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Gaussian Markov transition models of molecular kinetics
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The slow processes of molecular dynamics (MD) simulations—governed by dominant eigenvalues
and eigenfunctions of MD propagators—contain essential information on structures of and transition
rates between long-lived conformations. Existing approaches to this problem, including Markov state
models and the variational approach, represent the dominant eigenfunctions as linear combinations
of a set of basis functions. However the choice of the basis functions and their systematic statistical
estimation are unsolved problems. Here, we propose a new class of kinetic models called Markov
transition models (MTMs) that approximate the transition density of the MD propagator by a mixture
of probability densities. Specifically, we use Gaussian MTMs where a Gaussian mixture model is used
to approximate the symmetrized transition density. This approach allows for a direct computation
of spectral components. In contrast with the other Galerkin-type approximations, our approach can
automatically adjust the involved Gaussian basis functions and handle the statistical uncertainties in
a Bayesian framework. We demonstrate by some simulation examples the effectiveness and accuracy
of the proposed approach. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913214]

I. INTRODUCTION

With increasing computational power, molecular dy-
namics (MD) simulation has now become one of the most
important computational tools for simulating and investigating
biomolecular systems.1 MD simulation can provide atomic-
level insight into biophysical processes such as protein folding,
protein inhibition by ligands, and protein aggregation. It allows
researchers to resolve the relationship between the function of
a biomolecule and the underlying conformational transitions.
However, understanding and modeling the conformational
dynamics on large timescales from MD simulation data
are generally a challenging task because many structural
changes are governed by rare events. An effective mathe-
matical approach is to approximate the dominant spectral
components (i.e., the largest eigenvalues and the associated
eigenfunctions) of the Markov propagator defined by the MD
simulation algorithm. Based on the spectral components, we
can decompose the conformational transition process on large
timescales into a small number of slow relaxation processes.
A lot of dynamical information can be extracted from the
slow processes, e.g., for the computation of ensemble averages
and correlation functions,2 detection of spatial structures
of metastable states,3 choice of reaction coordinates,4,5 and
construction of low-dimensional approximate models.6

The most popular and successful method for the spectral
estimation is the Markov state model (MSM) method.7–12 A
MSM consists of a discretization of the state space into a set
of discrete bins and an estimation of a Markovian transition
matrix describing the dynamics between them. Given a MSM,
one can obtain a direct estimate of the dominant spectral
components (eigenvalues and eigenvectors) by conducting an
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eigenvalue decomposition on the transition matrix. It is easy
to see that the main difficulty of this method comes from
the choice of the discretization, and a “bad” discretization of
the state space will severely violate the Markov assumption
and lead to a poor estimation.13,7 Roughly speaking, the
discretization in the MSM method can be improved in two
ways. The first way is to increase the number of bins by using,
e.g., subdivision14,15 and cell-mapping16,17 techniques, so that
the state space can be finely discretized with small truncation
error. But this way suffers from the “curse of dimensionality”
when applied to macromolecules. The second way is to modify
the shapes and locations of bins, and the most commonly used
optimality criterion for constructing state space discretization
of MSMs is to maximize metastability, which can be done
by discovering long lived conformations10 or free energy
basins18–20 of molecular systems. Recent theoretical investiga-
tions7,13,21 have shown that the maximization of metastability
is not exactly consistent with the minimization of dynamical
approximation error, and the discretization of transition sub-
spaces between metastable states is also important to increase
the approximation accuracy. However, there is currently no
systematic algorithm to perform the discretization by directly
minimizing the dynamical approximation error of MSMs.
Furthermore, the quality of MSMs can also be improved
by performing the discretization in generalized state spaces
defined by time-lagged independent components5,22 or state
sequences.23–25

Another spectral estimation method, called variational
method,26,27 was developed recently. It approximates eigen-
functions by linear combinations of a set of basis functions
and utilizes the Ritz method (or generalized Ritz method)
to achieve the best combinations and estimation in the
sense of the variational principle. It can be proved that the
MSM method is in fact a specific version of the variational
method with basis functions being step functions.26 Therefore,
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compared to the MSM method, the variational method
provides a more flexible and general framework for the spectral
estimation and usually can get accurate estimates of eigenpairs
with a small number of smooth basis functions. The major
disadvantages of the variation method are (i) the choice of
basis functions is still a difficult problem and (ii) it is difficult
to analyze the influence of statistical noise.

