problem (5.28) can be
solved with a standard quadratic optimizer such as the MATLAB quadprog com-
mand after reformulating (5.28) as

L̃QP = arg min
L∈G

1
2
〈L,HL〉+ 〈F, L〉+ E0

with a tensor H ∈ Rd×d×d×d and a matrix F ∈ Rd×d; see [19] for details. If d is
so large that the tensor H cannot be stored, the problem (5.28) can still be solved
with quadprog, but this requires a function for the evaluation of Hv for arbitrary v
without composing H explicitly.

5.4. Numerical Examples for Equidistant Observation Times

5.4.1. Preparatory Considerations

In order to compare the performance of the quadratic programming approach (QP)
and the maximum likelihood method (MLE), we will first restrict ourselves to the
case of equidistant observation times and we will apply the approaches to a series
of model problems. In Section 5.5, we will focus on the case of non-equidistant
observation times.

A rather straightforward test would proceed as follows:

1. Choose an arbitrary generator L ∈ G and a time lag τ .

2. Compute the corresponding transition matrix P (τ) = exp(τL).

3. Produce a time series Y = {y0 = X(t0), . . . , yN = X(tN )} by sampling from
P (τ).

4. Pass this data to each of the two methods and compute an estimate L̃ ≈ L.

5. Compare the errors of the two approaches.

Although such a test seems to be somewhat reasonable, we will not use this proce-
dure. The reason for our refusal is the fact that the time series produced in step 3 is
just a single realization. Hence, the result of this test is random, too, and applying
the test several times to the methods yields different results even though the input
L remains unchanged. In fact, both methods are affected by the sampling error

‖P (τ)− P̂‖ with P̂ = (p̂ij)i,j and p̂ij =
cij∑d

j=1 cij

. (5.29)

(Here and below, ‖ · ‖ denotes the matrix 2-norm.) Roughly speaking, the sampling
error indicates how well the frequency matrix of a time series “represents” the un-
derlying transition matrix. In the limit N →∞ one may expect the sampling error
to vanish, but for a finite number of observations the deviation can be considerable.
Since the outcome of a numerical method cannot be better than the input data, the
error of both methods are bounded from below by the sampling error.

Therefore, our numerical experiments are designed in a different way:
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1. a) Choose a generator L ∈ G and a time lag τ and compute the correspond-
ing transition matrix P (τ) = exp(τL),
or

b) choose a transition matrix P . This allows to test the performance of the
methods in situations where no underlying generator exists. In this case,
the time lag does not matter, and we can set τ = 1.

2. Define a virtual frequency matrix by multiplying each row of the transition
matrix P (τ) with the corresponding entry of the stationary distribution π =
(πi), i ∈ S and the length N of the (virtual) time series:

cij = round(Nπipij). (5.30)

This is the frequency matrix which, up to rounding errors, reflects the under-
lying transition matrix in an optimal way.

3. Based on the virtual frequency matrix, define the virtual transition matrix

P̂virt = (p̂ij)i,j and p̂ij =
cij∑d

j=1 cij

(5.31)

and compute an estimate L̃ ≈ L for the generator.

4. For both methods, compute and compare the errors:

a) ‖L̃− L‖ (only if L is available, i.e. if variant (a) of step 1 was used)

b) ‖P (τ)− exp(τL̃)‖
c) ‖P̂virt − exp(τL̃)‖ with P̂virt defined in (5.31).

The advantage of this approach to numerical experiments is illustrated by a simple
example in the next section.

Of course, the choice of the initial value L̃0 for the MLE-method is crucial for
the convergence. If the matrix logarithm of P̂virt exists, then a good initial value
L̃0 can easily be obtained by taking the absolute values of the off-diagonal entries
of log(P̂virt)/τ and setting the diagonal entries to the corresponding negative row
sums, respectively.

A Simple Example Illustrating the Effect of Sampling Errors

This example illustrates the influence of the sampling error on the optimal generator
estimate. The transition matrix of the generator

L =
( −0.2 0.2

0.2 −0.2

)

with respect to the time lag τ = 1 is

P (τ) =
(

0.8352 0.1648
0.1648 0.8352

)
.

Suppose that sampling according to the transition matrix produces the time series

103



5. Generator Estimation of Markov Jump Processes

time tn 0 1 2 3 4 5 6 7 8 9 10
state X(tn) 2 1 1 1 1 2 2 1 1 2 1

such that the corresponding frequency matrix is

C =
(

4 2
3 1

)
.

According to this data, the transition matrix seems to be

P̂ =
(

2/3 1/3
3/4 1/4

)
(5.32)

and since P̂ = exp(L̂) with

L̂ ≈
( −0.5003 0.5003

0.3752 −0.3752

)
∈ G (5.33)

the best result we can expect to obtain based on the time series is L̂ instead of
L. The errors ‖P̂ − P‖ ≈ 0.2670 and ‖L̂ − L‖ ≈ 0.4916 are caused by the time
series and cannot be avoided by the two methods. However, these errors decrease
if, according to the second test procedure, the frequency matrix is replaced by the
virtual frequency matrix (5.30). Since in our example the stationary distribution is
π = (0.5, 0.5), one obtains

C =
(

4 1
1 4

)
.

The corresponding transition matrix

P̂virt =
(

0.8 0.2
0.2 0.8

)

is obviously a better approximation of the true transition matrix P than (5.32), and
the generator estimate

L̃ = log(P̂virt) ≈
( −0.2554 0.2554

0.2554 −0.2554

)

is evidently better than (5.33). In fact, the new errors are only ‖P − P̂virt‖ ≈ 0.0703
and ‖L− L̃‖ ≈ 0.1108.

5.4.2. Transition Matrix with Underlying Generator

In a first example we follow variant (a) of step 1 and consider the generator

L =




−4.29 0.678 0.301 0.819 0.592 0.149 0.543 0.411 0.774 0.023
0.033 −3.83 0.633 0.260 0.636 0.878 0.485 0.527 0.147 0.231
0.857 0.995 −5.46 0.704 0.532 0.021 0.441 0.920 0.148 0.845
0.682 0.499 0.005 −4.69 0.208 0.923 0.626 0.379 0.639 0.726
0.801 0.430 0.816 0.082 −4.26 0.632 0.077 0.638 0.093 0.694
0.917 0.829 0.690 0.875 0.241 −5.58 0.544 0.173 0.928 0.383
0.388 0.116 0.981 0.077 0.720 0.632 −4.66 0.785 0.485 0.479
0.472 0.598 0.069 0.741 0.400 0.753 0.270 −4.43 0.163 0.967
0.088 0.221 0.045 0.125 0.394 0.769 0.291 0.776 −3.49 0.783
0.925 0.398 0.740 0.443 0.411 0.808 0.822 0.342 0.131 −5.02



∈ G. (5.34)
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Figure 5.1.: Approximation error of L̃MLE with respect to the generator L in (5.34)
as a function of the iteration steps.

‖L− L̃‖ ‖ exp(τL)− exp(τL̃)‖ ‖P̂virt − exp(τL̃)‖
QP 2.07 · 10−8 1.39 · 10−9 1.18 · 10−14

MLE 1.88 · 10−5 1.19 · 10−6 1.19 · 10−6

Table 5.1.: Approximation errors of the estimated generators L̃QP and L̃MLE with
respect to the given generator (5.34), the exact transition matrix P (τ)
and the transition matrix P̂virt constructed via (5.31). Results for the
time lag τ = 0.2 and the length of the virtual time series N = 1010.

Based on the exact transition matrix P (τ) with τ = 0.2, we computed the virtual
transition matrix P̂virt, N = 1010 via (5.31) and estimated the generator with both
methods. The enhanced MLE-method (5) stopped after 1132 iteration steps because
the increment-based stopping criterion ‖L̃k − L̃k−1‖ ≤ tol with tol = 10−7 had been
met. Figure 5.1 shows the error of L̃MLE with respect to L (5.34) as a function of
the iteration steps.

Obviously, the convergence of the enhanced MLE-method is very slow. In contrast
to the MLE-method, the QP-method converged after only one iteration step. In Ta-
ble 5.1 the errors of both approaches are compared. The QP-approach approximates
the original generator clearly better than the enhanced MLE-method. This is, how-
ever, not surprising because it has to be taken into account that the QP-approach
approximates the eigendecomposition of P̂virt and for the length N = 1010 of a vir-
tual time series the difference between the exact and the virtual transition matrix
is only ‖P (0.2)− P̂virt‖ = 1.39 · 10−9.

Next, we investigate the influence of the sampling error on both estimation meth-
ods. Instead of considering realizations of the Markov jump process, we compute
estimations of L for a number of virtual time series of increasing length N . Figure
5.2 shows the resulting errors of L̃MLE and L̃QP with respect to the generator L
(5.34) as a function of the length N of the virtual time series. It reveals that for
a time series of a realistic length (N ≤ 107), the errors of L̃QP and L̃MLE are al-
most identical. The fact that the error of the MLE-method remains larger than 10−5

regardless of N is due to the chosen stopping criterion.
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Figure 5.2.: Graphs of the errors of L̃MLE and L̃QP with respect to the generator
L in (5.34), respectively, as a function of the length N of the virtual
time series. The error of the MLE-method remains larger than 10−5

regardless of N due to the stopping criterion ‖L̃k − L̃k−1‖ ≤ 10−7.

‖P − exp(τL̃)‖ ‖P̂virt − exp(τL̃)‖
QP 1.74 · 10−2 1.74 · 10−2

MLE 2.86 · 10−2 2.86 · 10−2

Table 5.2.: Approximation errors of exp(L̃QP ) and exp(L̃MLE) with respect to the
given transition matrix (5.35) and the transition matrix P̂virt constructed
via (5.31). Results of MLE-method for tol = 10−7.

5.4.3. Transition Matrix without Underlying Generator

In contrast to the first case both estimation procedures are now applied to a tran-
sition matrix which does not possess a generator:

P =




0.645 0.037 0.033 0.039 0.046 0.062 0.040 0.003 0.031 0.059
0.014 0.792 0.054 0.06 0.010 0 0 0 0.016 0.051
0.049 0.065 0.751 0.069 0.000 0 0 0 0.046 0.015
0.020 0.056 0.057 0.723 0.061 0 0 0 0.022 0.057
0.037 0.044 0.039 0.061 0.707 0 0 0 0.066 0.043
0.010 0.057 0.025 0.012 0.020 0.727 0.032 0.053 0.050 0.009
0 0 0 0.069 0.047 0.016 0.753 0.069 0.029 0.014
0 0 0 0.019 0.019 0.040 0.055 0.770 0.052 0.042
0 0 0 0.019 0.035 0.057 0.004 0.059 0.776 0.047
0 0 0 0.065 0.004 0.039 0.045 0.032 0.033 0.778



6∈ P (5.35)

One can immediately verify via Theorem A.6.8 cited in the Appendix that (5.35)
cannot be generated since, e.g, the state 6 is accessible from state 2 via state 1
but p2,6 = 0. As Table 5.2 shows, the errors of the estimated transition matrices
exp(τL̃) are of the same order of magnitude and are larger than in the first example
due to the additional difficulty that no generator exists. The error ‖P −exp(L̃MLE)‖
as a function of the first 10 iteration steps is shown in the left panel of Figure 5.3.
Surprisingly, the best accuracy is obtained after only one iteration, but the following
iterations increase the error again. The reason for this behavior is the fact that the
MLE-method aims to maximizing the likelihood instead of minimizing the error, and
the graph of the discrete log-likelihood, depicted in the right panel of Figure 5.3,
clearly shows that the maximum likelihood was not attained after the first iteration.
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Figure 5.3.: Left: Error of exp(L̃MLE) with respect to the transition matrix P (5.35)
as a function of the first 10 iteration steps. Right: The discrete log-
likelihood Ld as a function of the 10 first iteration steps.
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Figure 5.4.: The graphs of the errors of exp(L̃MLE) and exp(L̃QP ) with respect to
the transition matrix (5.35), respectively, as a function of the length N
of the virtual time series.

In contrast to the first example, Figure 5.4 shows that here increasing the length of
the virtual time series does not improve the estimation significantly in both methods.

5.4.4. Transition Matrix with Exact Generator under Perturbation

In the next example, we consider again the transition matrix P (τ) with τ = 0.2
which is generated by the generator (5.34) given in the first example. In order to
investigate the impact of perturbations due to, e.g., sampling from a time series, we
estimate a generator based on a perturbed transition matrix

Pε(τ) = exp(τL) + kε, k = 0, ..., 19,
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Figure 5.5.: Left: Approximation error of the generator estimates L̃QP and L̃MLE

with respect to the unperturbed generator (5.34) as a function of the
perturbation factor k. Right: Error of the estimated transition matrices
exp(τL̃QP ) and exp(τL̃MLE) with respect to the unperturbed transition
matrix exp(τL) as a function of the perturbation factor k. Results for
τ = 0.2.

, where ε is the perturbation matrix

ε = 10−5 ·




4.05 −3.55 1.75 0.80 −4.09 −3.51 4.71 0.04 0.69 −0.91
3.10 −3.50 −1.60 2.87 1.31 −0.67 2.02 1.45 1.27 −6.26
−3.22 −0.97 −2.61 5.67 −3.65 2.38 5.72 −2.47 0.15 −0.99
4.46 −1.23 −5.22 1.94 −1.02 −3.49 2.43 −2.04 2.68 1.49
4.69 −4.18 −1.27 1.94 −4.19 −0.45 −0.85 3.64 −4.33 4.99
4.37 −2.33 −1.60 3.41 1.55 1.85 −4.52 −2.27 4.35 −4.80
1.20 −2.23 5.50 −4.12 −1.15 −0.13 −3.34 −3.63 4.11 3.78
2.83 −1.00 2.73 −3.00 −1.06 −4.55 2.69 2.61 3.19 −4.43
−1.47 4.04 −0.31 −3.72 −0.41 1.24 0.45 −2.99 −2.15 5.33
−1.46 −1.56 5.23 −0.77 −2.61 4.25 −2.00 −0.25 0.70 −1.51




.

The left panel of Figure 5.5 shows the deviation of the estimated generators from
the unperturbed generator as a function of the perturbation factor k. The QP-
method performs slightly better but both errors ‖L − L̃QP ‖ and ‖L − L̃MLE‖ are
of the same order of magnitude. Furthermore, the errors scale linearly with the
perturbation factor k. This observation is plausible since for small perturbations the
logarithm log(P + ε) can be approximated by log(P ) + O(ε). The right panel of
Figure 5.5 illustrates the behavior of the errors of the estimated transition matrices
exp(τL̃QP ) and exp(τL̃MLE), respectively. A similar reasoning as above explains the
linear scaling.

Finally, we consider the error of the estimated transition matrices exp(τL̃QP ) and
exp(τL̃MLE) with respect to the perturbed transition matrix Pε(τ) = exp(τL) + kε,
depicted in Figure 5.6. Notice that the error ‖Pε(τ) − exp(τL̃)‖ is bounded from
above, namely

‖Pε(τ)− exp(τL̃)‖ ≤ ‖ exp(τL)− exp(τL̃)‖+ k‖ε‖.

Indeed, Figure 5.6 shows that both errors obey that bound. For the perturbation
factors up to k = 8, the matrix logarithm of Pε is still a generator whereas for
k = 9, . . . , 19 the perturbation is apparently high enough to destroy the generator
structure of the matrix logarithm of Pε. However, the accuracy of both methods is
again of the same order of magnitude.
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Figure 5.6.: Error of the estimated transition matrices exp(τL̃QP ) and exp(τL̃MLE)
with respect to the perturbed transition matrix Pε(τ) = exp(τL)+kε as
a function of the perturbation factor k. The upper bound was computed
via L̃MLE .

5.4.5. Application to a Time Series from Molecular Dynamics

In this example, we apply the enhanced MLE-method to a time series of two torsion
angles extracted from a molecular simulation of glycine in water. The ball-and-stick
representation of glycine together with the two considered torsion angles Φ and Ψ
is shown in Figure 4.9(Sect. 4.3.2). The time series used herein was extracted out
of a molecular simulation of the glycine-molecule embedded in a cubic box of edge
length 3.51 nm with 1402 water molecules. The integration of the trajectory with
total length T = 5 nanoseconds was realized with 2 femtoseconds time steps in the
Leapfrog-integration scheme with GROMACS force field [8, 59] at room tempera-
ture of 300K. The left panel of Figure 5.7 shows the projection of the time series
onto the torsion angles Φ and Ψ which reveals the metastable behavior. The Ra-
machandran plot of the time series, given in the right panel of Figure 5.7, illustrates
the dependency among both torsion angles and indicates that the glycine-molecule
attains four different main conformations.

As explained in Section 4.3.2, the identification of conformations amounts to iden-
tify metastable states in a coarse grained model of the dynamics. We considered a
20×20 box discretization of the torsion angle space which results in a state space of
374 visited boxes. In order to ensure the Markov property, we considered only every
100th step of the original trajectory and estimated a reversible generator with re-
spect to the reversible transition matrix P̂ (cf. (5.8)) via the Algorithm 6. Moreover,
instead of using the time lag τ = 2 ·10−13, we performed the estimation with respect
to τ = 1 and re-scaled the resulting generator L̃MLE afterwards (cf. Sect. 5.2.5). As
one can see in Figure 5.8, the estimation algorithm is already converged after 200
steps (here we used the log-likelihood function as an indicator for convergence).

In Table 5.3 we compare the dominant eigenvalues of the transition matrix P̂
with those of P̃ = exp(τL̃MLE). The spectral gap as well as the eigenvalues are
more or less well reproduced. The panels of Figure 5.9 illustrate the decomposition
of the state space via PCCA which is based on the eigenvectors corresponding to
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Figure 5.7.: Left: We show the projection of the time series (all atomic positions)
on the torsion angles Φ and Ψ. Right: To illustrate the dependency of
the torsion angles, we show the Ramachandran plot of the time series of
the torsion angles Φ and Ψ. At first glance, the glycine-molecule attains
four different main conformations indicated by the four clusters.

