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Chapter 1

Introduction

In recent years microprocessor manufacturers have seen a number of conventional
wisdoms reverted that had been around for decades. One of them states that
transistors cost money, but power is free. Nowadays, as power dissipation increases
with ever decreasing feature sizes on the chip, integrated circuit resources are
no longer the limiting factor to performance. Thus power efficiency needs to be
optimized at about the same rate as performance increases. This issue is often
referred to as the “Power Wall”.

Another one of those wisdoms concerns memory latency. For decades, processor
clock frequencies have grown at a higher rate than memory latency has decreased.
This has caused a gap in contemporary computer systems of about 1,000 clock
cycles per I/O operation [20]. As a result, performance depends more and more
on moving data than on the processor’s computational power. This second issue
is called the “Memory Wall”.

The third and last wisdom that shall be mentioned here refers to clock fre-
quencies. Increasing clock frequencies of single core processors used to be a key to
achieving more performance. The idea of parallelism has been around for a long
time, but the additional effort for parallelizing software used to be hardly justifi-
able since gains in sequential processing performance soon voided the performance
advantage. Since physical limits to higher clock frequencies have been reached,
performance gains are nowadays more and more achieved by putting several pro-
cessing cores on a single chip. This change in paradigms has not been brought
about by new developments in software architecture that decrease the effort of
parallel programming, but is more of a retreat from the ever growing challenges
that make optimizing the performance of single core processors difficult. This issue
is also known as the “Frequency Wall”.

The Cell Broadband Engine (CBE) is a representative of a new generation of
microprocessors that push performance limits by massive parallelism. The novel
architecture tries to mitigate all of the three issues presented above. The “Power
Wall” issue is addressed by stripping the classical general purpose processing cores
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Chapter 1. Introduction

of advanced logics, such as instruction reordering, that require a large number of
transistors and are partly responsible for the growing need for energy and cooling
of processors in recent years. This loss of computational power is compensated
by augmenting the chip with eight special purpose processing elements that are
designed to boost floating-point performance.

The decomposition of the chip into specialized but less complex parts also
mitigates the “Frequency Wall” issue, since less power usage means less heat,
which allows higher frequencies.

The CBEs solution to the “Memory Wall” issue is putting a small but fast
memory called local store beside each of the special purpose processing elements,
which they can access exclusively. The pathway between the processing element
and its local store is short, allowing for short latency. The Direct Memory Access
(DMA) controller of each processing element can transfer chunks of up to 16 KB
of data ahead of time into local store while the execution unit is working. Each
processing element can handle up to 16 parallel transfers. This allows the memory
bandwidth of the CBE to surpasses the bandwidth of conventional processors by
a factor of almost twenty [20].

One fundamental flaw of the first iteration of the CBE available to the market
shall not be omitted: Its double-precision performance is about 10 times below its
single-precision performance, which makes it less attractive for scientific comput-
ing. The chip designers have focused on optimizing the performance for computer
graphics applications such as Sonys Playstation 3, for which single-precision gener-
ally suffices. The upside is that in form of the Playstation 3, the CBE is available
inexpensively for evaluation. IBM has released the second iteration of the CBE
platform in May 2008. They claim to have increased the double-precision perfor-
mance by a factor of five [3]. However, we did not have it available for testing.

A number of algorithms from a wide range of fields, such as speech recogni-
tion [27], data mining [9], and drug design [30] have been implemented on the CBE.
The performance of the Stable Fluids algorithm on a ‘classical’ CPU, the CBE
and a General Purpose Graphics Processing Unit (GPGPU) are compared in [24].
Mixed-precision solvers for linear systems of equations based on the Gaussian
Elimination algorithm are presented in [26, 10]. They bypass the double-precision
performance weakness of the CBE by performing most of the computations in
single-precision, but still deliver results in full double-precision accuracy. Frame-
works that simplify software development for the CBE are presented in [16, 7].
IBM provides libraries that are optimized for the CBE architecture, such as the
Monte Carlo Library [22] as well as the well established Basic Linear Algebra
Subprograms (BLAS) [17] and Linear Algebra Package (LAPACK) [21] libraries.

This thesis evaluates the performance gains that are achievable by optimizing
an algorithm for the solution of two-body contact problems for the CBE. We use
a Finite Element Methods (FEM) based approach. FEM problems boil down to
large systems of equations [25]. We use the Truncated Nonsmooth Newton Multi-

6



grid (TNNMG) algorithm [13] as an efficient solver for such a system in the context
of contact problems. The parallelization is based on an existing sequential imple-
mentation of the algorithm [29]. We focused on parallelizing the Gauss-Seidel
algorithm, which is an integral part of the solver. The matrices involved are gen-
erally sparse, meaning most elements are zero. Memory usage and performance
are optimized by storing the non-zero elements only. This makes additional meta
data necessary and access to the payload data irregular. Parallelizing the solver
is challenging because the underlying algorithm has dependencies that make de-
composing it into functionally independent parts that can be computed in parallel
difficult. Computational intensity (the number of floating-point operations per
data transfer from main memory) is low. This makes buffer management and load
balancing more demanding and the impact of memory latency just as important
for performance as computational power.

Chapter 2 gives an overview of the two body contact problem: The deformations
that two elastic bodies undergo when forced upon each other are examined. We
show how the problem can be discretized by using a Finite Element space and
present solvers for the systems of equations that arise from the discretization.

In Chapter 3 we will discuss ways of parallelizing the solver. We focus on
parallelizing the Gauss-Seidel algorithm, which is an integral part of it. Since the
matrices that occur are sparse, they can be decomposed into parts that can be
computed concurrently using an approach based on a graph coloring. The parallel
Gauss-Seidel algorithm along with a heuristic for finding a suitable coloring is
presented in this chapter.

Chapter 4 gives an introduction to the Cell Broadband Engine (CBE). We will
have a look at the architecture of the hardware, illustrate the possibilities of its
design and the facilities on the chip, explain the particular software development
process for this platform and conclude by pointing out several pitfalls that should
be avoided when designing software for the CBE.

In Chapter 5, we present the implementation of the parallel projected Gauss-
Seidel algorithm for the CBE. We show the final overall architecture of the im-
plementation, explain the communication and synchronizations between the pro-
cessing elements and present low level optimizations that were done to adjust the
source code to their special needs. These optimizations account for a considerable
part of the performance gains.

In Chapter 6 the performance results that we measured are presented and
interpreted. We list measurements of the Gauss-Seidel algorithm alone as well as
the overall multigrid solver.
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Chapter 2

Multigrid Methods for
Two-Body Contact Problems

2.1 The Two-Body Contact Problem

This thesis deals with a static biomechanical problem: The behavior of tibia and
femur of a human knee joint are examined. The two bones are placed in a con-
figuration in which they are in contact with each other. We are interested in the
deformations that the bodies undergo and stresses that occur. The abstract prob-
lem is called the two-body contact problem. Figure 2.1 shows a visualization of an
instance of this problem along with the stress field along a cut through the contact
boundary.

We only give a brief discussion of the key concepts of a solver for such a prob-
lem. This chapter is based on [25, 29], which provide more extensive introductions.

Figure 2.1: Left: Contact between Tibia and Femur of a human knee joint.
Right: The stress field along a cut through the contact boundary.
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Chapter 2. Multigrid Methods for Two-Body Contact Problems

2.1.1 Linear Elasticity

Let us first examine a single body in the absence of contact. Let the set Ω ⊂ Rd

be bounded, open, and connected. The boundary of Ω is decomposed into two
disjoint subsets

∂Ω = ΓD ∪ ΓN .

The body is clamped in place in ΓD and surface force boundary conditions are
described on ΓN . Let H1

0 (Ω) be the first order Sobolev space of functions on Ω
which are zero on ΓD.

Lemma 2.1.1. Let u ∈ H1
0 (Ω) describe the deformation of a body in the presence

of a field of surface traction t : ΓN → Rd and a force density field f : Ω → Rd.
Then u is a solution of the minimization problem

J(u) ≤ J(v) ∀v ∈ H1
0 (Ω) (2.1)

where the energy functional J(v) is given by

J(v) =
1
2
a(v, v)− l(v), (2.2)

with the bilinear form

a(v, w) =
∫
Ω

ε(v(x)) : C : ε(w(x)) dx v,w ∈ H1
0 (Ω)

and the linear form

l(v) =
∫
Ω

fv dx +
∫

ΓN

tv ds v ∈ H1
0 (Ω).

Proof. [29, Sec. 3.1]

The quadratic functional J is convex and coercive on H1
0 [29, Lem. 3.1.1].

For small strains the fourth order Hooke tensor C can be derived from the linear
relationship

σ = C : ε, (2.3)

between the material dependent Piola-Kirchhoff stress tensor σ and the material
independent linearized strain tensor ε(u) = 1

2(∇u + ∇uT ) [29]. The : symbol
denotes tensor multiplication. For isotropic materials, (2.3) can be simplified to

σ(u) =
E

1 + ν
(ε +

ν

1− 2ν
trεI).

where E and ν are material constants [29, Sec. 3.1].
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2.1. The Two-Body Contact Problem

Figure 2.2: Two-body contact problem

2.1.2 Two-Body Contact

Let us now consider two bodies represented by the domains Ω1 and Ω2. Additional
conditions that describe contact between the two bodies need to be stated. In
particular, we need to make sure that the bodies do not penetrate each other.
This only affects the set of admissible displacements from which a solution u can
be chosen, the energy functional given in the previous section, however, remains
unmodified.

The boundary of each domain is now decomposed into three disjoint subsets

∂Ω = Γi,D ∪ Γi,N ∪ Γi,C ,

where Γi,C is the part of the boundary on which contact may occur. The contact
mapping Φ : Γ1,C → Γ2,C is a homeomorphism that identifies points on Γ1,C and
Γ2,C that may come into contact with each other. With Φ we can define the initial
gap function

g : Γ1,C → R;

g(x) = ‖Φ(x)− x‖.
The linear non-penetration condition states that the relative displacement in di-
rection of the normal n of any two points on the boundary patches Γi,C should not
exceed their initial distance:

u|Γ1,C
n1 + (u|Γ2,C

◦ Φ)n2 ≤ g. (2.4)

Let K be the set of functions u for which (2.4) holds. We call it the set of admis-
sible displacements. The minimization problem (2.1) can now be modified to its
constraint form: Find a u ∈ K such that

J(u) ≤ J(v) ∀v ∈ K (2.5)
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Chapter 2. Multigrid Methods for Two-Body Contact Problems

Lemma 2.1.2 ([29, Lem. 3.2.2]). The minimization problem (2.5) has a unique
solution.

