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Abstract. We propose a novel Galerkin discretization scheme for stochastic optimal control
problems on an indefinite time horizon. The control problems are linear-quadratic in the controls,
but possibly nonlinear in the state variables, and the discretization is based on the fact that problems
of this kind admit a dual formulation in terms of linear boundary value problems. We show that the
discretized linear problem is dual to a Markov decision problem, prove an L2 error bound for the
general scheme and discuss the sparse discretization using a basis of so-called committor functions
as a special case; the latter is particularly suited when the dynamics are metastable, e.g., when
controlling biomolecular systems. We illustrate the method with several numerical examples, one
being the optimal control of Alanine dipeptide to its helical conformation.

1. Introduction. A large body of literature, going back to the seminal work
by Kramers [25] in the late 1930ies, is concerned with the question: How well can a
continuous diffusion in a multi-well energy landscape be approximated by a Markov
jump process (MJP) in the regime of low temperatures?. Qualitatively, the approxi-
mation should be good if the system under consideration is metastable, in which case
the process stays in the neighbourhood of the potential energy minima for a long time
and occasionally makes rapid transitions (jumps) between the wells. These metastable
regions then become the states of the MJP, and the jump rates are determined by the
frequency of the transitions (see, e.g., [32, 35]).

In this article we consider the approximation of optimal control problems with
nonlinear diffusive dynamics by discrete Markov decision problems. This situation is
more complicated than in Kramers’ case, for one has to approximate the dynamics
as well as the corresponding cost functional and the resulting control forces. The
difficulty comes from the fact that dynamics enter as a constraint in the optimization of
the cost functional, which makes the problem nonlinear, because the controls become
a priori unknown functions of the state variables. Specifically, we consider reversible
diffusions on an unbounded domain, with a cost functional that is linear-quadratic in
the controls, but possibly nonlinear in the state variables, and that is defined up to
some random stopping time. The control problem admits a dual formulation in form
of linear boundary value problem that is amenable to a discretization by standard
means (cf. [37, 48]). Problems of this kind appear relevant in various applications,
including molecular dynamics [41], material science [42] or quantum computing [33],
to mention just a few. We propose a Markov chain approximation (MCA) that is
based on a Galerkin discretization the underlying dynamic programming equations,
with basis functions that cover the metastable sets of the dynamics. The discretized
problem can be interpreted as a Markov decision problem where the dynamics is given
by a continuous-time Markov process on the metastabe sets (so-called core sets). As
these core sets are not assumed to cover the state space, the method is sparse and
meshless and hence can be applied to large-scale problems.

MCA are a versatile tool to approximate stochastic control problems. Going back
to Kushner [26], the idea of MCA is to approximate the spatially discretized dynamics
by a Markov chain and reformulate the underlying continuous control problem as
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a control problem for the approximating chain. For a spatial discretization with
uniform grid, the MCA amounts to a finite-difference discretization of the dynamic
programming equation [28, 30]. Recent advances in MCA include collocation-based
schemes with radial basis functions [24], finite volume approximations [46], switched
systems and jump diffusions [40], or multi-player differential games [39].

The MCA that we propose here for the indefinite time-horizon case is based on a
meshless Galerkin discretization of the dual problem. This discretization is standard
in that it shares features with related Galerkin methods for linear elliptic equations
(see, e.g., [1, 47]), however it is novel in that it preserves the particular structure of
the reversible dynamics and the duality of the underlying Markov decision problem
when the basis functions form a partition of unity. Related problems with indefinite
time-horizon using grid-based techniques have been studied in [22, 43, 27]; cf. also
[4] for a (non-Markovian) finite element method. For meshless discretizations of the
parabolic dynamic programming equation of finite time-horizon problems we refer
to, e.g., [9, 24]; related ideas for the first-order dynamic programing equations of
deterministic control have been used in [3, 8].

A simple paradigm. As an introductory example consider the one-dimensional
diffusion process (Xt)t≥0 satisfying the Itô stochastic differential equation

dXu
t = (ut −∇V (Xu

t ))dt+
√

2εdBt , t ≥ 0 (1.1)

where Bt is standard Brownian motion, ε > 0 is noise intensity, called temperature
in the following, V is the bistable potential energy shown in Figure 1.1, and u is a
bounded measurable function, the control. Let us suppose that the control task is to
force the particle in the left well to reach the right well in minimum time τ . When
u = 0 and noise is low, the average transition time E[τ ] is exponentially large in the
energy barrier ∆V between the wells, and we can decrease the barrier by tilting the
potential according to V (x) 7→ V (x) − ux. A controller will then seek to minimize
the average transition time by tilting the potential without applying too much force,
which leads to a quadratic cost functional of the form [37]

J(u) = E

[
τ + γ

∫ τ

0

|ut|2dt
]
, γ > 0 ,

that must be minimized over a set of admissible (e.g. adapted) control strategies,
subject to the stochastic dynamics (1.1). (Here γ > 0 is an adjustable parameter.)

In this paper we deal with the question how to solve optimal control problems of
the above form beyond simple one-dimensional examples. The typical application that
we have in mind is molecular dynamics that is both high-dimensional and displays
vastly different time scales. This defines the basic requirements of the numerical
method: it must handle problems with large state space dimension and it must be
able to capture the relevant processes of the dynamics, typically the slowest degrees
of freedom in the system. For moderate controls, and if the temperature is small
compared to the energy barrier, the dynamics in the above example basically consists
of rare jumps between the potential wells, with the jump rate being controlled by
u. An efficient discretization would be one that resolves only the jumps between the
wells by a 2-state Markov jump process with adjustable jump rates, according to
the value of the control (cf. [12, 35]). It is known (see [16]) that control problems
of the above form can be transformed into a dual linear boundary value problem
that can be approximated by an MJP on the metastable sets. The discretized linear
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Fig. 1.1: Two typical realizations of the bistable system (1.1), with and without tilting
(left panel). The corresponding potential energies are shown in the right panel.

problem turns out to be dual to a Markov decision problem and thus represents
the natural Markovian discretization of the original stochastic control problem. The
discretization is meshless, in that the number of states of the Markov model does
not scale exponentially with the dimension of the continuous state space, hence the
method avoids the curse of dimensionality of most grid-based schemes.

Organization of the article. The rest of the paper is organised as follows: In
section 2 we introduce the class of optimal control problems studied and state the
duality between optimal control and sampling for both continuous SDEs and MJPs.
In section 3, the Galerkin projection method is introduced, and some results about
the approximation error are discussed. We also give a stochastic interpretation of
the discretized linear equation in terms of Elber’s milestoning process [14]. Finally,
we construct sampling estimators. Section 3 is the core parts of the paper and con-
tains new results, including the meshless Galerkin algorithm and an estimate of the
discretization error in L2. In section 4, we discuss numerical examples.

1.1. Elementary notation and assumptions. We implement the following
notation and standing assumptions that will be used throughout the paper.

Dynamics. Let S = Rd and consider the potential energy function V : S →
R, that we assume to be two times continuously differentiable and bounded from
below. Further assume that V (x) is polynomially growing at infinity like |x|2k for
some positive integer k. We consider the process Xt ∈ S solving

dXu
t = (ut −∇V (Xu

t ))dt+
√

2εdBt , t ≥ 0 , (1.2)

where Bt ∈ Rd is d-dimensional Brownian motion under a probability measure P , and
u : [0,∞)→ U ⊂ Rd is a time dependent measurable and bounded function.

Reversibility and invariant measure. For test functions ϕ : S → R that are
two times continuously differentiable, the infinitesimal generator of the uncontrolled
process Xt = X0

t is defined as the second-order differential operator

Lϕ = ε∆ϕ−∇V · ∇ϕ .

Define

dµ(x) = exp(−ε−1V (x))dx
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to be the Boltzmann measure at temperature ε > 0. Without loss of generality, we
assume that µ is normalized, so that µ(S) = 1. For the subsequent analysis it will be
convenient to think of L as an operator acting on a suitable subspace of

L2(S, µ) =

{
φ : S → R :

∫
S
|φ(x)|2 dµ(x) <∞

}
,

that is a weighted Hilbert space equipped with the scalar product

〈v, w〉µ =

∫
S
v(x)w(x)dµ(x) .