λ1 λ2 λ3 λ4 λ5

P̂ 1 0.9944 0.9942 0.9890 0.9718
exp(τL̃MLE) 1 0.9988 0.9987 0.9977 0.9931

Table 5.3.: The five largest eigenvalues of the transition matrix P̂ and the transition
matrix computed from the estimated generator L̃MLE . Results for an
equidistant 20× 20 box-discretization of the torsion angle space.

the largest eigenvalues. The decomposition in the left panel results from P̂ and the
right panel corresponds to the transition matrix exp(τL̃MLE). The almost identical
decompositions of the torsion angle space show that despite the slight deviations in
the dominant eigenvalues, the estimated generator contains the essential information
on the coarse grained dynamics. For a further analysis of the estimated Markov jump
process via discrete TPT see Chapter 4.

5.5. Numerical Examples for Non-Equidistant Observation
Times

In this section we demonstrate the performance of the enhanced MLE-method for
non-equidistant observation times on a test example and for a process arising in
the approximation of a genetic toggle switch. In both examples, we re-identify a
generator L of a Markov jump process from an associated artificially generated
incomplete observation. To be more precise, we drew from a generator L a continuous
time realization {X(t), 0 ≤ t ≤ T} for a prescribed T > 0 and extracted out of it
an incomplete observation Y = {y0 = X(t0), . . . , yN = X(tN )} with respect to a
prescribed set of time lags {τ1, . . . , τr}, r > 1, as follows: Suppose tk < T is the
observation time last considered then the next observation time tk+1 is given by
tk+1 = tk + τ where τ is uniformly drawn from the set of time lags {τ1, . . . , τr}. We
terminate that procedure if tk+1 > T .
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Figure 5.8.: The figure shows the log-likelihood function logLd as a function of the
EM-steps. The constancy of the log-likelihood function indicates that
the estimation procedure is converged already after 50 iteration steps.
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Figure 5.9.: Decomposition of the torsion angle state space into four metastable sets
via PCCA. Left: Decomposition with respect to the observed transition
matrix P̂ . Right: Decomposition with respect to the transition matrix
P̃ = exp(τL̃MLE). The decompositions are almost identical which indi-
cates that the estimated process captures the essential dynamics in the
coarse grained torsion angle space.
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5. Generator Estimation of Markov Jump Processes

5.5.1. Test Example

In the first example we consider a five-state Markov jump process given by its
generator

L =




−6 2 2 1 1
1 −4 0 1 2
1 0 −4 2 1
2 1 0 −3 0
1 1 1 1 −4



∈ G. (5.36)

For the reconstruction of L, we extracted from a realization of total time T =
3.7 · 106 a time series of N = 107 observations with respect to the set of time lags
{τ1 = 0.01, τ2 = 0.1, τ3 = 1}. In (5.37) we state the estimated generator resulting
from Algorithm 5 with the prescribed tolerance TOL = 10−6. One clearly can see
that L̃ approximates the original one very well.

L̃ =




−5.9803 2.0054 1.9863 0.9911 0.9975
1.0002 −4.0018 0.0010 0.9938 2.0068
0.9921 0.0001 −3.9768 1.9938 0.9909
1.9909 0.9951 0.0004 −2.9871 0.0006
0.9982 1.0051 0.9993 1.0050 −4.0075



∈ G. (5.37)

Next, we address the question of how the length of the respective time series and
the number of different time lags do affect the outcome of the estimation proce-
dure. To make things comparable, we generated three different time series of length
N = 108 with respect to the time lags sets {0.01}, {0.01, 0.1} and {0.01, 0.1, 1}, all
subsampled from the same underlying continues time realization, respectively, and
estimated for each time series a generator on the basis of the first N = 103, N =
104 . . . , N = 108 observed states, respectively. Furthermore, we used for all estima-
tions the same initial guess L̃0. In Figure 5.10 we illustrate the dependence of the
approximation error ‖L̃ − L‖ (measured in the 2-norm) with respect to the length
N of the respective time series and the number of different time lags. The graphs
reveal that the error ‖L̃−L‖ decays exponentially with the length of the underlying
time series approximately as N

1
2 . The second observation is that the estimations

based on multiple observation time lags give better results than the estimation on a
single time lag. The authors are not aware of how to explain this observation.

5.5.2. Application to a Genetic Toggle Switch Model

In the last example we apply the enhanced MLE-method to a Birth-Death process
which arises as a stochastic model of a genetic toggle switch consisting of two genes
that repress each others’ expression [77]. Expression of the two different genes pro-
duces two different types of proteins; let us name them PA and PB. If we denote
the number of molecules of type PA by x and of type PB by y, then the generator
in (4.47) describes their dynamics. For details on that process and its investigation
via discrete TPT we refer the reader to Chapter 4, Section 4.3.3.

For the numerical experiments to be presented, we used the parameters a1 =
156, a2 = 30, n = 3, m = 1,K1 = K2 = 1, τ1 = 1/7 and τ2 = 1/3. For this particular
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Figure 5.10.: Error of the estimated generator L̃ with respect to the original gen-
erator (5.36), measured in the 2-norm ‖L̃ − L‖, as a function of the
length N of the respective time series. Results for the three different
sets of time lags {0.01}, {0.01, 0.1} and {0.01, 0.1, 1} and the tolerance
TOL = 10−6.

choice the deterministic dynamics (4.48) has two stable stationary points approxi-
mately at (x, y) = (20, 0) and (x, y) = (0, 8) and one unstable point approximately at
(x, y) = (6, 1). This insight in the deterministic approximation helps to understand
the following analysis of the jump process:

For the sake of illustration, the left panel of Figure 5.11 shows the discrete free
energy, − log π, of the jump process instead of its stationary distribution π itself. All
states with almost vanishing stationary distribution are depicted by the white region
and in order to emphasize the states of interest, we chose a log-log representation.
The color scheme is chosen such that the darker the color of a region the higher
the probability of finding the process there. One can clearly see that the process
spends most of its time near the two stable stationary points approximately at
(x, y) = (20, 0) and (x, y) = (0, 8).

A single realization of the jump process generated by L models the evolution of
the numbers of proteins with respect to a specific initial value (x0, y0). The resulting
evolution of the associated probability density function (PDF) in time is governed
by the Master-equation: Let p0 ∈ R|S| be the initial PDF, then the PDF evolves in
time according to

∂p(t)
∂t

= LT p(t), p(0) = p0, t > 0, (5.38)

where LT denotes the transpose of the generator given in (4.47). In order to moti-
vate the relevance of the following numerical experiment, suppose you measure the
numbers of proteins of types PA and PB discretely in time; without knowing the
generator, you are interested in fitting a Markov jump process. Assuming that the
hidden process is Markovian, one can apply the enhanced MLE-method.

Before we describe our numerical example in detail, notice that the structure of a
transition matrix P , i.e. the occupation of the entries in P , does not allow to infer
on the structure of the underlying generator. For example, the generator of a dense
transition matrix does not have to be dense too. This means that there is some
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Figure 5.11.: Left: Log-log contour plot of the Gibbs energy, −logπ, where π =
(πi), i ∈ S is the stationary distribution computed via πT L = 0. Right:
Log-log contour plot of the Gibbs energy resulting from the observed
distribution π̂ of states in the time series. Result for N = 108.

freedom in the choice of the structure of the estimated generator L̃. In this example,
we follow two options. One option – we call it option A – is to use the structure of
the observed transition matrix as a blueprint for the structure of L̃. In option B we
exploited knowledge about the hidden process. We know that the number of a gene’s
molecule can only increase or decrease by one in a single reaction while the number
of the other one remains constant. Hence, it is natural to estimate the entries l̃ij if
the states i and j (the numbers) have been observed and are adjacent in the sense
of a single reaction.

For our numerical experiment, we generated a sufficiently long realization of the
Birth-Death process on the state space Z2∩([0, 30]× [0, 30]) and extracted out of it a
time series of length N = 108 with respect to the set of time lags {τ1 = 0.0001, τ2 =
0.001,τ = 0.01}. The Gibbs energy resulting from the distribution of the observed
states in the time series is shown in the right panel of Figure 5.11. As one can see, the
relative occupation of the states is consistent with the exact stationary distribution
depicted in the left panel.

The generated time series visits 225 states of 900 possible states, hence we had
to estimate a generator L̃ ∈ G on the state space S ∼= {1, . . . , 225}. In the following
L̃A denotes the estimated generator resulting from the estimation option A and L̃B

via option B. For both estimation options we used the tolerance TOL = 10−2. The
Figure 5.12 shows the free energies associated with L̃A (left panel) and with L̃B

(right panel). From the viewpoint of stationarity, one can see that both estimated
generators are good approximations of the original one (cf. left panel of Figure 5.11).
In order to make things more precise, we compare in the following the estimated
generators with the original generators of (4.47) restricted on the set of observed
states. Formally, we consider the restricted generator L̄ ∈ G, S ∼= {1, . . . , 225} de-
fined according to

l̄ij =

{
lij , if i 6= j were visited by the time series,
−∑

k l̄ik, if i = j was visited by the time series.
(5.39)

Now we compare the spectral properties of the estimated generators with those of
the restricted generator from (5.39) in more detail. In the left panel of Figure 5.13
we depict the real parts of the 30 largest eigenvalues of L̃A and L̃B with those of
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Figure 5.12.: Log-log contour plot of the free energies, − log π̃, associated with the
estimated generators L̃A (left panel) and L̃B (right panel) where π̃ is
the stationary distribution of the estimated generators computed via
π̃T L̃ = 0, respectively.

the restricted generator L̄, respectively. Although the enhanced MLE-method is not
designed to approximate spectral properties, notice that the real parts of consid-
ered eigenvalues of L̄ are well reconstructed by both estimation options. Another
important quantity in time series analysis is the auto-correlation function (ACF) of
a process which reflects the speed of memory loss of the process. For a Markov jump
process, it is easy to see that the ACF reduces to [19]

E(Xt+τXt) =
d∑

k=1

eτλk
∑

i,j∈S

i · j · πiUikU
−1
kj , (5.40)

where L = Udiag(λ1, . . . , λd)U−1 is the eigendecomposition of the generator L of
the Markov jump process and π = (πi), i ∈ S its stationary distribution. The graphs
of the normalized ACFs associated with L̃A and L̃B together with the ACF of the
restricted generator L̄ are given in Figure 5.14. As one can see, the ACFs associated
with L̃A and L̃B are consistent with the ACF of the restricted process which shows
that besides the eigenvalues even the eigenvectors of the restricted generator L̄ are
well reproduced by both estimated generators, respectively. The almost identical
reproduction of the ACF of L̄ by L̃B shows that the incorporation of theoretical
knowledge of the hidden process leads to sightly better results.
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Figure 5.13.: The real parts of the first 30 largest eigenvalues of the estimated gener-
ators compared to the eigenvalues of the restricted generator L̄ (5.39).
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6. Detecting Reaction Pathways via
Shortest Paths in Graphs

We have demonstrated that discrete TPT is a powerful tool to analyze transition
events in Markov jump processes. The central object is the infinitesimal generator
of the process which finally allows to compute reaction rates and to determine a
hierarchy of dominant reaction pathways. In the case where the process is only
discretely observed in time the generator of the underlying Markov jump process has
to be estimated. Alternatively, if the observation time lag is constant, the underlying
process can be modeled as a Markov chain, i.e., as a Markov process discrete in space
and time.

In this chapter, we will consider the use of shortest-path algorithms in the context
of reaction pathway computation in Markov chains. The crucial question for this
undertaking is the choice of a weight function that defines the length of an edge. We
will present two such functions [22] which both have a natural motivation. We will
apply both resulting methods on the examples which have already been investigated
with discrete TPT in Section 4.3 and we will compare the results.

6.1. Shortest Path in Graphs

6.1.1. Dijkstra Algorithm

The standard algorithm used for computing shortest paths in a graph G = G(V, E)
is the Dijkstra algorithm. It solves the so called Single Source Shortest Path Problem
where the shortest paths from one source vertex vs ∈ V to all other vertices v ∈ V
have to be determined. The Single Source, Single Destination Shortest Path Problem
is a special case in which only one path from vs to a designated destination vertex
vd has to be determined. In both cases the runtime of the Dijkstra algorithm is
O(|V | log(|V |) + |E|). For a profound discussion of this standard algorithm we refer
to, e.g. [54, 18]. In the following we will only roughly sketch its basic principle.

Given a vertex vs as starting vertex, the algorithm maintains a list of distances to
vs assigned to every other vertex that is initialized with the value ∞ and in the end
contains the lengths of the shortest paths from vs to any vertex. In the first step,
the distances of all neighbors of vs are set to the weight of the edge connecting them
to vs. These vertices form the initial halo set, i.e. they are the vertices for which one
path from vs is known but it is not known whether this path is a shortest path. In
the main loop of the algorithm, it removes a vertex vmin with the minimum known
distance from the halo set, and considers all neighbors of vmin. If a neighbor is also
in the halo set, the algorithm checks whether a path through vmin would result in
a distance from vs less than the current known distance. If a neighbor is not yet in
the halo set, it is added to it, with its distance value being the sum of the distance
of vmin and the length of the edge connecting the neighbor to vmin. The algorithm
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6. Detecting Reaction Pathways via Shortest Paths in Graphs

terminates when a prescribed target vertex is reached or when the halo set becomes
empty.

By a slight modification, the Dijkstra algorithm can be generalized to find a
shortest path from any vertex of a source set Vs ⊂ V to all remaining vertices
w ∈ V \ Vs. Unlike in the original algorithm, here the source set Vs forms the initial
halo set and in the initialization step all vertices of Vs are assigned the distance
value zero.

Algorithm 7 Generalized Dijkstra’s Algorithm
Input: A directed graph G = (V, E), weights w : E → R+. Source set Vs ⊂ V
Output: Shortest paths from all v ∈ Vs to all u ∈ V and their lengths.

(1) Set dist(vs) = 0 ∀vs ∈ Vs, dist(v) := ∞ ∀v ∈ V \ Vs.
(2) Initialize halo set H := Vs.
(3) v := argminu∈Hdist(u), set H := H \ {v}.
(4) FOR ALL (v, u) ∈ E DO:
(5) IF dist(u) > dist(v) + w(v, u)
(6) THEN Set dist(u) := dist(v) + w(v, u), pred(u) := v.
(7) IF u /∈ H THEN H := H ∪ {u}.
(8) END FOR
(9)IF H 6= ∅ THEN go to step (3).

If a vertex v ∈ V \ Vs is not reachable from the source set Vs then dist(v) = ∞
and pred(v) is not defined. Otherwise, the shortest path from Vs to a vertex v can
be reconstructed by following recursively the predecessors until a vertex in vs ∈ Vs

is reached. If we subsequently reverse the order of the vertices in that path, we end
up with a shortest path z(v) from Vs to v,

z(v) = (vs, . . . ,pred(pred(v)),pred(v), v).

6.1.2. Bidirectional Dijkstra Algorithm

The purely graph theoretic consideration of shortest paths in the previous section has
to be extended by some ideas related to the specialized setting of graphs describing
spatial discretizations of Markov diffusion processes. In particular we have in mind
the fact that the numerical realizations of these graphs necessarily come with a
discretization error which makes it doubtful whether the notion of the shortest path
between two vertices vs and vd is really a meaningful quantity in our applications –
even leaving out the possible existence of several shortest paths. Furthermore, we are
interested in the revealing of all dominant transition channels between metastable
sets. Therefore, we are not only interested in one (or all) precisely shortest paths,
but we are also interested in a family of shortest paths which consists of short paths
being only slightly longer than a path with the shortest length.

Edge based family of shortest paths Let dist(vs, vd) denote the length of the
shortest path between the vertex vs ∈ Vs and the vertex vd ∈ Vd. We want to
calculate all paths from vs to vd which have a slightly longer length than the shortest
path. To be more precise, we determine all paths in the graph which have a length
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of at most
(1 + ε)dist(vs, vd),

where 0 ≤ ε. In order to do so, we need to apply the generalized Dijkstra algorithm,
as stated in Algorithm 7, only twice: Firstly, we calculate all distances from vs to all
other vertices and denote these distances by dist1(v) for all vertices v ∈ V . Among
all distances this also includes the distance between vs and vd. Secondly, we consider
a new graph = (V,ER) where ER consists of the edges in E with direction reversed.
Then, we calculate all distances from vd to all other vertices in GR, and denote these
distances by dist2(v) for all vertices v ∈ V . Note that dist2(v) is also the distance
from v to vd in G for any vertex v ∈ V .

It is now simple to decide whether or not an edge (vi, vj) ∈ E lies on a path
between vs and vd of length at most (1 + ε)dist(vs, vd). Such a path has to consist
of three parts: a path from vs to vi, the edge (vi, vj) itself and a path from vj to vd.
The shortest length for the first part is dist1(vi) and the shortest length of the last
part is dist2(vj). Thus, an edge (vi, vj) lies on a path between vs and vd of length at
most (1 + ε)dist(vs, vd) if and only if

dist1(vi) + w(vi, vj) + dist2(vj) ≤ (1 + ε)dist(vs, vd).

The result is a subset Esp(ε) ⊂ E of edges belonging to the family of short paths. The
algorithm can easily be extended to the case of more than one source and destination
vertex and is stated in Algorithm 8. The computational cost of Algorithm 8 is the

Algorithm 8 Bidirectional Dijkstra algorithm
Input: A directed graph G = (V, E), weights w : E → R+, source set Vs ⊂ V and

destination set Vd ⊂ V , threshold ε.
Output: Set of edges Esp(ε) ⊂ E belonging to the family of short paths.

(1) Compute all distances dist1(v) in G from Vs to all vertices v ∈ V .
(2) Construct new graph GR = (V, ER) by reversing all edges in E.
(3) Compute all distances dist2(v) in GR from Vd to all vertices in v ∈ V (GR).
(4) distmin := minvd∈Vd

{dist1(vd)}.
(5) FOR ALL edges in (vi, vj) ∈ E DO
(6) IF dist1(vi) + w(vi, vj) + dist2(vj) ≤ (1 + ε)distmin

(7) THEN Esp(ε) := Esp(ε) ∪ {(vi, vj)}.
(8) END FOR

same as of Dijkstra’s algorithm (cf. Algorithm 7).