In the present paper, we propose a new class of models to
solve the spectral estimation problem of MD analysis, called
Markov transition models (MTMs). MTMs use a parametric
model in order to approximate the continuous transition
density of the MD operator. Specifically, we propose the
use of Gaussian mixtures, leading to Gaussian MTMs, or
briefly GMTMs. After estimating the GMTM, we can easily
extract the dominant spectral components from the model
parameters. The GMTM method provides a flexible way for
spectral estimation without discretization as the MSM method.
Further, all the parameters in the GMTM, including the means
and covariance matrices of Gaussian basis functions, can
be adjusted based on the likelihood function, so that the
uncertainties caused by statistical noise can be evaluated and
handled in a Bayesian manner.

II. SPECTRAL EXPANSION OF MOLECULAR
KINETICS AND SYMMETRIZED PROPAGATORS

Let us consider a molecular system with Hamiltonian H at
thermal equilibrium at a constant temperature T . We suppose
that a standard molecular dynamics simulation is implemented
such that the temporal evolution of the molecular configuration
can be viewed as a time-homogeneous, ergodic, and reversible
Markov process which has a unique stationary distribution,

π (x) ∝ exp
(
−H (x)

kBT

)
, (1)

where kB denotes the Boltzmann constant. We assume that
|H (x)| < ∞ and thus π (x) > 0 for all x ∈ Rd.

We describe the state of the system by the weighted
density u(x) = ρ(x)/π(x), where ρ(x) is the probability
density that the molecule is at configuration x. In particular,
the weighted stationary density is given by


π(x), i.e., the

actual probability density is obtained by taking the square of
our density function. In an analogy to quantum mechanics,
our functions u(x) take the role as wave functions.

The Markovian molecular dynamics has a Markov prop-
agator with conjugate propagator Sτ,

(Sτu) (y) ,
ˆ

sτ (x, y) u (x) dx (2)

with the symmetric kernel

sτ (x, y) =

π (x)
π (y) p (xt+τ = y |xt = x) , (3)

S is a compact operator on the Hilbert space L2 = { f | ⟨ f , f ⟩
< ∞} with the inner product ⟨ f , g⟩ = ´

f (x) g (x) dx. Using
this formalism, we can write the propagation of densities by

the following spectral expansion:

ut+τ (x) =
∞
i=1

λi (τ) ⟨ut, φi⟩ φi (x) , (4)

where

λi (τ) = exp (−κiτ) = exp
(
− τ

ti

)
(5)

is the i-th largest eigenvalue of Sτ with decay rate κi,
ti = 1/κi is the corresponding implied timescale, φi denotes
the corresponding eigenfunction which satisfies



φi, φ j

�
= δi j,

and (λi (τ) , φi) is called the i-th eigenpair of Sτ. Note that
the first eigenpair satisfies λ1 (τ) ≡ 1 > λ2 (τ) and φ1 =

√
π

due to the uniqueness of the stationary distribution. Refer-
ence 7 contains an illustration of the role of eigenvalues and
eigenfunctions in molecular kinetics.

Equation (4) shows that the molecular process can be
decomposed into a set of independent relaxation processes by
using eigenpairs of the Markov propagator. If the molecular
kinetics exhibits metastability, there may be a large spectral
gap between a few slow processes and the other ones,
i.e., κn ≪ κn+1 for some small n. In this case, the probability
density of xt+τ can be well approximated by

ut+τ (x) ≈
n
i=1

λi (τ) ⟨ut, φi⟩ φi (x) (6)

for τ ≫ 1/κn. The importance of dominant eigenvalues and
their eigenfunctions of the Markov propagator is therefore
obvious: they describe the main components of the molecular
kinetics and give a low-dimensional approximation of the
evolution of the configurational distribution on a large
timescale.

Equation (6) provides the theoretical basis for a variety
of MD data analysis methods, such as Markov state models,13

diffusion maps,4 and dynamical fingerprints.2 However, the
direct computation of eigenvalues and eigenfunctions is
generally infeasible due to the intractability of the underlying
stochastic dynamics. In this paper, we will develop a Bayesian
framework for estimating dominant eigenpairs of the molec-
ular kinetics from MD simulation data.