2.2 Discretization

2.2.1 Finite Elements

Let us go back to the linear elasticity problem in the absence of contact. The space
H1

0 (Ω) is of infinite dimension, which makes finding a solution of the minimization
problem (2.1) in it difficult. Finite Elements Methods (FEM) remedy this by using
a linear Finite Element space S that is of finite dimension instead. The domain Ω
is decomposed into a number of elements. The elements can be triangles in two
dimensional problems or tetrahedrons in three dimensional problems. We assume
the use of triangles for simplicity, but the considerations can easily be extended to
other elements [8].

Definition 2.2.1. The first order finite element space over a triangulation T of
Ω is defined as

ST := {v ∈ C(Ω)| v|t ∈ Π ∀t ∈ T }

with Π being the set of first order polynomials [25].

The polynomials on the triangles are defined by interpolation between nodes
NT that correspond to the vertices of the triangles. Let n be the number of nodes
in NT .

Definition 2.2.2. The nodal basis of the space ST is given by

ΛT = {λp| p ∈ NT }

where λp is defined by

λp ∈ ST : λp(q) = δpq ∀q ∈ NT (Kronecker-δ)

for all p ∈ NT [25].

Lemma 2.2.1 ([29, Lem. 3.1.2]). Let u ∈ H1
0 (Ω) be a solution to the minimization

problem (2.1). Then u is a solution of

a(u, v) = l(v) ∀v ∈ H1
0 (Ω). (2.6)

This is called the variational formulation of the minimization problem. In the
Finite Element space ST equation (2.6) can be expressed as

a(uT , v) = l(v) ∀v ∈ ST . (2.7)
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2.2. Discretization

The finite element function uT can be represented through the basis functions {λp}
as

uT =
∑

p∈NT

upλp.

Substituting uT and v = λq, q ∈ NT in equation (2.7) yields the linear system of
equations ∑

p∈NT

a(λp, λq)up = l(λq) ∀q ∈ NT

Thus, solving the variational problem (2.7) in the space ST is equivalent to solving
the algebraic problem

Au = b

with

A = (ap,q)p,q ∈ NT apq = a(λq, λp)

b = (bp)p∈NT bp = l(λp)

u = (up)p∈NT

(2.8)

The matrix A is commonly referred to as stiffness matrix. Note that A is sym-
metric [25].

Since we are looking for displacements in d directions, the components of the
solution vector u are d-valued vectors. We define the d-valued nodal basis functions
as λp,i = λpei using the canonical basis vectors ei, i = 1, ..., d. Thus, the elements
of the stiffness matrix A are blocks of d× d matrices [29, Sec. 3.1], given by

(apq)ij =
∫
Ω

ε(λp,i(x)) : C : ε(λq,j(x)) dx.

Note that since most blocks are zero, the stiffness matrix is sparse. The right hand
side b is a vector of d-vector blocks given by

(bp)i =
∫
Ω

fλp,ids +
∫

ΓN

tλp,ids.

The discretized energy functional can be written on Rdn as

J(v) =
1
2
vT Av − bv v ∈ Rdn.
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Chapter 2. Multigrid Methods for Two-Body Contact Problems

2.2.2 Discretization of the Nonpenetration Condition

For the discretization of the nonpenetration condition we use a weak form based
on mortar elements∫

Γ1,C

[u1|Γ1,C
· n1 + (u2 ◦ Φ)|Γ2,C

· n2]θds ≤
∫

Γ1,C

gθds

for all θ from a suitable cone of mortar test functions defined on Γ1,C [29].
Let vh be the vector of coefficients of a finite element function. The vector vh

is split into four parts, vi and vI
i , where vi corresponds to the nodes of the grid

that discretize the contact boundary Γi,C and vI
i represents the remaining nodes.

The nonpentration condition only affects the elements of vi. The set of admissible
displacements can now be expressed in an abbreviated notation as

Kalg = {c ∈ Rdn |Dv1 −Mv2 ≤ g}

with suitable matrices D and M . The concrete construction of D and M is given
in [29].

2.3 Linear Solvers

In the remainder of this chapter we introduce the Truncated Nonsmooth Newton
Multigrid (TNNMG) algorithm [13] as a fast an stable solver for algebraic con-
strained minimization problems. We start by introducing the linear Gauss-Seidel
method as well as Multigrid Methods that are based on it. Then we turn to solvers
for constrained problems by introducing the projected Gauss-Seidel algorithm [12].
This finally leads us to the TNNMG algorithm as an adaption of Multigrid Meth-
ods for constrained problems.

2.3.1 The Gauss-Seidel Iteration Scheme

Consider the algebraic minimization problem of finding x ∈ Rn such that the
energy functional

J : Rn → R

J(x) = 1
2xT Ax− bx

is minimized on Rn. To find a solution, let us consider the functional on a one
dimensional subspace of Rn by assuming that all components of x except xi are
constant

Ji : R → R

Ji(xi) = 1
2xT Ax− bx.
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2.3. Linear Solvers

By deriving Ji, we can find that x̄i ∈ R minimizes Ji if

x̄i =
1
aii

(bi −
i−1∑
j=1

aijxj −
n∑

j=i+1

aijxj).

By successively minimizing all components x1 through xn and immediately using
the components xν+1

j that have already been minimized, we get the Gauss-Seidel
iteration scheme:

xν+1
i =

1
aii

(bi −
i−1∑
j=1

aijx
ν+1
j −

n∑
j=i+1

aijx
ν
j ). (2.9)

Starting at an arbitrary x0, an iteration scheme yields a sequence of iterates
x0, x1, ..., xk.

Definition 2.3.1. An iteration sequence is said to be convergent if lim
k→∞

xk exists

for all x0 ∈ Rn. Convergence is said to be linear if

∃µ ∈ (0, 1) : ‖x− xk+1‖ ≤ µ‖x− xk‖.

We call µ the rate of convergence.

Lemma 2.3.1. If the Gauss-Seidel iteration scheme is convergent, its limit x is a
solution of the system of equations Ax = b.

Proof. [14].

For the algebraic linear elasticity problem the elements of A are blocks Aij of
d× d-matrices. The block Gauss-Seidel method is the version of the Gauss-Seidel
method for this kind of system. It can be derived by considering the energy func-
tional on d-dimensional instead of one dimensional subspaces. This results in the
same scheme as above, except that the division by the diagonal elements becomes
a multiplication with the inverse of the diagonal element. This is equivalent to
solving the system of equations

Aii x
ν+1
i = bi −

i−1∑
j=1

Aijx
ν+1
j −

n∑
j=i+1

Aijx
ν
j . (2.10)

for xν+1
i .

2.3.2 Multigrid Methods

With increasing fineness h of the grid the rate of convergence of the Gauss-Seidel
algorithm drops exponentially [8]. The multigrid approach addresses this issue
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Chapter 2. Multigrid Methods for Two-Body Contact Problems

Figure 2.3: The multigrid V -cycle

by introducing a grid hierarchy of increasing fineness. The finer triangulations
Ts on higher levels s of the hierarchy are derived by applying s refinement steps
that decompose the triangles into smaller triangles to the original triangulation
T0. Multigrid methods perform Gauss-Seidel iterations consecutively across all
hierarchy levels by transferring the intermediate results between the levels. Thus,
they benefit from the better rates of convergence on coarse hierarchy levels. The
following listing shows the steps of an iteration of a multigrid method:

Algorithm 2.3.1 ([25, Alg. 6.2] Multigrid V-Cycle).

(1) Let there be a grid hierarchy of j levels;
(2)
(3) For each level k in (j,..,2)
(4) begin
(5) Perform ν1 Gauss-Seidel presmoother iterations;
(6) Restrict the smoothed iterate to the level k − 1;
(7) end
(8) Solve the coarse problem directly;
(9) For each level k in (2,..,j)
(10) begin
(11) Prolong the iterate from the coarse level k − 1;
(12) Perform ν2 Gauss-Seidel postsmoother iterations;
(13) end

Note that in the context of multigrid methods, the Gauss-Seidel algorithm is
commonly referred to as smoother. The Multigrid V -cycle gets its name from the
resemblance of the scheme shown in Figure 2.3 to the letter V . Iterations on the
finer levels first presmooth the high frequency components of the error, then the
lower frequency components are successively adjusted on the coarser levels until
the bottom level is reached, and finally postsmoother iterations incorporate the
coarse level adjustments into the overall result and eliminate high frequency error
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2.4. Solvers for Constrained Convex Problems

components that might have been reintroduced by the transition from the lower
levels. The restriction and prolongation operators handle the transitions of the
operands from the fine to the coarse grid and back. See [8] for details. On the
bottom level of the hierarchy, the base solver solves the remaining problem directly.

2.4 Solvers for Constrained Convex Problems

The restriction of the solution to the admissible set Kalg requires solvers for con-
straint convex minimization problems. In this section the projected Gauss-Seidel
algorithm [12] is presented. It is the starting point for developing the Truncated
Nonsmooth Newton Multigrid(TNNMG) algorithm [13], which was used in this
thesis.

2.4.1 The Projected Gauss-Seidel Algorithm

In analogy to Section 2.3.1 the projected Gauss-Seidel algorithm [12] can be de-
rived, which finds a solution to the minimization problem within a ‘box’ [ai, bi]n of
admissible solutions instead of Rn. Consider the minimization problem of finding
an x ∈ [ai, bi]n such that the energy functional

J : [a, b]n → R

J(x) = 1
2xT Ax− bx.

is minimized. Again we successively minimize all components x1 through xn, which
gives us the Gauss-Seidel algorithm with the following extensions: If the minimum
x̃i of a component is found within the admissible interval [ai, bi], the algorithm
remains unchanged. In case x̃i is outside of [ai, bi], the actual minimum is either ai

or bi depending on which side of the intervall x̃i is located. Formally, the iteration
scheme becomes

x̃ν+1
i = 1

aii
(bi −

∑i−1
j=1 aijx

ν+1
j −

∑n
j=i+1 aijx

ν
j )

xν+1
i =


x̃ν+1

i x̃m+1
i ∈ [ai, bi]

ai x̃ν+1
i < ai

bi x̃ν+1
i > bi.

, i=1,...,n.

Theorem 2.4.1. For any initial iterate x0 ∈ K the projected Gauss-Seidel algo-
rithm is globally convergent if the obstacles are of the box-constrained structure

K =
∏

0≤i<n

[ai, bi] ai ∈ {−∞} ∪ R, bi ∈ R ∪ {∞}.

Proof. [12].
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In the case that the elements of A are blocks, we use the regular block Gauss-
Seidel algorithm but solve the nested system of equations (2.10) with a projected
Gauss-Seidel solver.

2.4.2 Multigrid Methods for Constrained Convex Prob-
lems

The Truncated Nonsmooth Newton Multigrid (TNNMG) algorithm [13] is a multi-
grid method for constrained problems. This section gives a brief overview of the
key concepts behind the consecutive steps of the algorithm. A detailed explanation
is given in [29].