Vertex based family of shortest paths In order to motivate the vertex based
approach, consider for an edge (vi, vj) ∈ Esp(ε) the associated shortest path

zS(vi, vj) =
(
z(vi), zR(vj)

)
,

where zR(vj) denotes the shortest path from vj to Vd in G. The crucial observation
is now that in general the path z(vi, vj) is different from the shortest path composed
of the shortest path from Vs to vi and the shortest path from vi to Vd. In other
words, the edge (vi, vj) does not have to lie on the shortest path connecting Vs and
Vd via vi. The same argument holds for the vertex vj too.
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For this reason, we consider in the vertex based approach the vertex set Vsp(ε) ⊂ V
which comprises all vertices being involved on a short path with length at most
(1 + ε)distmin. Formally, a vertex v ∈ V lies on a short path between Vs and Vd of
length of at most (1 + ε)distmin if and only if

dist1(v) + dist2(v) < (1 + ε)distmin.

Reaction pathways and short paths It immediately follows from the definition of a
shortest path that it does not have any self-intersections (loops). Unfortunately, both
presented approaches - the edge and vertex based approach - lead to short paths
which could have self-intersections. To see this, notice that in both approaches a
short path is composed of two shortest paths which are computed independently of
each other. Since we are eventually interested in reaction pathways (cf. Def. 4.1.15),
we finally have to sort out from the family of short paths all short paths with loops.

6.2. Choice of Edge Weights

The choice of the edge weights depends on the way how to compare paths. The
first natural choice of edge weights is based on the likelihood of sample paths. Un-
fortunately, this approach leads in our context to reaction pathways which are in
contradiction to the underlying dynamics and its physical interpretation. As a rem-
edy, we follow an alternative approach which takes into account the free energy
barriers along a reaction pathway. This approach is more adapted to the underly-
ing dynamics and, moreover, is less sensitive with respect to the underlying box
discretization of the state space. In what follows we interpret a Markov chain, de-
scribed by its transition matrix P = (pij)i,j∈S , as a directed graph G = (V, E) (cf.
notations introduced in Section 4.1.1).

6.2.1. Likelihood Approach

Suppose we are given two sample paths p1 and p2 of a Markov chain and, moreover,
suppose that both starting in a state iA and ending in the state iB. One option to
compare these two paths is to ask which of both is the more preferred one by the
dynamics, i.e. which one is more likely? The respective likelihoods of the sample
paths can be expressed in terms of the transition probabilities of the Markov chain.
Let z = (i1, i2, i3, . . . , in) be a finite sample path of the Markov chain. Then the
likelihood of z is given by

Ld(z) =
n−1∏

k=1

pik,ik+1
,

being the probability that the Markov chain produces that sample path conditional
on starting in the state i1. The edge weights are now chosen such that the more
likely a sample paths is the less is its length. To this end, we define the weight of an
edge (i, j) ∈ E by

wL(i, j)
def
= − log(pij) (6.1)
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and the resulting length of a path p,

l(z) =
n−1∑

k=1

wL(ik, ik+1) = − log(
n−1∏

k=1

pik,ik+1
),

is the negative log-likelihood of that sample path (cf. Sect. 5.2). It should be clear
that the shortest path with respect to the weights in (6.1) between two different
states is the most probable one and vice versa.

6.2.2. Free Energy Approach

Motivational Example To motivate the alternative free energy approach we present
an example for which the likelihood approach yields misleading results. To this
end we consider a pure diffusion process, i.e. a diffusion process in a flat potential
landscape, on a squared domain with reflecting boundary conditions. Additionally,
we cut out of the domain a small square and apply reflecting boundary conditions
on its boundary too. In Figure 6.1 we give a schematic picture of the situation. The
decomposition of the domain is chosen such that the probability to encounter the
equilibrated process in the boxes A, 1, 2, 3 and B is 1/8 and for the box 4 is 3/8.
The dynamics between the boxes is given by a reversible Markov chain where the
transition probabilities between adjacent boxes are given by

p(A, 1) = p(1, A) = p(1, 2) = p(2, 1)
= P (2, 3) = p(3, 2) = p(3, B) = p(B, 3)

= p(A, 4) = p(B, 4) = a, 0 < a <
1
2
,

p(4, A) = p(4, B) =
1
3
a,

where the probability a depends on the size of the squares. The condition 0 < a < 1
2

guarantees that the probability to make a self-transition is positive.
Suppose, we start the diffusion process in box A. From the symmetry of the

domain and the nature of diffusion, it should be clear that the probability to reach
the box B via the upper way is the same, namely 1

2 , as for the lower way. The
discrete likelihoods of the upper and lower way in the Markov chain are given by

Ld

(
(A, 1, 2, 3, B)

)
= a4,

Ld

(
(A, 4, B)

)
=

1
3
a2.

The likelihoods of both discrete paths are equal if and only if a =
√

1/3 ≈ 0.577 >
0.5 which contradicts the condition 0 < a < 0.5. But this means that the likelihood
approach would indicate that one of the paths is preferred which is not consistent
with the continuous picture.

New Choice of Edge Weight

The new choice of edge weights is based on the discrete analog of the free energy
(cf. Sect. A.5).
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Figure 6.1.: Schematic representation of the motivational example.

Recall that under the assumption that the Markov chain admits a unique sta-
tionary distribution π = (πi)i∈S the discrete free energy F = (Fi)i∈S is defined
by

Fi
def
= − log πi > 0, i ∈ S.

The new edge weights are constructed such that the shortest path between two states
is the one which overcomes the lowest discrete free energy barriers. To this end, we
introduce the weights

wF (i, j) = |Fj − Fi|. (6.2)

In order to explain that the free energy weights yield the desired result, firstly
consider a path z = (i1, . . . , is) with monotonously increasing discrete free energies
along it, i.e.,

Fij ≤ Fij+1 ⇔ πij ≥ πij+1 , j = 1, . . . , s− 1. (6.3)

Then the length of such a path z,

l(p) =
s−1∑

j=1

wF (ij , ij+1) = Fis − Fi1 ,

is simply given by the free energy difference between the last and the first state
of the path. Moreover, if we fix the states i1 and is, then all paths connecting
these two states and satisfying (6.3), have the same length. Next, consider a path
p = (i1, . . . , in) which can be decomposed into two parts p1 = (i1, . . . , is) and p2 =
(is, . . . , in) such that {

Fij ≤ Fij+1 , j = 1, . . . , s− 1,

Fij ≥ Fij+1 , j = s, . . . , n− 1.

One immediately verifies that again the length of the path p,

l(p) = 2Fis − (Fi1 + Fin) ≥ 0,

only depends on free energy differences, namely the barriers Fis −Fi1 and Fis −Fin .
Consequently, if we fix the states i1 and in then the shortest path between i1 and in
with respect to the weights in (6.2) is the one which crosses the lowest free energy
barriers.
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Remark 6.2.1. Notice that in the free energy approach every barrier along a certain
path contributes to the length twofold: first from Vs towards Vd and second from
Vd towards Vs. However, in a post-processing step one can determine all barriers
along a reaction pathway and use these information for a further analysis or a re-
computation of the shortest paths. Notice further that in our motivational example
the free energy approach would also tell that the lower discrete path is the preferred
path of the underlying diffusion. Nevertheless, our numerical experiments will show
that the free energy approach is more insensitive with respect to a decomposition of
a diffusion process.

6.3. Numerical Experiments

In this section we will illustrate the method of detecting reaction pathways via
shortest paths in graphs on some examples which have already been investigated via
discrete TPT. In the following, we only use the vertex based approach.

In the first example we consider the Smoluchowski dynamics in the three-hole ex-
ample introduced in Section 3.7.1. In order to start with the shortest paths method,
we have to provide a transition matrix which captures the dynamics on a coarse
grained level. Instead of generating such a transition matrix via a time series result-
ing from a direct numerical simulation of the Smoluchowski dynamics in (3.22), we
utilized the generator L, given in (4.44), of the approximating Birth-Death process
(cf. Sect. 4.3.1). For the time lag τ = 1.2 we generated a transition matrix P (τ) via
the relation

P (τ) = exp(τL).

As the source set A(= Vs), we chose the states (mesh points) in S which cover
the left deep minima. The destination set B(= Vd) was chosen with respect to the
right minima. The stationary distribution π = (πi)i∈S was numerically computed
via P (τ)T π = π. In the following results, we always used the vertex based approach.

For the comparison of the likelihood approach and the free energy approach, we
asked two questions:

1. Do both approaches detect the two transition channels?

2. Do both approaches reproduce the entropic switching behavior?

The Figure 6.2 gives an answer to the first question. In the left column we plot
the families of reaction pathways resulting from the likelihood approach. From top
to bottom we used the thresholds ε = 0.1, ε = 0.3 and ε = 0.6. The right column
shows the families of reaction pathways resulting from the free energy approach for
the thresholds ε = 0.05 (top),ε = 0.06 and ε = 0.08 (bottom). The darker the color
of a drawn edge is the shorter is the path in which the edge is involved, i.e, the
more likely is the path in the likelihood approach and the lower is the overcome
barrier in the free energy approach, respectively. One can clearly see, that with in-
creasing threshold the likelihood approach results rather in reaction pathways which
cross the local maximum than in pathways proceeding from A to B in the upper
channel. This behavior is in contradiction to the underlying diffusion and can be
ascribed to the sensitivity of the likelihood approach with respect to the underlying

123



6. Detecting Reaction Pathways via Shortest Paths in Graphs

−1 0 1
−1

−0.5

0

0.5

1

1.5

2

−1 0 1
−1

−0.5

0

0.5

1

1.5

2

−1 0 1
−1

−0.5

0

0.5

1

1.5

2

−1 0 1
−1

−0.5

0

0.5

1

1.5

2

−1 0 1
−1

−0.5

0

0.5

1

1.5

2

−1 0 1
−1

−0.5

0

0.5

1

1.5

2

Figure 6.2.: Comparison of vertex based families of reaction pathways resulting from
the likelihood approach (left column) and from the free energy approach
(right column). The darker the color of an edge the shorter is the path-
way in which the edge is involved. For the likelihood approach we chose
from top to the bottom the threshold ε = 0.1, ε = 0.3 and ε = 0.6. For
the free energy approach we chose ε = 0.05, ε = 0.06 and ε = 0.08. The
sets A and B (depicted by boxes) were chosen such that they cover the
two local minima, respectively. Results for a 30×30 mesh discretization
of the rectangular state space and temperature β = 1.67.
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Figure 6.3.: Comparison of reaction pathways resulting from the likelihood ap-
proach (left column, ε = 0.1) and from the free energy approach
(right column, ε = 0.01) at two different temperatures: β = 6.67 (top
row) and β = 1.67 (bottom row). Results for a 40× 40 mesh discretiza-
tion of the rectangular state space.

discretization. As expected, the families of reaction pathways resulting from the free
energy approach are less sensitive to the respective discretization because for the
low threshold ε = 0.08 both channels were detected.

The Figure 6.3 reveals the behavior of both approaches if the temperature in the
underlying diffusion is varied. In the first column we show the reaction pathways
(ε = 0.1) resulting from the likelihood approach for the low temperature β = 6.67
(top) and the high temperature β = 1.67 (bottom). The right column shows the
results of the free energy approach (ε = 0.01) for the same temperatures. Apparently,
only the free energy approach reproduces an entropic switching behavior of the
underlying dynamics. But if we compare the preferred channels with the channels
obtained via the discrete TPT (cf. Fig. 4.7 in Section 4.3.1) we see that the results are
in opposite to each other; e.g., the preferred channel resulting from the shortest path
methods at β = 6.67 corresponds to the preferred channel resulting from discrete
TPT at β = 1.67. This observation can be explained by recalling that the length of a
path in the free energy approach reflects barriers which the path overcomes. At low
temperature (β = 6.67) the only chance to encounter the underlying process is in
one of the minima. Hence, the upper shallow minima is separated from the rest by a
extremely high free energy barrier and, hence, the lower direct channel is detected.

We end this section by presenting the results of the free energy approach applied to
two others examples which have been investigated with discrete TPT in Section 4.3.
The reaction pathways for the genetic toggle switch example (cf. Sect. 4.3.3 extracted
from the vertex based family of short paths (ε = 0.005) are depicted in the left panel
of Figure 6.4. Apparently, the reaction pathway crossing the lowest discrete free
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Figure 6.4.: Left: Reaction pathways for the genetic toggle switch example (cf.
Fig. 4.20 in Section 4.3.3) extracted from the vertex based family of
short paths (ε = 0.005) in the free energy approach. Right: Reaction
pathways in the torsion angles space of the glycine in solvent example
(cf. Sect. 4.3.2) extracted from the vertex based family of short paths
(ε = 0.01) in the free energy approach. The darker the color of an edge
is the shorter is the length of the pathway in which the edge is involved,
i.e., the lower is the overcome free energy barrier of the pathways. The
reaction pathways are embedded in a log-log contour plot of the discrete
free energy, respectively.

energy barrier is consistent with dominant reaction pathways found via discrete
TPT (cf. Fig. 4.20).

The right panel of Figure 6.4 illustrates the reaction pathways in the torsion angles
space of the glycine in solvent example (cf. Sect. 4.3.2) extracted from the family
of short paths (ε = 0.01). The detected reaction pathways suggest that the lower
channel is the preferred one which stands in contradiction to the results found via
discrete TPT (cf. Fig. 4.13).

Finally, we draw the conclusion that only the free energy approach is able to
detect different transition channels which are consistent with the underlying diffu-
sion. But in the case of multiple reaction channels it does not allow to make any
predictions about which channel is preferred one by the underlying diffusion. Nev-
ertheless, the shortest-path approach is useful to get a first impression of possible
reaction channels.
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A natural question arising the context of committor function computation on the
basis of time series is of how the discrete committor function q does depend on
uncertainties in the underlying data. In this chapter we will present an approach
which allows to estimate these uncertainties element-wise. We will restrict ourselves
to the case of Markov chains, i.e. discrete in time and in space. The idea behind
that approach is to estimate the uncertainties in terms of the element-wise variances
of a discrete committor function ensemble resulting from an ensemble of transition
matrices distributed according to the discrete likelihood function Ld. We will devise
an appropriate Monte Carlo Markov Chain (MCMC) sampling procedure and will
illustrate the approach on examples. The extension to Markov jump processes will
not be discussed here and will be subject to further investigations.

7.1. The Discrete Committor Function

Let P ∈ Rd×d be the transition matrix of a Markov chain on the state space S ∼=
{1, . . . , d}. As shown for example in [10] via first step analysis, the discrete committor
function q : S 7→ [0, 1] with respect to two disjoint, non-empty sets A,B ⊂ S satisfies
the discrete committor equation:





∑d
j=1(pij − δij)qj = 0 ∀ i ∈ S \ (A ∪B),

qi = 0 ∀ i ∈ A,

qi = 1 ∀ i ∈ B,

(7.1)

where δij is the Kronecker symbol. When only a finite observation Y = {y0 =
X(t0), . . . , yN = X(tN )} of the Markov chain is available, the transition matrix of
the underlying Markov chain is not accessible and has to be estimated from the data.
Unlike to the case of Markov jump processes, the inverse modeling of a Markov chain,
i.e. reconstructing a Markov chain on the basis of a finite observation Y , is easy. It
is defined as the Markov chain which most likely explains the observed data, i.e.
which maximizes its discrete likelihood. Recall that the discrete likelihood function
of an observation Y is given by (cf. Sect. 5.2)

Ld(Y ; P ) =
N−1∏

k=0

pyk,yk+1
=

∏

i,j∈S

p
cij

ij , (7.2)

where P = (pij)i,j∈S is the transition matrix of the underlying Markov chain and
the frequency matrix C = (cij)i,j∈S provides the number of consecutively observed
transitions between states.
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7. Variance of the Committor Function

Remark 7.1.1. We want to point out that here and in the following we assume
that the prior probability over the transition matrices before observing any data is
simply a uniform distribution. In particular, that assumption implies

Ld(Y ; P ) = Ld(P ; Y ).

Henceforth, we will denote for a fixed observation Y the discrete likelihood function
in (7.2) by Ld(P ).

The maximum likelihood estimator (MLE) P̂ = (p̂ij)i,j∈S , i.e. the transition ma-
trix which maximize the discrete likelihood function (7.2) given the observation Y ,
is unique and its entries p̂ij can be expressed in terms of the frequency matrix,

p̂ij =
cij

ci
, (7.3)

where ci =
∑

k∈S cik is the total number of observed transitions leaving the state i.
Due to the finite number of observations, the transition probabilities in the MLE

P̂ are afflicted with uncertainty. The question is how do these uncertainties affect
the committor function q̂ computed via





∑d
j=1(p̂ij − δij)q̂j = 0 ∀ i ∈ S \ (A ∪B),

q̂i = 0 ∀ i ∈ A,

q̂i = 1 ∀ i ∈ B.

(7.4)

In other words, we are interested in the error ‖q − q̂‖ given an observation Y but,
unfortunately, that error cannot directly be measured since the ”true” committor
function q = (qi), i ∈ S is unknown and the MLE P̂ does not indicate the in-
volved uncertainties. However, following standard reasonings, the error ‖q − q̂‖ can
be estimated via the variance of the committor function given an observation Y .

7.2. Metropolis Markov Chain Monte Carlo

One way to estimate the variance of the committor is to draw an ensemble of transi-
tion matrices {P1, . . . , Pk} from the conditional probability distribution of all possible
transition matrices given the observation Y . Then the variance of the committor q̂ is
approximately given by the variance of the resulting ensemble of committor functions
{q1, . . . , qk} computed via (7.1), respectively. One option to generated such an en-
semble of transition matrices can be found in [85]. They follow a Bayesian approach
to derive a conditional probability distribution of all possible transition matrices
given the observation Y by assuming that the prior probability over the transition
matrices before observing any data is given by Dirichlet distributions. Moreover,
they derive efficient methods to sample from the resulting posterior distribution.
However, the resulting ensembles do depend explicitly on the choice of parameters
for the prior Dirichlet distributions and, therefore, the Bayesian approach is from
our point of view inappropriate for the computation of the variance of the committor
function q̂.
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We follow an alternative approach via Markov Chain Monte Carlo (MCMC) sim-
ulation. For notational convenience we denote the set of all transition matrices by

P =

{
P = (pij)i,j∈S : pij ∈ [0, 1],

∑

k∈S

pik = 1 ∀i, j ∈ S

}
.