Further, it can be shown that the following properties ofSτ
and its integral kernel sτ when the dynamics are reversible and
some technical assumptions hold for {xt} (see supplementary
material,28 Sec. B for details):

1. sτ is a positive and symmetric function, i.e.,

sτ (x ′, x) > 0 and sτ (x ′, x) = sτ (x, x ′) (7)

for all x, x ′ ∈ Rd.
2. Sτ has the same eigenvalues as the commonly used Markov

propagator Pτ and transfer operator Tτ (see supplementary
material,28 Sec. A for definitions). Its eigenfunctions {φi}
satisfy

φi (x) = li (x) /

π (x) = ri (x)


π (x), (8)

where li is the i-th eigenfunction of Pτ and ri is
the i-th eigenfunction of Tτ, sometimes called left and
right eigenfunctions.27 Consequently, if solutions of the
eigenvalue problem Sτφ = λφ are available in closed form,
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eigenpairs of the Markov propagator and transfer operator
can also be easily obtained.

3. sτ is square integrable with ∥sτ∥2 < ∞, which implies that
sτ is a local function with the property

lim
R→∞

¨
∥(x′,x)∥≥R

s2
τ (x, y) dx dy = 0. (9)

Here,

∥sτ∥2 =

¨
s2
τ (x, y) dxdy (10)

denotes the 2-norm of sτ and ∥(x ′, x)∥ =

∥x ′∥2 + ∥x∥2

denotes the Euclidean norm of (x ′, x).
It can be seen from (7) thatSτ is in fact a “symmetric operator”
in diffusion maps,29,30 so we call Sτ defined by (2) the symme-
trized propagator of Markov process {xt}, and the integral
kernel sτ given by (3) the symmetrized transition density. It is
natural to ask how to check whether a given integral operator
describes a valid symmetrized propagator. For this problem,
we have the following theorem:

Theorem 1. Let Sτ be a compact integral operator on
the Hilbert space L2 with a continuous integral kernel sτ. If
the spectral radius of Sτ is 1 and sτ satisfies (7), then Sτ is
a symmetrized propagator of a reversible Markov process.

Proof. See supplementary material,28 Sec. C. �

In supplementary Table 1,28 we compare the three differ-
ent integral operators: Markov propagator Pτ, symmetrized
propagator Sτ, and transfer operator Tτ. It can be observed
from the table that all the three operators can equivalently
describe the dynamics of a given reversible Markov pro-
cess, and the eigenpairs of different operators are explicitly
related to each other. However, in the three operators, only
the symmetrized propagator Sτ has a symmetric and square
integrable kernel function sτ, which provides the following
advantages for dynamical modeling: (i) sτ can be approxi-
mated by combining multiple local basis functions, (ii) the
reversibility of the dynamical model can be simply satisfied by
enforcing sτ to be symmetric. We will exploit these advantages
of the symmetric operator in order to construct a model of
molecular kinetics.

III. GAUSSIAN MARKOV TRANSITION MODELS

A. Model definition

The properties of symmetrized propagators stated in
Sec. II suggest a way of modeling Markovian dynamics on
a continuous phase space. For a given reversible process {xt},
we can fit some parametric distribution model to the shape
of the symmetrized transition density sτ. Then the dominant
spectral components of {xt} can be estimated from the
corresponding approximation of the symmetrized propagator
Sτ.

Here, the symmetrized transition density sτ is fitted by
the following Gaussian mixture model (GMM):

sτ (x, y) = 1
Z


1≤i, j≤m

Wi jN (x |µi,Σi)N �
y |µ j,Σ j

�
, (11)

where N (·|µ,Σ) denotes a multivariate normal distribution
with mean µ and covariance matrix Σ, µi ∈ Rd and Σi ∈ Rd×d

for all i, Wi j ≥ 0 denotes the weight of the (i, j)-th component
with


i, j Wi j = 1. The normalization constant Z can be

determined by the fact that the spectral radius of Sτ is 1.
Denoting W = [Wi j] as the weight matrix and χ (x)

= [χi (x) ]⊤ = [N (x |µi,Σi)]⊤ as the column vector of basis
functions, (11) can be written more compactly as

sτ (x, y) = 1
Z
χ
⊤ (x)Wχ (y) . (12)

(Note that W has to be symmetric due to the symmetry of sτ
shown in (7).)

