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Abstract. Many features of a molecule which are of physical interest
(e.g. molecular conformations, reaction rates) are described in terms
of its dynamics in configuration space. This article deals with the pro-
jection of molecular dynamics in phase space onto configuration space.
Specifically, we study the situation that the phase space dynamics is
governed by a stochastic Langevin equation and study its relation with
the configurational Smoluchowski equation in the three different scaling
regimes: Firstly, the Smoluchowski equations in non-Cartesian geome-
tries are derived from the overdamped limit of the Langevin equation.
Secondly, transfer operator methods are used to describe the metastable
behaviour of the system at hand, and an explicit small-time asymp-
totics is derived on which the Smoluchowski equation turns out to
govern the dynamics of the position coordinate (without any assump-
tions on the damping). By using an adequate reduction technique, these
considerations are then extended to one-dimensional reaction coordi-
nates. Thirdly, we sketch three different approaches to approximate the
metastable dynamics based on time-local information only.

1 Introduction

Langevin and Hamiltonian dynamics constitute established models for the analy-
sis of biomolecular processes by classical molecular dynamics. While they describe
the system at hand through the evolution of configuration and momentum coordi-
nates, many properties of interest, such as metastable conformations, conformational
transition rates or folding pathways, are merely characterized by the configurational
dynamics or the dynamics of few collective variables, called reaction coordinates, that
span a low-dimensional submanifold of the configuration space (see, e.g., [1,12,13]).

Both from a computational and modeling point of view it is very appealing to
describe a molecular system just by its position (or reaction) coordinates, since this
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drastically reduces the dimensionality of the problem. Over decades, it has been of
major interest to derive equations which govern the evolution of these coordinates
either exactly [44,28], or approximately with the smallest possible error [4,26]. One
popular model for molecular dynamics in position space that comes under various
names like overdamped Langevin dynamics, Brownian dynamics, Kramers equation
or Smoluchwski equation is obtained by the so-called Smoluchowski-Kramers approx-
imation of the Langevin equation [39,24,17]. Yet it is unclear whether there are
conditions beyond the asymptotic regime of the Kramers-Smoluchowski approxima-
tion, under which the Smoluchowski equation accurately captures e.g., the folding
dynamics of a protein in terms of a one-dimensional reaction coordinate.

In this article, we discuss the accuracy of the Smoluchowski equation for the spatial
dynamics of a molecular system under various parameter regimes where, in each case,
our analysis departs from the Langevin equation in phase space.1 Our presentation of
the topic is not claimed to be exhaustive; it rather reflects the authors’ interests, and
their wish to understand how the hierarchies of models used in molecular dynamics
relate to each other. This contribution discusses three topics:

(a) What is the appropriate generalization of the Smoluchowski equation in gen-
eralized (non-Cartesian) coordinates, to be used, for example, in reduced-order
models of protein folding or polymers, and how is it related to a phase space
description of a molecular system?

(b) Is there a closed equation for the spatial dynamics on small time intervals if the
underlying phase space dynamics is governed by a Langevin equation?

(c) How well (and in which sense) is a system’s metastable behaviour approximated
by the Smoluchowski dynamics when the phase space dynamics is generated by
Langevin dynamics? What are the time scale regimes on which the approximation
of the metastable dynamics by the Smoluchowski equation may be used?

The manuscript is organized as follows: Section 2 introduces the basic model of
molecular dynamics in terms of deterministic and stochastic differential equations and
describes an operator-based framework for the evolution of probability densities under
these dynamics. This section also introduces the formulations of the stochastic equa-
tions in generalized coordinates in a non-Euclidean space. Section 3 reviews the con-
cept of metastability based on density fluctuations in position space and establishes
a connection between Langevin and Smoluchowski dynamics on short time scales. A
numerically exploitable scheme which replaces the complicated position space density
transport by a rescaled Smoluchowski transport is described, along with asymptotic
error estimates. Section 4 reviews the approximation quality of these methods, gives
improved error estimates and discusses the extension to longer times scales. A sum-
mary and possible future directions are given in Section 5.