We devise an MCMC Metropolis scheme to generate an ensemble of transition ma-
trices which is distributed according to the discrete likelihood function Ld restricted
on the set P. Compared to the Bayesian approach, we do not assume any prior
distribution of transition matrices.

A MCMC Metropolis scheme works basically as follows. Suppose you want to
sample from a probability distribution which is induced by a density function f ∈
L1(Rd). Let xC ∈ Rd be the current state under consideration in the ensemble. In
the proposal step a new state xN ∈ Rd is generated. In the acceptance step the
proposed state xN is accepted with the probability

pacc = min
{

1,
f(xN ) · p(xC → xN )
f(xC) · p(xN → xC)

}
, (7.5)

where p(xC → xN ) is probability of generating the state xN conditional on the state
xC and p(xN → xC) is defined analogously. If the new state is accepted than xN
is added to the ensemble and the scheme restarts with xN as the current state.
Otherwise, the current state xC is added to the ensemble and is considered again in
the next iteration of the scheme.

Let us in the following comment on several issues concerning the MCMC sampling
procedure:

• The target density function f ∈ L1(Rd) does not have to be normalized because
only the ratio f(xN )/f(xC) is involved in the acceptance probability in (7.5).

• The sampling of a probability distribution restricted on a subset of the state
space, say R ⊂ Rd, can easily be achieved by modifying the density function
f according to

fR(x)
def
= 1R(x)f(x).

If the MCMC sampling procedure is started with xC ∈ R then the ratio in the
acceptance probability in (7.5),

fR(xN )
fR(xC)

=
1R(xN )f(xN )
1R(xC)f(xC)

= 1R(xN )
f(xN )
f(xC)

,

is well defined during the sampling procedure and the resulting ensemble is
distributed according to f restricted on R.

• In principle, one can use any strategy for the generation of a new state in
the proposal step as long as one is able to evaluate the probabilities p(xC →
xN ) and p(xN → xC). The choice of the proposal step strategy, however, is
crucial for the efficiency and the convergence of the sampling procedure. For
a discussion on these issues see, e.g., [13].
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7.3. Ensemble of Transition Matrices via MCMC

We are interested in sampling the distribution induced by the discrete likelihood
function Ld(P ). In the following, it is convenient to represent the target density
function f(P ) = Ld(P ) as

f(P ) = e−g(P ) with g(P )
def
= − log(Ld(P )). (7.6)

7.3.1. Dynamics on the Transition Matrix Space

For the generation of a proposal state PN we exploit the fact that the non-normalized
probability density function ρ(P ) of the invariant measure associated with the SDE

dPt = −∇g(Pt)dt +
√

2 dWt (7.7)

is given by
ρ(P ) = e−g(P ) = Ld(P ),

where P ∈ Rd2
is understood as a d2-dimensional vector and Wt is a d2-dimensional

standard Wiener process. A scheme for the generation of a proposal state PN is
obtained by discretizing the SDE in (7.7) by means of the Euler-Maruyama-scheme,

PN = PC −∇g(PC)∆t +
√

2∆t η, (7.8)

where 0 < ∆t ∈ R denotes the discretization time step and the random variable η
is drawn from a d2-dimensional standard Gaussian distribution with mean 0 ∈ d2

and covariance matrix I = diag(1, . . . , 1) ∈ Rd2×d2
. Unfortunately, the proposal step

equation in (7.8) does not preserve the transition matrix property, i.e. PN /∈ P,
because the Gaussian random variable η is unbounded. One option is to choose a
sufficiently small time discretization step ∆t such that pij ∈ [0, 1], 0 ≤ i, j ≤ d but
in general PN is not a stochastic matrix, i.e.

∑
m∈S pim 6= 1.

7.3.2. MCMC on the Frequency Matrix Space

Motivation

As a preparation for an alternative approach, recall that if only an incomplete ob-
servation of a Markov chain with discrete state space S is available, the transition
matrix P̂ = (p̂ij), i, j ∈ S which most likely explains the data is given by

p̂ij =
cij∑

k∈S cik
, (7.9)

where an entry cij of the frequency matrix C = (cij), i, j ∈ S provides the number
of observed transitions from i to j. The relation in (7.9) can be written in compact
form,

P̂ = u(C),

where the function u(C) : Rd2 7→ P is defined as

u(C)
def
=

(
c11∑

m∈S c1m
, . . . ,

cdd∑d
m=1 cdm

)
∈ P.
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To avoid any notational confusion with respect to the empirical frequency matrix,
we will denote in the following a general frequency matrix by K.

The crucial idea is now to generate an ensemble of frequency matrices K = {K ∈
Rd2

+ } via an MCMC procedure which is distributed according to the likelihood func-
tion Ld(u(C)). We will show that the ensemble P = {P = u(K) : K ∈ K} is
distributed according to Ld(P ).

Derivation of the MCMC Procedure on the Frequency Matrix Space

We consider a dynamics on the state space of frequency matrices,

dKt = −∇g̃(Kt)dt +
√

2β−1 dWt, (7.10)

where Kt = (kij)i,j∈S ∈ Rd2
, the factor β−1 can be seen as an artificial temperature.

The function g̃ : Rd2 7→ R is defined according to

g̃(K)
def
= g(u(K)),

where the function g is defined in (7.6). Then the probability density function ρ(K)
of the invariant distribution of (7.10) is given by

ρ(K) = e−βg̃(K) = [Ld(u(K))]β . (7.11)

The time discretization of (7.10) via the Euler-Maruyama-scheme yields an equa-
tion for the proposal step,

KN = KC −∇g̃(KC)∆t +
√

2β−1∆t η, (7.12)

where the gradient ∇g̃(K) takes the form

∇g̃(K) = (
c1

k1
− c11

k11
, . . . ,

cd

kd
− cdd

kdd
)T , (7.13)

with ki =
∑d

m=1 kim and ∆t and η are as in (7.8).
It remains to derive an expression for the probability p(KC → KN ) but this

immediately follows by realizing that the difference ∆K = KN −KC is distributed
according to a d2-dimensional Gaussian distribution with mean −∆t∇g̃(KC) ∈ Rd2

and covariance matrix 2β−1∆tI ∈ Rd2×d2
. Consequently, the probability to generate

the proposal state KN while being in the current state KC is

p(KC → KN ) = Z−1 exp
[
− 1

4β−1∆t
‖∆K +∇g̃(KC)∆t‖2

]
,

where Z is a normalization factor.
In order to ensure that the matrix u(KN ) is a transition matrix, i.e. u(KN ) ∈ P,

we generate an ensemble of frequency matrices restricted on the subset (cf. Sect. 7.2)

K =

{
K ∈ Rd2

+ : k−i <
d∑

m=1

kim < k+
i

}
, (7.14)

where 0 < k−i < k+
i , i = 1, . . . , d. The particular choice of the boundary conditions

for K will become clear in Section 7.3.3.
Combining all issues, we finally end up with the Metropolis algorithm, as stated

in Algorithm 9, to generate an ensemble of transition matrices distributed according
to the discrete likelihood function Ld(P ).
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Algorithm 9 Metropolis algorithm
Input: Frequency matrix C = (cij)i,j∈S , number of MCMC steps nMCMC, time

step ∆t, temperature β−1.
Output: Ensemble P of transition matrices.

(1) Initialize KC := C.
(2) FOR n = 1 TO nMCMC DO
(3) Generate proposal frequency vector KN = (kij):

KN = KC − ( c1
k1
− c11

k11
, . . . , cd

kd
− cdd

kdd
)T +

√
2∆t η.

(4) Accept KN with acceptance probability (∆K = KN −KC):

pacc = min

{
1,1K(KN )

Ld(u(KN )) exp
h
− 1

4β−1∆t
‖∆K+∇g̃(KC)∆t‖2

i

Ld(u(KC)) exp
h
− 1

4β−1∆t
‖−∆K+∇g̃(KN )∆t‖2

i
}

.

(5) If KN is accepted THEN set KC := KN .
(6) Add u(KC) to the transition matrix ensemble P.
(7) END FOR

7.3.3. Proof of Correctness

It remains to prove that resulting ensemble of transition P = {u(K)} is indeed
distributed according to Ld(P ).

Theorem 7.3.1. Let K = {K ∈ K} be an ensemble of frequency matrices distributed
according to Ld(u(K)). Then the ensemble P = {u(K) : K ∈ K} is distributed
according to Ld(P ).

Proof. We prove that for all P ∈ P holds

P[u(K) = P ] ∝ Ld(P ).

Without loss of generality, we restrict ourselves to the first row vector K(1) =
(k11, . . . , k1d) of a frequency matrix K ∈ K. For the sake of notational simplicity we
write in the following

u(k11, . . . , k1d) = (
k11∑d

m=1 k1m

, . . . ,
k1d∑d

m=1 k1m

),

Ld(p11, . . . , p1d) =
d∏

j=1

(p1j)c1j .

Let P(1) = {p = (p11, . . . , p1d) : p ∈ Rd
+,

∑d
j=1 p1j = 1}. Since P(1) ⊂ Rd is an

(d-1)-dimensional manifold we represent an element p ∈ P(1) by

p = (p11, . . . , p1(d−1), 1−
d−1∑

j=1

p1j).

Furthermore, we will denote in the following by Π(p), p ∈ P(1) the projection onto
the first (d-1) components of p, i.e,

Π(p) = (p11, . . . , p1(d−1)).
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The crucial observation now is that due to the particular choice of the set K in
(7.14) we have

{K(1) : u(K(1)) = (p11, . . . , p1d)} = {(αp11, . . . , αp1d) : k−1 < α < k+
1 }, (7.15)

which motivates to consider the new observable K̃(1) = T̃ (K(1)),

T̃ : Rd
+ → R+ ×Π(P(1))

T̃ (k11, . . . , kdd) 7→ (α, p11, . . . , p1(d−1)),

α =
d∑

m=1

k1m, p1j =
k1j∑d

m=1 k1m

, j = 1, . . . , d− 1.

(7.16)

If we denote the probability density function associated with the new observable
K̃(1) by L̃ then it should be clear that

P[u(K(1)) = (p11, . . . , p1d)] ∝
∫ k+

1

k−1
L̃(α, p11, . . . , p1(d−1))dα.

In Lemma 7.3.1 we show that L̃ is simply given by

L̃(α, p11, . . . , p1(d−1)) = Ld(p11, . . . , p1d)α(d−1),

where p1d = (1−∑d−1
j=1 p1j). But this immediately implies

P[u(K(1)) = (p11, . . . , p1d)] ∝ Ld(p11, . . . , p1d).

and we are done.

It remains to prove

Lemma 7.3.1.

L̃(α, p11, . . . , p1(d−1)) = Ld(p11, . . . , 1−
d−1∑

j=1

p1j)α(d−1)

Proof. The probability density function L̃(K̃(1)) associated with K̃(1) = (α, p11, . . . , p1(d−1))
is given by [58]

L̃(K̃(1)) = Ld(u(T̃−1(K̃(1))))
∣∣∣det(J(T̃−1)(K̃(1)))

∣∣∣ , (7.17)

where

T̃−1 : R+ ×Π(P(1)) → Rd
+

T̃−1(α, p11, . . . , p1(d−1)) 7→ (αp11, . . . , αp1(d−1), α(1−
d−1∑

j=1

p1j)).
(7.18)

The first factor in (7.17) reduces to

Ld(u(T̃−1(K̃(1)))) = Ld(u(αp11, . . . , αp1(d−1), α(1−
d−1∑

j=1

p1j)))

= Ld(p11, . . . , p1d),
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7. Variance of the Committor Function

where p1d = (1−∑d−1
j=1 p1j).

Finally, we compute the determinant in (7.17):

det J(T̃−1) =

∣∣∣∣∣∣∣∣∣∣∣

p11 α 0 0 . . .
p12 0 α 0 . . .
...

...
. . . . . .

...
p1(d−1) 0 . . . . . . α

1−∑d−1
j=1 p1j −α . . . . . . −α

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

p11 α 0 0 . . .
p12 0 α 0 . . .
...

...
. . . . . .

...
p1(d−1) 0 . . . . . . α

1 0 . . . . . . 0

∣∣∣∣∣∣∣∣∣∣∣

=(−1)(d−1)

∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . . . . 0
p11 α 0 0 . . .
p12 0 α 0 . . .
...

...
. . . . . .

...
p1(d−1) 0 . . . 0 α

∣∣∣∣∣∣∣∣∣∣∣

= (−1)(d−1)α(d−1).

7.4. Numerical Experiments

7.4.1. Dirichlet Distribution

In the first example we use the derived MCMC method to sample from a two-
dimensional (non-normalized) Dirichlet-distribution

L(p1, p2) = (p1)c1 · (p2)c2 · (1− p1 − p2)c3 (7.19)

on the state space D = {p1 +p2 +p3 = 1 : p1, p2, p3 ≥ 0} with parameters c1, c2, c3 >
0. For our numerical experiments we chose two different sets of parameters, namely
C1 = (c1 = 3, c2 = 8, c3 = 10) and C2 = (c1 = 43, c2 = 8, c3 = 15). We sampled
both distribution at the ”temperature” β−1 = 10 via Algorithm 9 and generated an
ensemble consisting of 106 transition matrices, respectively. As boundary conditions
for the restriction K in (7.14) we chose k−1 = (

∑3
j=1 cj)− 5 and k+

1 = (
∑3

j=1 cj) + 5.
For the simulation with respect to the parameter set C1 we had for the time step
∆t = 10−3 an acceptance rate of 93% and with respect to C2 for ∆t = 10−2 an
acceptance rate of 96%.

In Figure 7.1 we compare the distribution of the ensemble from the simulation
with respect to the parameter set C1 (top right panel) with the corresponding an-
alytical distribution (top left panel). For the sake of comparison, we normalized all
distributions such that their respective maximal value is one. The distributions re-
sulting for the parameter set C2 are given in the second row of Figure 7.1. One can
see both distributions are well sampled.

Let us comment on the choice of the simulation parameters. The simulation’s
temperature β−1 = 5 ensures that even states with a very low statistical weight
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Figure 7.1.: We compare the distributions of the Dirichlet distribution in (7.19) (first
column) with the distributions of the ensembles generated via Algo-
rithm 9 (second column) with respect to the parameter set C1 = (c1 =
3, c2 = 8, c3 = 10) (first row) and C2 = (c1 = 43, c2 = 8, c3 = 15) (sec-
ond row). For example, the analytical distribution with respect to C1

attains its maximum at ( c1
c1+c2+c3 , c2

c1+c2+c3) ≈ (0.14, 0, 38).

with respect to the target distribution Ld(u(K)) are sufficiently often proposed such
that the variance is right reproduced. For realistic values of the parameters (ci >
100), however, our extensive numerical experiments have shown that the Dirichlet
distribution in (7.19) is already well sampled at a low temperature β−1 = 1.

7.4.2. Small Example

In this section we demonstrate the performance of the derived Algorithm 9 on a
Markov chain with a small state space S ∼= {1, . . . , 25}. This example is constructed
such that it allows to relate the element-wise variances of the resulting ensemble of
committor functions to an underlying discretized potential landscape.

As exemplified in the Section 4.3.1, a Smoluchowski diffusion process in a potential
landscape can be approximated by a Markov jump process where the infinitesimal
generator L of the approximating Markov jump process results from a finite differ-
ences discretization scheme of the generator, associated with the diffusion process
(cf. Sect. A.3). Doing so, a transition matrix can easily be obtained because the
generator L generates a semigroup of transition matrices via P (t) = exp(tL). For a
particular choice of t > 0 we will call P (t) = exp(tL) transition matrix.

For our numerical experiments, we utilized the generator given in (4.44) which
results from an approximation of the Smoluchowski dynamics in the three-hole po-
tential landscape. We approximated the diffusion (at temperature β−1 = 1) on a
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Figure 7.2.: Left: Contour plot of the three-hole potential (3.45). Right: Box plot of
the stationary distribution associated with the 25-state Markov chain
P = exp(1.2L).

−1 0 1
−1

−0.5

0

0.5

1

1.5

2

 

 

0

0.2

0.4

0.6

0.8

1

Figure 7.3.: Box plot of the committor function associated with the transition ma-
trix P = exp(1.2L). As the sets A and B, we chose the two states with
the highest stationary distribution. The set A consists of the state cor-
responding to the left white box and the set B consists of the state
corresponding to the right white box.

5 × 5 mesh of the domain Ω = [−1.5, 1.5] × [−1, 1.5] which results in a generator
L ∈ R25×25 on a discrete state space of 25 states.

The potential landscape of the three-hole potential in (3.45) is illustrated as a
contour plot in the left panel of Figure 7.2. In the right panel, we show a box plot of
the stationary distribution of the transition matrix P (1.2) = exp(1.2 · L) ∈ R25×25.
Although we used an extremely coarse-grained mesh (5×5), one can clearly see that
the equilibrated dynamics of the Markov chain reflects the topology of the potential
landscape, e.g., the two states in the Markov chain with highest stationary proba-
bility correspond to the two deep minima in the potential landscape, respectively.
The discrete committor function with respect to P (1.2) is illustrated in Figure 7.3.
As the set A and B we chose the two states with the highest stationary distribu-
tion (depicted by white boxes). The main question we were interested in is of how
the element-wise variances of a committor ensemble do depend on the length N
of the observed time series of the Markov chain. For this purpose, we generated
via Algorithm 9 a sequence of committor function ensembles {q(N)

1 , . . . , q
(N)
6 } for

time series of length N = 103, . . . , N = 108 where the respective time series were
all subsampled from a fixed realization of the Markov chain. For each ensemble we
sampled m = 500000 committor functions where we used the discretization time
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N 103 104 105 106 107 108

κ 13.34 14.03 12.27 11.97 11.91 11.94

Table 7.1.: The condition number κ of the matrix P̂ (N) − I after elimination of the
condition qi = 0,∀i ∈ A, qi = 1,∀i ∈ B which arises from solving of the
discrete committor equation (7.4). The table gives the condition number
κ as a function of the length N of the considered time series. Results for
time series all subsampled from the same realization.

step ∆t = 10−3 in the proposal step equation (7.12). As boundary conditions for the
restriction K in (7.14) we chose k−i = ci − 15 and k+

i = ci + 15 where ci =
∑d

j=1 cij .
In all simulations we had an acceptance rate of about > 93%.