A lot of studies have demonstrated the capacity of
Gaussian mixture models to form smooth approximations to
arbitrarily shaped densities,31 and we can prove that proposed
model (11) is also general enough to approximate any
symmetrized transition density with arbitrary accuracy (see
supplementary material,28 Sec. D). In what follows, we call
a reversible Markov process with a GMM-type symmetrized
transition density as in (11) an m-th order GMTM since it uses
the GMM to describe Markov transition probabilities instead
of a simple static data distribution.

B. Eigenpairs of Gaussian transition models

The power of GMTM comes from the fact that their
eigenpairs can be calculated from its parameters. Therefore we
can estimate the GMTM in a Bayesian approach, as described
below, but have direct access to its eigenpairs. According to
the third property of symmetrized propagator given in Sec. II,
eigenpairs of a GMTM defined by (11) can be obtained from
the following eigenvalue problem:

Sτφ = λφ. (13)

Substituting (12) into (13), we have

φ (x) = (λZ)−1
ˆ
χ(x ′)ᵀWχ (x) φ (x ′) dx ′

= (λZ)−1
(ˆ

Wχ (x ′) φ (x ′) dx ′
)ᵀ
χ (x) . (14)

This implies that for any solution φ of (13), there is a coefficient
vector b ∈ Rm such that

φ = bᵀχ. (15)

Substituting (15) into (13) and defining the inner product
matrix B ∈ Rm×m by

B =
ˆ
χ (x) χ(x)ᵀdx, (16)

we arrive at an equivalent form of (13)

Z−1bᵀBW = λbᵀ (17)

which is a simple matrix eigenvalue problem. Furthermore, it
can be concluded from (17) that the normalizing constant Z
equals the spectral radius of the matrix BW .
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Based on the above discussion, the procedure of extracting
eigenpairs from a GMTM can be summarized as follows:

1. The coefficient matrix W is obtained by fitting the Gaussian
mixture model to the symmetrized transition density (see
Sec. IV).

2. The overlap matrix B = [Bi j] is computed by

Bi j =
N (0|µi,Σi) · N �

0|µ j,Σ j
�

N
�
0|µ(i, j),Σ(i, j)� (18)

with

Σ(i, j) =
(
Σ
−1
i + Σ

−1
j

)−1
, (19)

µ(i, j) = Σ(i, j)
(
Σ
−1
i µi + Σ

−1
j µ j

)
(20)

(see supplementary material,28 Sec. E for detailed deriva-
tions).

3. Compute Z as the spectral radius (largest eigenvalue) of
BW .

4. Solve eigenvalue problem (17) and obtain eigenpairs
{(λi, φi)} of the symmetrized propagator by using

φi = bᵀi χ, (21)

where (λi,bi) is the i-th solution of (17). Please note that
the coefficient vector bi needs to be normalized according
to the constraint

⟨φi, φi⟩ = bᵀi Bbi = 1. (22)

IV. ESTIMATION METHODS

A. Likelihood of Gaussian Markov transition models

In order to conduct an estimation of GMTMs, we con-
struct its likelihood to produce a given data set. Using (3), the
transition density of a GMTM defined by (11) can be expressed
in terms of the symmetrized transition density. We can then
obtain the likelihood of GMTM (11) given a simulation trajec-
tory {xkτ}Kk=0 as the product of transition densities along the
trajectory

p ({xkτ}|sτ) = ρ0 (x0)
K
k=1

p
�
xkτ |x(k−1)τ

�

=
ρ0 (x0)

ZK

φ1 (xKτ)
φ1 (x0)

·
K
k=1

χ
�
x(k−1)τ

�ᵀWχ (xkτ) , (23)

where ρ0(x) is the probability density from which the starting
point x0 is drawn, and φ1(x0) and φ1(xKτ) are the station-
ary densities of these points. Using (23), the expectation-
maximization (EM) and Gibbs sampler algorithm can be used
like in Gaussian mixture models to get maximum likelihood
(ML) and Bayesian estimates of parameters in GMTMs.

Remark 1. In applications, we can simply set the distri-
bution of x0 to the uniform distribution ρ0 (x) ∝ 1 if there is no
prior information on x0. Using this prior, the likelihood of the
GMTM is equivalent to the transition probability conditional

on the starting state with

p ({xkτ}k≥0|sτ) ∝ p ({xkτ}k≥1|sτ, x0) (24)

and the proposed GMTM estimators are then applicable to
the case that only a set of short and non-equilibrium simula-
tion trajectories, instead of multiple long trajectories, are
available.