• Mortar transformation

Theorem 2.4.2. There exists a transformation matrix B that transforms
the nodal basis {λp} to a new basis {λ̃p} in such a way that the transformed
admissible set K̃alg has the box-constrained form

K̃alg =
∏

0≤i<dn

[ai, bi] ai ∈ {−∞} ∪ R, bi ∈ R ∪ {∞}

The construction of B is explained in [29]. The transformed admissible
set has the necessary box-constrained form to ensure convergence of the
projected Gauss-Seidel algorithm. The energy functional J̃ in the new basis
{λ̃p} is given by

J̃(ṽ) =
1
2
ṽT Ãṽ − b̃ṽ

with
Ã = BABT and b̃ = Bb.

Let ũν be the current iterate in transformed coordinates. We perform one or
more projected Gauss-Seidel steps which yields the smoothed iterate ũν+ 1

2 .

• Truncated defect problem

We now consider the algebraic defect problem with respect to the smoothed
iterate ũν+ 1

2 , which is to find a correction d̃ ∈ Rdn such that

d̃T Ã(ṽ − d̃) ≥ b̃− (ũν+ 1
2 )T Ã(ṽ − d̃) for all ṽ ∈ K̃

ν+ 1
2

alg

with a suitable defect obstacle K̃
ν+ 1

2
alg . Let N •(ũν+ 1

2 ) be the set of nodes

that have reached the obstacle. Further changes to the nodes in N •(ũν+ 1
2 )

are unwanted. Thus, we would like to restrict the coarse grid correction d̃
such that

d̃p,0 = 0 ∀p ∈ N •(ũν+ 1
2 )
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To this end we define the truncation matrix as

T ν
pq =

{
Id p = q, p /∈ N •(ũν+ 1

2 )
0 else.

With it we can define the truncated defect problem in canonical coordinates

dT Âν(v − d) ≥ r̂ν(v − d) for all v ∈ K
ν+ 1

2
alg

with

Âν = (B−1T ν)Ã(B−1T ν)T and r̂ν = B−1T ν(b̃− (ũν+ 1
2 )T Ã). (2.11)

• Admissible coarse grid correction

Next we perform a linear multigrid step for the truncated linear defect prob-
lem

Âνd = r̂ν

disregarding the obstacles K̃
ν+ 1

2
alg . Since the zero elements on the diagonal

elements of Â corresponding to truncated nodes would result in a division
by zero, the linear Gauss-Seidel step for the coarse problem is adjusted to
yield a correction of zero if the diagonal element is zero.

Let d̄ be the resulting correction after one multigrid step in canonical coor-
dinates and

d̃ = T νB−1d̄

the correction in transformed coordinates. Since d̃ may not be contained in

the defect admissible set K̃
ν+ 1

2
alg we project it onto K̃

ν+ 1
2

alg in the Euclidean
sense and obtain d̃P .

• Line search

The energy of the iterate after the coarse grid correction J̃(ũν+ 1
2 + d̃P ) may

not be less or equal than the energy of the smoothed iterate J̃(ũν+ 1
2 ). To

gain this monotonocity, a line search in the direction of the correction d̃P is
done to find the minimal energy (see Figure 2.4):

ũν+1 = ũν+ 1
2 + αd̃P

How to find the optimal line search parameter α is explained [29].

In practice, the transformation (2.11) for the truncation is combined with the
restriction operator R into a combined transition operator

R̃ = R(B−1)T T ν

and the linear multigrid step starts at the second-finest grid. Figure 2.5 gives an
overview of the complete V-cycle of the TNNMG algorithm. After each TNNMG
iteration the change in energy between the current and previous iterate is com-
puted. The algorithm terminates when it drops below a given threshold.
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Figure 2.4: The coarse grid correction d̄ of the smoothed iterate in trans-
formed coordinates ũν+ 1

2 is projected onto the admissible set Kalg in ũν+ 1
2 +

d̃P . A line search finds the minimum between ũν+ 1
2 and ũν+ 1

2 + d̃P , which
yields the new iterate.

Theorem 2.4.3. For any initial iterate u0 ∈ Kalg the Truncated Nonsmooth New-
ton Multigrid algorithm converges to the unique minimum u of J in Kalg.

Proof. [29, Thm. 3.4.1].
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Figure 2.5: V-cycle of the TNNMG algorithm
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Chapter 3

Concurrent Multigrid Solvers

Now that we have an algorithm for the solution of contact problems at hand,
we can take care of finding ways of making the most of the Cell processor by
parallelizing the solver. Since the time constraint of this master thesis does not
allow to parallelize the entire algorithm, we had to pick a part of the algorithm
to focus on. Here is a list of parts of the TNNMG algorithm that are eligible for
parallelization:

• Linear / Projected Gauss-Seidel Smoothers

• Truncated Restriction / Prolongation

• Regular Restriction / Prolongation

• Base Solver

• Line Search

• Computation of the change in energy

We picked the Gauss-Seidel smoothers, since they are the foundation of the
solver, are the only part of the solver that is non trivial to parallelize by feeding dif-
ferent rows of the matrix to different processors, and are of use in other algorithms
as well. It needs to be expected, however, that the speed-up effect of parallelizing
a single part of an algorithm has limited effect on the overall performance. This is
where Amdahls argument [35] comes in. It states that when a part p ∈ [0, 1] of an
algorithm is parallelized, leaving the remainder (1 − p) sequential, the maximum
speed-up that can be expected on n processors is

speed-up(n) =
1

(1− p) + p
n

.

This means for example that if 50% of an algorithm are parallelized the maximum
speed-up on 216 processors is about 1.99.
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Figure 3.1: Deriving the dependency graph for a sparse matrix. The blanks
in the matrix represent zero elements. Each non-zero element corresponds
to one edge in the graph.

3.1 Parallelizing the Gauss-Seidel Algorithm

The Gauss-Seidel algorithm cannot be parallelized by putting multiple processors
to work on different components xν

i of the current iterate xν at the same time,
because component i depends on all i− 1 preceding components. This is why the
Gauss-Seidel algorithm is considered to be not parallelizable in general. There is,
however, a way of parallelizing the algorithm for the special case of sparse matrices.
If the matrix is sparse, the elements of the rows of the iteration matrix A that
are zero do not need to be multiplied with the respective elements of the current
iterate, since the product is always zero, thus eliminating some of the dependencies.
This can go as far as to make sets of rows of A completely independent from one
another. The key to parallelizing the Gauss-Seidel algorithm lies in disjointly
partitioning A into functionally independent sets of rows that can be processed
concurrently [15].

The functional dependencies of the algorithm for a matrix A are represented
in the functional dependency graph G(V,E), which is defined as:

V : rows of A

E : {(i, j) : i, j ∈ V | i 6= j, aij 6= 0 or aji 6= 0}

Figures 3.1 shows an example of how such a graph can be derived from a
concrete matrix. The problem of finding concurrently processable sets of rows
of A is equivalent to finding a coloring of the nodes of G, such that none of the
nodes of each pair of neighbors is assigned the same color. Rows of the matrix
that correspond to nodes of the same color are functionally independent. With a
coloring available, we get the following algorithm for updating the components xν

i :
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3.1. Parallelizing the Gauss-Seidel Algorithm

Figure 3.2: Left: Rearranging the rows and columns illustrates that rows of
the same color are now independent from one another. Right: A possible
way of spreading the workload over two processors.

Algorithm 3.1.1 (Concurrent Gauss-Seidel).

(1) For k=1 to #colors
(2) begin
(3) For each node n of color ck

(4) begin
(5) Update component xν

i that corresponds to n;
(6) end
(7) end

The For each loop in the algorithm indicates an arbitrary update order that al-
lows for parallelization. Note that the algorithm requires synchronization of all
processing elements involved after all nodes of a color have been processed. This
makes load balancing crucial, since the first processor to finish will idle until the
last one catches up.

Figure 3.2 shows a rearrangement of the rows and columns of the matrix in such
a way that rows of the same color are next to each other. The empty boxes around
the diagonal of the matrix indicate that the respective rows do not depend on any
of the rows in their immediate neighborhood and can be processed in parallel.
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3.2 Heuristics for Graph Coloring

The perfect graph coloring algorithm returns a coloring that uses the fewest pos-
sible number of colors χ(G), which is called the chromatic number of G. The
problem of finding such a coloring is proven to be NP-hard [11, Sec. 10.3]. There
are, however, a number of heuristics that produce non optimal colorings in accept-
able time. The choice of a suitable heuristic is governed by two factors: runtime
versus the ratio of χ(G) to the number of colors produced by the heuristic. We
have chosen a simple algorithm known as sequential coloring [15]:

Algorithm 3.2.1 (Sequential coloring).

(1) Choose an order v1,v2,...,vn of the vertices of G;
(2) For i = 1 to n
(3) begin
(4) Assign vi the smallest color yet unused in

neighbors(vi) ∩ {v1,v2,...,vi−1};
(5) end

Let deg(G) denote the degree of a graph G(V,E), defined as the maximum
number of neighbors of a node in V . Under the assumption made in [15, Sec. 6] that
an upper bound for deg(G) in the context of matrices arising from FE Methods
is α log |V |, sequential coloring takes O(nlogn) time. An upper bound for the
number of colors produced by this algorithm is deg(G)+1, because the worst case
for assigning a new color occurs when all other colors have been used up by the
neighbors of a node.

Coloring the graph is a preprocessing step not necessary in the sequential
version of the Gauss-Seidel algorithm. That is why we chose this algorithm for its
favorable time complexity rather then an algorithm that might need fewer colors.
Since the ratio of non-zero elements of the matrices we are dealing with increases
with growing problem sizes, leading to fewer edges in the dependency graph, the
number of additional colors needed grows very slowly with the problem size, as
shown in the next section. Note that with the TNNMG algorithm the occupation
patterns of the matrices on all levels of the hierarchy are stable across iterations,
which allows to use the same coloring in all iterations.

The following listing shows the adaption of the heuristic for coloring the rows
of a symmetric matrix Mn×n.

Algorithm 3.2.2 (Coloring the rows of a symmetric matrix Mn×n).

(1) for i=1 to n //iterate through the rows
(2) begin
(3) current color=0;
(4) for j=1 to i //iterate through the columns
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3.3. Results

Figure 3.3: The number of colors needed by the coloring heuristics with
growing problem sizes

(5) begin
(6) if (aij 6= 0) and (row color[j]==current color)
(7) begin
(8) current color=current color+1;
(9) j=1;
(10) end
(11) end
(12) color[i]=current color;
(13) end

Note that aij = aji since the matrices we are dealing with are symmetric. Thus,
it suffices to check for aij 6= 0 in line (6) to get all nodes that are connected to node
i. The produced number of rows per color is unevenly distributed: The colors that
are introduced for the first couple of rows generally comprise more rows than the
colors introduced later, since the number of neighbors that are already colored is
larger for higher row numbers. Thus, it is more likely that their neighbors have
already used up all colors and a new color has to be introduced.