In the following P̂ (N) denotes the MLE transition matrix resulting from the time
series of length N and q̂(N) is the associated committor function. The mean com-
mittor function of an ensemble {q(N)

1 , . . . , q
(N)
6 } is denoted by q̄(N) and the variance

by var(q̄(N)). In Figure 7.4 we illustrate the committor function q̂(N) (first column),
mean committor function q̄(N) (second column) and its variance var(q̄(N)) (third col-
umn) for all ensembles, respectively. At first glance, one can see that the committor
functions q̂(N) are almost identical with the corresponding mean committor function
q̄(N) of the ensemble, except for the length N = 103. Beside the observation that the
variance of the ensembles decreases by the same order of magnitude as the length
N increases, the box plots in third column reveal that the states with the lowest
stationary distribution exhibit the highest variance in the committor function. The
observations are confirmed by the graphs shown in Figure 7.5. In the left panel, we
plot the maximal variance ‖var(q̄(N))‖∞ of the mean committor functions q̄(N) as a
function of the length N of the respective time series whereas in the right panel the
error ‖q̄(N)− q̂(N)‖ (measured in the 2-norm) between the mean committor function
q̄(N) and the committor function q̂(N) is shown as a function of the length N of the
respective time series.

Our numerical experiments have shown that the committor function q̂(N) even for
short time series (N = 103) almost coincides with the expected committor function
with respect to the discrete likelihood function Ld.
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Figure 7.4.: Left column: Box plots of the committor functions q̂(N) resulting from
the MLE transition matrix P̂ (N) (7.3), respectively. Middle column: Box
plots of the mean committor functions q̄(N) of the committor function
ensembles {q(N)

1 , . . . , q
(N)
5 }, respectively. Right column: Box plots of the

variances var(q̄(N)) of the mean committor functions, respectively. Re-
sults for different lengths N = 103 (top), . . . , N = 107 (bottom) of
respective time series all subsampled from the same realization.
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Figure 7.5.: Left: The maximal variance ‖var(q̄(N))‖∞ of the mean committor func-
tions q̄(N) as a function of the length N of the respective time se-
ries. Right: The error ‖q̄(N) − q̂(N)‖ (measured in the 2-norm) between
the mean committor function and the committor function resulting from
the MLE transition matrix P̂ (N) in (7.3) as a function of the length N
of the respective time series. Results for time series all subsampled from
the same realization.

7.4.3. Glycine

In the last example we apply the MCMC methods in order to estimate the uncer-
tainties of the forward committor function q+ in the glycine in solvent example from
Section 4.3.2. We are aware that in the glycine-example the forward committor func-
tion q+ is computed via an (estimated) generator L of a Markov jump process and
not via the transition matrix of a Markov chain. Nevertheless, the MCMC method
allows to get an idea of the uncertainties because q+ is almost identical with the
discrete committor function q̂+ based on the MLE P̂ and computed via (7.4). Both
committor functions are illustrated in the panels of Figure 7.6.

For the estimation of the variance of the committor function q̂+ we generated an
ensemble of 7 · 106 transition matrices (∆t = 10−5) and computed the element-wise
variances of the resulting ensemble of committor functions. The boundary conditions
for the restriction K were the same as in the previous example. To be more precise,
instead of generating a full transition (counts) matrix in each step of the simulation,
we used the structure of the MLE P̂ as a template, i.e., we only generated entries kij

if cij > 0. In each iteration step of the Algorithm 9 we solved the discrete committor
equation in (7.4) with respect to the current transition matrix. Finally, a clever
update-scheme allowed us to compute the element-wise variances of the committor
function ensemble {q+

MCMC} on the fly (see the end of this section).
The final variances are illustrated in the left panel of Figure 7.7 where the boxes are

colored according to the log-values of the respective variances in order to emphasize
the different orders of magnitudes. Again, the comparison of the variances element
by element with the Gibbs energy of the Markov chain P̂ reveals what intuitively
should be clear; the states with high variance correspond to those with very high
discrete free energy which is equivalent to a very small stationary distribution. In
Figure 7.8 we show the maximal variance ‖var({q+

MCMC})‖∞ as a function of the
MCMC-steps.

We end this section by deriving the update-scheme for the ”on the fly” com-
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Figure 7.6.: Right: The panel shows the forward committor q+ based on an esti-
mated generator L̃ (cf. Sect. 4.3.2) and computed via (4.11). Left: The
corresponding box plot of the discrete committor q̂+ based on the MLE
P̂ and computed via (7.4). As the set A we chose the box (shown as a
white box with black boundary) which covers the peak of the restricted
stationary distribution on the lower right conformation. The set B for
the upper left conformation (shown as a white box) was chosen anal-
ogously. Results for an equidistant discretization of the torsion angle
space into 20× 20 boxes.

putation of the variances. We derive the scheme for a one-dimensional time series
(x1, . . . , xN ), xi ∈ R. A short calculation shows that the estimator of the variance of
the time series reduces to

1
N + 1

N∑

i=1


xi −

N∑

j=1

xj




2

=
1

N + 1

(
s1(N)− 1

N
s2
2(N)

)
, (7.20)

where s1(N) =
∑N

j=1 x2
j and s2(N) =

∑N
j=1 xj . But this means if one is interested

in the in the variance of the time series (x1, . . . , xN , xN+1) then only the sums s1

and s2 have to be updated and the right hand side in (7.20) yields the desired result
with respect to N ′ = N + 1.
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Figure 7.7.: The left panel illustrates the element-wise variances of the committor
functions ensemble {q+

MCMC}. In order to emphasize the variances’ mag-
nitudes of order, we chose a logarithmical scale. The comparison of the
variances with the discrete free energy of the MLE Markov chain P̂ , as
shown in the right panel, again reveals that the states with the highest
variances correspond to those with the lowest statistical weights.
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Figure 7.8.: The maximal variance ‖var({q+
MCMC})‖∞ as the function of the MCMC

steps.
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8. Summary and Conclusion

In this thesis, we have presented the framework of transition path theory (TPT)
for time continuous Markov processes with continuous and discrete state space.
TPT provides statistical properties of the ensemble of reactive trajectories between
some start and target sets and yields properties such as the committor function, the
probability distribution of the reactive trajectories, their probability current and
their rate of occurrence. We have shown that knowing these objects allows one to
arrive at a complete understanding of the mechanism of the reaction.

The main objects of TPT for Markov diffusion processes have been explicitly de-
rived for the Langevin and Smoluchowski dynamics and we have illustrated them on
a various number of low-dimensional examples. Despite the simplicity of these exam-
ples compared to those encountered in real applications, they already demonstrate
the ability of TPT to handle complex dynamical scenarios. The main challenge in
TPT for diffusion processes is the numerical computation of the committor func-
tion as a solution of a Dirichlet-Neumann boundary value problem involving the
generator of the process.

Beside the derivation of TPT for Markov jump processes, we have focused on the
development of efficient graph algorithms to determine reaction pathways in discrete
state space. One approach via shortest-path algorithms has turned out to give only
a rough picture of possible reaction channels whereas the network approach allows
a hierarchical decomposition of the set of reaction pathways such that the domi-
nant channels can be identified. We have successfully applied the latter approach
to an example of conformational dynamics of a bio-molecule. In particular, we have
made use of a maximum likelihood method to estimate the infinitesimal generator
of a jump process from an incomplete observation. Finally, we have addressed the
question of error propagation in the committor function computation for Markov
chains.

The discrete TPT framework has many interesting relations to other topics in the
Markov chain and network literature; we have briefly discussed the relation to electric
resistor network theory and data segmentation tools such as Laplacian eigenmaps
and diffusion maps. Future investigations should work out these and other relations
in more detail.
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A. Appendix

In the Appendix we will derive in detail the numerical discretization scheme for
the committor equation associated with the Smoluchowski and Langevin dynamics,
respectively. The main challenge will be to devise a stable finite difference scheme
for the hypoelliptic committor equation. In Section A.3, we will proof the existence
and uniqueness of a weak solution of the elliptic mixed-boundary value problem
associated with the elliptic committor equation. Moreover, we will explain the link
between the derived discretization schemes and the approximation of diffusion pro-
cesses via Markov jump processes. We will end the Appendix by giving definitions
and the technical proofs for the probability current of reactive trajectories and the
expression for their rate.

A.1. Discretization of the Committor Equation

For the sake of a compact notation, we will write the (forward) committor equa-
tion (3.6) in the following form

{
Lbwq = 0 in Rd \ S

q = gD on ∂S

where Lbw is the generator of the considered Markov diffusion process, the set S =
A∪B is the union of two disjoint closed sets A,B ⊂ Rd and the Dirichlet condition
on the boundary ∂S is given by the function gD : ∂S → R, defined according to

gD(x) =

{
0, if x ∈ ∂A

1, if x ∈ ∂B.
(A.1)

The numerical treatment of the committor equation requires the choice of a bounded
discretization domain Ω ⊂ Rd such that the probability to find the equilibrated
diffusion process in Ω is almost one. As explained in Section 2.1.9, the restriction of
the diffusion process on Ω leads to additional conditions for the committor function
q(x) on the boundary ∂Ω, that are

0 = a∇q · n̂ = ∇q · an̂, (A.2)

where a(x) is the diffusion matrix and n̂ is the unit normal on ∂Ω pointing outward
Ω. Hence, the committor function q(x) considered on a domain Ω has to satisfy the
mixed-boundary value problem





Lbwq = 0 in ΩS
q = gD on ∂S

∇q · an̂ = 0 on ∂Ω.

(A.3)
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S

∂Ωh

Ω
S
h

∂Sh

Figure A.1.: Schematic representation of the mesh ΩSh and its disjoint boundaries
∂Ωh and ∂Sh.

A.1.1. Discretization via Finite Differences

In this section we will introduce the framework for the finite difference discretization
of the mixed-boundary value problem (A.3) on a two dimensional domain Ω ⊂ R2.

Remark A.1.1. We will consider only rectangular domains with boundaries which
are piecewise parallel to the axis of the coordinate system. Furthermore, we assume
that the shape of the sets A and B are such that their boundaries ∂A and ∂B can
be discretized by an appropriate discretization of the domain. The reasons for that
restrictions are:

• The results of TPT for diffusion processes on rectangular domains already
demonstrate the ability of TPT to capture different dynamical scenarios.

• The schemes are straightforward to derive and are easy to implement.

• The treatment of general domains and sets A and B would go beyond the scope
of this thesis.

Discretization of the Domain

Let Ω = (a, b)× (c, d) ⊂ R2, a < b, c < d. be a rectangular domain. We discretize Ω
by a uniform mesh which is defined by

Ωh
def
= {x = (a + ihx, b + jhy) : 1 < i < N − 1, 1 < j < M − 1},

∂Ωh
def
= {x = (a + ihx, b + jhy) : 0 ≤ i ≤ N, 0 ≤ j ≤ M} \ Ωh,

where h = (hx, hy) and, e.g., hx = (b− a)/(N + 1) is the mesh width in x-direction
and N + 1 is the number of mesh points in x-direction. Next, we assume that the
boundary ∂S of the set S can be represented as a closed polygon which is piecewise
parallel with respect to the axes of the coordinate system. We discretize the set S
by

Sh
def
= Ωh ∩ S

and denote its complement with respect to the mesh Ωh by

ΩSh
def
= Ωh \ Sh.
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Moreover, the boundary ∂Sh of Sh is defined by (cf. A.1.1)

∂Sh
def
= Ωh ∩ ∂S.

The boundary conditions on the disjoint boundaries ∂Ω and ∂S requires the in-
corporation of their respective discretizations ∂Ωh and ∂Sh into the mesh ΩSh . We
define

ΩSh
def
= ΩSh ∪ ∂Ωh,

ΩSh
def
= ΩSh ∪ ∂Ωh ∪ ∂Sh.

In Figure A.1 we give a schematic representation of the mesh ΩSh and its disjoint
boundaries ∂Ωh and ∂Sh.

Restrictions

For the proof of consistency and stability it is convenient to introduce an operator
which restricts a continuous function onto the mesh ΩSh . Let u : R2 → R then we
define the restriction RS

h : u 7→ R|ΩSh | by

(RS
hu)(x)

def
= u(x) ∀x ∈ ΩSh .

The restriction R
S
h with respect to the mesh ΩSh and RS

h with respect to the mesh
ΩSh is defined analogously. We call a function uh a mesh function if uh is only defined
on a mesh.

Discretization Matrix and Elimination of Boundary Conditions

In the following, Dh ∈ R|ΩSh |×|ΩSh | denotes the matrix which results from the dis-
cretization of the operator Lbw on the mesh ΩSh under consideration of the mesh
points in ΩSh where, e.g. |ΩSh | is the number of mesh points in ΩSh . One option to
deal with the Neumann boundary conditions on ∂Ω is their incorporation into the
discretization stencils of the operator Lbw for mesh points in the direct vicinity of
the boundary ∂Ωh. Since we deal here with homogeneous Neumann boundary con-
ditions, we chose an alternative option. Here we discretize the Neumann conditions
on ∂Ωh explicitly and denote the resulting matrix by Nh ∈ R|∂Ωh|×|ΩSh |. Combining
both matrices in one matrix, we end up with

Dh
def
=

(
Dh

Nh

)
∈ R|Ω

S
h |×|ΩSh |. (A.4)

Let uh be a mesh function on ΩSh . If we apply the vector uh on the matrix Dh,
then the entry (Dhuh)(x) corresponding to a mesh point x ∈ ΩSh can be written as

(Dhuh)(x) =
∑

y∈ΩSh

Dh(x,y)uh(y) +
∑

z∈∂Sh

Dh(x, z)u(z). (A.5)
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If we assume that uh(z) = gD(z) for all z ∈ ∂Ωh, then (A.5) reduces to

(Dhuh)(x) = (Lhuh)(x) +
∑

z∈∂Sh

Dh(x, z)gD(z),

where (Lhuh)(x) is a compact notation for the first sum in (A.5). Finally, we can
write the finite difference discretization of the mixed-boundary value problem (A.3)
after elimination of the Dirichlet boundary conditions as the following linear system

Lhuh = Fh,

where the matrix on the left hand side is defined by

Lh
def
=

(
Lh

Nh

)
∈ R|ΩSh |×|ΩSh | (A.6)

and for x ∈ ΩSh the right hand side is given by

F h(x) =

{
−∑

z∈∂Sh
Dh(x, z)gD(z), if x ∈ ΩSh

0, if x ∈ ∂Ωh.

A.1.2. Finite Difference Discretization of the Smoluchowski Committor
Equation

In this section, we state a stable finite difference scheme of the committor equation
for the Smoluchowski dynamics (2.37) on a two dimensional domain Ω ⊂ R2. The
associated mixed-boundary value problem (A.3) reduces to the problem





Lbwq = 0 in ΩS
q = gD on ∂S

∂q

∂n̂
= 0 on ∂Ω,

(A.7)

where the operator Lbw, given by

Lbwq = β−1∆q −∇V · ∇q

is an elliptic linear second order partial differential operator. Notice, that for the
sake of simplicity, we set the friction matrix Γ = diag(1, 1) ∈ R2×2.

There is a long list of literature on stable finite difference discretization schemes
of elliptic partial differential operators, e.g. [44, 42]. The discretization schemes we
use here are standard schemes which are found in, e.g. [44].

Finite Difference Scheme

For notational simplicity, we henceforth assume that the mesh Ωh is total uniform,
i.e. hx = hy. Let x ∈ ΩSh then we discretize the elliptic operator Lbw in x by the
5-point stencil

β−1h−2




0 1 0
1 −4 1
0 1 0


 + (2h)−1




0 v2 0
−v1 0 v1

0 −v2 0


 , (A.8)
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where we set (v1, v2) = −∇V (x) and h = hx = hy. The stencil (A.8) leads to a
consistent scheme of second order, i.e. for a function u ∈ C2(Ω) we have

∥∥∥DhRS
hu−RS

hLbwu
∥∥∥
∞

= O(h2). (A.9)

For reasons of stability, we have to ensure that all off-diagonal entries in the resulting
discretization matrix Lh are non-negative. This leads to a condition on the mesh
width h, namely

h < 2β−1

(
max
x∈ΩSh

{|v1|, |v2| : (v1, v2) = −∇V (x)}
)−1

. (A.10)

We discretize the Neumann conditions on ∂Ω explicitly by a single sided difference
scheme. For example, consider a mesh point x = (x, y) ∈ ∂Ωh on the left boundary,
i.e. the piece of the boundary ∂Ω which confines the rectangular domain Ω from
the left and let n̂(x, y) ≡ (−1, 0) be the corresponding unit normal vector pointing
outward Ω. To ensure the M-matrix property and without lack of generality, we
discretize the Neumann conditions in the boundary mesh point x = (x, y) by

∂

∂n̂(x, y)
q(x, y) = 0 Ã h−1(q(x− h, y)− q(x, y)) = 0

which is represented by the stencil

h−1




0 0 0
1 −1 0
0 0 0


 . (A.11)

The stencils for the right, upper and lower boundaries are derived analogously. Notice
that the stencils in the corners result from the combination of the stencils of the two
adjacent boundaries. For example, for the upper-right corner the stencil takes the
form

h−1




0 0 0
1 −2 0
0 1 0


 . (A.12)

Properties of the Discretization Matrix

As a preparation for the proof of stability, we show that the discretization matrix Lh

(after elimination of the Dirichlet boundary conditions) is up to its sign an M-matrix.
To be more precise, the following properties hold for the matrix −Lh:

1. For a mesh point x ∈ ΩSh in the direct vicinity of the boundary ∂Sh the
following strict inequality holds

|Lh(x,x)| >
∑

y∈ΩS
h

y 6=x

|Lh(x,y)|.
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2. The entries of the matrix −Lh satisfy the following sign conditions

−Lh(x,x) > 0, ∀x ∈ ΩSh ,

−Lh(x,y) ≤ 0, ∀x,y ∈ ΩSh ,x 6= y.
(A.13)

which immediately follow from the discretization schemes (A.8) and (A.11).

3. Under the assumption that Ω \ (A∪B) is connected, the matrix −Lh is essen-
tially diagonally dominant.

Finally, from Theorem (A.6.6) it follows that the matrix −Lh is an M-matrix and
in particular invertible.

Proof of Stability

To prove that our scheme is stable, we have to show

suph>0

∥∥∥L
−1
h

∥∥∥
∞

< ∞.