Both the maximum-likelihood and Bayesian estimators
for GMMs can be efficiently computed by introducing a latent
allocation random variable for each observation in the data
set.32 For the proposed GMTM, we can define

I = {(Ik, Jk)}Kk=1 (25)

as the latent variables, which associate x(k−1)τ and xkτ to the
Ik-th and Jk-th Gaussian components in the basis function
vector χ (·). We can then obtain the conditional dependence
relationships between the GMTM, latent variables, and the
observed trajectory as

p (I |sτ) =

K
k=1

WIkJk

p ({xkτ}|I, sτ) = ρ0 (x0)
ZK

φ1 (xKτ)
φ1 (x0)

·
K
k=1

N
�
x(k−1)τ |µIk,ΣIk

�

·
K
k=1

N
�
xkτ |µJk,ΣJk

�
. (26)

In probabilistic model (26), the inference of I can be simply
handled since they are conditionally independent given the
value of weight matrix W , and the likelihood p ({xkτ}|I, sτ)
of the m-th order GMTM sτ with fixed latent variables I can
be evaluated with a computational time complexity of only
O(md2) after calculating some sufficient statistics of latent
variables (see supplementary material,28 Sec. F for details).
Therefore, in contrast with the original observation model
of the GMTM defined by marginal likelihood function (23),
probabilistic model (26) is more suitable for statistical
inference of GMTMs. (The computation of marginal likeli-
hood function (23) requires time O

�
Kd2� for a simulation

trajectory with length K .) In what follows, we will investigate
the Bayesian and ML estimations of GMTMs based on
probabilistic model (26).

B. Maximum likelihood estimation

We now investigate how to search the ML estimate of the
GMTM which is determined by the optimization problem

θ∗ = arg max
θ

log p ({xkτ}|sτ (θ)) (27)

by using the EM algorithm, where θ represents a parameter
vector consisting of all independent parameters of means and
covariance matrices of Gaussian components and the weight
matrix (see supplementary material,28 Sec. G1 for detailed
definition of θ).

Note that the conditional distribution p ({xkτ}|sτ (θ)) can
be interpreted as the marginal conditional distribution given

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.133.8.114 On: Tue, 24 Feb 2015 15:53:22



084104-5 H. Wu and F. Noé J. Chem. Phys. 142, 084104 (2015)

by summing the joint distribution p ({xkτ},I |sτ (θ)) over all
possible values of I, i.e.,

p ({xkτ}|sτ (θ)) =

I

p ({xkτ},I |sτ (θ)) . (28)

Therefore, instead of solving (27) directly, we can utilize the
EM algorithm to maximize the likelihood of θ by iteratively
applying the following two steps:

E-step: Compute the functional

Q
(
θ |θ(ℓ−1)) = Eq(ℓ) [log p (I,{xkτ}|sτ (θ))] , (29)

where

q(ℓ) (I) = p
(
I |{xkτ}, sτ

(
θ(ℓ−1))) , (30)

and Eq [·] denotes the expected value under the as-
sumption that I follows the distribution q (I). (Ex-
plicit expressions of Q

�
θ |θ(ℓ−1)� are given in supple-

mentary material,28 Sec. H1.)

M-step: Solve

θ(ℓ) = arg max
θ

Q
(
θ |θ(ℓ−1)) . (31)

This is a nonlinear problem and has no analytical
solution, but a numerical and locally optimal solution
can be obtained by using numerical optimization
schemes.

For more technical and implementation details of the EM
algorithm, please see supplementary material,28 Sec. H.

C. Bayesian estimation

According to (26), the posterior distribution of the GMTM
given {xkτ} can be sampled by using the Gibbs sampler
presented in Algorithm I.

ALGORITHM I. Gibbs sampler for GMTMs.

1: (Initialization) Specify a prior distribution p (θ) of the GMTM
parameter vector θ and choose an initial value θ = θ(0) arbitrarily,
where θ has the same definition as in the ML estimator (27).