3.3 Results

The following table lists results we got from Algorithm 3.2.2. The matrices used re-
sulted from several refinements of the discretization of the knee problem presented
in Chapter 2:

27



Chapter 3. Concurrent Multigrid Solvers

Matrix size Non zeros Fill rate deg(G) Colors
684× 684 10024 2.14 % 55 28

4226× 4226 69778 0.39 % 121 45
13198× 13198 249128 0.14 % 192 58
47893× 47893 971009 0.04 % 194 74

The deg(G) columns lists the degree of the functional dependency graph, which
is equal to the maximum number of non-zero elements of a row of the respective
matrix. Note that the fill rate drops as the matrices grow larger. The number
of additional colors needed by the heuristic behaves in the same way. Figure 3.3
shows the results graphically.
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Chapter 4

The Cell Broadband Engine
(CBE)

This chapter gives an introduction to the CBE platform. First the elements on the
chip and the overall architecture will be explained. Then we will have a closer look
at the facilities that allow communication between the elements, and conclude with
a discussion of compiler support and issues to keep in mind for achieving optimal
performance. Only concepts that are relevant for understanding this document will
be discussed. An in-depth insight to the CBE architecture and API is provided
in [20].

4.1 Architecture

Figure 4.1 provides an overview of the CBEs architecture. The Cell processor
is a heterogeneous multicore processor: A single Cell chip features one classical
PowerPC core (PPU), and 8 Synergistic Processing Elements (SPE). The PPU is
a general purpose processor closely related to the PowerPC processors that were
used in Mac computers. Therefore a large software base is available that can run
on the PPU without changes. The PPU’s design has, however, been simplified
to make way on the chip for the SPEs. Branch predication logics and instruction
reordering, for instance, have been cut back or even completely omitted. Those
simplifications make the PPU very slow compared to modern general purpose
processors and puts it on about the same level as an AMD Athlon XP at 1,3
GHz [33].

The poor computational performance of the PPU is compensated by the SPEs,
which provide the bulk of the CBE’s computational power. SPEs are special pur-
pose processors designed to boost floating-point performance on vectors of four
single-precision or two double-precision components. This specialization makes an
SPE unsuitable for control intensive tasks like executing an operating system. The
responsibilities of the two types of elements on the chip are clearly defined: The
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Figure 4.1: CBE architecture [36]

PPU provides a well established platform for the operating system and puts the
SPEs to work should the need for high computational performance arise. Addi-
tionally, the PPU is responsible for relaying services of the operating system to
the SPEs.

The three most important parts that make up an SPE are its Synergistic Exe-
cution Unit (SXU), the Local Store (LS), and the Memory Flow Controller (MFC).
The SXU, which is responsible for executing the SPE’s program, can only access
its local store directly. To access the system’s main memory, it needs to have the
DMA controller, which is a part of the MFC, transfer parts of it to the local store
and back. This makes each SXU completely autonomous and almost unaware of
the rest of the world. It also eliminates the need for time consuming cache co-
herence checks when SXUs access their memory, as opposed to classical shared
memory architectures [31, Sec. 6.2.1]. The MFC provides the only interface of
the SXU to the outside world. To this end, its DMA controller can autonomously
transfer chunks of data between the host systems main memory and an SPE’s
local store. Next to DMAs, the MFC provides Mailboxes and Signal channels for
passing messages between the elements of the chip.

Note that only the PPU uses caches to speed up memory access, the SPEs,
however, do not. The pathway between an SPE and its local store is very short.
Thus it can be accessed at low cost, making caches superfluous.
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Figure 4.2: Double buffering [19]

4.2 Communication Facilities of the MFC

This section provides an overview of the facilities that the MFC provides to connect
its SXU to the outside world.

4.2.1 Direct Memory Access Controller (DMA)

The DMA controller transfers chunks of data between the host systems main mem-
ory and an SPE’s local store. An SXU can issue commands that the DMA con-
troller executes independently. On a single command the DMA controller can
transfer up to 16 KB of data (32 MB when DMA lists are used as explained in
the next section). Since the SXU has no further part in transferring the data after
issuing the command, it can process a chunk of data while the DMA controller
brings in the next chunk. The SXU can continue seamlessly with that next chunk
of data when it catches up. This concept is called double buffering and is essen-
tial for achieving high performance with the CBE architecture. It is illustrated
in Figure 4.2. As long as the time needed to bring in the data does not exceed
the time needed to process it, the SXU can work without interruptions, thus effec-
tively voiding the cost of memory transfers, since they are completely concurrent.
Considering this, it becomes clear why the limited size of the local store of 256
KB is not a major restriction: The SPE can process arbitrary amounts of data
without wasting any time by handling the transfer of data that exceeds its local
store.

4.2.2 DMA Lists

Next to transferring continuous chunks of data, the DMA controller supports so-
called DMA lists. They are lists of commands placed in local store, which the
DMA controller processes consecutively. This allows to transfer data that lies
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Figure 4.3: Scatter-gather example

scatter across main memory and place it continuously into an SPE’s local store or
the other way around. This concept is also referred to as scatter-gather operation
by the CBE documentation. Figure 4.3 shows an example.

A DMA list can specify up to 2048 transfers. Each element of the list consists
of a pointer into main memory and a transfer size. Thus, a DMA list command
can transfer up to 32 MB of data, which is 128 times the size of the local store.

4.2.3 Limitations to DMAs

Transfer sizes and memory locations that can be handled by the DMA controller
underlie some restrictions that can have major consequences for the overall archi-
tecture of applications:

1. Transfer sizes are restricted to 1, 2, 4, 8, and multiples of 16 bytes.

2. The starting address of the data to be transferred has to be 16 byte aligned
(the four least significant bits of the address must be zero).

3. Transfers of size 1, 2, 4 and 8 bytes are also possible if the four least signifi-
cant bits of the local store and main memory address are equal.

Figure 4.4 shows an array of 3-dimensional single-precision vectors. Suppose
vector 1 starting at address 0x1e24fb18 needs to be transferred to an SPE’s local
store. The alignment constraint, however, prevents a DMA transfer from starting
at such an address. A workaround is to start at the previous 16 byte aligned
address (0x1e24fb10), thus bringing in the y and z-components of vector 0 as well.
Obviously the SPE code needs to ignore the additional data. This adjustment
results in a chunk of 20 bytes of data that needs to be brought in. The DMA
controller, however, does not support transfers of 20 bytes. Again, the workaround
is to transfer more data then needed by adjusting the transfer size to the next
multiple of 16, which is 32, thus the entire vector 2 is transferred as well. In total,
32 bytes of data need to be transferred in order to bring in an unaligned 12 byte
vector of data.
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Figure 4.4: The alignment issue. The DMA controller can only access data
that starts at one of the underlined addresses

The root of the problem lies within the overall design of the data structure.
The CBE architecture is designed to work with vectors of four single-precision
components. Using float vectors with three components goes against this principle.
A better solution to the problems discussed above is to pad each vector with a
fourth component and make sure the array starts at a 16 byte aligned address.
This way all elements automatically start at a 16 byte aligned address and have a
valid transfer size. This simplifies the code and thus improves the performance, but
still leads to a waste of 25 percent of the memory bandwidth, which is, however,
unavoidable.

4.2.4 Mailboxes

As opposed to the DMA controller that handles transfers of large amounts of data,
mailboxes and signals only handle 32 bit messages for control and synchronization
purposes. Both the SXU and PPU can access mailbox channels, whereas DMAs are
usually initiated by the SXU. The MFC provides the following kinds of mailboxes:

Name Queue depth Direction
Inbound Mailbox 4 PPU to SPE
Outbound Mailbox 1 SPE to PPU
Interrupting Outbound Mailbox 1 SPE to PPU

The queue depth of a mailbox it the number of messages it can hold. Mail-
boxes cannot be used to exchange messages between SPEs. When an SPE reads
an incoming mailbox that has no messages pending, it stalls until a message is
available. The same happens when an SPE tries to write to a full mailbox.

Since the PPU is share by several processes, it cannot stall like an SPE. Thus,
an attempt to write another message to a full mailbox causes the oldest message
in it to be lost. Likewise, reading an empty outbound mailbox returns immedi-
ately even if the mailbox is empty, so the outbound mailbox needs to be polled.
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Alternatively, the Interrupting Outbound Mailbox can be used. Writing a message
to this mailbox causes an interrupt to be thrown on the PPU that can be routed
by the operating system to notify the application. SPEs can throw interrupts in
the following events:

1. The Interrupting Outbound Mailbox has been written

2. The Inbound Mailbox has been read and now has slots available

3. An SPE has terminated

Latency times of PPU interrupts are considerable, which renders the interrupt
mechanism too slow for our purposes as will be further explained in Section 5.1.1.

4.2.5 Signals

Signals are similar to mailboxes but have some additional traits. Other then
mailboxes, signals can be used to pass messages between SPEs. There are two
signal channels on each SPE, which can be configured independently to work in
either overwrite or OR-mode. A signal channel in overwrite mode behaves exactly
like a mailbox. In OR-mode, the current content of the signal channel is bitwise
ORed with incoming messages. When the channel is read, the current value is
reset to zero. Section 5.4 shows an application of signal channels in OR-mode.

4.3 The SXU

The SXU is the part of an SPE that is responsible for executing the program. An
SPE is a special purpose processor designed to boost floating-point performance.
This specialization makes programming it different from programming other pro-
cessors in several aspects that will be explained in this section.

4.3.1 The SPE Complier

The PPU and SPEs of a Cell chip are two fundamentally different processors,
which is why they need separate compilers. The complier that produces code
that is to be executed by an SPE will be referred to as the SPE Compiler. It
is always a cross-platform compiler, since the SPE cannot run a compiler itself
due to its limited resources. The currently available version 3.0 of IBM’s CBE
SDK ships with a GNU GCC C++ compiler in version 4.1.1, including versions
for both the PowerPC and I386 architecture. The GCC developers have currently
released version 4.3 of the compiler suite, but since it is not supported by any of the
distributions we use on the Playstion 3 (Fedora 7 and Yellow Dog Linux), we did
not test it. The developers claim, to have addressed some of the issues explained
below in this release, extended auto-vectorization capabilities in particular [1]. An
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Figure 4.5: SIMD instructions act across an entire vector

alternative to GCC compilers is IBM own C++ compiler called XL. It is, however,
not publicly available, which is why we could not test it.