It can be readily seen that L is symmetric with respect to the weighted scalar product,

〈Lv,w〉µ = 〈v, Lw〉µ ,

which implies that Xt is reversible with respect to the Boltzmann measure µ. More-
over, by the above assumptions on the potential energy function, µ is the unique
invariant measure of the process Xt and satisfies∫

S
(Lψ)dµ =

∫
S
ψ(L1)dµ = 0

for all test functions ψ ∈ L2(S, µ); see [29] for details.

Quadratic cost criterion. We now introduce the cost criterion that the con-
troller choosing u in (1.2) seeks to minimize. To this end let A ⊂ S be a closed
bounded subset of positive measure µ(A) > 0 with smooth (at least C3) boundary
∂A and call τA <∞ the random stopping time

τA = inf{t > 0: Xt ∈ ∂A} .

We define the cost functional

J(u) = E

[∫ τA

0

{
f(Xu

t ) +
1

4
|ut|2

}
dt

]
, (1.3)

where f : S → R, called running cost, is any bounded nonnegative function with
bounded first derivative; the factor 1/4 in the penalization term is merely conventional.
Cost functionals of this form are called indefinite time horizon cost, because the
terminal time τA is random. We will sometimes need the conditioned variant of
the above cost functional:

J(u;x) = Ex

[∫ τA

0

{
f(Xu

t ) +
1

4
|ut|2

}
dt

]
. (1.4)

Here Ex[·] = E[·|X0 = x] is a shorthand for the expectation over all realizations of Xt

starting at X0 = x, i.e. the expectation with respect to P conditional on X0 = x. We
use J to denote both unconditional and conditional cost functionals; it should always
be clear from the context, which one is meant.
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Admissible control strategies. We call a control strategy u = (ut)t≥0 admis-
sible if it is adapted to the filtration generated by Bt, i.e., if ut depends only on the
history of the Brownian motion up to time t, and if the equation for Xu

t has a unique
strong solution. The set of admissible strategies is denoted by A.

Even though ut may depend on the entire past history of the process up to time
t, it turns out that optimal strategies are Markovian, i.e., they depend only on the
current state of the system at time t. In our case, in which the costs are accumulated
up to a random stopping time τA, the optimal strategies are of the form

ut = α(Xu
t )

for some function α : S → Rd. Hence the optimal controls are time-homogeneous
feedback policies, depending only on the current state Xu

t , but not on t.

2. Optimal control and logarithmic transformation. In this section we es-
tablish a connection between controlled diffusions and certain path sampling problems,
the latter are associated with a linear boundary value partial differential equation
(PDE) that can be discretized by standard numerical techniques for PDEs or Monte-
Carlo. The duality between optimal control and path sampling goes back to Wendel
Fleming and co-workers (see, e.g, [15]) and is based on a logarithmic transformation
of the value function (see also [16, Sec. VI] and the references therein)

W (x) = min
u∈A

J(u;x) . (2.1)

2.1. Duality between control and path sampling for diffusions. Our sim-
ple derivation of the duality between path sampling optimal control will be based on
the Hamilton-Jacobi-Bellman equations of optimal control. To this end, we recall the
dynamic programming principle for optimal control problems of the form (1.2)–(1.3)
that we adapt from [16, Secs. VI.3–5] and that we state without proof.

Theorem 2.1. Let W ∈ C2(S \A) ∩ C(∂A) be the solution of

min
c∈Rd

{
(L+ c · ∇)W (x) + f +

1

4
|c|2
}

= 0 , x ∈ S \A

W (x) = 0 , x ∈ ∂A .
(2.2)

Then

W (x) = min
u∈A

J(u;x)

where the minimizer u∗ = argmin J(u) is unique and given by the feedback law

ut = −2∇W (Xu
t ) . (2.3)

Before we proceed with the derivation of the dual sampling problem, we shall
briefly discuss some of the consequences of the dynamic programming approach.
Equation (2.2) is the Hamilton-Jacobi-Bellman (HJB) equation, also called dynamic
programming equation associated with the following optimal control task:

min
u∈A

J(u) s.t. dXu
t = (ut −∇V (Xu

t ))dt+
√

2εdBt .
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The function W (x) is called value function or optimal cost-to-go. Using the fact
that optimal control is the gradient of two times the value function, the optimally
controlled process X∗t solves the SDE

dX∗t = −∇U(X∗t )dt+
√

2εdBt . (2.4)

with the new potential

U(x) = V (x) + 2W (x) .

Note that X∗t is reversible with respect to a tilted Boltzmann distribution having
the density ρ∗ = exp(−U/ε). The reversibility follows from the fact that the value
function does not depend on t, which would not be the case if the terminal time τA
were a deterministic stopping time rather than a first exit time.1

Logarithmic transformation and Feynman-Kac formula (part I). The
approach that is pursued in this article is to discretize the HJB equation by first
removing the nonlinearity by a logarithmic transformation of the value function. Let

φ(x) = exp(−ε−1W (x)) . (2.5)

It follows by chain rule that

ε
Lφ

φ
= −LW + |∇W |2 , φ 6= 0 , (2.6)

which, together with the relation

−|∇W |2 = min
c∈Rm

{
c · ∇W +

1

4
|c|2
}
,

implies that (2.2) is equivalent to the linear boundary value problem(
L− ε−1f

)
φ(x) = 0 , x ∈ S \A
φ(x) = 1 , x ∈ ∂A .

(2.7)

By the above assumptions and the strong maximum principle for elliptic PDEs it
follows that (2.7) has a classical solution φ ∈ C2(S \ A) ∩ C(∂A) that is uniformly
bounded away from zero. The latter, together with (2.5)–(2.6), implies existence and
uniqueness of classical solutions of that the dynamic programming equation (2.2) and
hence smoothness of the value function.

Now, by the Feynman-Kac theorem [31, Thm. 8.2.1], the linear boundary value
problem has an interpretation in terms of a sampling problem. The solution (2.7) can
be expressed as the conditional expectation

φ(x) = Ex

[
exp

(
−1

ε

∫ τA

0

f(Xt) ds

)]
(2.8)

over all realizations of the following SDE on S:

dXt = −∇V (Xt)dt+
√

2εdBt , X0 = x . (2.9)

1For finite time-horizon control problems the value function depends on the time τA−t remaining
until the terminal time τA.
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2.2. Duality between control and path sampling for jump processes. In
the last section, we have established a connection between an optimal control problem
and sampling of a continuous path observable φ(x). In this section, we will repeat the
same construction for MJP, however, in reverse order: starting from a path observable
for a MJP, we derive the dual optimal control using a logarithmic transformation.

Let (X̂t)t≥0 be a MJP on the discrete state space Ŝ = {1, . . . , n} with infinitesimal

generator G ∈ Rn×n. (For simplicity, we assume that Ŝ is finite.) The entries of the
generator matrix G satisfy

Gij ≥ 0 for i 6= j and Gii = −
∑
j 6=i

Gij ,

where the off-diagonal entries of G are the jump rates between the states i and j.

Logarithmic transformation and Feynman-Kac formula (part II). In

accordance with the previous subsection let f̂ : Ŝ → R be nonnegative and define the
stopping time τA = inf{t > 0: X̂t ∈ A} to be the first hitting time of a subset A ⊂ Ŝ.
As before we introduce a function

φ̂(i) = Ei

[
exp

(
−1

ε

∫ τA

0

f̂(X̂s)ds

)]
,

with Ei[·] = E[·|X̂0 = i] being the conditional expectation over the realizations of X̂t

starting at X̂0 = i. We have the following lemma that is the exact analogue of the
Feynman-Kac formula for diffusions for the case of an MJP (see [17]).