2: for ℓ = 1 to M ′+Mdo
3: (Sampling of latent variables) Draw I from its full conditional
posterior

p(I |{xkτ}, sτ (θ)). (32)

4: (Sampling of θ) Draw θ from its full conditional posterior

p(θ |I, {xkτ}). (33)

5: Let θ(ℓ)= θ.
6: end for
7: return θ(M ′+1), . . ., θ(M ′+M )

Note that the simulated Markov chain {(I(ℓ), θ(ℓ))} in
Algorithm I is ergodic due to the fact that p(I(ℓ+1), θ(ℓ+1)|I(ℓ),
θ(ℓ)) > 0 for all

�
I(ℓ+1), θ(ℓ+1)� and

�
I(ℓ), θ(ℓ)

�
. Therefore, after

discarding the first M ′ burn-in samples, we can approximate

the posterior distribution of θ as

p (θ |{xkτ}) ≈ 1
M

M′+M
ℓ=M′

δθ(ℓ) (θ) , (34)

where δθ(ℓ) (·) denotes the Dirac measure centered on the point
θ(ℓ).

The definition of θ and the other implementation details of
Algorithm I are given in the supplementary material,28 Sec. G.

V. APPLICATIONS

To verify the validity and advantage of the developed
GMTM, we apply GMTMs to spectral estimation of three
test systems: a Brownian dynamics simulation in a bistable
potential and MD simulations of the alanine dipeptide
and the bovine pancreatic trypsin inhibitor (BPTI) protein,
and compare the estimation results with that provided by
traditional MSMs, where we utilize k-means algorithm to
generate discrete bins for MSMs and the detailed description
of Bayesian and ML inference algorithm of MSMs can be
found in Refs. 7 and 33.

In addition, since a MSM with m bins can also be viewed
as a transition model with m basis functions (see supplemen-
tary material,28 Sec. I), here we use the same name “model
order” and symbol m to denote the number of basis functions
in either model.

A. One-dimensional diffusion process

We first consider a one-dimensional diffusion process
which is driven by the following Brownian dynamics:

dxt = −∇V (xt) dt +


2β−1dWt . (35)

Here, Wt denotes standard Brownian motion on R, β = 1/
(kBT) = 3.125 is used as inverse temperature, and the function
V (x) = �

x2 − 1
�2
+ 0.25x is a smooth two-well potential as

shown in Fig. 1(a).
We utilize the Euler-Maruyama algorithm to generate

a simulation trajectory {xkτ} with length 10 000 s and
lagtime τ = 0.25 s and identify the first two dominant spectral
components by using GMTMs and MSMs with model order
m = 3,4, . . . , 9. Fig. 1(b) summarizes the resulting estimates
of the second implied timescale t2, and estimates of the first
two left eigenfunctions

(l1 (x) , l2 (x)) = (π (x)φ1 (x) ,

π (x)φ2 (x))

= (φ1(x)2, φ1 (x) φ2 (x)) (36)

are displayed in Figs. 1(d) and 1(e). The GMTM estimates
of the spectral components are much better than the MSM
estimates especially for small model orders. The MSMs
underestimate t2 as predicted by the variational principle.26

In contrast, the GMTMs can provide an accurate estimate of
t2 for the model order m ≥ 8.

In order to further clarify the difference between GMTMs
and MSMs in spectral estimation, we also plot the estimates
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FIG. 1. Comparison of GMTM and MSM for modeling the diffusion in a two-well potential. (a) Potential function V (x) in (35). (b) Estimates of the second
timescale. (c) Eigenfunction approximation error δ2 (see (38)) given by the GMTM and MSM. ((d)-(f)) Estimates of the first two left eigenfunctions (l1, l2)
and the second right eigenfunction r2 provided by the GMTM and MSM with model order m = 3 and 9. Error bars shown in (b) and ((d)-(f)) correspond to the
one-sigma confidence intervals given by Bayesian inference.

of the second right eigenfunction

r2 (x) = φ2 (x) /

π (x) = φ2 (x) /φ1 (x) (37)

and the corresponding weighted approximation error

δ2 =

ˆ
(r̂2 (x) − r2 (x))2π (x) dx (38)

in Figs. 1(c) and 1(f). For MSMs, weighted approximation
errors of right functions are important quantities and can be
used to characterize the approximation quality of a MSM.13

It can be seen from Figs. 1(f.3) and 1(f.4) that MSMs
approximate the right eigenfunction r2 by step functions,
which leads to large error between r̂2 (x) and r2 (x) for x
in the transition region between potential wells. This error
decays as the model order (i.e., the number of bins) increases,
but only with a low rate. In contrast with MSMs, GMTMs
approximate the right eigenfunction by combining smooth
basis functions, and the locations and shapes of the basis
functions are optimized according to the likelihood function.
Therefore, the GMTM can achieve a good approximation
even with a small set of basis functions. This can also be
demonstrated by Figs. 1(b) and 1(c); the estimated t2 and r2
given by the GMTM with 3 basis functions are more accurate
than that given by the MSM with 9 bins.