The SPE compiler can handle a wide range of existing source codes, includ-
ing API-calls like printf or fopen. The CBE architecture includes means to
arbitrated them by the PPU. This makes a great deal of legacy code directly
compilable for execution on an SPE without any changes. An exception is the
Standard Input / Output Streams Library [5] introduced with C++. It includes
facilities provided by the <iostream> header file such as cout, which are currently
not implemented by the libraries shipping with the SDK. However, the CBE API
offers, standardized ways of implementing custom handlers for C++ API calls [20].

Even though the compiler can handle a wide range of legacy source code, the
resulting program will perform poorly if it is not adjusted to the SXU’s special
needs. We will point out some of those needs in the following sections.

4.3.2 SIMD Instruction Set

The SXU is designed entirely after the Single Instruction Multiple Data (SIMD)
principle. SIMD is the concept of applying a single operation to multiple operands
at the same time (see Figure 4.5) [19]. Consequently, the instruction set of the SXU
consists entirely of SIMD instructions. The data paths and registers of an SPE
are 128 bit wide, which allows for vectors of four single-precision or two double-
precision components. All instructions act across the entire register. Since classical
source code usually addresses one element of a vector at a time, the compiler needs
to find ways of joining those scalar instructions to a SIMD instruction, which is
called vectorization [20, Sec. 22.2]. This is not a simple task at all, and might
not be possible in some cases. An alternative is to vectorize algorithms manually.
This requires more work but can lead to more efficient solutions than the compiler
could find on its own.

The SPE compiler provided with the CBE SDK has limited auto-vectorization
capabilities. The SDK documentation recommends vectorization by hand [19, p.
108ff]. To this end, the SPE compiler has extensions to make SIMD instructions
available through so-called C-language intrinsics. Intrinsics are commands in the
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form of function calls that are substitutes for one or more inline assembly-language
instructions. They include instructions like spu_add or spu_mul for vector addition
and multiplication [18]. Most intrinsics expect operands of the type vector float
or vector double that designate vectors of four single-precision or two double-
precision components.

Operations that act on only a single component are sometimes unavoidable.
Since they are not directly supported by the instruction set, they need to be
emulated, which can cause considerable overhead. Emulating scalar instructions
can entail the need to shift operands to matching position within registers and
back. It can also be necessary to load an entire vector from memory, modify the
element that has changed and write the modified vector back. This increases the
impact of missed vectorizations by the compiler.

4.3.3 Floating-Point Unit Latency

The Floating-Point Unit (FPU) is the part of an SXU that is responsible for
performing computations that involve floating-point numbers. The FPU needs 6
clock cycles to finish a single-precision floating-point operation [20, Sec. 24.2].
The registers that hold the operands are not accessible during this time. This
means that when there are two consecutive floating-point instructions that use
the same registers, the second instruction will stall until the first one finishes.
This problem can be solved by having the instructions use different registers. The
register file of an SXU provides 128 registers, which is potentially enough to make
stalls completely avoidable. In practice, an instruction might depend on the result
of the previous instruction, which makes stalls unavoidable in some situations.

The high number of latency cycles can particularly become a problem in loops.
To prevent stalls in loops, we use a technique called software pipelining [20, Sec.
24.4]. The loop is unwound, which means that the instructions in it are written
out several times for different sets of registers. Since single-precision floating-point
instructions have a latency of 6 cycles, the loop might have to be written out up
to 5 times to remove all stall. Thus, proper unwinding of loops is essential for
optimizing performance.

The following example illustrates software pipelining:

Listing 4.1: Classical code example

1 vec to r f loat i n b u f f e r 1 [ 1 0 0 ] , i n b u f f e r 2 [ 1 0 0 ] ,
2 i n b u f f e r 3 [ 1 0 0 ] ;
3 vec to r f loat r e s u l t [ 1 0 0 ] ;
4

5 for ( int i =0; i <100; i++)
6 {
7 vec to r f loat tmp = i n b u f f e r 1 [ i ] + i n b u f f e r 2 [ i ] ;
8 r e s u l t [ i ] = tmp ∗ i n b u f f e r 3 [ i ] ;
9 }
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The code example adds the arrays of vectors in_buffer_1 and in_buffer_2
and multiplies the result with in_buffer_3. Note that the multiplication in line 8
depends on the result of line 7. The compiler has to insert five NOP (No Operation)
instructions after the instruction in line 7 to give the FPU enough time to complete
it before line 8 is executed.

Here is how this can be improved:

Listing 4.2: Unwound example

1 vec to r f loat i n b u f f e r 1 [ 1 0 0 ] , i n b u f f e r 2 [ 1 0 0 ] ,
2 i n b u f f e r 3 [ 1 0 0 ] ;
3 vec to r f loat r e s u l t [ 1 0 0 ] ;
4

5 for ( int i =0; i <50; i++)
6 {
7 vec to r f loat tmp1 = Win buf fe r 1 [ i ∗2+0] +
8 i n b u f f e r 2 [ i ∗2+0] ;
9 vec to r f loat tmp2 = i n b u f f e r 1 [ i ∗2+1] +

10 i n b u f f e r 2 [ i ∗2+1] ;
11

12 r e s u l t [ i ∗2+0] = tmp1 ∗ i n b u f f e r 3 [ i ∗2+0] ;
13 r e s u l t [ i ∗2+1] = tmp2 ∗ i n b u f f e r 3 [ i ∗2+1] ;
14 }

In the second listing an iteration of the loop handles two elements at a time,
cutting the number of iterations needed in half. Note that line 7 and 9 are now
independent from each other, thus the computation of line 9 can start before line
7 is completed, significantly reducing the number of waiting cycles. The same
applies to line 12 and 13.

To remove all stalls, the loop needs to be further unwound to handle five el-
ements of the arrays at a time. With the fully unwound version of the code, the
SXU can complete one floating-point instruction per cycle, leading to a consider-
able speed-up compared to the first version of the code. As with vectorization, the
support for automatic software pipelinig of the GNU C++ 4.1.1 compiler is very
limited, which makes it necessary to do this optimization by hand.

Note that the latency for double-precision floating-point instructions is 13 cy-
cles [20, Sec. 24.2], which is the reason for the poor double-precision performance
of the first implementation of the CBE.

4.4 PPU Compiler Issues

Like the SPE compiler, the PPU compiler shipped with IBM’s CBE SDK 3.0 is a
GCC compiler in version 4.1.1, which is again included in versions for PowerPC
and as a cross-platform compiler for the I386 architecture. An alternative is IBM’s
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XL compiler, which is, however, not publicly available. In this section we will point
out some issues of the GCC compiler.

4.4.1 Alignment

As explained in Section 4.2.3, the DMA controller can only access data that re-
sides at 16 byte aligned addresses. The GCC compiler we used provides the
attribute ((aligned(16))) modifier to influence the alignment of variables and

types of any kind. It does, however, not always work as expect. Arrays and ob-
jects that are dynamically instantiated using the new operator or malloc generally
cause problems, because neither of them respects this modifier since the underly-
ing malloc function implemented in glibc only guarantees 4 byte aligned pointers.
Member variables of classes are only aligned as requested with respect to the be-
ginning of the classes data. This entails the need to make sure that a dynamically
instantiated class is placed at a 16 byte aligned location in memory for its member
variables to be accessible by the DMA controller, a requirement that the standard
new operator does not provide.

This issue has been discussed extensively in the GCC mailing list and currently
has the status of WONTFIX, meaning that the cost of fixing it is considered to
be too high [34]. The following workarounds can be used to address the problem:

1. Allocate 16 bytes more then needed and discard the first bytes up to the
first correctly aligned address. The original pointer, however, needs to be
stored as well, since free and delete will not accept the aligned version.

2. Use the malloc_aligned and malloc_free functions that are provided by
the CBE SDK. The malloc_aligned function also requests more space than
needed, but places a header in front of the payload data that contains the
original pointer. The malloc_free function evaluates this header when free-
ing the memory. This is more convenient then storing the original pointer.

3. For classes, placement new can be used, a technique in which a special
version of the new operator is used that does not allocate the memory itself,
but is handed over a pointer to a buffer into which the newly created instance
of the class is to be placed.

4. Also for classes, the new operator can be overloaded and replaced by a version
that handles the allocation of memory on its own.

The same problem arises when it comes to Standard Template Library (STL)
containers like std::vector. The STL uses the concept of allocators [4] to give
programmers a way of influencing how memory is allocated. All classes that need to
allocate memory dynamically provide an additional template parameter that is by
default set to the STL’s standard allocator. It is easily possible to build your own
version of an allocator by using one of the existing implementations as a template.
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One issue, however, remains: For the compiler the vector std::vector<int> is
of a different type then std::vector<int, aligned_allocator<int> >, so they
cannot be assigned to each other. This is particularly a problem for legacy code,
which generally expects the first version. The only way to deal with this problem
is to adjust the legacy code by means of an additional template parameter to work
with arbitrary allocators.
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Chapter 5

Implementation on the CBE

This chapter will describe the adaption of the graph coloring approach to paral-
lelizing the Gauss-Seidel algorithm for the Cell processor. First we will have a look
at the implementation from the global point of view of the PPU and discuss the
overall architecture and data structures, followed by a detailed look at the SPE
side implementation.

5.1 The PPU Side

5.1.1 The Overall Architecture

Figure 5.1 shows the overall architecture of the implementation. One of the SPEs
is designated as the supervisor whose job it is to dispatch tasks and put the other
SPEs to work. The reason for an SPE doing this job rather than the PPU is the
PPU’s insufficient response time. Suppose the SPEs notify the PPU about having
finished processing a block of data by writing a message to their Interrupting
Outbound Mailbox. However, before the interrupt notification reaches the PPU
side code that reads the mailbox, the SPE has often already processed the next
block, which leads to a stall, since the mailbox can only hold a single message.

Figure 5.1: Overview of the architecture used in the implementation. The
task pool is located in main memory.
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Other than the PPU, an SPE can block when awaiting a message since it is
not shared by multiple processes. Also, it can react on incoming messages much
faster, since the notification of a new message does not need to be propagated
through several layers of the operating system. The only use of the PPU in this
architecture is to do the graph coloring, assemble the tasks, and fire up the SPEs.
It does not have any part in the actual computations and just waits for all SPEs
to return.

5.1.2 Vector and Matrix Types

As explained in Chapter 4, the DMA controller can only access data a 16 byte
aligned addresses. Thus, we use 16 byte aligned vector types in the implemen-
tation. The compiler automatically extends the size of aligned types to the next
multiple of 16 to make sure that all components of an array start at a properly
aligned address. Since we are using vectors of three components that occupy 12
bytes in single-precision and 24 bytes in double-precision, those vectors are padded
to occupy 16 and 32 bytes respectively. Matrix types are made up of an array of
three padded vectors, resulting in 48 bytes for single-precision and 96 bytes for
double-precision matrices. This waste of memory and overhead to DMA transfers
is unavoidable since workarounds would affect the performance negatively.