To be more precise, we have to show that there exists a constant C > 0 and a
sufficiently small h0 > 0 such that

∥∥L−1
h

∥∥
∞ ≤ C, ∀h ∈ (0, h0). (A.14)

The idea of the proof is to find a function s ∈ C2(Ω)∩C1(Ω) and a sufficiently small
h0 > 0 such that we have

(−LhR
S
hs)(x) ≥ 1, ∀x ∈ ΩSh ,∀h ∈ (0, h0). (A.15)

Then by virtue of Theorem A.6.7 we deduce the desired result (A.14).
In the case of a pure elliptic Dirichlet boundary value problem, one can state

explicitly a function s(x) which leads to (A.15) (see [44], Theorem 5.1.9.). Unfortu-
nately, in our case of the mixed-boundary value problem (A.7) we cannot state such
a function explicitly. Instead, we consider the following auxiliary mixed-boundary
value problem





Lbws = −1 in ΩS
s = 0 on ∂S

∂s

∂n̂
= −1 on ∂Ω,

(A.16)

where the operator Lbw is again the generator of the Smoluchowski dynamics and
we show that a solution s(x) ∈ C2(Ω) ∩ C1(Ω) of (A.16) is the right candidate to
deduce (A.15). For an interpretation of the solution of (A.16) see Remark A.1.2.

Theorem A.1.1. The discretization scheme (A.8) and (A.11) is stable. The stabil-
ity constant is given by

C = 2 max
x∈Ω\S

{|s(x)|},

where the function s(x) is the solution of the problem (A.16).
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Proof. Let s(x) ∈ C2(Ω) ∩ C1(Ω) be the solution of the stability equation (A.16).
We define the auxiliary mesh function uh = 2RS

hs and we deduce

−Dhuh = −2(DhRS
hs−RS

hLbws)− 2RS
hLbws

= 2− 2(DhRS
hs−RS

hLbws)

From the consistency of our scheme follows that there exists an h0 > 0 such that

∥∥∥DhRS
hs−RS

hLbws
∥∥∥
∞

<
1
2
, ∀h ∈ (0, h0)

and we deduce
(−Dhuh)(x) ≥ 1, ∀x ∈ ΩSh , ∀h ∈ (0, h0).

But this immediately implies

(−Lhuh)(x) ≥ 1, ∀h ∈ (0, h0)

for any mesh point x ∈ ΩSh which is not in the direct vicinity of the boundary
∂Ah∪∂Bh. Next, consider a mesh point x ∈ ΩSh which is in the direct vicinity of the
boundary ∂Ah ∪ ∂Bh. But since the function s(x) is equal to zero on the boundary
of the set S we have ∑

y∈(∂Sh)

Dh(x,y)uh(y) = 0

and, thus, we finally obtain

(−Lhuh)(x) = (−Lhuh)(x) ≥ 1 ∀x ∈ ΩSh ,∀h ∈ (0, h0). (A.17)

It remains to show that (A.17) also holds true for mesh points on the boundary ∂Ωh.
But since the matrix Nh results from the consistent discretization of the Neumann
condition, the same reasoning as above yields that there exists an h̃0 > 0 such that

(−Lhuh)(x) = −(Nhuh)(x) ≥ 1 ∀x ∈ ∂Ωh, ∀h ∈ (0, h̃0).

All together we have shown that

(−Lhuh)(x) ≥ 1 ∀x ∈ ΩSh , 0 < h < min{h0, h̃0}

and by Theorem (A.6.7) we obtain
∥∥∥L

−1
h

∥∥∥
∞
≤ ‖uh‖∞ ≤ 2 max

x∈Ω\S
{|s(x)|} < ∞, 0 < h < min{h0, h̃0}.

Remark A.1.2. The stability equation (A.16) admits a partial interpretation if one
realizes that its solution s(x) can be decomposed such that

s(x) = s1(x) + s2(x),
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Figure A.2.: Contour plot of the numerical solution |s(x)| of the mixed-boundary
value problem (A.16) for the Smoluchowski dynamics in the three-hole
potential (given in (3.45)) for a low temperature β = 6.67 (left panel)
and for a high temperature β = 1.67 (right panel).

where the function s1 is the solution of the problem




Lbws1 = −1 in ΩS
s1 = 0 on ∂S

∂s1

∂n̂
= 0 on ∂Ω

(A.18)

and the function s2(x) satisfies





Lbws2 = 0 in ΩS
s2 = 0 on ∂S

∂s2

∂n̂
= −1 on ∂Ω.

(A.19)

As shown in Remark (3.1.2), the function s1(x) is the mean first passage time
of the Smoluchowski dynamics (2.37) with respect to the set A∪B. In Figure A.2 we
show the contour plot of the numerical solution s(x) of the equation in (A.16) for
the Smoluchowski dynamics in the three-hole potential (3.45) (see section (3.7.1))
for two different temperatures.

Proof of Convergence

For the convenience of the reader, we state the proof that our scheme converges
which, as usual, follows from the consistency and stability.

Theorem A.1.2. Let u be the exact solution of the mixed-boundary value problem
(A.7) and let uh denote the approximated solution computed via uh = L

−1
h F h. Then

we have
lim
h→0

∥∥∥uh −R
S
hu

∥∥∥
∞

= 0

Proof. Let ũh be the extension of the mesh function uh on the boundary of S, that
is

ũh(x)
def
=

{
uh(x), if x ∈ ΩSh
gD(x), if x ∈ ∂Sh
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A.1. Discretization of the Committor Equation

Next, we define the auxiliary mesh function wh = ũh −RS
hu and deduce

Dhwh = Lh(uh −R
S
hu)

because of wh(x) = 0 on the boundary of S. Now we can estimate the cut-off error
by

∥∥∥uh −R
S
hu

∥∥∥
∞

=
∥∥∥L

−1
h Dhwh

∥∥∥
∞

≤
∥∥∥L

−1
h

∥∥∥
∞
·
∥∥∥Dh(ũh −RS

hu)
∥∥∥
∞

≤C ·max{
∥∥∥Dhũh −DhRS

hu
∥∥∥
∞

,
∥∥∥Nhũh −NhRS

hu
∥∥∥
∞
},

where the last inequality follows from the stability of the scheme and the definition
of the matrix Dh (cf. (A.4)). Now observe that

(Dhũh)(x) = (RS
hLbwu)(x) ∀x ∈ ΩSh ,

(Nhũh)(x) = (RS
h

∂u

∂n̂
)(x) ∀x ∈ ∂Ωh,

and, hence, since the schemes are consistent, we finally get
∥∥∥uh −R

S
hu

∥∥∥
∞
−→ 0 as h → 0

which completes the proof.

A.1.3. Finite Difference Discretization of the Langevin Committor
Equation

In this section we derive a stable finite difference scheme of the forward committor
equation for the Langevin dynamics (2.33) on a two dimensional domain Ω ⊂ R2.
For the sake of simplicity, we set the mass equal to one (m1 = 1) and consider
the velocity instead of the momentum. The mixed-boundary value problem (A.3)
reduces to the problem





Lbwq = 0 in ΩS = Ω \ S
q = gD on ∂S

∇q · an̂ = 0 on ∂Ω,

(A.20)

where the operator Lbw, given by

Lbwq = γβ−1∆vq + v · ∇xq −∇xV · ∇vq − γv · ∇vq, (A.21)

is a degenerate elliptic linear second order partial differential operator.
In contrast to the Smoluchowski dynamics where the involved operator is elliptic,

here the degenerate ellipticity of Lbw imposes geometric restrictions of the domain Ω.
Recalling that the diffusion matrix for the Langevin dynamics on a two-dimensional
phase space is given by

a = β−1γ

(
0 0
0 1

)
∈ R2×2,
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the Neumann conditions for the forward committor function q(x, v) in a boundary
point (x, v) ∈ ∂Ω reduces to

0 = ∇q(x, v) · an̂ =
dq(x, v)

dv
n̂v,

where n̂ = (n̂x, n̂v)T is the unit normal in (x, v) ∈ ∂Ω pointing outward Ω. But
this immediately implies that if the shape of boundary in the (x, v) was such that
n̂v = 0 then this would lead to an empty boundary condition in that point and the
resulting linear system would be under-determined. Consequently, any domain Ω
whose boundary consists of pieces which are parallel to the v-axis is inappropriate
for the finite difference discretization. Furthermore, in order to be able to impose
the Dirichlet boundary conditions on ∂A and ∂B, the unit normal to these sets at
(x, v) must span the velocity degrees of freedom everywhere except maybe on a set
of zero measure on ∂A and ∂B. One option could be to change the shape the domain
and the sets A and B such that their boundaries are not piecewise parallel to the
v-axis. But this option would lead to complicated finite difference schemes for the
boundary conditions and, hence, it seems not practical.

As a remedy, we introduce a coordinate transformation such that

1. the transformed Langevin dynamics exhibits diffusion in all new coordinates,

2. the Neumann boundary conditions for a rectangular domain in the new coor-
dinate system lead to non-empty conditions on the committor function.

To this end, we rotate the coordinate system by π/4 which can formally be done
by introducing the transformation T : (x, v) 7→ (η(x, v), ξ(x, v)) with

{
η(x, v) = c(x− v),

ξ(x, v) = c(x + v), c =
√

2/2.
(A.22)

Then the Langevin dynamics in the new coordinates (η, ξ) takes the form
{

dη = c2(ξ − η)(1 + γ) + c∇xV (c(η + ξ))− c
√

2γβ−1 dWt

dξ = c2(ξ − η)(1− γ)− c∇xV (c(η + ξ)) + c
√

2γβ−1 dWt

(A.23)

where Wt is a 1-dimensional Wiener process and affects both coordinates simulta-
neously. Now notice that the transformed dynamics (A.23) can be written in the
shape of (2.8) by setting

b(η, ξ) =
(

c2(ξ − η)(1 + γ) + c∇xV (c(η + ξ))
c2(ξ − η)(1− γ)− c∇xV (c(η + ξ))

)
, c =

√
2/2 (A.24)

and

σ = c
√

2γβ−1

(
0 −1
0 1

)
.

The generator Lbw of the transformed Langevin dynamics (A.23) is given by

Lbwu(η, ξ) = a : ∇∇u(η, ξ) + b(η, ξ) · ∇u(η, ξ) (A.25)
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with the diffusion matrix

a = c2γβ−1

(
1 −1
−1 1

)
.

Notice that here ∇ = (∇η,∇ξ). Finally, we end up with the mixed-boundary value
problem in the new coordinates, that is





Lbwq = 0 in T (Ω) \ T (S)
q = g̃D on ∂T (S)

∇q · an̂ = 0 on ∂T (Ω)
(A.26)

where g̃D(x) = gD(T−1(x)).
The same reasoning as above leads to the mixed-boundary value problem associ-

ated with the backward committor equation




LR
bwqb = a : ∇∇qb + bR · ∇qb = 0 in T (Ω) \ T (S)

qb = 1− g̃D on ∂T (S)
∇qb · an̂ = 0 on ∂T (Ω),

(A.27)

where the reversed drift field bR(η, ξ) is given by

bR(η, ξ) = −
(

c2(ξ − η)(1− γ) + c∇xV (c(η + ξ))
c2(ξ − η)(1 + γ)− c∇xV (c(η + ξ))

)
, c =

√
2/2. (A.28)

Remark A.1.3. In order to keep the notation simple, we do not introduce a new
symbol for the transformed domain T (Ω) as well as for T (S). In what follows, Ω and
S are sets with respect to the new coordinate system. Moreover, instead of solving the
problem (A.26) on the transformed domain, we choose a rectangular domain in the
new coordinate system and after solving the problem we transform back the resulting
solution into the original coordinate system.

Discretization Scheme

In this section we derive a stable 7-point discretization scheme for the transformed
forward committor equation (A.26). The scheme for the transformed backward com-
mittor equation follows analogously. Again, the transformed principle part as well
as the transformed drift field are discretized by standard schemes which are found
in [44]. The key observation in the derivation of the scheme is that we can decom-
pose the transformed drift field such that the M-matrix property of the resulting
discretization matrix is achieved.

Discretization of the principle part Without loss of generality, the principle part
of (A.25) can be written as

a : ∇∇q = c2γβ−1(∆q − 2
∂2q

∂η∂ξ
). (A.29)

In contrast to the elliptic case, here we additionally have to deal with a mixed-
derivative part. The discretization is done by utilizing again a standard scheme (see
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[44], page 91). Unlike to the elliptic case, here it is necessary that the mesh Ωh is
total uniform, i.e.

hη = hξ
def
= h, (A.30)

where hη is the mesh width of Ωh in η-direction and hξ the mesh width in η-direction.
Doing so, we have

∂2

∂η∂ξ
Ã 1

2
h−2




1 −1 0
−1 2 −1
0 −1 1


 .

Together with the 5-point stencil for the Laplace operator (cf. (A.8)) we end up with
a 3-point stencil for the principle part:

c2γβ−1(∆− 2
∂2

∂η∂ξ
) Ã c2γβ−1h−2




1 0 0
0 −2 0
0 0 1


 . (A.31)

Discretization of the drift part In order to ensure invertibility of the final dis-
cretization matrix Lh we decompose the transformed drift field b(η, ξ) = b1(η, ξ) +
b2(η, ξ) + b3(η, ξ) according to

b(η, ξ) =
ξ − η

2

(
0
1

)

︸ ︷︷ ︸
=b1(η,ξ)

+
ξ − η

2

(
1 + γ
−γ

)

︸ ︷︷ ︸
=b2(η,ξ)

+ c

( ∇xV (c(η + ξ))
−∇xV (c(η + ξ))

)

︸ ︷︷ ︸
=b3(η,ξ)

(A.32)

and separately discretize the vector fields b1,b2 and b3 by means of the first-order
standard stencil

h−1




0 b+
i2 0

−b−i1 −|bi
1| − |bi

2| b+
i1

0 −b−i2 0


 ,

where we set b+
ij = max{bi

j , 0}, b−ij = min{bi
j , 0} and bi

j is the jth component of the
drift field bi = (bi

1,b
i
2)

T evaluated in a mesh point. Combining the resulting three
stencils in one, we end up with a 5-point stencil for the drift part

h−1




0 b+
12 + b+

22 + b+
32 0

−b−11 − b−21 − b−31 −[
∑3

i=1

∑2
j=1 |bi

j |] b+
11 + b+

21 + b+
31

0 −b−12 − b−22 − b−32 0


 . (A.33)

Discretization of the Neumann-like boundary conditions We exemplify the deriva-
tion of the Neumann-like boundary condition (A.2) in a mesh point on the right
boundary. Let x = (η, ξ) ∈ ∂Ωh be a mesh point on the right boundary and
n̂ = (1, 0)T the corresponding unit normal vector. The boundary condition (A.2)
reduces to

0 = ∇u(x) · an̂ =
∂u(x)

∂η
− ∂u(x)

∂ξ

which is consistently discretized by the scheme

0 = h−1[u(η − h, ξ)− u(η, ξ)] + h−1[u(η, ξ)− u(η, ξ + h)].
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The derivation of the schemes for the left, upper and lower boundary are analogously.
Eventually, we end up with the following stencils for the right and left boundary

h−1




0 1 0
1 −2 0
0 0 0


 , h−1




0 0 0
0 −2 1
0 1 0


 (A.34)

and for the lower and upper boundary

h−1




0 1 0
1 −2 0
0 0 0


 , h−1




0 0 0
0 −2 1
0 1 0


. (A.35)

Finally, we state the discretization stencils for the corners. Since the mesh is total
uniform, we can simply use the following stencils for the top-left and the bottom-
right corner:

h−1




0 0 0
0 −1 0
0 0 1


 , h−1




1 0 0
0 −1 0
0 0 0


. (A.36)

Unfortunately, we cannot simply apply one of the above schemes in the bottom-left
and top right corner of the rectangular mesh Ωh but the boundary condition (A.2)
in a corner xc ∈ Ωh is in particular satisfied if

0 =
∂u(xc)

∂η
=

∂u(xc)
∂ξ

.

The stencils for these relaxed boundary conditions in the bottom-left and top-right
corner then take the form

h−1




0 1 0
0 −2 1
0 0 0


 , h−1




0 0 0
1 −2 0
0 1 0


. (A.37)

Discretization matrix Like in the elliptic case, we discretize the operator Lbw on
ΩSh in ΩSh (cf. Sect. A.1.1) and denote the resulting discretization matrix by Dh. The
combination of Dh with the matrix Nh which results from the explicit discretization
of Neumann conditions is denoted by Dh. Finally, the elimination of the Dirichlet
condition leads to the matrix Lh.

M-matrix property In this section it is convenient to use the notation introduced
in Section A.6. In the elliptic case, the irreducibility of the matrix Lh is a direct
consequence of the symmetry of the discretization stencils (cf. (A.8)). Here, the
irreducibility of Lh follows from the special decomposition of the transformed vector
field in (A.32).

For the sake of a compact notation, we define for a mesh point z = (z1, z2) ∈ Ωh

a diagonal by

Dz = Ωh ∩ {z + α

( −1
1

)
: α ∈ R}.
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xij

Dxi,j

Dxi,j−1 Dxi,j+1

xij−1

xi,j+1

Figure A.3.: Schematic representation of the graph induced by the discretization
stencils in (A.31), (A.33) and in (A.34)-(A.37). The diffusion stencil
(A.31) ensures the connection of all mesh points lying on the same
diagonal whereas the connection among diagonals in the direct vicinity
is guaranteed by the stencil in (A.33) via Lemma A.1.4.

A first observation is that the diffusion stencil (A.31) guarantees the mutually con-
nection of all mesh points lying on the same diagonal.

Furthermore, we can prove that diagonals in the direct vicinity to each other are
connected too.

Lemma A.1.4. Let xi,j = (η0+ih, ξ0+jh) ∈ ΩSh be a mesh point. Then the diagonal
Dxi,j is connected at least with one of the diagonals Dxi,j+1 and Dxi,j−1. If xi,j ∈ ΩSh
then Dxi,j is connected with both.