B. Alanine dipeptide

Alanine dipeptide (acetyl-alanine-methylamide) is a small
molecule whose structural and dynamical properties of this

molecule have been thoroughly studied. It is known that its
configuration space can be conveniently described by two
backbone dihedral angles ϕ and ψ (see Fig. 2(a)).

We perform 20 independent MD simulations of the
alanine dipeptide with length 200 ns and save configurations
every 10 ps. A GMTM is estimated with m = 6, and MSMs are
estimated with m = 6,12,18 to estimating the first three spec-
tral components from the MD data using Bayesian inference
and the maximum-likelihood estimator. The detailed settings
of MD simulations are described in Ref. 27. Because the
eigenpairs of alanine dipeptide cannot be directly calculated
from the simulation model, here we evaluate the estimation
results by the estimated implied timescales as a function of
the lag time. According to (5), an implied timescale should
be a constant independent of lag time τ. But in practice, the
estimated implied timescales

ti (τ) = − τ

λ̂i (τ)
(39)

are usually influenced by fast and un-modeled processes
contained in the systems. Therefore, t̂i tend to be smaller
than the true values ti when the lag time τ is too small.
As τ increases, the fast processes decay to zero and we
can expect that ti (τ) approaches to the true value. Thus,
we can compare the GMTM estimates and MSM estimates
based on the convergence rates of ti (τ). Fig. 2(b) shows
that MSM estimates t2 (τ) converge very slowly with model
order 6 and 12 and converges to an almost constant value
at τ = 10 ps for m = 18. The GMTM with only 6 basis
functions achieves the similar convergence rate of t2 (τ) as
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FIG. 2. Comparison of GMTM and MSM for modeling the conformation dynamics of alanine dipeptide. (a) Illustration of the structure of alanine dipeptide.
((b),(c)) Estimates of the second and third timescales, where solid lines represent the Bayesian estimation results with standard deviation error bars and the ML
estimates are shown by circles. ((d)-(f)) Estimates of the first three left eigenfunctions (l1, l2, l3) provided by the GMTM with model order m = 6 and the MSM
with model order m = 18.

the MSM with m = 18, which demonstrates the superior
performance of the proposed GMTMs. Note that the third
spectral component of the alanine dipeptide is related to
the transition between the two metastable states in the area
ϕ < 0 (see Fig. 2(f)). This area contains most inter-metastable-
state transitions in simulation data and tends to be finely
coarse-grained by k-means algorithm, so the third implied
timescale is relatively easy to identify for MSMs. As can
be seen from Fig. 2(c), the three MSMs provide the similar
t2 (τ) for τ ≥ 10 ps as the GMTM. But for lag times smaller
than 10 ps, the GMTM gives better estimates of t2 than the
MSMs.

Figs. 2(d)-2(f) summarize estimates of the first three
eigenfunctions given by the GMTM and the MSM with m = 18
at lag time τ = 100 ps. As shown in the figures, the estimated
dominant eigenfunctions of the GMTM are almost identical to
those of the finely discretized MSM, and the three metastable
states of alanine dipeptide are clearly indicated by the different
sign structures of the eigenfunctions.

C. BPTI

BPTI is globular protein containing 58 amino acid
residues and has a molecular mass of 6512 Dalton.34 Its
secondary structure is illustrated in Figs. 3(a). In this section,
the spectral components of BPTI are analyzed based on a MD
simulation with length∼1 ms generated by the special-purpose
supercomputer Anton.35 In order to eliminate the redundant
atomistic degrees of freedom, we employ the time-lagged

independent component analysis algorithm5,22 to extract slow
independent components of the molecular configuration and
then perform the spectral identification in the reduced feature
space of the 5 slowest independent components.

Estimated timescales of the second and third spectral
components of BPTI are plotted in Figs. 3(b) and 3(c). The
kinetics of BPTI is much more complicated than that of alanine
dipeptide, and it is difficult for MSMs with small numbers of
states to accurately capture the slow processes. As shown in
Fig. 3(b), MSM estimates of t2 converge very slowly towards
around 30 µs and 40 µs for m = 10 and 50, and the 100-state
MSM achieves a nearly τ-constant estimate around 43 ∼ 45 µs
at lag time τ = 1.3 µs. In contrast with MSMs, the GMTM
provides larger estimates of t2 with better convergence rate
by using only 10 basis functions, which gives the estimate
t2 = 44 µs at τ = 0.9 µs. From Fig. 3(c), we can also see
that the GMTM has better convergence speed and stability in
estimation of t3. Within statistical error, our estimates agree
with hidden Markov model estimates in Ref. 36.