5.1.3 Block Compressed Row Storage (BCRS)

Block Compressed Row Storage (BCRS) [28, Sec. 2.7.5] is a data structure for
efficiently storing sparse matrices. It allows to only provide memory for the non-
zero elements of a matrix. The drawback is, that additional meta data needs to
be stored and time complexity for random access to a specific column increases
compared to storing dense matrices. The data structure manages the following
buffers to allow reconstruction of the original matrix:

• The elements buffer holds the non-zero elements of the matrix densely in
the order in which they appear in the columns.

• The column numbers buffer is an array of integers that holds the column
number of the respective element in the elements buffer. The column num-
bers for each row are stored in ascending order.

• The row windows buffer is an array of a structure that describes the window
of the elements and columns buffers that is occupied by a row. The structure
consists of an offset element and a count element that describe the offset
of the row’s first element within the elements and columns buffer and the
number of the row’s non-zero elements.

Figure 5.2 shows an example. Access to rows can be done in constant time
using the row windows buffer. For random access to a column, a binary search
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Figure 5.2: Block Compressed Row Store (BCRS) example

in the column numbers buffer needs to be done, which leads to a time complexity
of O(log c), where c is the number of non-zero elements of the row. The time
complexity of iterating through the non-zero elements of the row is O(c).

5.1.4 Task Creation

This section gives an overview of how the workload is decomposed into tasks that
can be dispatched to the SPEs. The data necessary for computing the next iterate
of a single row is generally not large enough to fill the available buffer space of
an SPE, so a task can consist of multiple rows. These rows are, as a consequence
of the graph coloring approach, not necessarily consecutive within the matrix. A
row should be processed completely by a single task to keep communication to a
minimum. All rows of a task must be processable independently from each other
(all rows must be of the same color) to keep the computational kernel simple.
Thus a task also has a unique color, which is the color of the rows that it contains.
Furthermore, the data of a task should fill the buffer space in the SPEs local store
as much as possible to keep the overhead of dispatching tasks to a minimum. The
implementation manages three buffers in main memory to describe the tasks:

• The row windows buffer, which is a permutation of the row windows buffer
of the BCRS in such a way that rows of the same color are consecutive.

• The diagonal index buffer. The diagonal indices need to be determined
during the graph coloring and can be reused in the computational kernel of
the worker SPEs.

• The row numbers buffer that contains the original row numbers within the
BCRS.
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Part of the data in the buffers is redundantly stored in the BCRS. They are
necessary, however, since the rows are processed in a different order than they are
stored. A task has to be dispatchable by a single 32 bit message that fits into
a mailbox or signal channel. This allows to dispatch as many tasks as possible
ahead of time but makes the use of pointers impossible. We use offsets to the
base address of the buffers instead and pass the base addresses to the SPEs on
initialization. The first 24 bit of the message that dispatches a task serve as offset
to the first row of the task and the remaining 8 bit hold the number of rows.

When there are only a limited number of rows of the same color available it
needs to be avoided that all of those rows are placed into a single task, since only
one worker would process this task. Thus, when the tasks are being assembled,
the number of worker SPEs has to be known. When there are n workers available,
the implementation fills n tasks at the same time. When adding a new row it is
added to the task that has the most buffer space left. This helps to keep the load
of the tasks balanced.

Note that the architecture can do without a dependency graph for the tasks as
it is used in frameworks that simplify software development for the CBE like [16],
which is why we did not use them. The colors of the tasks suffice to represent the
dependencies and offer a much more lightweight way of synchronizing dependent
tasks.

5.2 The Worker SPEs

The worker SPE implementation consists of a part that sets up DMA transfers to
bring the data into local store and the computational kernel that computes the
new iterate. In this section we will first cover the computational kernel to point
out design decisions and then turn to explaining how data transfers are handled.

5.2.1 The Computational Kernel

The following listing shows the computational kernel of the SPE side code. It
computes the new iterate for each row of a task t. Thus, it is basically an adaption
of the projected block Gauss-Seidel algorithm. Note that the operands are 3×3-
matrices and 3-vectors as explained in Chapter 2.

Algorithm 5.2.1 (Compute the new iterates of task t).

(1) for each row r in t
(2) begin
(3) residual = rhs[r];
(4) for i=0 to row window[r].count do
(5) residual -= row[r][i] * xν [r][i];
(6) diagonal = row[r][diagonal[r]];
(7) find a correction vector d that minimizes J(x) = 1

2xT Ax− bx
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with A=diagonal and b=residual, such that d ∈ obstacle[r];
(8) xν+1[r] = xν [r][diagonal[r]] + d;
(9) write xν+1[r] back to main memory;
(10) end

The following table explains the meaning of the buffers. We call them the
payload buffers since they hold the data that is required by the computational
kernel:

Payload Buffers
Buffer Elements Description
rhs vectors The elements of the right hand side vector cor-

responding to each row
row window structures

(see 5.1.3)
The window within the BCRS buffers that is
occupied by each row

row matrices The non-zero elements of each row
obstacle boxes

(see 2.4.1)
The obstacle boxes describing the set of admis-
sible solutions for each row

xν buffer vectors The elements of the current iterate correspond-
ing to the elements in the row buffer

xν+1 buffer vectors The next iterate for each row
diagonal integers An index to the diagonal element of each row

within the row buffer

The algorithm computes the residual, finds the correction vector d by solving the
minimization problem in line (7), and computes the new iterate. The implementa-
tion of the linear and projected Gauss-Seidel smoother only differ in the way that
the correction d is computed in line (7). For the projected Gauss-Seidel smoother,
we use an iterative projected Gauss-Seidel solver that performs 20 iterations. In
the linear Gauss-Seidel smoother, d is computed by solving diagonal*d=residual
(see Section 2.3.1), which can be done in a single step. This accounts for the
difference in runtime for the two variants of the algorithm shown in Table 6.2.

Note that not all rows have an obstacle, since the non-penetration condition
only affects the nodes on the boundary patch Γi,C . Thus, line (7) can be solved
directly in the projected Gauss-Seidel smoother for rows that do not have an
obstacle. To this end the implementation uses one bit of each element of the
diagonal buffer to indicate weather a row has an obstacle or not.

Let xν
ppu denote the buffer holding the current iterate in main memory. Note

that the vector xν
ppu is dense as opposed to the rows of the matrix. Thus, one could

expect the xν buffer to be accessed in the computation of the residual in line (5)
like this:
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Figure 5.3: Dependencies in the steps necessary to bring in all data for a
task. The steps in the first row represent the time critical path.

(5) residual -= row[r][i] * xν [column number[r][i]];

This is not the case in our implementation since we put only those elements of
the current iterate into the xν buffer that correspond to non-zero elements of the
rows of the task. Thus, the column numbers buffer of the BCRS has to be resolved
during the transfer of the data as explained in the next section. This can lead
to redundant data in the xν buffer when multiple rows of a task have a non-
zero element in the same column. The complexity added by removing duplicates
would, however, outweigh the benefits. The total number of elements transferred
from the xν

ppu buffer in a complete Gauss-Seidel iteration equals the number of
non-zero elements of the matrix.

The alternative would be to bring in the entire current iterate xν
ppu from main

memory. Since it is generally too large for the local store, it would have to be
broken down into pieces that need to be transferred into local store again and
again for each task causing high load to the system bus. Furthermore, most of the
elements of xν

ppu are unneeded, since the rate of non-zero elements of each row is
very low and decreasing with growing problem sizes.

Note that the current iterate for each row is always contained in the xν buffer,
since it is the element that corresponds to the diagonal element of the row. Thus,
it can be extracted from the xν buffer as is done in line (8).

5.2.2 Data Transfer

Figure 5.3 shows the dependencies in the steps necessary for bringing in all data
needed for a single task. The steps that resolve the column numbers buffer of
the BCRS and fill the xν buffer represent the time critical path. They partition
the process into three stages, each of which consists of a DMA operation and a

46



5.2. The Worker SPEs

corresponding SXU operation. Stage one brings in the windows of the rows. Stage
two brings in the column numbers of the non-zero elements and processes them to
pointers into xν

ppu. Stage three brings in the required elements of xν
ppu along with

the other payload data.
There are a number of possibilities for placing the steps that are not on the

critical path. We chose not to bring in any data sooner than necessary to avoid
unnecessary load on the system bus as well as tieing up buffer space prematurely.

Since the data for the rows of the tasks is scattered across main memory, the
implementation uses several DMA lists that require buffer space in local store.
Table 5.1 shows the auxiliary buffers for the transfer and how they are accessed
during each step. Note that the row numbers, which are necessary for bringing
in the respective elements of the right hand side vector and obstacle, correspond
to the column numbers of the diagonal elements and could be extracted from
the column numbers buffer. However, tests have shown that having the DMA
controller transfer this redundant data from main memory is faster than having
the SXU extract it from the column numbers buffer.

Operation reads writes
Stream in the row windows [main memory] row windows
Set up the column DMA list row windows columns DMA list

Stream in columns and columns DMA list columns buffer
row numbers [main memory] row numbers
Set up payload DMA lists columns buffer x DMA list

row windows row DMA list
row numbers rhs DMA list
row numbers obstacles DMA list

Stream in the payload data x DMA list xν buffer
row DMA list row buffer
rhs DMA list rhs buffer
obstacle DMA list obstacles buffer
[main memory] diagonal indices

Compute the new iterates payload buffers [main memory]

Table 5.1: Access to the buffers in each stage

5.2.3 Pipelining Data Transfers

In the previous section we dealt with the data transfer as a sequence of steps.
However, since DMA and SXU operations take turns and those two parts of the
chip can work concurrently, the process can be parallelized. In this section we
describe how pipelining can be used to achieve this. The idea is to have the DMA
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controller and SXU do each stage in parallel on data of two different tasks. To allow
them to work on the same buffer concurrently, all buffers need to be present twice.
The two versions of the same buffer will be denoted as the even and odd buffer.
The following table shows for the critical path how DMA and SXU operations can
be done in parallel in each stage:

DMA SXU
Operation Buffer Task Operation Buffer Task

Get windows even i + 3 build columns DMA list odd i + 2
Get columns odd i + 2 build payload DMA lists even i + 1
Get payload even i + 1 Process payload data odd i

Table 5.2: Pipelining of DMA transfers for the data on the critical path. The
data of task i is fully available in local store in the current iteration of the
SPE-side main loop.

In each iteration of the SPE-side main loop, the data of the tasks is propagated
further through the pipeline and one block of payload data is completed and placed
into the even buffer. Meanwhile, the computational kernel computes the new
iterates for the payload data in the odd buffer that has been brought in during the
previous iteration. After each iteration the buffers are swapped.