Lemma 2.2. The function φ̂(i) solves the linear boundary value problem∑
j∈Ŝ

Gij φ̂(i)− ε−1f̂(i)φ̂(i) = 0 , i ∈ Ŝ \A

φ̂(i) = 1 , i ∈ A .
(2.10)

Now, in one-to-one correspondence with the log transformation procedure in the
diffusion case, the function

Ŵ = −ε log φ̂

can be interpreted as the value function of an optimal control problem for the MJP
(X̂t)t≥0. The derivation of the dual optimal control problem goes back to [38], and we
repeat it here in condensed form for the reader’s convenience (see also [16, Sec. VI.9]):
First of all note that Ŵ satisfies the equation

exp(Ŵ/ε)G exp(−Ŵ/ε)− ε−1f̂ = 0 , i ∈ Ŝ \A
Ŵ (i) = 0 , i ∈ A .

and define a new generator matrix by

Gv = (Gvij)i,j∈Ŝ , Gvij =
Gijv(j)

v(i)
, (2.11)

with v(i) > 0 for all i ∈ Ŝ. The exponential term in the above equation for Ŵ can be
recast as

(Gφ̂)(i)

φ̂(i)
= ε−1 min

v>0
{−(GvŴ )(i) + kv(i)}
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where we have introduced the shorthand

kv(i) = ε(Gv(log v))(i)− ε (Gv)(i)

v(i)
,

and used the identity miny∈R{e−y + ay} = a − a log a for a > 0. As a consequence,
(2.10) is equivalent (i.e. dual) to

min
v>0

{
(GvŴ )(i) + kv(i) + f̂(i)

}
= 0 , i ∈ Ŝ \A

Ŵ (i) = 0 , i ∈ A .
(2.12)

which is the dynamic programming equation of a Markov decision problem, i.e. an
optimal control problem for an MJP (e.g. see [16, Sec. VI.9]): Minimize

Ĵ(v) = E

[∫ τA

0

{
f̂(X̂v

s ) + kv(X̂v
s )
}
ds

]
(2.13)

over all controls v > 0 and subject to the constraint that the process (X̂v
t )t≥0 is gen-

erated by Gv. It readily follows from the derivation of (2.12) that the minimizer exists

and is given by v∗(i) = φ̂(i). The next lemma records some important properties of
the controlled Markov jump process with generator Gv and the corresponding cost
functional (2.13).

Lemma 2.3. Let Gv and kv be defined as above.
(i) Let G be reversible with unique stationary distribution π. Then πv(i) =

Z−1
v v2(i)π(i), with Zv an appropriate normalization constant, is the unique

probability distribution such that Gv is reversible with stationary distribution
πv.

(ii) Let P̂ denote the probability measure on the space of trajectories generated by
X̂t with initial condition X̂0 = i, and let Q̂ be the corresponding probability
measure generated by X̂v

t with the same initial condition X̂v
0 = i. Then Q̂ is

absolutely continuous with respect to P̂ and the expected value of the running
cost kv is the Kullback-Leibler (KL) divergence between Q̂ and P̂ , i.e.,

EQ̂

[∫ τA

0

kv(X̂v
s )ds

]
=

∫
log

dQ̂

dP̂
dQ̂

where EQ̂[. . .] is the expectation over all realizations of X̂v
t starting at X̂v

0 = i.

Proof. We first show (i). By assumption we have π(i)Gij = π(j)Gji. Now, let πv

be such that πv(i)Gvij = πv(j)Gvji. We will show that πv has the proposed form:

πv(i)Gvij =
v(j)

v(i)

πv(i)

π(i)
π(i)Gij =

v(j)

v(i)

πv(i)

π(i)
π(j)Gji =

v2(j)

v2(i)

π(j)

π(i)

πv(i)

πv(j)
πv(j)Gvji

But since πv(i)Gvij = πv(j)Gvji, we must have

πv(j)

π(j)v2(j)
=

πv(i)

π(i)v2(i)
∀i 6= j.

This can only be true if the quantity Z−1
v = πv(i)

π(i)v2(i) is independent of i. This gives

πv(j) = Z−1
v v2(j)π(j) as desired. The constant Zv is uniquely determined by the
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requirement that πv be normalized. Finally, from reversibility it follows directly that
πv is also a stationary distribution of Gv.

To show (ii), note that the running cost kv(i) can be written as

kv(i) = ε
∑
j 6=i

Gij

{
v(j)

v(i)

[
log

v(j)

v(i)
− 1

]
+ 1

}
, (2.14)

which is the KL divergence between Q̂ and P̂ (see [10, Sec. 3.1.4]). The absolute
continuity between Q̂ and P̂ simply follows from the fact that v in the definition of
Gv was required to be component-wise strictly positive.

Remark 1. To reveal further similarities between (1.2)–(1.3) and the correspond-
ing Markov decision problem, note that the quadratic penalization term in (1.3) equals
the KL divergence between the reference measure P of the uncontrolled diffusion (2.9)
and the probability measure Q of the controlled process (1.2), as can be shown using
Girsanov’s theorem [31, Thm. 8.6.8]. It holds that (cf. [20, 18]):

EQ

[
1

4

∫ τA

0

|us|2ds
]

= ε

∫
log

dQ

dP
dQ .

3. Discretization: Galerkin projection point of view. In this section we
will develop a discretization for optimal control problems of the type discussed in
Section 2 using the method of logarithmic transformations. The discretization will
approximate the continuous control problem with a control problem for a Markov
jump process on finite state space. Our strategy is outlined in Figure 3.1.

Optimal Control

Problem for SDE

Optimal Control 

Problem for MJP

continuous discrete

linear PDE
constrained

linear system

log trafo log trafo

Galerkin projection

?

Fig. 3.1: Discretization of continuous control problems via a logarithmic transform.

In the first part of this section, we will develop the Galerkin projection for general
subspaces and obtain some control of the discretization error. To refine this control,
we specify the subspace D we project onto. As the state space is unbounded and
possibly high-dimensional, a grid-based discretization is prohibitive. Here we suggest
a meshless discretization based on an incomplete partition of state space into so called
core sets, that are the metastable regions of the uncontrolled dynamics. We will prove
an error bound which gives us detailed control over the discretization error, even if
very few basis functions are used. We should mention that clearly other choices
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are possible, such as radial basis functions [47] or moving least-squares [1], but for
metastable systems like in molecular dynamics or chemical reaction kinetics using
core sets and the associated basis of committor functions is beneficial.

In the second part of this section, we will develop the stochastic interpretation of
the resulting matrix equation as the backward Kolmogorov equation of a MJP, which
enables us to identify the discrete control problem for the MJP, as it was developed in
Section 2. We will study the resulting discrete control problem and make a connection
to Transition Path Theory [45] and core set Markov state models (MSM) [36].

3.1. Galerkin projection of the Dirichlet problem. As discussed above, we
consider the boundary value problem(

L− ε−1f
)
φ(x) = 0 , x ∈ S \A
φ(x) = 1 , x ∈ ∂A .

(3.1)

with L and f as given above. We declare that φ|A = 1, so that the domain of φ is S.
Following standard references (e.g. [6]) we construct a Galerkin projection of

(3.1). For this purpose, we introduce the L2-based Sobolev space H1 with norm
‖φ‖H1 = ‖∇u‖2µ + ‖u‖2µ and the Hilbert spaces V = {ψ ∈ L2(S, µ), ‖ψ‖H1 <∞} and
V0 = {ψ ∈ V, ψ|∂A = 0}. We further define the symmetric and positive bilinear form

B : V × V → R, B(φ, ψ) = ε−1〈fφ, ψ〉µ + ε〈∇φ,∇ψ〉µ.

Now if φ is a solution of (3.1), then it also solves the weak problem

B(φ, ψ) = 0 ∀ψ ∈ V0 . (3.2)

A Galerkin solution φ̂ is now any function satisfying

B(φ̂, ψ̂) = 0 ∀ψ̂ ∈ D0, (3.3)

with D0 being a suitable finite dimensional subspace V0. Specifically, we choose basis
functions χ1, . . . , χn+1 with the following properties:

(S1) The functions χi : S → R are in V .