2 Trajectory- and ensemble-based views

We consider a dynamical system described by d “ 3n positional degrees of free-
dom that represent a system of n particles. Let Q Ă Rd denote the corresponding
configuration space and V pqq the potential energy of a given particle configuration
q P Q where we assume that the function V : Q Ñ R is at least twice continuously
differentiable, polynomially growing at infinity and bounded from below.

1 We use the terms spatial, position(al), and configuration(al) interchangeably, when re-
ferring to coordinates or dynamics.
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2.1 Models for molecular dynamics

We introduce three typical models for molecular dynamics. The simplest model to
describe the motion pqtqtě0 of the particles in vacuum, i.e. without external influences
like a solvent is given by Hamilton’s equations

dq

dt
“ ∇pHpq, pq

dp

dt
“ ´∇qHpq, pq ,

(1)

where p P P “ Rd denotes the vector of conjugate particle momenta, and

H “
1

2
p ¨M´1p` V pqq

is the Hamiltonian (total energy) of the system, with M “ diagpm1, . . . ,mdq denoting
the mass matrix. Depending on the type of system or when transformed to generalized
coordinates, the mass matrix M can be a general symmetric positive-definite, possibly
position-dependent matrix.

In the presence of a heat bath or solvent, one typically adds a drift-diffusion term,
arriving at the Langevin equation,

dq

dt
“ ∇pHpq, pq

dp

dt
“ ´∇qHpq, pq ´ γ∇pHpq, pq ` σξt .

(2)

The term ´γ∇pH “ ´γM´1p, with γ P Rdˆd being symmetric positive definite,
models the drag through the solvent, the term σξt accounts for random collisions
with the solvent particles [31]. Here, pξtqtě0 is an uncorrelated, zero-mean white noise
process that can be formally interpreted as the (generalized) derivative of a standard
d-dimensional Brownian motion, and σσT P Rdˆd is the noise covariance matrix, In
order to keep the system at a constant average kinetic energy, damping and excitation
have to be balanced, which is ensured by assuming that noise and drag coefficients
satisfy the fluctuation-dissipation relation

2γ “ βσσT ,

where β ą 0 is the inverse temperature in the system. Choosing γ or σ is a modelling
issue and thus depends on the particular problem at hand; see, e.g., [7]. As we will
see later on, both γ and σ may even be position dependent.

If the friction in the system is uniformly large, i.e. v ¨ γv " v ¨Mv for all v P Rd,
the Langevin equation can be replaced by the Smoluchowski equation

γ
dq

dt
“ ´∇V pqq ` σξt , (3)

or, using the common notation for Itô stochastic differential equations (see [32]),

γdqt “ ´∇V pqtqdt` σdwt ,

where wt is a standard Brownian motion in Rd. (In the following we will interpret
stochastic differential equations such as (2) or (3) in the sense of Itô.) The Smolu-
chowski equation is also termed overdamped Langevin equation and can be derived
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from (2) by letting v ¨ γv Ñ8 keeping all other parameters fixed [31].

In some cases a description of the stochastic dynamics in a different coordinate
system is needed. The aim of this subsection therefore is to derive the Smoluchowski
equation in generalized coordinates. This is most conveniently done by resorting to
the canonical form of the Langevin equation (2) that we will state first.

Langevin equation in generalized coordinates. To state the Langevin equation (2)
in canonical form, we consider a diffeomorphism Φ : Q1 Ñ Q between configuration
spaces that has a cotangent lift T˚Φ : X Ñ X 1 given by

pq, pq ÞÑ
`

Φ´1pqq, pp∇Φ ˝ Φ´1qpqqqT p
˘

.