At any given time the buffers are filled with the data of four different tasks.
The SXU operation in each stage operates on the data that was brought in by the
DMA operation in the previous iteration of the main loop. Note that the amount
of data handled by the DMAs equals the amount of data handled by the parallel
SXU operation to balance their load as much as possible.

Two consecutive steps on the same set of data in Table 5.1 are actually an
entire iteration of the main loop apart. Note that most of the buffers that are
brought in during an iteration are used in the next iteration. Data that is needed
again in later iterations will be overwritten by the intermediate transfers. Since the
row windows and row numbers buffers are used in the computational kernel, these
buffers actually have to be present four times to prevent premature overwriting.

5.3 Optimizations

5.3.1 Vectorized Computation of the Residual

Computing the residuals is the most time consuming part of the Gauss-Seidel
algorithm. Therefore, optimizing it yields the most significant effects. The com-
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Figure 5.4: The format of a DMA list element [20]

putation consists of a number of multiplications of 3×3-matrices and 3-vectors and
the summation of the result vectors.

Let the rows of matrix M be represented by three floating-point vectors M1

through M3. The classical approach to computing the matrix-vector product y =
Mv is to determine the dot product of each row of Mi and v and merge the resulting
scalars into the result vector. Let yi be the components of the floating-point vector
y and dot denote the dot product instruction. The multiplication can be written
as:

y1 = dot(M1, v)
y2 = dot(M2, v)
y3 = dot(M3, v)

However, the SIMD instruction set does not provide a dot product instruction,
since the result is a single scalar and not a vector. This means that the dot
product needs to be computed using a number of other instructions, which is time
consuming.

The key to an approach that is better suited for vectorization is the realization
that all elements of a column of M are multiplied with the same element vi [23].
So we splat each element vi of v over all three components of an auxiliary vector
s(i) such that s(i) = {vi, vi, vi}. The auxiliary vectors are then multiplied with
the columns of M . In order to get all elements of a column of M into the same
floating-point vector, M needs to be transposed:

y = mul(MT
1 , s(1)) + mul(MT

2 , s(2)) + mul(MT
3 , s(3))

The mul instruction multiplies two vectors element-wise and returns the result in
a new vector. Note that all arithmetic instructions affect an entire floating-point
vector as opposed to the first approach.

In Table 5.3 the results of the final and fully optimized SPE code and a version
without the manually vectorized computation of the residual are compared.
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Matrix size Optimized Unoptimized Speed-up
linear Gauss-Seidel

684× 684 2.82 16.01 5.68
4226× 4226 13.84 106.86 7.72

13198× 13198 42.3 374.85 8.86
47893× 47893 151.34 1450.69 9.59
projected Gauss-Seidel

684× 684 3.53 16.72 4.73
4226× 4226 17.05 110.08 6.46

13198× 13198 54.76 387.06 7.07
47893× 47893 199.72 1499.34 7.51

Table 5.3: Runtimes in milliseconds for three Gauss-Seidel iterations with a
single worker SPEs.

Figure 5.5: Vectorized filling of the rows and columns DMA lists

5.3.2 Vectorized Filling of DMA Lists

The implementation uses five DMA lists (listed in Table 5.1) that need to be filled.
This section shows ways of vectorizing this process. Figure 5.4 shows the format
of a DMA list element. To simplify matters when filling the list, the transfer
size word can be accessed as a single 32 bit chunk, ignoring the lower 16 bit that
comprise the Stall-and-Notify flag and a number of reserved bits. They will be
implicitly set to zero as long as the transfer size does not exceed 64 KB.

The Rows and Columns DMA Lists

The rows and columns DMA lists both transfer data from the buffers of the BCRS,
which is why they are filled similarly. The input in both cases is the row windows
buffer. The format of the elements of this buffer has been chosen deliberately to
resemble a DMA list element: The offset field corresponds to the effective address
field and the count field corresponds to the transfer size field.
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Figure 5.6: Vectorized filling of the rhs and obstacle DMA lists

Figure 5.5 illustrates how the row windows are transformed into DMA list
elements. Both the offset and count fields are multiplied with the block size,
which is the size of an element of the respective buffer. Then the base address of
the array in main memory is added to the offset field to create the actual pointer.
To this end, two auxiliary floating-point vectors are created. The first one has
all its components set to the block size and the second one has the elements that
correspond to the offset field set to the base address and the others to zero. By
multiplying the row windows with the block size vector and adding the base address
vector two elements of the list can be processed at a time.

The columns DMA list needs additional treatment since the transfer from the
columns buffer is unaligned: Each column index occupies only 4 bytes, thus the
starting addresses of the column numbers of a row may not be 16 byte aligned
and the transfer size may not be a multiple of 16 bytes as is required by the DMA
controller. This issue is solved by transferring additional data before and after the
payload data as discussed in Section 4.2.3. To move the pointer of a DMA list
element to the previous 16 byte aligned address, the four least significant bit are
set to zero. To compensate for this, the transfer size has to be increased by the
value of the four bit that were truncated from the pointer. Then the transfer size
is increased to the next multiple of 16 by applying

transfer size = (transfer size + 0xF) & 0xFFFFFFF0

where & denotes the bitwise and operator.

The RHS and Obstacle DMA lists

The pointers for the rhs and obstacle DMA lists are computed based on the row
numbers buffer. The transfer size is constant for each element. The row numbers
are processed into pointers by multiplying them with the block size and adding
the base address of the respective buffer in main memory. The effective addresses
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Figure 5.7: Possible arrangement of the column numbers buffer

Figure 5.8: Removing excess indices

have to be intertwined with the transfer sizes to form the DMA list elements as
shown in Figure 5.6. This is done using a splat instruction, which takes two vectors
and merges those elements selected by a third parameter into the result vector. A
slightly simplified version of the splat instructions used for merging the effective
addresses and transfer sizes looks like this:

vector int splat_word_0 = { 0x0000, 0x0100, 0x0001, 0x0101 };
vector int splat_word_1 = { 0x0002, 0x0102, 0x0003, 0x0103 };

vec_dma_list[i] = spe_splat(sizes, addresses, splat_word_0);
vec_dma_list[i+1] = spe_splat(sizes, addresses, splat_word_1);

A value of 0x0b0a in the splat word says to take component a of input vector
b and write it into the result vector. The value of a can be between 0 and 3 and b
can be 0 or 1. This allows to process four DMA list elements at a time.

The x DMA list

The x DMA list is the largest one in the set, since it contains one element per block
instead of one per row. As explained above, the column numbers are unaligned in
main memory, since a single column index occupies only 4 bytes. Figure 5.7 shows
an example of how the column numbers could be arranged in local store.

In this section we present a way of filtering out the excess elements when
building the x DMA list. Each element of the input floating-point vector is rotated
to the left by the number of excess elements in front of it. Then each pair of

52



5.4. The Supervisor SPE

consecutive vectors is merged into a single vector that contains only the payload
bytes in the correct order. This vector can then be used as input for the procedure
described in the previous section. Figure 5.8 illustrates this approach.

In the following table, the results of the final and fully optimized SPE code and
a version without the manually vectorized filling of the DMA lists are compared:

Matrix size Optimized Unoptimized Speed-up
linear Gauss-Seidel

684× 684 2.82 3.28 1.16
4226× 4226 13.84 18.49 1.34

13198× 13198 42.3 57.68 1.36
47893× 47893 151.34 213.38 1.41
projected Gauss-Seidel

684× 684 3.53 3.99 1.13
4226× 4226 17.05 21.15 1.24

13198× 13198 54.76 70.56 1.29
47893× 47893 199.72 263.08 1.32

Table 5.4: Runtimes in milliseconds for three Gauss-Seidel iterations with a
single worker SPEs.

5.4 The Supervisor SPE

The supervisor SPE acts as a central hub for the communication between the
workers. Its main function is to wait for the workers to signal that they have
finished tasks and dispatch new tasks to them. Additionally, when all tasks of
the current color have been processed, the supervisor signals to all workers that
tasks of the next color are cleared for processing. This section explains how the
communication between the supervisor and workers is done.

5.4.1 Dispatching Tasks to the Workers

Communication between the supervisor and worker SPEs is done in both directions
by means of signal channels (see Section 4.2.5). To dispatch a task, the supervisor
writes a message that describes the window of the tasks data to a signal channel
of the worker in overwrite mode. One task is dispatched to each worker in advance
and held by its signal channel until the message is read. Before a worker signals
that it has finished a task, it reads the next task from its signal channel. This
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ensures that the supervisor has processed the previous message and confirmed it
by dispatching the next task. Otherwise consecutive messages of the same worker
could overwrite each other.

To signal the finishing of a task, the workers use a signal channel of the su-
pervisor in OR-mode. Each worker uses a different bit of the channel. Since the
signal channel works in OR-mode, the messages of several workers can accumulate
without interfering with each other.

5.4.2 Synchronization of Task Colors

The second function of the supervisor is to clear the tasks of the next color for
processing when all tasks of the current color are done. When a worker notices
that the color of a new task is different from the current color, it delays the transfer
of the current iterate for this task and stalls until the color is cleared. As soon as
the task is cleared, the transfer of the current iterate is resumed.

On the other side, the supervisor counts the number of tasks of the current
color that have been processed. When all tasks are done it clears the next color by
writing a message that contains the number of the color into the signal channels
of the workers.
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Results

In this chapter the performance gains that we achieved with our implementation
on the CBE platform compared to two ‘classical’ processors are presented. First
the performance of the Gauss-Seidel algorithm alone will be examined, since it is
the part of the TNNMG algorithm that has undergone the most optimizations.
Then we will see how the implementation scales when the number of worker SPEs
increases and conclude with measurements of the performance of the complete
TNNMG solver.

6.1 The Test Environment

We used the same example geometry as in [29, Sec. 3.8]. The left distal femur
and proximal tibia from the Visible Human data set [6] is used. The data was seg-
mented and a high-resolution boundary surface was extracted. The femur surface
consisted of 7236 vertices and 14468 triangles, and the tibia surface of 7453 vertices
and 14902 triangles. They were simplified as described in [29, Sec. 3.6] to yield
coarse surfaces with 268 vertices and 532 triangles for the femur and 224 vertices
and 444 triangles for the tibia. The Amira [32] grid generator produced two tetra-
hedral grids with 378 and 306 vertices, and 1328 and 1044 elements, respectively
(see Figure 6.1, left).

The bone was modeled with an isotropic, homogeneous, linear elastic material
with E = 17 GPa and ν = 0.3. The bottom section of the proximal tibia was
clamped and a downward displacement of 6 mm was prescribed on the upper
section of the femur (see Figure 6.1, right).