(S2) The χi form a partition of unity, that is
∑n+1
i=1 χi = 1.

(S3) The χi satisfy χn+1|A = 1 and χi|A = 0 for i ∈ {1, . . . , n}.

All elements ofD0 := lin{χ1, . . . , χn} will satisfy homogeneous Dirichlet boundary
conditions in (3.1), and we will sometimes write D := χn+1 ⊕ D0 and think of the

Galerkin solution φ̂ as an element in D. Now define the matrices

Fij =
〈χi, fχj〉µ
〈χi,1〉µ

, Kij = −ε 〈∇χi,∇χj〉µ
〈χi,1〉µ

.

Setting φ̂ =
∑
i φ̂iχi, the weak form (3.3) becomes a matrix equation for the unknown

coefficients φ̂i:

n+1∑
j=1

(
Kij − ε−1Fij

)
φ̂j = 0 , i ∈ {1, . . . , n}

φ̂n+1 = 1 ,

(3.4)
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which is the discretization of (3.1).

In order control the discretization error of the Galerkin method, we choose a norm
‖ · ‖ on V and introduce the two error measures:

1. The Galerkin error ε = ‖φ − φ̂‖, i.e. the difference between original and
Galerkin solution measured in ‖ · ‖.

2. The best approximation error ε0 = infψ̂∈D ‖φ−ψ̂‖, i.e. the minimal difference

between the solution φ and any element ψ̂ ∈ D.
In order to obtain full control over the discretization error, we need bounds on ε,

and we will get them by first obtaining a bound on the performance p := ε/ε0 and
then a bound on ε0. The latter will depend on the choice of subspace D. For the
former, standard estimates assume the following ‖ · ‖-dependent properties of A:

(i) Boundedness: B(φ, ψ) ≤ α1‖φ‖‖ψ‖ for some α1 > 0
(ii) Ellipticity: for all φ ∈ V holds B(φ, φ) ≥ α2‖φ‖ for some α2 > 0.
If both (i) and (ii) hold, Céa’s lemma states that p ≤ α1

α2
, see e.g. [6]. For the

energy norm ‖φ‖2B := B(φ, φ) we have α1 = α2 = 1 and therefore p = 1, thus the

Galerkin solution φ̂ is the best-approximation to φ in the energy norm.

Performance bound. The next two statements give a bound on p if errors are
measured in the L2-norm. In this case, B(·, ·) is still elliptic but possibly unbounded.
Later in this section, we will specify the bound on ε0 for a specific Galerkin basis.

Theorem 3.1. Let B be elliptic. Further let

Q : L2(S, µ)→ D0 ⊂ L2(S, µ) , Qw =

n∑
i=1

〈χi, w〉χi

be the orthogonal projection onto D0. Then

p2 =

(
ε

ε0

)2

≤ 1 +
1

α2
2

sup
v∈V

‖QB(1−Q)v‖2µ
‖v‖2µ

where B = ε−1f − L is the linear operator associated with φ 7→ B(·, φ).
Proof. In Appendix A.

Remark 2. Note that ‖QB(1 − Q)v‖µ ≤ ‖QBv‖µ is always finite even though
B is possibly unbounded since v ∈ V ⊂ L2(S, µ) and Q is the projection onto a finite-
dimensional subspace of L2(S, µ).

The bottom line of Theorem 3.1 is that if B leaves the subspace D almost invari-
ant, then φ̂ is almost the best-approximation of φ in ‖ ·‖µ. The following lemma gives
a more detailed description. In the following, we will write ‖·‖ = ‖·‖µ for convenience.

Lemma 3.2. Let Q⊥ = 1−Q and define

δL := max
k
‖Q⊥Lχk‖, δf := max

k
‖Q⊥ε−1fχk‖

to be the maximal projection error of the images of the χk’s under L and f . Then

‖QBQ⊥‖ = ‖Q⊥BQ‖ ≤ (δL + δf )

√
n

m
11



where m is the smallest eigenvalue of M̂ .
Proof. The first statement is true since A is essentially self-adjoint. For the second

statement, first of all

‖Q⊥BQ‖ = ‖Q⊥(ε−1f − L)Q‖ ≤ ‖Q⊥ε−1fQ‖+ ‖Q⊥LQ‖

holds from the triangle inequality. We now bound the term involving L. Notice that
for φ̂ =

∑
i φ̂iχi ∈ D:

‖Q⊥Lφ̂‖ = ‖
∑
i

φ̂iQ
⊥Lχi‖ ≤ δL

∑
i

|φ̂i| = δL‖φ̂‖1.

Then, with M̂ := (〈χi, χj〉µ)ij :

‖Q⊥LQ‖ = sup
φ=φ||+φ⊥∈V

‖Q⊥Lφ||‖
‖φ‖

≤ sup
φ||∈D

‖Q⊥Lφ||‖
‖φ||‖

≤ δL sup
φ̂∈Rn

‖φ̂‖1√
〈φ̂, φ̂〉M

A similar result holds for the term involving f . The statement now follows from
a standard equivalence between finite-dimensional norms, ‖φ̂‖1 ≤

√
n‖φ̂‖2, and the

fact that M̂ is symmetric, which implies that 〈φ̂, φ̂〉M = φ̂T M̂φ̂ ≥ mφ̂T φ̂ = m‖φ̂‖22.

To summarize, Theorem 3.1 and Lemma 3.2 give us a formula for the projection
performance p which states that

p2 ≤ 1 +
n

m

(δL + δf )2

α2
2

.

How large or small δf is will depend on the behaviour of f , e.g., if f = const then
δf = 0. Both δf and δL are always finite even though L is possibly unbounded.

Best-approximation error bound. We now generalize results [12] on the ap-
proximation quality of MSMs for reversible equilibrium diffusions and estimate the
best-approximation error ε0 for the case that the subspace D is spanned by committor
functions associated with the metastable sets of the dynamics. To this end suppose
that the potential V (x) has n + 1 deep minima x1, . . . , xn+1. Let C1, . . . , Cn+1 be
convex core sets around x1, . . . , xn+1 and such that A = Cn+1. We write C = ∪n+1

i=1 Ci
and T = S \ C and introduce τC = inf{t ≥ 0 : Xt ∈ C}. We take χi to be the
committor function associated with the set Ci, that is

χi(x) = P(XτC ∈ Ci|X0 = x). (3.5)

These χi satisfy the assumptions (S2)–(S3) and (S1) expect on the core set bound-
aries, which is a set of measure zero. Since we do not have a grid parameter, by which
the approximation error can be controlled, standard PDE techniques for bounding ε0
fail. Indeed, typically we will have very few basis functions compared to a grid-like
discretization. The following theorem gives a bound on ε0.

Theorem 3.3. Let Q be the orthogonal projection onto the subspace D spanned
by the committor functions (3.5), and let φ be the solution of (3.1). Then we have

ε0 = ‖Q⊥φ‖µ ≤ ‖P⊥φ‖µ + µ(T )1/2
[
κ‖f‖∞ + 2‖P⊥φ‖∞

]
12



where ‖ · ‖ = ‖ · ‖µ, κ = supx∈T Ex[τS\T ], and P is the orthogonal projection onto

Vc = {v ∈ L2(S, µ), v|Ci = const on every Ci} ⊂ L2(S, µ), with P⊥ = 1− P .
Proof. In Appendix B

In Theorem 3.3, κ is the maximum expected time of hitting the metastable set
from outside (which is short). Note further that P⊥φ = 0 on T . The errors ‖P⊥φ‖µ
and ‖P⊥φ‖∞ measure how constant the solution φ is on the core sets. Theorem
3.3 suggest the following strategy to minimize ε0: (i) Place a core set Ci in every
metastable region where φ is expected to be almost constant, (ii) place core sets
in regions with high invariant density µ in order to minimize µ(T ). This strategy
requires knowledge of the invariant density µ. Identifying the metastable regions
requires additional dynamical information. If this is not available, then a good guess
is usually to use the deepest wells of µ.