Using Ito’s formula [32], the Langevin equation (2) can be written in the new config-
uration variables u “ Φ´1pqq and their conjugate momenta v “ pp∇Φ ˝ Φ´1qpqqqT p:
introducing the new (possibly position-dependent) drag and noise coefficients by

γ̃ “ ∇ΦT γ∇Φ , σ̃ “ ∇ΦTσ , (4)

the Langevin equation can be recast as [19,21]

du

dt
“ ∇vH̃pu, vq

dv

dt
“ ´∇uH̃pu, vq ´ γ̃puq∇vH̃pu, vq ` σ̃puqξt .

(5)

Here H̃ denotes the push-forward of the Hamiltonian H to the new coordinate system,

H̃pu, vq “
1

2
v ¨ pGpuqq´1v ` Ṽ puq ,

with Ṽ “ V ˝ Φ´1 and G “ ∇ΦTM∇Φ being the mass metric tensor induced by the
transformation Φ.

It can be readily seen that, when the original drag and noise coefficients satisfy
the fluctuation-dissipation relation, then so do the transformed coefficients:

2γ̃ “ βσ̃σ̃ . (6)

Derivation of the Smoluchowski equation in generalized coordinates. It is now
possible to derive the Smoluchowski equation in generalized coordinates from the
canonical Langevin dynamics (5) using formal asymptotics. To this end, let us scale
the original drag and noise coefficients according to γ ÞÑ γ{ε and σ ÞÑ σ{

?
ε where

ε ą 0 is a small parameter. Clearly, the scaling preserves the fluctuation-dissipation
relation (6), and it leads to the Langevin equation

du

dt
“ ∇vHpu, vq

dv

dt
“ ´∇uHpu, vq ´

1

ε
γpuq∇vHpu, vq `

1
?
ε
σpuqξt .

(7)

For notational convenience, we have dropped the twiddle signs on the transformed
Hamiltonian H and the coefficients γ and σ. To study the εÑ 0 limit of (7) we seek
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a perturbative expansion of the associated backward Kolmogorov equation2

Btφ
εpu, v, tq “ ALanφ

εpu, v, tq , φεpu, v, 0q “ φ0pu, vq (8)

following the approach described in [33,35]. To begin with, we notice that the back-
ward operator ALan in (8) admits the decomposition (see also p. 8 below)

ALan “ AHam `
1

ε
AOU ,

with
AHam “ ∇vH ¨∇u ´∇uH ¨∇v

and

AOU “
1

2
σσT : ∇2

v ´ pγG
´1vq ¨∇v

We consider a perturbative solution of (8) that is of the form

φε “ φ0 ` εφ1 ` ε
2φ2 ` . . .

with φi “ φipu, v, tq. Inserting the ansatz into the backward equation and equating
powers of ε we obtain a hierarchy of equations, the first three of which read

AOUφ0 “ 0 (9)

AOUφ1 “ Btφ0 ´AHamφ0 (10)

AOUφ2 “ Btφ1 ´AHamφ1 . (11)

Note that AOU is a second-order differential operator in v with u appearing only as a
parameter. By the assumption that γp¨q is symmetric positive definite with uniformly
bounded inverse, (9) implies that φ0 does not depend on v. By a standard closure
argument (a.k.a. centering condition), it thus follows that Btφ0 “ 0.

Closely inspecting the resulting equations (10)–(11), the next nontrivial term, φ1,
is found to be the solution of the backward equation

Btψ “ ´

ż

Rd

`

AHamA
´1
OUAHamψ

˘

%upvqdv , (12)

where ψ “ ψpu, tq is independent of v, and %u is the solution to A˚OU%u “ 0, with
A˚OU being the formal L2 adjoint of AOU. Equation (12) must be equipped with a
suitable initial condition ψpu, 0q “ ψ0puq.