We used the hierarchy of matrices shown in Table 6.1 in our tests. It was
obtained using the implementation of the two body contact problem described
in [29]. It makes heavy use of the Distributed and Unified Numerics Environment
(Dune) [2]. The matrices were obtained by adaptively refining the 20 percent of
the triangles for which the a posteriory error estimator described in [29, Sec. 3.7]
yielded the largest error.
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Figure 6.1: Two-body contact problem

Matrix size Non zeros Fill rate deg(G) Colors Obstacles
684× 684 10024 2.14 % 55 28 17

4226× 4226 69778 0.39 % 121 45 77
13198× 13198 249128 0.14 % 192 58 293
47893× 47893 971009 0.04 % 194 74 1167

Table 6.1: The hierarchy of matrices that we used in our tests. The matrix
sizes refer to blocks of 3 × 3 matrices. The deg(G) columns lists the degree
of the corresponding functional dependency graph, which is equal to the
maximum number of non-zero elements of a row of the respective matrix.

We used a Sony Playstation 3 (PS3) for our tests on the Cell processor. This
entails two restrictions: Only six of the eight SPEs available on a Cell processor
can be accessed on the PS3. Since in our architecture one SPE acts exclusively
as supervisor, only 5 SPEs remain to do the actual work. The second restriction
concerns memory: A PS3 only features 256 MB of RAM that cannot be extended.
This allows only relatively small problems to be computed on the PS3. For this
reason the hierarchy of grids we used for testing the complete TNNMG algorithm
comprises three levels only.

For comparing the results to a ‘classical’ scalar and sequential architecture, we
ran the test suite on two machines with Intel processors. The first one is a desktop
computer that uses an Intel Pentium 4 processor (P4) at 3.00 GHz and has a
system memory that runs at 400 MHz. The second machine is a laptop computer
that uses a weaker Intel T2250 processor at 1.73 GHz but has a faster system
memory that runs at 533 MHz. As table 6.2 shows, the Gauss-Seidel algorithm is
only slightly faster on the Pentium 4 than on the T2250. This goes to show that
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the performance of the algorithm depends not only on the processor but just as
much on the performance of the system memory.

The source code was compiled with the GNU C++ Compiler in version 4.1.1
for all three platforms (PPU, SPE and Intel x86). The IBM Cell SDK 3.0 was
used. See Chapter 4 for more information about the compilers and SDK. All times
have been taken using the gettimeofday() function.

Note that the Cell processor used in the PS3 is optimized for single-precision
floating-point computations and therefore performs poorly when it comes to double-
precision computations. IBM has released the next iteration of the CBE platform
in which the problem was addressed in May 2008 [3]. We did, however, not have
it available for testing. This is why double-precision performance is only briefly
discussed at the end of this chapter. All other results listed refer to computations
in single-precision.

6.2 Single-Precision

6.2.1 The Gauss-Seidel Algorithm

In this section we present the results for the Gauss-Seidel algorithm alone. This
algorithm has undergone the most optimizations for the Cell platform and thus
exhibits the most performance gains. The following table shows the runtimes in
milliseconds of three iterations for both the linear as well as the projected form
of the Gauss-Seidel algorithm. The runtimes on the Cell processor were measured
using all five available worker SPEs:

Problem Size IBM Cell Intel T2250 Intel P4: Speed-up
3.20 Ghz 1.73 Ghz 3.00 Ghz (P4)

linear Gauss-Seidel
684× 684 2.39 1.29 1.42 0.59

4226× 4226 5.81 9.01 9.38 1.62
13198× 13198 13.53 32.64 31.45 2.32
47893× 47893 45.90 136.00 120.82 2.63
projected Gauss-Seidel

684× 684 2.55 2.64 2.49 0.97
4226× 4226 7.19 14.48 15.8 2.20

13198× 13198 15.91 54.22 53.72 3.38
47893× 47893 52.12 196.25 205.69 3.95

Table 6.2: Runtimes for three iteration of the Gauss-Seidel algorithm in
milliseconds. The speed-up column shows to the reduction of the runtime
relative to the P4 processor.
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Figure 6.2: Speed-ups for the linear Gauss-Seidel algorithm on up to five
SPEs with varying problem sizes.

The results exhibit two trends: Firstly, the Cell processor performs better the
bigger the problem gets. This can be explained by the fact that the number of
non-zero elements of the rows increases and thus the tasks comprise a smaller
number of rows. This allows the SXU to spend more time in the inner loop of
the highly optimized computational kernel rather than the control intensive part
that switches between rows. Also, as shown in Chapter 3.2, the number of colors
needed by the graph coloring heuristic decreases relative to the size of the matrix
with bigger problems, which causes a decline of the overhead for synchronization.

Secondly, note that the Cell processor needs only slightly more time for the
projected Gauss-Seidel algorithm than for the linear version, whereas the differ-
ences are larger on the Intel processors. This indicates that the Cell processor
has more floating-point performance reserves, since the increased computational
complexity introduced by the projection has little affect on it. The DMA transfers
profit from the increased computational complexity as well, since the DMA con-
troller has more time to bring in the data, which reduces idle times of the SXUs
while waiting for transfers to finish.

6.2.2 Scaling of the Gauss-Seidel Algorithm

In this section we examine how the implementation scales when additional SPEs
are added. The speed-up when using n SPEs is defined as

speed-up(n) =
runtime using 1 worker SPE
runtime using n worker SPEs

.

The optimum speed-up when using n SPEs is n. This is, however, unachievable in
practice, since adding processors increases the communication overhead.

Figure 6.2 and Figure 6.3 show speed-ups for the two versions of the Gauss-
Seidel algorithm. Consistently with the results from the previous section, the
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Figure 6.3: Speed-ups for the projected Gauss-Seidel algorithm on up to five
SPEs with varying problem sizes.

implementation scales best with the projected Gauss-Seidel algorithm and large
problem sizes. These constellations can be expected to profit most when increasing
the number of worker SPEs beyond five. The two smallest problem sizes exhibit
irregular behavior: For the smallest problem the implementation becomes slower
when more than four SPEs are used. This is because the added communication
overhead outweighs the contribution of the fifth SPEs to the computation. The
bump in the curve for the second smallest problem in Figure 6.3 may be explained
by delays due to unfortunate synchronization circumstances that we could, how-
ever, not track down further.

6.2.3 The Complete Multigrid Solver

In this section we will examine how the complete TNNMG solver performs on
the Cell processor. The hierarchy we used for testing comprises only the three
smallest matrices listed in table 6.1 due to the limited memory resources. We
used an iterative Gauss-Seidel solver as base solver. As explained in Chapter 3, a
significant part of the TNNMG solver has not been optimized for the Cell platform
since this would have exceeded the time constraint of this master thesis. The
unoptimized part is executed by the PowerPC core and therefore performs poorly
as expected.

Table 6.3 lists the average runtime for each part of the algorithm. The effect
of the unoptimized code on the overall performance is devastating. Note that the
base solver uses an optimized Gauss-Seidel step, but since the difference in energy
computed after each iteration is computed by the PPU, the complete base solver
is slower on the PS3 than on the other machines.
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Operation level IBM Cell Intel T2250 Intel P4: Speed-up
3.20 Ghz 1.73 Ghz 3.00 Ghz

projected smoother 2 14.77 50.10 48.97 ↑3.32
truncation 2 23.14 0.46 0.34 ↓67.77
matrix restriction 2 33943.00 1331.50 1055.06 ↓32.17
vector restriction 2 163.60 11.53 10.53 ↓15.54
linear smoother 1 4.26 8.76 7.40 ↑1.74
matrix restriction 1 2498.17 98.81 77.65 ↓32.17
vector restriction 1 43.32 3.07 2.69 ↓16.10
base solver 0 752.69 108.32 100.29 ↓7.50
vector prolongation 0 21.86 0.97 0.77 ↓28.57
linear smoother 1 4.24 8.74 7.51 ↑1.77
vector prolongation 1 82.59 3.74 2.77 ↓29.83
projected smoother 2 14.82 50.02 48.95 ↑3.30
line search 2 101.44 8.74 8.80 ↓11.52
error computation 184.34 16.31 16.39 ↓11.25
miscellaneous 17.47 0.59 0.52 ↓33.56
total 37685.38 1685.35 1372.24 ↓27.46

Table 6.3: Average runtime for each part of the TNNMG algorithm. Green
arrows (↑) indicate speed-ups and red arrows (↓) indicate slow-downs in
comparison to the P4 processor.

6.3 Double-Precision

For reasons given in Section 6.1 the results for the double-precision version of the
Gauss-Seidel algorithm are only discussed briefly in this section. They are given in
Table 6.4. Despite the weakness in double-precision performance, we still observe a
speed-up in comparison to the other two processors. The decreased computational
power is at least partly mitigated by the dependency of the Gauss-Seidel algorithm
on the speed of the system memory.
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Problem Size IBM Cell Intel T2250 Intel P4: Speed-up
3.20 Ghz 1.73 Ghz 3.00 Ghz (P4)

linear Gauss-Seidel
684× 684 2.90 2.01 1.89 0.65

4226× 4226 8.26 16.33 12.24 1.48
13198× 13198 32.47 51.19 46.17 1.42
47893× 47893 111.54 194.79 170.16 1.53
projected Gauss-Seidel

684× 684 3.44 3.09 3.06 0.89
4226× 4226 10.94 21.69 18.76 1.71

13198× 13198 44.78 67.02 69.00 1.54
47893× 47893 151.79 287.05 255.01 1.68

Table 6.4: Runtimes for three iteration of the Gauss-Seidel algorithm in
milliseconds using double-precision. The speed-up column shows to the re-
duction of the runtime relative to the P4 processor.
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Chapter 7

Conclusion

The results for the complete TNNMG algorithm show that there is still a lot of
work to be done until the performance of the implementation on the Cell processor
can compete with the performance on the other tested platforms. It has also
become clear that the CBE is, at least in its tested incarnation, not at all suited
to speed-up a time critical part of the application and leave the rest unmodified.
The dramatically reduced performance of the parts of the implementation that
run on the PPU leaves no doubt that these parts of the solver need to be ported
to the SPEs as well, before the implementation is suited for practical use. This
will, however, most likely require additional months of work.

The performance of the Gauss-Seidel algorithm that has been optimized for
the SPEs is, however, promising. The restricted resources of the PS3 have limited
the test we could make to a minimum. The problem sizes we could use for testing
are relatively small and the number of available SPEs is limited. A full grown
IBM Cell BladeCenter like the QS22 [3], however, provides much larger memory
and a total of 16 SPEs. The trends exhibited by our test results show that the
implementation could benefit from these additional resources. The performance
gains increase with growing problem sizes and the scaling behavior observed when
adding SPEs indicates that the implementation could improve its performance if
additional SPEs were available.
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