Remark 3. Theorem 3.3 together with Theorem 3.1 gives us full control over
the discretization error ε. These error bounds generalize recent results [35, 12] on
the approximation quality of the dominant eigenvalues of a reversible diffusion by an
MSM to general (bounded, nonnegative) observables.It would of course be nice to have
an error estimate also for the value function. In general such an estimate is difficult
to get, because of the nonlinear logarithmic transformation W = −ε log φ involved.
However we know that φ and its discrete approximation are both uniformly bounded
and bounded away from zero. Hence the logarithmic transformation is uniformly Lip-
schitz continuous on its domain, which implies that the L2 error bounds holds for the
value function with an additional prefactor given by the Lipschitz constant squared;
for a related argument see [19]

3.2. Interpretation in terms of a Markov decision problem. We derive
an interpretation of the discretized equation (3.4) in terms of a MJP. We introduce
the diagonal matrix Λ with entries Λii =

∑
j Fij (zero otherwise) and the full matrix

G = K − ε−1(F − Λ), and rearrange (3.4) as follows:

n+1∑
j=1

(
Gij − ε−1Λij

)
φ̂j = 0 , i ∈ {1, . . . , n}

φ̂n+1 = 1 ,

(3.6)

This equation can be given a stochastic interpretation. To this end let us in-
troduce the vector π ∈ Rn+1 with nonnegative entries πi = 〈χi,1〉 and notice that∑
i πi = 1 follows immediately from the fact that the basis functions χi form a parti-

tion of unity, i.e.
∑
i χi = 1. This implies that π is a probability distribution on the

discrete state space Ŝ = {1, . . . , n+ 1}. We summarize properties of the matrices K,
F and G:

Lemma 3.4. Let K, G, F and π be as above.
(i) K is a generator matrix (i.e. K is a real-valued square matrix with row

sum zero and positive off-diagonal entries) with stationary distribution π that
satisfies detailed balance

πiKij = πjKji , i, j ∈ Ŝ

(ii) F ≥ 0 (entry-wise) with πiFij = πjFji for all i, j ∈ Ŝ.

(iii) G has row sum zero and satisfies πTG = 0 and πiGij = πjGji for all i, j ∈ Ŝ.

13



(iv) There exists a (possibly ε-dependent) constant 0 < C <∞ such that Gij ≥ 0
for all i 6= j if ‖f‖∞ ≤ C. In this case equation (3.6) admits a unique and

strictly positive solution φ̂ > 0.
Proof. (i) follows from

∑
i χi(x) = 1 and reversibility of L: We have

∑
i π(i)Kij =∑

i〈χi, Lχj〉µ = 〈L1, χj〉µ = 0 and π(i)Kij = 〈χi, Lχj〉µ = 〈Lχi, χj〉µ = π(j)Kji. (ii)
follows from f(x) being real and positive for all x. As for (iii), G has row sum zero by
(i) and the definition of Λ. π(i)Gij = π(j)Gji follows from (i), (ii) and the fact that Λ
is diagonal, and πTG = 0 follows directly. For (iv), rewrite (3.6) as the n× n-system

Ḡλφ̄ = g where Ḡλ is the first n rows and columns of Gλ := −G+ ε−1Λ, φ̂ = (φ̄, 1)T

and −g is the vector of the first n entries of the (n+ 1)st row of Gλ. Choose C such
that ε−1〈χi, fχj〉µ ≤ 〈χi, Lχj〉µ for all i 6= j. Then g > 0 and Ḡλ is a non-singular M -
matrix and thus inverse monotone [2], that is from Ḡλφ̄ = g and g > 0 follows φ̄ > 0.

It follows that if the running costs f are such that (iv) in Lemma 3.4 holds, then
G is a generator matrix of a MJP that we shall denote by (X̂t)t≥0, and by lemma 2.2,
(3.6) has a unique and positive solution of the form

φ̂(i) = E

[
exp

(
−ε−1

∫ τA

0

f̂(X̂s)ds

)∣∣∣∣X̂0 = i

]
with f̂(i) = Λii and τA = inf{t ≥ 0|X̂t = i+1}. In fact (3.6) can be interpreted as

the backward Kolmogorov equation for φ̂. Moreover, the logarithmic transformation
Ŵ = −ε log φ̂ is well-defined and can be interpreted as the value function of the
Markov decision problem (2.12)–(2.13), that is, we seek to minimize

Ĵ(v; i) = E

[∫ τA

0

(
f̂(X̂v

s ) + kv(X̂v
s )
)
ds

∣∣∣∣X̂v
0 = i

]
over Markov control strategies v : Ŝ → (0,∞) with the costs

f̂(i) = Λii , kv(i) = ε
∑
j 6=i

Gij

{
v(j)

v(i)

[
log

v(j)

v(i)
− 1

]
+ 1

}
.

This completes the construction of the discrete control problem. Note that in general2

G 6= K, but both K and G are reversible with stationary distribution π.

Elber’s milestoning process. The discretized equation admits a useful stochas-
tic representation, by which its coefficients can be computed without knowing the com-
mittor functions. Define the forward milestoning process X̃+

t to be in state X̃+
t = i

if Xt visits core set Ci next, and the backward milestoning process X̃−t to be in state
X̃−t = i if Xt came from Ci last. Then the discrete costs can be written as

f̂(i) =
1

πi
〈χi, f

∑
j

χj〉 =

∫
νi(x)f(x)dx = Eµ

[
f(Xt)

∣∣∣X̃−t = i
]

(3.7)

where νi(x) = π−1
i χi(x)µ(x) = P(Xt = x|X̃−t = i) is the probability density of finding

the system in state x given that it came last from i. Hence f̂(i) is the average costs

2In case of a full partition, ∪iCi = S, the χi become stepfunctions and K = G is the generator
of a full partition MSM. Our method then becomes a finite volume method. Stepfunctions are not
regular enough to be in V however.
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conditioned on the information X̃−t = i, i.e. Xt came last from Ai, which is the natural

extension to the full partition case where f̂(i) was the average costs conditioned on
the information that Xt ∈ Ai.

The matrix Kij = π−1
i 〈χi, Lχj〉 is reversible with stationary distribution

πi = 〈χi,1〉 = Pµ(X̃−t = i)

and is related to so called core MSMs. To see this, define the core MSM transition
matrix P τ with components P τij = P(X̃+

t+τ = j|X̃−t = i), and the mass matrix M

with components Mij = P(X̃+
t = j|X̃−t = i). Then, it is not hard to show that for

reversible processes we have P τij = π−1
i 〈χi, T τχj〉µ and Mij = π−1

i 〈χi, χj〉µ so that

K =
1

πi
〈χi, Lχj〉µ = lim

τ→0

1

τ
(P τ −M) .

Thus K is formally3 the generator of the Pτ . If the core sets are chosen as the
metastable states of the system, K can be sampled directly from X̃±t . See [35, 36] for
more details on the construction and sampling of core MSMs. F can also be sampled
using

Fij = Eµ

[
f(Xt)χ{X̃+

t =j}

∣∣∣X̃−t = i
]

(3.8)

Therefore, as in the construction of core MSMs, we do not need to compute
committor functions explicitly.

4. Numerical Results. We will present two examples to illustrate the approx-
imation of LQ-type stochastic control problems based on a sparse Galerkin approxi-
mation using MSMs.

4.1. 1D triple well potential. To begin with we study diffusion in the triple
well potential which is presented in Figure 4.2a. This potential has three minima at
x0/1 = ∓3.4 and x2 = 0. We choose A = [x0− δ, x0 + δ] with δ = 0.2 as the target set
and the running cost f = σ = const, such that the control goal is to steer the particle
into C0 in minimum time. In Figure 4.2a the potential V and effective potential U
are shown for ε = 0.5 and σ = 0.08 (solid lines), cf. equation (2.4). One can observe
that the optimal control lifts the second and third well up such that the system is
driven into C0 quickly.