Proof. Let xi,j ∈ Ωh and, firstly, assume that neither xi,j+1 nor xi,j−1 lies on the
boundary ∂Ωh and that ηi 6= ξj . Consider the vector field decomposition in (A.32)
and the stencil given in (A.33); provided that γ > 0 we deduce

b12 6= 0 ⇔ −γ
ηi − ξj

2
6= 0 ⇔ b22 6= 0.

But this immediately implies that either

b+
12 6= 0 and b−22 6= 0 or b−12 6= 0 and b+

22 6= 0

holds true and, hence, xi,j is directly connected with xi,j−1 and xi,j+1, respectively.
Next, let xi,j ∈ ∂Ωh. The stencils in (A.34) and (A.34) for the discretization of the

Neumann-like condition show that xi,j is directly connected to a mesh point in Ωh

and hence Dxi,j is connected at least with one of the diagonals Dxi,j+1 and Dxi,j−1 .
The same reasoning holds true for the corners.

For a schematic representation of the connectivity of diagonals induced by the
discretization matrix Lh see Figure A.3. Now we are prepared to prove

Lemma A.1.5. The matrix −Lh is an M-matrix.
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Proof. The matrix −Lh satisfies the sign conditions (A.60) and (A.61) and for every
mesh point in the direct vicinity of ∂Ah ∪ ∂Bh we have

|Lh(x,x)| >
∑

y 6=x

|Lh(x,y)|. (A.38)

But from the connectivity within the diagonals, by Lemma A.1.4 and the discretiza-
tion of the Neumann-like boundary conditions it immediately follows that for every
mesh point z ∈ ΩSh we can find a directed path p = (z = x0, . . . ,xn), x0, . . . ,xn ∈ ΩSh
in the graph associated with Lh to an xn which satisfies the inequality in (A.38).
For schematic presentation of the associated graph see Figure A.3. This proves that
−Lh is essentially diagonally dominant and, finally, by virtue of Theorem A.6.6 we
are done.

Stability and Convergence

The proof that the discretization scheme for the Langevin committor equation is
stable as well as the proof of convergence is analogously to the proof for the Smolu-
chowski case, given in Section A.1.2 and Section A.1.2 because we only exploited the
M-matrix property of the discretization matrix and the consistency of the schemes.

We summarize both results in

Theorem A.1.3. The discretization scheme resulting from (A.31),(A.33) together
with the stencils in (A.34)-(A.37) is stable. The stability constant is given by

C = 2 max
x∈Ω\S

{|s(x)|},

where the function s(x) ∈ C2(Ω) ∩ C1(Ω) is the solution of the auxiliary mixed-
boundary value problem





Lbws = −1 in Ω \ S
s = 0 on ∂S

∇s · an̂ = −1 on ∂Ω.

(A.39)

Let u be the analytical solution of the mixed-boundary value problem (A.26) and
let uh = L

−1
h F h denote the approximated solution with respect to the total uniform

mesh width h. Then we have

lim
h→0

∥∥∥uh −R
S
hu

∥∥∥
∞

= 0.

A.2. Weak Formulation for the Elliptic Mixed-Boundary
Value Problem

In this section we will derive a weak formulation of the elliptic mixed-boundary value
problem 




β−1∆u +∇V · ∇u = f in ΩS
def
= Ω \ S

u = gD on ∂S
∂u

∂n̂
= gN on ∂Ω

(A.40)
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Figure A.4.: Contour plots of solutions of the mean first passage times equa-
tion (3.10) with respect to the set S = A∪B (first column) and solutions
|s(x)| of the auxiliary problem in (A.39) (second column). Results for
constant temperature β = 1 and for three different friction constants:
from top to bottom: γ = 10, γ = 1 and γ = 0.001.
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A.2. Weak Formulation for the Elliptic Mixed-Boundary Value Problem

where Ω ⊂ Rd is a domain (open and connected) and S ⊂ Ω is a close subset.
In particular, we show the existence of a weak solution of the problem (A.7) and
(A.16). For the derivation we follow the usual steps, except that we introduce a
suitable weight function which simplifies the resulting bilinear form in the weak
formulation.

As the weight function, we choose the equilibrium probability density function of
the Smoluchowski dynamics (2.37), that is

α(x)
def
= exp (−βV (x)),

where β > 0 is usually referred to as the inverse temperature. Provided that the
potential V (x) is sufficiently smooth, we have

0 < α0 ≤ α(x) ≤ α1 < ∞, ∀x ∈ ΩS ,

where we set α0 = minx∈ΩS{α(x)} and α1 = maxx∈ΩS{α(x)}. For a compact nota-
tion we abbreviate the inner product on L2(ΩS) by

(u, v)
def
=

∫

ΩS
u(x)v(x) dx.

In the first step of the derivation of the weak formulation we multiply the equation
in (A.40) with a test function φ ∈ C∞(ΩS) and with the weight function α(x).
Integrating over the domain ΩS yields

β−1(∆u, φα)− (∇V,∇u φα) = (f, φα). (A.41)

By Green’s first integral identity and ∇α = −β∇V α we expand the first integral in
the equation (A.41)

β−1(∆u, φα) = (∇V,∇u φα)− β−1(∇u,∇φ α)

+ β−1

∫

∂S

∂u

∂n̂
φα dσ∂S(x) + β−1

∫

∂Ω

∂u

∂n̂
φα dσ∂Ω(x).

(A.42)

Substituting the left hand side of (A.42) in (A.41) and recalling that the normal
derivative is prescribed on ∂Ω we end up with

(∇u,∇φ α)−
∫

∂S

∂u

∂n̂
φα dσ∂S(x)−

∫

∂Ω
gN φα dσ∂Ω(x) = −β(f, φα).

The last equation motivates the following weak formulation

Find u ∈ H1(ΩS) such that{
a(u, φ) = lf,gN

(φ), ∀φ ∈ H1(ΩS)
u = gD on ∂S

(A.43)

where we define

a(u, φ)
def
= (∇u,∇φ α), (A.44)

lf,gN
(φ)

def
= −β(f, φα) +

∫

∂Ω
gNφα dσ∂Ω(x). (A.45)
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Notice that the function a(·, ·) is a symmetric bilinear form and the function lf,gN
(·)

is linear. Provided that the function gD ∈ H
1
2 (∂S) we can use its continuation

gD(x) to decompose the unknown function u(x) by u(x) = w(x) + gD(x), where the
new unknown function w(x) has to vanish on ∂S. This leads to an equivalent weak
formulation

Find w ∈ H such that

a(w, φ) = lf,gN
(φ)− a(gD, φ), ∀φ ∈ H1(ΩS)

(A.46)

where the Sobolev space H is defined by

H def
= {v ∈ H1(ΩS) : tr∂Sv = 0}. (A.47)

A.2.1. Existence of a Weak Solution

The existence of a unique solution of the weak problem (A.46) is usually proved by
showing that the prerequisites of the Lemma of Lax-Milgram are satisfied. In doing
so, we have to show that the bilinear form (A.44) is H-elliptic, i.e,

∃c1 > 0 : a(v, v) ≥ c1 ‖v‖2
H1 ∀v ∈ H (A.48)

∃c2 > 0 : |a(v, w)| ≤ c2 ‖v‖H1 ‖w‖H1 ∀v, w ∈ H (A.49)

and that the linear function defined on the right hand side of (A.46) is an element
in the dual space (H1(ΩS))′ = {l : H1(ΩS) → R : l is linear and continuous}.

We first prove that our bilinear form (A.44) satisfies the condition (A.48). Let
v ∈ C∞(ΩS) such that v|∂S = 0. Then we deduce

a(v, v) =
∫

ΩS
∇v · ∇v α dx ≥ α0 ‖ |∇v| ‖2

L2 .

In the last step we estimate the H1-norm of v by

α0 ‖v‖2
H1 = α0

(
‖v‖2

L2 + ‖ |∇v| ‖2
L2

)

≤ α0

(
C ‖ |∇v| ‖2

L2 + ‖ |∇v| ‖2
L2

)

≤ (1 + C)a(v, v),

where the first inequality follows from the Poincaré-inequality for functions vanishing
only on a part of the boundary (see Theorem A.6.3 in Appendix). Since C∞(ΩS)
is dense in H1(ΩS) we get for 0 < c1 = (1 + C)/α0 the desired result. The second
condition (A.49) is a simple consequence of the Cauchy-Schwartz-inequality in R2

and in L2. We deduce

|a(v, w)| ≤ α1

∫

ΩS
|∇v · ∇w| dx

≤ α1

∫

ΩS
|∇v| · |∇w| dx

≤ α1

(∫

ΩS
|∇v|2

) 1
2

·
(∫

ΩS
|∇w|2

) 1
2

≤ α1 ‖v‖H1 ‖w‖H1
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A.2. Weak Formulation for the Elliptic Mixed-Boundary Value Problem

In the last step we have to show that the right hand side in (A.46)

lf,gN ,gD
(v)

def
= −β−1(f, αv) +

∫

∂Ω
gN αv dσ∂Ω(x)− a(gD, v)

belongs to (H1(ΩS))′. Hence, we have to show that

∃K > 0 : ‖lf,gN ,gD
‖(H1)′ = sup

‖v‖H1=1
|lf,gN ,gD

(v)| ≤ K.

which immediately follows from

1.) |(f, αv)| ≤ ‖fα‖L2 · ‖v‖H1 ,

2.) |a(gD, v)| ≤ α1 ‖gD‖H1 ‖v‖H1 ,

3.) |
∫

∂Ω
gN αv dσ∂Ω(x)| ≤ ‖gNα‖L2(∂Ω) · ‖v‖H1 .

A.2.2. Classical Solution vs. Weak Solution

The following theorem gives an answer to the question under which conditions a
weak solution is also a classical solution.

Theorem A.2.1. Let u ∈ C2(ΩS)∩H1(ΩS) be a solution of the weak problem (A.43).
Then u is a classical solution, i.e. u ∈ C2(ΩS)∩C1(ΩS), of the mixed-boundary value
problem (A.3).

Proof. First notice that we have the following sequence of inclusions

H1
0 (ΩS) ⊂ H ⊂ H1(ΩS),

where H is the Sobolev space defined in (A.47). Since u is a solution of the weak
problem (A.43),

−β−1(∇u,∇φ α) + β−1

∫

∂Ω
gNφα dσ∂Ω(x) = (f, φα) ∀φ ∈ H,

we get by applying Green’s integral identity

(β−1∆u−∇V∇u, φα) + β−1

∫

∂Ω
(gN − ∂u

∂n̂
)φα dσ∂Ω(x) = (f, φα) ∀φ ∈ H

and in particular

((β−1∆u−∇V∇u− f)α, φ) = 0 ∀φ ∈ H1
0 (ΩS).

Because of the strict positivity of the weight function α(x) we conclude

β−1∆u−∇V∇u = f in ΩS .

Moreover, we obtain
∫

∂Ω
(gN − ∂u

∂n̂
)φα dσ∂Ω(x) = 0 ∀φ ∈ H1(ΩS)

which shows that the Neumann boundary conditions are also satisfied,

∂

∂n̂
u = gN on ∂Ω.

By assumption, the function u satisfies the Dirichlet boundary conditions on ∂S
which completes the proof.
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A.3. Approximation of Diffusion Processes via Markov
Jump Processes

In this section we will show that the Birth-Death process in Section 4.3.1, given
by its generator (4.44), is indeed an approximation of the considered Smoluchowski
dynamics.

It is a well-known fact that every diffusion process of the form (2.8) can be ap-
proximated under weak conditions on the diffusion matrix by a Birth-Death process.
In general, the opposite implication does not hold. According to Gardiner [41], Sect.
7.2, the basic idea of the proof that a family of Birth-Death processes, parameterized
by a scaling parameter ε, approximates a diffusion process is to show that in the
limit ε → 0 the associated Master-equations passes to the Fokker-Planck equation
associated with the diffusion process. In order to explain that idea in more detail
and to motivate our alternative approach, we present the construction given in [41],
page 248. Consider a 1-dimensional diffusion process Xt ∈ R of the form

dXt = A(Xt)dt +
√

B(Xt)dWt (A.50)

with sufficiently smooth coefficients A : R → R and B : R → R+. The jump rates
of the approximating Birth-Death process on the state space S = εZ are defined
according to

Wε(x, x′) def
=

(
A(x)
2ε

+
B(x)
2ε2

)
δx′,x+ε +

(
−A(x)

2ε
+

B(x)
2ε2

)
δx′,x−ε (A.51)

such that for a sufficiently small ε > 0, (A.51) is positive for all x ∈ S. Next it is
shown, that in the limit ε → 0, the Master-equation

∂pε(x, t)
∂t

=
∫

R

[
Wε(x′, x)pε(x′, t)−Wε(x, x′)pε(x, t)

]
dx′

=Wε(x− ε, x)p(x− ε, t) + Wε(x + ε, x)pε(x + ε, t)
− (Wε(x, x + ε) + Wε(x, x− ε))pε(x, t)

(A.52)

becomes the Fokker-Planck equation

∂p(x, t)
∂t

= Lfwp(x, t) =
1
2

∂2

∂x2
(B(x)p(x, t))− ∂

∂x
(A(x)p(x, t)). (A.53)

An alternative way to see that the Master-equation passes in the limit ε → 0 to
(A.53) bases on the observation that from the view point of finite differences, the
right hand side in (A.51) results from a second order finite differences discretization
of the operator

Lbw =
1
2
B(x)

∂2

∂x2
+ A(x)

∂

∂x
,

which is the generator associated with the diffusion process in (A.50). For the sake of
simplicity we consider the diffusion process of a finite interval [a, b] ⊂ R and assume
periodic boundary conditions. Let Wε ∈ R|S|×|S| denote the matrix resulting from
the jump rates in (A.51) where S = εZ ∩ [a, b] and we additionally set

Wε(x, x)
def
= −(Wε(x, x + ε) + Wε(x, x− ε)).
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Notice that the Master equation in (A.52) can now be written in a compact form,

∂pε

∂t
= W T

ε pε,

where pε = (pε(x))x∈S . Encouraged by a Remark in [44], page 94, we next show that
the transposed matrix W T

ε is a consistent discretization of the operator Lfw on the
right hand side in the Fokker-Planck equation (A.53). With the notation introduced
in Section A.1, we have for any p ∈ C2

Lemma A.3.1. ∥∥W T
ε Rεp−RεLfwp

∥∥
∞ → 0 as ε → 0.

Proof. Let x ∈ S be a mesh point. We deduce

(W T
ε Rεp)(x) =Wε(x− ε, x)p(x− ε) + Wε(x + ε, x)p(x + ε)

− (Wε(x, x + ε) + Wε(x, x− ε))p(x)

=
1

2ε2
[B(x− ε)p(x− ε)−B(x)p(x) + 2B(x + ε)p(x + ε)]

− 1
2ε

[A(x + ε)p(x + ε)−A(x− ε)p(x− ε)]

=
1
2

∂2

∂x2
(B(x)p(x)) +O(ε2)− ∂

∂x
(A(x)p(x)) +O(ε2),

which proves the assertion.

The view point that the construction of the jump rates of an approximating Birth-
Death process can also be obtained via finite difference discretization of the generator
Lbw allows a straightforward generalization for the approximation of diffusion pro-
cesses in higher dimension. For example, the generator of the Birth-Death process
considered in Section 4.3.1, results from the discretization of the generator

Lbw = β−1∆−∇V∇

via the second order scheme in (A.8) where we additionally included reflecting
boundary conditions.

A.4. Proofs

A.4.1. Proof for the Representation of the Probability Current of
Reactive Trajectories

To derive (3.15), we take first the limit as T → ∞ in (3.14) using ergodicity to
obtain

lim
s→0+

1
s

(∫

S
ρ(x)qb(x)Ex

(
q(X(s))1Rd\S(X(s)))

)
dx

−
∫

Rd\S
ρ(x)qb(x)Ex

(
q(X(s))1S(X(s))

)
dx

)

=
∫

∂S
n̂∂S(x) · JAB(x)dσ∂S(x),

(A.54)
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where Ex denotes expectation conditional on X(0) = x. Taking the limit as s → 0+

can now be done using

lim
t→0+

1
t

(
Exφ(X(t))− φ(x)

)

=
d∑

i,j=1

aij(x)
∂2φ(x)
∂xi∂xj

+
d∑

i=1

bi(x)
∂φ(x)
∂xi

≡ (Lbwφ)(x),

where φ(x) is any suitable observable. However, taking the limit on (A.54) is some-
what tricky because of the presence of the discontinuous functions 1S(x) and 1Rd\S(x).
The proper way to avoid ambiguities on how to interpret the derivatives of 1S(x)
and 1Rd\S(x) is to mollify these functions, that is, replace them by functions varying
rapidly on ∂S but smooth, then let s → 0+ and finally remove the mollification. Let
then fδ(x) be a smooth function which is 1 in S at a distance δ from ∂S, 0 out of S
at a distance δ from ∂S and varies rapidly but smoothly from 0 to 1 in the strip of
size 2δ around ∂S. Thus (A.54) is the limit as δ → 0 of

Iδ = lim
s→0+

1
s

∫

Rd

ρ(x)qb(x)

×
(
fδ(x)Ex

(
q(X(s))(1− fδ(X(s)))

)−

(1− fδ(x))Ex

(
q(X(s))fδ(X(s))

))
dx.

Inserting
0 = −ρ(x)qb(x)fδ(x)

(
q(x)(1− fδ(x))

)

+ ρ(x)qb(x)(1− fδ(x))
(
q(x)fδ(x)

)

under the integral then letting s → 0+, we obtain

Iδ =
∫

Rd

ρ(x)qb(x)
(
fδ(x)

(Lbw(q(1− fδ))
)
(x)

− (1− fδ(x))
(Lbw(qfδ)

)
(x)

)
dx.

Expanding the integrand, several terms cancel and we are simply left with

Iδ = −
∫

Rd

ρ(x)qb(x)
(Lbw(qfδ))

)
(x)dx.

Using the explicit form for L and expanding, this is

Iδ = −
∫

Rd

ρ(x)qb(x)
(
fδ(x)Lbwq(x)

+
d∑

i,j=1

aij(x)
∂

∂xi

(
q(x)

∂fδ(x)
∂xj

)

+
d∑

i=1

∂fδ(x)
∂xi

(
bi(x)q(x) +

d∑

j=1

aij(x)
∂q(x)
∂xj

))
dx.