Figs. 3(d)-3(f) show estimation results of projected
eigenfunctions lproj

1 , lproj
2 , lproj

3 at lag time τ = 20 µs. For conve-
nience of illustration, we display projections of eigenfunctions
onto the first and second independent components. It can be
observed that the GMTM with m = 10 and the MSM with
m = 100 achieve similar estimates of projected eigenfunc-
tions. Moreover, from the sign changes in projected eigen-
functions, it is interesting to see that the second and third
eigenfunctions characterize the metastable state transitions
along the first and second independent components separately.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.133.8.114 On: Tue, 24 Feb 2015 15:53:22



084104-8 H. Wu and F. Noé J. Chem. Phys. 142, 084104 (2015)

FIG. 3. Comparison of GMTM and MSM for modeling the conformation dynamics of BPTI. (a) Illustration of the structure of BPTI. ((b),(c)) Estimates of
the second and third timescale, where solid lines show the Bayesian estimates with standard deviation error bars and circles represent ML estimation results.
((d)-(f)) Estimates of the first three projected eigenfunctions (lproj

1 , l
proj
2 , l

proj
3 ) provided by the GMTM with model order m = 10 and the MSM with model order

m = 100.

VI. CONCLUSIONS

We have developed a parametric model based statistical
approach for extracting slow processes of molecular kinetics
from MD simulations. The framework of this approach can be
sketched as follows:

The GMTM presented in this paper plays an essential
role in the approach. The concept of “transition model”
is a continuous extension of MSM, and we can prove
that the MSM is in fact a specific transition model with
piecewise basis functions. The advantages of GMTMs over
MSMs are (i) GMTMs can provide smooth approximations
to eigenfunctions by using Gaussian basis functions. (ii) All
parameters of Gaussian basis functions in GMTMs can be
estimated in a Bayesian fashion. Numerical examples show
that much less basis functions are required with GMTMs
to obtain estimates of equal quality when MSMs are used.
In comparison with the other parametric modeling tools
for Markov processes in continuous spaces (e.g., parametric
models of Itō processes), the eigenpairs of GMTMs can be
simply and analytically computed from model parameters,
and it can be shown that a GMTM is able to approximate
(arbitrarily closely) the symmetric operator of any ergodic and
reversible Markov process under some general assumptions.
Moreover, likelihood functions of GMTMs can be written in
a form like likelihood of Gaussian mixture models, then the
EM algorithm and blocked Gibbs sampling algorithm can be

used to achieve ML and Bayesian estimates of GMTMs as in
learning Gaussian mixture models.

Future work on GMTMs will focus on

1. More efficient statistical inference algorithms. The compu-
tation time of GMTM estimation can be expressed as
[(update time of sufficient statistics + optimization time
of model parameters) × iteration number], where the
computation time of sufficient statistics of latent variables
I is linear in data size and comparable to that of count
matrices in MSMs. In order to improve the efficiency of
applying GMTMs to complex molecular systems, we will
investigate how to reduce the number of undetermined
parameters of Gaussian basis functions and accelerate
the convergence rate by some heuristic method based on
clustering or time lagged independent component analysis.
Moreover, in this paper, parameter optimization steps in
both Bayesian and ML inference methods are implemented
in a random-walk fashion. It is natural to expect that
the efficiency of inference algorithms of GMTMs can
be further enhanced by using some advanced parameter
optimization algorithms, e.g., the Newton algorithm.

2. Sparse priors for GMTMs. In the present paper, the
Bayesian inference of GMTMs is performed with uniform
prior on model parameters, which may lead to numerical
instability or over-fitting of estimates especially for small-
sized simulation data. (The ML estimator can be viewed
as a specific maximum a posteriori estimator with uniform
prior.) In order to improve the robustness of GMTMs, as
a subject of future investigations, a sparse prior on weight
matrices of GMTMs will be developed to encourage the
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sparsity of weight matrices so that the weights of redundant
Gaussian components are enforced to be close to zero in
the case of insufficient data.
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