First we validate our method with a convergence test using linear finite elements
as basis functions χi. To do so, we compute a reference solution φ̂ of (3.4) using linear
finite elements on a uniform grid with spacing hr = 10−4. The resulting interpolation
φI =

∑
i χiφ̂(i) is very close to the true solution φ of (3.1). We also compute a

reference solution for the value function WI =
∑
i χiŴ (i) with Ŵ = −ε log φ̂ and

for the optimal control uI = −2∇WI . Then we compute coarser solutions φI,h using
various grid spacings 1 ≥ h ≥ 10−3 and compute the L2 error ‖φI,h − φI‖µ, and L2

errors for WI and uI similarly. The result is shown in Figure 4.1. The L2 error of

3The P τ do not form a semigroup since M 6= 1, thus K cannot be interpreted as i.e. the
generator of X̃−t . However, the entries of K are the transition rates between the core sets as defined
in transition path theory [45].
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Fig. 4.1: L2 error of φI,h, WI,h and uI,h using linear finite elements (dashed lines) and using the
committor basis (circles).

φI,h is quadratic in h, as expected from the theory. Additionally, the L2 error of
WI,h is also quadratic in h which, given that the transformation between φ and W is
nonlinear, is surprising. The error of uI,h is only linear in h; as expected one order of
convergence is lost due to the fact that uI is the gradient of WI .

Next, we use a committor basis. In accordance with the strategy to minimize
minimize ε0 in Theorem 3.3, we placed core sets Ci = [xi−δ, xi+δ] in each of the three
wells of the potential shown in Figure 4.2a, resulting in the set of three basis functions
shown in Figure 4.2b. The L2 errors achieved by solving (3.4) in this basis are shown
as circles in Figure 4.1. We observe that the 3 committor functions achieve the same
performance as linear finite elements with grid spacing h ≈ 0.2, which corresponds
to ≈ 40 basis functions. Theorem 3.3 gives ε0 ≤ 0.08, while the actual error is one
order of magnitude smaller. The dashed line in Figure 4.2a gives the approximation
to U calculated in the committor basis, which is in good agreement to the reference
solution. In Figure 4.2c the optimal control u (solid line) and its approximation uI
(dashed line) are shown. The core sets are shown in blue. The jumps in uI at the left
boundaries of the core sets are due to the fact that the committor functions are only
piecewise differentiable.

The computations so far require explicit knowledge of the basis functions χi to
compute the matrices K and F . For high-dimensional systems the committor basis
is usually not explicitly known. To mimic this situation, we construct a core MSM
to sample the matrices K and F . 100 trajectories of length T = 20.000 were used
to build the MSM. In Figure 4.2d, the optimal cost starting from the rightmost well
W (x1) and its estimate using the core MSM are shown for ε = 0.5 and different values
of σ. Each of the 100 trajectories has seen about four transitions. For comparison,
a direct sampling estimate of W (x1) using the same data is shown (green). The
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direct sampling estimate suffers from a large bias and variance. In contrast, the MSM
estimator for W (x1) performs well for all considered values of σ. The constant C

which ensures φ̂ > 0 when σ ≤ C is approximately 0.2 in this case. This seems
restrictive but still allows to capture all interesting information about φ and W (x1).
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Fig. 4.2: Three well potential example for ε = 0.5 and σ = 0.08. (a) Potential V (x) (blue), effective
potential U = V +2W (green) and approximation of U with committors (dashed red). (b) The three
committors. (c) The optimal control u(x) (solid line) and its approximation (dashed line). Core sets
are shown in blue. (d) Optimal cost W (x1) for ε = 0.5 as a function of σ. Blue: Exact solution.
Red: Core MSM estimate. Green: Direct sampling estimate.

4.2. Alanine dipeptide. As a second, non-trivial example we study conforma-
tional transitions in Alanine dipeptide (ADP), a well-studied test system in molecular
dynamics. We performed an all-atom simulation of ADP in explicit water (TIP3P)
with the Amber FF99SB force field [23] using the GROMACS 4.5.5 simulation pack-
age [44]. The simulations were performed in the NVT ensemble, where the temper-
ature was restrained to 300 K using the V-Rescale thermostat [7]. 20 trajectories
of 200ns with 100ps equilibration runs were simulated. Covalent bonds to hydrogen
atoms were constrained using the LINCS algorithm11 [21] (lincs iter = 1, lincs or-
der = 4), allowing for an integration timestep of 2 fs. The leap-frog integrator was
used. Lennard-Jones interactions were cut off at 1 nm. Electrostatic interactions were
treated by the Particle-Mesh Ewald (PME) algorithm12 [11] with a real space cut-off
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of 1 nm, a grid spacing of 0.15 nm, and an interpolation order of 4. Periodic boundary
conditions were applied in the x, y, and z-direction.

In Figure 4.3a, a cartoon of the molecule is shown. The full system including the
water molecules has about 4000 degrees of freedom. However, it is well known that the
conformational dynamics, which are the slowest dynamical processes in the system,
can be monitored via the backbone dihedral angles φ and ψ. The dynamics along
the other degrees of freedom happens on much faster timescales. For this reason, the
value function will essentially be a function of φ and ψ; see [19] for precise statements.
We will use this to build a Markov State Model which partitions the φ− ψ-plane.
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Fig. 4.3: (a) Alanine dipeptide. (b) Free energy gi = − log πi.

Validation of the MSM approximation. We construct a full partition MSM
using a uniform clustering into 36×36 boxes Ai of size 10◦×10◦ in the φ−ψ-plane, and
we use characteristic basis functions χi(x) = 1Ai for the discretization4. Figure 4.3b
shows the free energy gi = − log πi = − log P[Xt ∈ Ai] together with the three largest
molecular conformations α, β and Lα. The missing boxes have not seen any data.
The slowest dynamical process is the switching between the left-handed Lα structure
and the right-handed α and β sheet structures. As is customary in MSM theory [35],
we estimate the slowest implied timescale (ITS) as follows: For different lagtimes τ ,
we construct the MSM transfer operator P τij = π−1

i 〈χi, T τχj〉µ and compute

t1(τ) = − τ

log λ1(τ)

where λ1(τ) is the 2nd largest eigenvalue of P τ . The result is shown in Figure 4.4a.
We observe a plateau for 6ps ≤ τ ≤ 30ps which indicates that the time-discrete
snapshots X̂τ

n := X̂nτ are well described by a Markov chain with transition matrix
P τ for τ ≥ 6ps. The plateau is used to compute t1 = 1560ps ± 6ps. For smaller

4Let Ci ⊂ Ai be a core set in cell Ai. The characteristic basis functions can be obtained from
the committors by expanding Ci to fill out all of Ai. This basis is used to construct full partition
MSMs and produces particularly simple sampling formulas. The characteristic functions are not in
V , but the sampling results are similar to what one would obtain using committors with cores Ci
which fill out most of Ai.
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values of τ , X̂τ
n is not Markovian due to recrossing effects. For this reason we also

cannot sample K directly and have to work with the finite-time transfer operator P τ

instead. Before proceeding to the optimal control problem, we study the effect of this
time discretization on the mean first passage time (MFPT) t(x) = Ex[τα∪β ] where
τα∪β is the first hitting time of α ∪ β. Since the α, β and Lα conformations are very
metastable, t(x) is almost constant on Lα and tLα = E[t(x)|x ∈ Lα] can be computed
from t1 via tLα = t1/πα∪β where πα∪β = 0.96 is the invariant measure of the α and
β conformation combined [36]. This gives tLα = 1626ps± 6ps.