166



A.4. Proofs

By (3.6), Lbwq(x) = 0 and integrating by parts the second term in the parenthesis
under the integral, we arrive at

Iδ = −
∫

Rd

d∑

i=1

∂fδ(x)
∂xi

(
q(x)qb(x)Ji(x)

+ qb(x)ρ(x)
d∑

j=1

aij(x)
∂q(x)
∂xj

− q(x)ρ(x)
d∑

j=1

aij(x)
∂qb(x)
∂xj

)
dx.

Now let δ → 0 and recall that for any suitable F (x) = (F1(x), . . . , Fd(x))T

lim
δ→0

∫

Rd

d∑

i=1

∂fδ(x)
∂xi

Fi(x)dx

= − lim
δ→0

∫

Rd

fδ(x)
d∑

i=1

∂Fi(x)
∂xi

dx

= −
∫

S

d∑

i=1

∂Fi(x)
∂xi

dx

= −
∫

∂S

d∑

i=1

n̂S,i(x)Fi(x)dσ∂S(x),

where the first equality follows by integration by parts, the second by definition
of fδ(x), and the third by the divergence theorem. Using this result, we conclude
that the limit of the expression above for Iδ as δ → 0 is the surface integral of the
current JAB(x) given in (3.15), as claimed.

A.4.2. Proof for the Representation of the Transition Rate via a Volume
Integral

To check that (3.19) gives the rate, let ∂S(ζ) = {x : q(x) = ζ} be the (forward)
isocommittor surface with committor value ζ ∈ [0, 1], and consider the integral

A(ζ) =
∫

∂S(ζ)
ρ(x)

d∑

i,j=1

n̂∂S(ζ),i(x)aij(x)
∂q(x)
∂xj

dσ∂S(ζ)(x).

Since ∂S(0) ≡ ∂A, is easy to see from (3.17) and (3.18) with ∂S = ∂A that:

A(0) =
∫

∂A
ρ(x)

d∑

i,j=1

n̂∂A,i(x)aij(x)
∂q(x)
∂xj

dσ∂A(x)

≡ kAB,

where we used q(x) = 0 and qb(x) = 1 on ∂A. Next, we show that A(ζ) = A(0) = kAB

for all ζ ∈ [0, 1]. Using the Dirac delta function we can express A(ζ) as

A(ζ) =
∫

Rd

ρ(x)
d∑

i,j=1

∂q(x)
∂xi

aij(x)
∂q(x)
∂xj

δ(q(x)− ζ)dx
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and hence
dA(ζ)

dζ

= −
∫

Rd

ρ(x)
d∑

i,j=1

∂q(x)
∂xi

aij(x)
∂q(x)
∂xj

δ′(q(x)− ζ)dx

= −
∫

Rd

ρ(x)
d∑

i,j=1

∂q(x)
∂xi

aij(x)
∂

∂xj
δ(q(x)− ζ)dx.

Integrating by parts, this gives

dA(ζ)
dζ

=
∫

Rd

ρ(x)
d∑

i,j=1

aij(x)
∂2q(x)
∂xi∂xj

δ(q(x)− ζ)dx

+
∫

Rd

d∑

i,j=1

∂q(x)
∂xi

∂

∂xj
(aij(x)ρ(x))δ(q(x)− ζ)dx

= −
∫

Rd

ρ(x)
d∑

i=1

bi(x)
∂q(x)
∂xi

δ(q(x)− ζ)dx

+
∫

Rd

d∑

i,j=1

∂q(x)
∂xi

∂

∂xj
(aij(x)ρ(x))δ(q(x)− ζ)dx,

where in the second step we used (3.6). Using the definition (3.16) for the equilibrium
current J(x), the two integrals in the last equality can be recombined into

dA(ζ)
dζ

= −
∫

Rd

d∑

i=1

∂q(x)
∂xi

Ji(x)δ(q(x)− ζ)dx

= −
∫

∂S(ζ)

d∑

i=1

n∂S(ζ),i(x)Ji(x)dσ∂S(ζ)(x) = 0,

(A.55)

where in the last equality we use the fact that the probability flux of the regular (by
opposition to reactive) trajectories through any surface is zero at equilibrium. (A.55)
implies that A(ζ) = A(0) = kAB for all ζ ∈ [0, 1] as claimed. Hence,

∫ 1
0 A(ζ)dζ = kAB

which gives
∫ 1

0

∫

Rd

ρ(x)
d∑

i,j=1

∂q(x)
∂xj

aij(x)
∂q(x)
∂xj

δ(q(x)− ζ)dxdζ

=
∫

ΩAB

ρ(x)
d∑

i,j=1

∂q(x)
∂xj

aij(x)
∂q(x)
∂xj

dx = kAB.

This is (3.19).

A.5. Short Account to Free Energy

An important quantity to characterize the transition behavior of a diffusion process
in a (non-trivial) potential landscape is the free energy with respect to a reaction
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A.6. Definitions and Theorems

coordinate. A reaction coordinate can be seen as an observable providing information
on the progress of a reaction between a reactant state and a product state. Formally,
a reaction coordinate is a continuous and smooth function ξ : Rd 7→ Rn whose level
sets ξ−1(c) = {x ∈ Rd : ξ(x) = c}, c ∈ Rn foliate the state space and comprise all
states which are indistinguishable with respect to the reaction, respectively. In the
traditional way, the free energy is defined by means of the marginal distribution of
the equilibrated process with respect to a given reaction coordinate. Here we give
only a short introduction to the free energy. For details see, e.g. [45, 46]. To formalize
things, consider the Smoluchowski dynamics in a potential landscape

dXt = −∇V (Xt)dt +
√

2β−1dWt,

where Xt ∈ Rd and the remaining parameters are as in (2.37). The probability to
find the equilibrated system in a certain region, say D ⊂ Rd, is given in terms of the
equilibrium density function exp(−βV (x)), that is

P(Xt ∈ D) = Z−1

∫

D
exp(−βV (x))dx,

where Z is the normalization factor.
In order to define the free energy, consider the marginal probability density func-

tion with respect to the reaction coordinate ξ, that is

Z(c) =
∫

Rd

exp(−βV (x))δ(ξ(x)− c)dx,

where δ(x) is the famous delta-function. The standard free energy is defined as the
logarithm of the marginal probability density function Z(c),

Vfree : Rn → R

Vfree(c)
def
= −β−1 log Z(c).

A.6. Definitions and Theorems

Wiener process The Wiener process Wt is a mathematical model of the Brownian
motion of a free particle in the absence of friction.

Definition A.6.1 (Wiener process and white noise). The standard d-dimensional
Wiener process Wt is a d-dimensional, time-homogeneous Markov process on Rd

with independent and stationary N (0, (t−s)I)-distributed increments Wt−Ws, with
initial value W0 = 0, and with almost certainly continuous sample functions.

A d-dimensional stochastic process η is said to be a white noise if it is a Gaussian
process with mean zero and covariance 〈ηi(t)ηj(s)〉 = δijδ(t− s).

Existence and Uniqueness of Solution

Theorem A.6.1. ([3], page 105) Suppose that we have a stochastic differential
equation

dXt = b(t,Xt)dt + σ(t,Xt)dWt, X0 = c, 0 ≤ t ≤ T < ∞, (A.56)
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where Wt is standard d-dimensional standard Wiener process and c is a random
variable independent of Wt − W0 for t ≥ 0. Suppose that the Rd-valued function
b(t, x) and the (d×d)-valued function σ(t, x) are measurable on [0, T ]×Rd and have
the following properties: There exists a constant K > 0 such that

a) (Lipschitz condition) for all t ∈ [0, T ], x, y ∈ Rd,

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ K‖x− y‖.

b) (Restriction of growth) For all t ∈ [0, T ], x ∈ Rd,

‖b(t, x)‖2 + ‖σ(t, x)‖2 ≤ K2
∥∥1 + ‖x‖2

∥∥ .

Then, equation (A.56) has on [0, T ] a unique Rd-valued solution {Xt, 0 ≤ t ≤ T},
continuous with probability 1, that satisfies the initial condition X0 = c.

Time reversal of diffusion The following theorem on time reversal of a diffusion
process {Xt, 0 ≤ t ≤ T}, T > 0 satisfying the stochastic differential equation

dXt = b(t,Xt)dt + σ(t, Xt)dWt,

where b : [0, T ]× → Rd, σ : [0, T ] × Rd → Rd×d, is found in [47] which generalizes
results in [14].

Define the reversed time process by XR
t

def
= XT−t, then

Theorem A.6.2. If for almost all t > 0, the law of Xt has a probability density
v(t, x) such that for all s > 0 and any open bounded set C ⊂ Rd

∫ T

s

∫

C
‖v(t, x)‖2 +

d∑

i=1

‖
d∑

j=1

σij(t, x)v(t, x)xj‖2dx dt < ∞,

where v(t, x)xj denotes the partial derivative of v(t, x) in the distribution sense, then
the reversed time process XR

t is a Markov diffusion process satisfying the SDE

dXR
t = bR(t,XR

t )dt + σR(t,XR
t )dWt,

where

bR
i (t, x) = −bi(T − t, x) + 2

∑d
j=1

d
dxj

[
aij(T − t, x)v(T − t, x)

]

v(T − t, x)
, 1 ≤ i ≤ d,

σR
ij(x, t) = σij(x, T − t), 1 ≤ i, j ≤ d,

a(x, t) =
1
2
σ(x, t)σT (x, t).
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Poincaré Lemma The proof of the existence of a unique weak solution of the
elliptic mixed-value boundary problem (A.40) bases on the general version of the
Poincaré-Lemma.

Theorem A.6.3. ([20], page 127-130)Assume that the Lipschitz domain Ω ⊂ Rd

is bounded, connected and open and the subset Σ ⊂ ∂Ω is Lipschitz continuous and
has a positive Hausdorff measure. Then there exists an CΩ > 0 such that

∫

Ω
|∇v|2 dx ≥ CΩ

∫

Ω
v2 dx, ∀v ∈ H1

Σ(Ω)

where the Sobolev space H1
Σ(Ω) is defined by

H1
Σ(Ω) = {u ∈ H1(Ω) : trΣu = 0}.

Hypoelliptic operators

Definition A.6.2. ([71], page 139) A linear second order operator G with infinitely
often differentiable coefficients defined in a domain Ω ⊂ Rd is called hypoelliptic
in Ω if for any distribution u in D(Ω) and any domain Ω1 ⊂ Ω the condition that
Gu ∈ C∞ implies that u is infinitely often differentiable in Ω1.

Theorem A.6.4. ([71],page 139) If the second order operator

Gu = a : ∇∇u + b · ∇u + cu

with real coefficients aij(x), bi(x), c(x) in the class C∞(Ω) is hypoelliptic in the do-
main Ω, then for any point x ∈ Ω

either
d∑

i,j=1

aijξiξj ≥ 0 or
d∑

i,j=1

aijξiξj ≤ 0

for all ξ ∈ Rd.

Theorem A.6.5. ([96],page 9) If the operator (− d
dt +Lfw) is hypoelliptic, then the

law of Xt has a smooth density p(t, x) on (0,∞)× Rd, i.e.,

P(Xt ∈ dy) = p(t, y)dy,

and p(t, x) satisfies the Fokker-Planck equation

dp

dt
= Lfwp.

M-matrix The following definitions and Lemmata are found in [44]. The elements
of a matrix A are denoted by aij , i, j ∈ I. Here A and the index set I assume the
places of Lh and ΩSh . The index i ∈ I is said to be directly connected with j ∈ I if
aij 6= 0. We say that i ∈ I is connected with j ∈ I, denoted by i → j, if there exists
a connection

i = i0, i1, . . . , in = j with aik−1ik 6= 0, (1 ≤ k ≤ n).
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Definition A.6.3. A matrix A ∈ RI×I is called irreducible if every i ∈ I is con-
nected to every j ∈ I.

Definition A.6.4. A matrix A ∈ RI×I is called strictly diagonally dominant if

|aii| >
∑

j 6=i

|aij |, ∀i ∈ I, (A.57)

weakly diagonally dominant if

|aii| ≥
∑

j 6=i

|aij |, ∀i ∈ I, (A.58)

irreducible diagonally dominant if A is irreducible and weakly diagonally dominant
and if, furthermore,

|akk| >
∑

j 6=k

|akj | for at least one k ∈ I (A.59)

and essentially diagonally dominant if A is weakly diagonally dominant and every
i ∈ I is connected to a k ∈ I for which the inequality in (A.59) holds true.

Now we turn our attention to special subclass of positive matrices.

Definition A.6.5. A matrix A ∈ RI×I is said to be an M-matrix if A satisfies

aii > 0, for all i ∈ I, (A.60)
aij ≤ 0, for all i 6= j, (A.61)

A is regular and A−1 ≥ 0 componentwise.

Theorem A.6.6. Let A ∈ RI×I be strictly or essentially or irreducibly diagonally
dominant. If the sign conditions (A.60),(A.61) are satisfied then A is an M-matrix.

The proofs for stability of the discretization schemes derived in Section A.1.2 and
Section A.1.3 are based on the following theorem.

Theorem A.6.7. Let A ∈ Rd×d be an M-matrix. If a vector w ∈ Rd exists with
Aw ≥ 1 then ∥∥A−1

∥∥
∞ ≤ ‖w‖∞ ,

where
∥∥A−1

∥∥
∞ = sup‖w‖∞=1

∥∥A−1w
∥∥
∞ is the matrix-norm with respect to the max-

imum norm ‖·‖∞.

Two theorems on the existence of generators The following Theorems are found
in [53]. They give sufficient conditions for the existence of a generator of a given
transition matrix.

Theorem A.6.8. Let P be a transition matrix and suppose that

(a) det(P ) ≤ 0, or

(b) det(P ) >
∏

i pii, or

172



A.6. Definitions and Theorems

(c) there are states i and j such that j is accessible from i, but pij = 0.

Then, there is no generator L ∈ G such that P = exp(L).

Theorem A.6.9. Let P be a transition matrix.

(a) If det(P ) > 1
2 , then P has at most one generator.

(b) If det(P ) > 1
2 and ‖P − I‖ < 1

2 (using any operator norm), then the only
possible generator for P is the principal branch of the logarithm of P .

(c) If P has distinct eigenvalues and det(P ) > e−π, then the only possible gener-
ator for P is the principal branch of the logarithm of P .
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Zusammenfassung

Übergangsereignisse in komplexen Systemen zwischen langlebigen Zuständen treten
in vielen Bereichen der Naturwissenschaft auf, wie zum Beispiel in der Physik,
Chemie, Biologie, etc. . Charakteristisch für Übergangsereignisse sind deren seltenes
Auftreten verglichen mit der Zeitskala der Fluktuationen innerhalb langlebiger (meta-
stabiler) Zustände des Systems. Aus der Sicht von Computersimulationen komplexer
Systeme verursacht die Zeitskalentrennung einen enormen numerischen Aufwand zur
Bestimmung von makroskopischen Grö ßen, wie zum Beispiel die Übergangsrate
zwischen Konformationen eines (Bio-)Moleküle. Zu den bekanntesten Ansätzen in
der Literatur zur Lösung dieses Problems gehören ”Transition State Theory” (TST)
und ”Transition Path Sampling” (TPS). Die Idee von TST ist es, die Reaktionsrate
(Übergangsrate) zwischen zwei Zuständen durch die mittlere Anzahl von Durchgän-
gen in einem geeigneten Übergangsbereich zu approximieren. Ohne genaue Kenntnis
der Reaktionskoordinaten aber ist es sehr schwierig einen geeigneten Übergangs-
bereich zu identifizieren und somit zuverlässige Ergebnisse zu erhalten. TPS hinge-
gen erlaubt es, ohne Annahmen über Übergangsbereiche und Reaktionskoordinaten
ein Ensemble von Übergangspfaden zu erzeugen. Die Schwierigkeit hier besteht
aber in der weiteren Auswertung des erzeugten Ensembles hinsichtlich zum Beispiel
der Berechnung der Übergangsrate oder der Identfizierung unterschiedlicher Über-
gangsmechanismen.

Gegenstand der vorliegenden Dissertation ist die Präsentation eines neuen Ansatz-
es, genannt ”Transition Path Theory” (TPT), der ein vollständiges Verständnis
von Übergangsprozessen für zeitkontinuierliche Markovprozesse ermöglicht. TPT be-
schreibt die statistischen Eigenschaften des Ensembles aller Reaktionspfade (Über-
gangspfade) zwischen zwei nicht notwendigerweise metastabilen Zuständen durch
die Committor-Funktion, die Verteilungsfunktion der reaktiven Pfade, der durch
die reaktiven Pfade induzierte Wahrscheinlichkeitsfluss und die Übergangsrate. Wir
illustrieren TPT für Markovprozesse auf kontinuierlichen Zustandsräumen anhand
von verschiedenen niedrig dimensionalen Beispielen und zeigen, dass mit TPT präzise
Voraussagen über Übergänge in unschiedlichen dynamischen Szenarien (z.B. en-
tropische Barrieren, temperaturabhängige Übergangsbereiche, schnelle und langsame
Freiheitsgrade) gemacht werden können.

Der zweite Schwerpunkt dieser Arbeit liegt in der Anwendung von TPT auf höher
dimensionale komplexe Systeme. Zunächst leiten wir TPT für Markovprozesse mit
diskreten Zustandsräumen (Markov Sprungprozesse) her und zeigen, dass Übergangs-
ereignisse im diskreten Zustandsraum vollständig durch TPT beschrieben werden
können. Aufbauend auf dem diskreten Wahrscheinlichkeitsfluss beweisen wir eine hi-
erarchische Zerlegung des Ensembles aller (diskreten) Übergangspfade und entwick-
eln effiziente graphen-basierte Algorithmen zur numerischen Bestimmung dieser Zer-
legung. Als Anwendung von TPT analysieren wir die Konformationsdynamik des
Glyzin-Moleküls gelöst in Wasser auf der Datenbasis einer Molekülsimulation. Dazu
bestimmen wir den der diskretisierten Zeitreihe zugrunde liegenden Markovprozess
durch eine verbesserte Maximum-Likelihood Methode zur Rekonstruktion von Mar-
kov Sprungprozessen aus unvollständigen Beobachtungen und bestimmen dann die
dominanten Übergangspfade zwischen zwei Konformationen.
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