On the other hand, let Nτ
α∪β = inf{n > 0 : X̂τ

n ∈ α ∪ β}. If the chain (X̂τ
n)n

is Markovian, then the time-discrete MFPT t̂τ (x) = Ex[τNτ
α∪β ] satisfies the matrix

equation

(P τ − I)t̂τ = −τ outside α ∪ β, t̂ = 0 in α ∪ β. (4.1)

Additionally, since τα∪β ∈ (τ(Nτ
α∪β − 1), τNτ

α∪β ], we should expect that

t̂τLα := E
[
t̂τ (x)|x ∈ Lα

]
= tLα + cτ, c ≤ 1. (4.2)

In Figure 4.4b, t̂τLα obtained by solving (4.1) is shown as a function of τ together
with tLα . A linear interpolation using the values for 6ps ≤ τ ≤ 30ps where the
Markov assumption holds gives t̂τ = t̂0 + 0.8τ with t̂0 = 1628ps, which is consistent
with (4.2). This shows that the time discretization introduces only small, controllable
errors for τ ≥ 6ps. In the following, we will work with τ = 10ps. Notice that the time
discretization amounts to setting K = τ−1(P τ − I) in (3.4).
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Fig. 4.4: (a) Slowest implied timescale t1(τ) (red) and average using the values for 6ps ≤ τ ≤ 30ps
(green). (b) Time-discrete MFPT t̂τLα as a function of τ (red), linear interpolation of t̂τLα (blue) and

the reference value tLα (green). The confidence interval of tLα is shown as dashed lines.

Controlled transition to the α-helical structure. Next we consider an op-
timal control problem for steering the molecule into the α-structure. We choose
as the target region A = α and define running costs in the (φ, ψ) variables as
f(φ, ψ) = f0 + f1‖ψ − ψα‖2 where ‖ · ‖ is a metric on the torus, and we choose
f0 = 0.01 and f1 = 0.001 representing a mild penalty for being away from the target
region in the ψ-direction. We discretize this control problem using the same partition
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and time discretization as for the MSM construction in section 4.2 and sample P τ and
F from the MSM data. The resulting value function Ŵ = log φ̂ is shown in Figure
4.5a. Since the basis functions χi are not differentiable and some data is missing in
Ŵ , we have to construct an interpolation WI(φ, ψ) from the point data Ŵ to obtain
as estimate for the optimal control force u(φ, ψ) = −σ∇WI(φ, ψ). An interpolation
based on a Delauney triangulation which is C1 everywhere except at the data points
is shown in Figure 4.5b.

To demonstrate that adding the control force u(φ, ψ) has the effect of speeding
up the transition from Lα to α, we would have to implement it in the MD simulation
software. We leave that for future work. We can make a prediction of the anticipated
effect within the MSM framework: In accordance with (2.11), we compute the tran-

sition matrix P τv∗ of the optimally controlled process by P τv∗(i, j) = P τ (i, j) v
∗(j)
v∗(i) with

v∗ = φ̂ for i 6= j. The discretized MFPT vector t̂∗ of the optimally controlled process
can be computed from the Matrix equation

(P τv∗ − I) t̂∗ = −τ outside α, t̂∗ = 0 in α.

The result is shown in Figure 4.5c and gives a speed up compared to t̂0 of one order
of magnitude. A larger speed up could easily be achieved by increasing f . In Figure
4.5d we show the free energy of the controlled process in log scale, which according
to Lemma 2.3 is given by gv

∗
= − log πv

∗
= logZv − 2Ŵ − log π. Observe that the

Lα and β conformations are now much less populated compared to the equilibrium
distribution in Figure 4.3b: As in the 1D example, the control mainly has the effect
of lifting the wells which are not in the target region up such that they become less
metastable.

5. Conclusions. We have developed a Galerkin projection method that leads
to an approximation of certain optimal control problems for reversible diffusions by
Markov decision problems. The approach is based on the dual formulation of the
optimal control problem in terms of a linear boundary value problem that can be
discretized in a straightforward way. In this article we propose a discretization that
preserves reversibility and the generator form of the linear equations, i.e., the dis-
cretization of the infinitesimal generator of the original diffusion process can be inter-
preted as the infinitesimal generator of a reversible Markov jump process (MJP). The
discretized linear boundary value problem admits again a dual formulation in terms of
a Markov decision problem. A sparse approximation that uses the basis of committor
functions of metastable sets of the dynamics was discussed in detail: The discretiza-
tion using committor functions does not require that the metastable sets partition the
state space, hence the method can be applied to high-dimensional problems as they
appear, e.g., in molecular dynamics. The committor functions in this case need not
be known explicitly, as it is possible to sample the generator matrices and the discrete
cost functions by a Monte-Carlo method, similarly to what is done in the Markov
state modelling approach to protein folding. We could prove an L2 error estimate for
the Galerkin scheme, moreover the discretization was shown to preserve basic struc-
tural elements of the continuous problem, such as duality, reversibility or properties
of the invariant measure. Our numerical results showed very good performance of the
incomplete partition discretization on a simple toy example and a high-dimensional
molecular dynamics problem, even with only a few basis functions, which is in line
with the theoretical error bounds presented in this paper.

While we addressed the discretization error in this paper in great detail, we did not
address the sampling error. In particular, for large systems our construction requires
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Fig. 4.5: (a) Optimal control Ŵ for steering into the α-structure. (b) Interpolation WI(φ, ψ)

obtained from Ŵ via a Delauney triangulation, and a steepest descent path from Lα to α. (c)

MFPT to the α conformation for the optimally controlled process. (d) Free energy gv
∗

= − log πv
∗

of the optimally controlled process.

the coefficients of the MJP and therefore the transition rates between all metastable
states as an input. This is not fully satisfactory. We believe that the optimal control
framework presented here should be linked with Monte-Carlo methods for rare events,
e.g., [20, 13], that exploit the same duality between optimal control and sampling to
devise efficient importance sampling strategies as we did so as to reduce the sampling
error. We leave the analysis of the sampling error to future work.
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Appendix A. Proof of Theorem 3.1.

Here we give the proof of Theorem 3.1 from Section 3.1. For ease of notation, let
‖ · ‖ = ‖ · ‖µ.

Proof. Let φ be the solution to (3.2), and write φ = Qφ + φ⊥ = φ|| + φ⊥ with

φ⊥ ∈ D⊥. The first step is to show that ‖φ−φ||‖ = infψ∈D ‖φ−ψ‖, i.e. the infimum
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in the definition of ε0 is attained at φ||. But this is clear since for any ψ ∈ D, by
orthogonality we have

‖φ− ψ||2 = ‖φ|| − ψ + φ⊥‖2 = ‖φ|| − ψ‖2 + ‖φ⊥‖2

which attains its minimum of ε2
0 = ‖φ⊥‖2 for ψ = φ||. By (3.2), φ|| solves the

equation

B(φ, ψ) = B(φ||, ψ) + B(φ⊥, ψ) = 0 ∀ψ ∈ D,

and if we write φ|| =
∑n
i=1 φ̂

∗
iχi + 1χn+1 with n unknown coefficients φ̂∗i (note

that a general element of D is of this form), this takes the matrix form

B̂φ̂∗ − c = F,

where in components we have B̂ij = B(χi, χj), ci = −B(φ⊥, χi) = −〈φ⊥, Bχi〉µ
and Fi = −〈χi, Bχn+1〉µ. On the other hand, the Galerkin solution φ̂ =

∑
i φ̂iχi

satisfies B̂φ̂ = F by 3.3, hence we obtain

B̂(φ̂∗ − φ̂) = c. (A.1)

Now we can write

ε2 = ‖φ|| + φ⊥ − φ̂‖2 = ‖φ|| − φ̂‖2 + ‖φ⊥‖2

=

〈∑
i

(φ̂∗i − φ̂i)χi,
∑
j

(φ̂∗j − φ̂j)χj

〉
µ

+ ε2
0

= (φ̂∗ − φ̂)T M̂(φ̂∗ − φ̂) + ε2
0

where M̂ij = 〈χi, χj〉µ. The scalar product 〈·, ·〉µ on D0 ⊂ V induces a natural

scalar product on Rn by the isomorphism φ̂ 7→
∑
i φiχ̂i:

〈∑
i

φ̂iχi,
∑
j

φ̂′jχj

〉
µ

= φ̂T M̂φ̂′ =: 〈φ̂, φ̂′〉M

The error ε2 is exactly ε2
0 plus the distance between Galerkin solution and best

approximation measured in this scalar product. There is also a natural bilinear form
inherited from B on Rn:

B

∑
i

φ̂iχi,
∑
j

φ̂′jχj

 = φ̂T B̂φ̂′ = 〈φ̂, M̂−1B̂φ̂′〉M

The Matrix M̂−1B̂ is symmetric since B(·, ·) is symmetric. Moreover, since B(·, ·)
is elliptic,
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〈φ̂, M̂−1B̂φ̂〉M = A

∑
i

φ̂iχi,
∑
j

φ̂jχj

 ≥ α2

〈∑
i

φ̂iχi,
∑
j

φ̂jχj

〉
µ

= α2〈φ̂, φ̂〉M

(A.2)
In particular, M̂−1B̂ is positive, hence it has a positive and symmetric square

root Ŝ2 = M̂−1B̂. Now, for any φ̂ ∈ Rn it holds by virtue of (A.2),

〈φ̂, φ̂〉M ≤
1

α2
〈φ̂, M̂−1B̂φ̂〉M =

1

α2
〈Ŝφ̂, Ŝφ̂〉M

≤ 1

α2
2

〈Ŝφ̂, M̂−1B̂Ŝφ̂〉M =
1

α2
2

〈M̂−1B̂φ̂, M̂−1B̂φ̂〉M . (A.3)

Now we apply the inequality (A.3) to φ̂∗ − φ̂ and use (A.1):

ε2 ≤ ε2
0 +

1

α2
2

〈M̂−1c, M̂−1c〉M . (A.4)

Now for some final simplifications, note that the orthogonal projection Q onto D0

can be written as

Qψ =

n∑
i,j=1

M̂−1
ij 〈χj , ψ〉µχi.

Using this we can write

〈M̂−1c, M̂−1c〉M =
∑
ij

ciM̂
−1
ij cj =

∑
ij

〈χi, Bφ⊥〉µM−1
ij 〈χj , Bφ⊥〉µ

=

〈∑
ij

M−1
ij 〈χj , Bφ⊥〉µχi, Bφ⊥

〉
µ

= 〈QBφ⊥, Bφ⊥〉µ

= 〈QBφ⊥, QBφ⊥〉µ

To arrive at the final result, notice that

〈QBφ⊥, QBφ⊥〉µ ≤

(
sup

φ′⊥∈D⊥

〈QBφ′⊥, QBφ′⊥〉µ
〈φ′⊥, φ′⊥〉µ

)
· 〈φ⊥, φ⊥〉µ

=

(
sup

φ′⊥∈D⊥

〈QBQ⊥φ′⊥, QBQ⊥φ′⊥〉µ
〈φ′⊥, φ′⊥〉µ

)
· 〈φ⊥, φ⊥〉µ

≤

(
sup
φ′∈V

〈QBQ⊥φ′, QBQ⊥φ′〉µ
〈φ′, φ′〉µ

)
· 〈φ⊥, φ⊥〉µ

= ‖QBQ⊥‖2〈φ⊥, φ⊥〉µ

Plugging these inequalities into (A.4) and dividing by ε2
0 completes the proof.
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Appendix B. Best-approximation error bound.
In this appendix, we prove lemma 3.3:

ε0 = ‖Q⊥φ‖µ ≤ ‖P⊥φ‖µ + µ(T )1/2
[
κ‖f‖∞ + 2‖P⊥φ‖∞

]
.

Recall that κ = supx∈T Ex[τS\T ] and P is the orthogonal projection onto the

subspace Vc = {v ∈ L2(S, µ), v = const on every Ci} ⊂ L2(S, µ). Note that P⊥φ = 0
on C. The errors ‖P⊥φ‖ and ‖P⊥φ‖∞ measure how constant the solution φ is on the
core sets. We write ‖ · ‖ = ‖ · ‖µ throughout the proof for convenience.

Proof. The proof closely follows the proof of theorem (12) in [34]. The first
step of the proof is to realize that the committor subspace D where Q projects onto
can be written as D = {v ∈ L2(S, µ), v = const on every Ci, Lv = 0 on C}. To
see this, note that the values v takes on the Ci can be used as boundary values for
the Dirichlet problem Lv = 0 on T . A linear combination of committor functions
is obviously a solution to this problem. But the solution to the Dirichlet problem
must be unique, otherwise one can construct a contradiction to the uniqueness of the
invariant distribution, see [34].

By definition we have ‖Q⊥φ‖ ≤ ‖φ − Iφ‖ for every interpolation Iφ ∈ D of φ.
With the definition of P from above, we will take q = Iφ such that

Lq = 0 on T, q = Pφ on S \ T. (B.1)

Now D ⊂ V , therefore q ∈ Vc and Pq = q. Therefore (B.1) is equivalent to

PLPq = 0 on T, q = Pφ on S \ T. (B.2)

Now define e := Pφ− q. Then we have

PLPe = PLP (Pφ− q) = PLPφ− PLPq = PLφ− PLP⊥φ− PLPq

and by (B.2) and since Lφ = fφ on S \A ⊃ T , we have

PLPe = Pfφ− PLP⊥φ on T, e = 0 on S \ T. (B.3)

Therefore, e ∈ EΘ = {v ∈ L2(S, µ), v = 0 on S \ T} and with Θ being the
orthogonal projection onto EΘ, e has to fulfil

ΘPLPΘe = ΘPfφ−ΘPLP⊥φ.

Since ΘP = PΘ = Θ, this can be written as

Re := ΘLΘe = Θfφ−ΘLP⊥φ.

The operator R = ΘLΘ is invertible on EΘ: If this wasn’t the case, there would
be a nontrivial solution v to
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Lv = 0 on T, v = 0 on S \ T.

But the solution to this boundary value problem is again unique, and hence there
is only the trivial solution. This gives

e = R−1Θfφ−R−1ΘLP⊥φ, (B.4)

and ‖R−1‖ = 1
|λ0| where λ0 is the principal eigenvalue of R. Due to an estimate

by Varadhan we have

1

|λ0|
≤ sup
x∈T

Ex[τS\T ] =: κ,

see e.g. [5]. To complete the derivation we need to focus on the second term in
(B.4). Since R−1 is an operator on EΘ, we can write it as R−1ΘLP⊥φ =: Θg, where
the function Θg solves

ΘLΘg = RΘg = ΘLP⊥φ⇔ ΘL[Θg − P⊥φ] = 0

by the definition of R and Θg. Therefore w := Θg − P⊥φ solves the boundary
value problem

Lw = 0 on T, w = −P⊥φ on S \ T (B.5)

which implies that ‖w‖∞ ≤ ‖P⊥φ‖∞, this follows from Dynkin’s formula or
Lemma 3 in [34]. Finally,

‖Θg‖ ≤ µ(T )1/2‖Θg‖∞ ≤ µ(T )1/2(‖P⊥φ‖∞ + ‖w‖∞) ≤ 2µ(T )1/2‖P⊥φ‖∞

holds by the triangle inequality and the above considerations. Now focus on the
first term in (B.4). Note that by the maximum principle, φ achieves its maximum of
1 on the boundary of S \A ⊃ T , therefore maxx∈T |φ(x)| ≤ 1. Then we have

‖Θfφ‖ ≤ µ(T )1/2‖f‖∞max
x∈T
|φ(x)| ≤ µ(T )1/2‖f‖∞.

Now putting everything together, we arrive at

‖e‖ ≤ ‖R−1‖‖Θfφ‖+ ‖R−1ΘLP⊥φ‖
≤ κ‖Θfφ‖+ ‖Θg‖
≤ µ(T )1/2

[
κ‖f‖∞ + 2‖P⊥φ‖∞

]
.

Finally, note that by the triangle inequality

‖Q⊥φ‖ ≤ ‖φ− q‖ ≤ ‖φ− Pφ‖+ ‖Pφ− q‖ = ‖P⊥φ‖+ ‖e‖

which completes the proof.
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