Before we evaluate the right hand side of (12), a few remarks are in order:

1. The function %u in (12) is unique invariant probability density with respect to the
Lebesue measure on the momentum space P 1 “ T˚uQ1 (that we can identify with
Rd) of the Ornstein–Uhlenbeck process generated by AOU . It is given by

%upvq “

ˆ

β

2π

˙n{2

pdetpGpuqqq
´1{2

exp

ˆ

´
β

2
v ¨ pGpuqq´1v

˙

(13)

2 The Kolmogorov backward equation is a partial differential equation governing the evo-
lution of observables. Specifically, if pXtqtě0 is the solution of an Ito stochastic differential
equation, such as (7), then, for any integrable function φ0 : X Ñ R,

φpx, tq “ Exrφ0pXtqs

satisfies Btφ “ Aφ with initial condition φpx, 0q “ φ0pxq. Here A is the infinitesimal generator
associated with the process pXtqtě0, and Exr¨s denotes the conditional expectation over all
realizations of the process starting at X0 “ x. We introduce the dual concept of forward
equation and the corresponding generator in Section 2.2; cf. also [32].
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and satisfies A˚OU%u “ 0.

2. The inverse of the operator AOU is only unambiguously defined when it is acting
on functions that are in the range of AOU, which, by the Fredholm alternative, is
the orthogonal complement of the kernel of its adjoint:

V0 “

"

f P L2pX 1, µq :
ż

P
fpv, uq%upvqdv “ 0

*

Ă L2pX 1, µq .

Note that AHamψ P V0 for ψ independent of v, and, as a consequence, A´1
OU in (12)

is well defined.

3. The formal expansion suggests that the solution of the Langevin-based backward
equation (8) and the solution to the limiting system (12) satisfy

}φεp¨, tq ´ ψp¨, t{εq}V Ñ 0 , εÑ 0 . (14)

for some suitable norm on V Ă L2pX , µq. Indeed, standard results from homog-
enization theory for parabolic partial differential equations (e.g. [33,34]) suggest
that, under certain regularity assumptions on the coefficients, the convergence is
uniform in X ˆp0, T q for any finite T , but it remains unclear whether these results
carry over to the general situation considered here (cf. also [31, Thm 10.1]).

As we show in the appendix, the operator on the right hand side of (12) reads

Ā “ β´1∆̃´∇V ¨ ∇̃ , (15)

where

∇̃ “ γ´1∇ and ∆̃ “
1

?
det γ

∇ ¨
´

a

det γ γ´1∇
¯

,

denote gradient and Laplace-Beltrami operator with respect to γ. The differential
operator Ā has a straighforward interpretation as the infinitesimal (backward) gen-
erator of the Smoluchowski dynamics on the configuration space Q1 Ă X 1, with the
position dependent drag matrix acting as metric tensor on Q1. Alternatively, one may
regard Ā as the generator of the Smoluchowski dynamics on a Riemannian manifold
Q1 endowed with the metric tensor h “ ∇ΦT∇Φ and a position dependent friction
matrix γ. Our findings are summarized in the next Lemma.

Lemma 1 The Smoluchowski equation in generalized coordinates reads

γpuq
du

dt
“ ´∇V puq ` gpuq ` σpuqξt , u0 “ u , (16)

where g “ pg1, . . . , gnq has the entries

gi “
1

β

ÿ

j,k

γij
1

?
det γ

B

Buk

´

a

det γ γkj
¯

. (17)

Remark 1 The additional drift term g in the Smoluchowski equation is due to the
geometry of the configuration manifold Q1 and the interpretation of the Smoluchowski
equation in the sense of Itô. Formally, it can be seen to be related with the first order
derivative in the expression for the Laplace Beltrami operator in (15).

Remark 2 The Smoluchowski equation (16) in generalized coordinates likewise follows
by transforming the original Smoluchowski equation (3) in Cartesian coordinates to
the new coordinate system using Itô’s Lemma [32]. As a consequence, the stochastic
convergence of the spatial component of the high friction Langevin equation to the
solution of the (time-rescaled) Smoluchowski equation that has been proved in [31,
Thm. 10.1] should be inherited by its non-Cartesian counterpart too.
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2.2 The transfer operator

We shall now examine how probability densities evolve under the Langevin or the
Smoluchowski dynamics. To this end, call x “ pq, pq or x “ q the state vector,
depending on which type of dynamics is considered, and X “ Q ˆ P or X “ Q the
phase space or state space, respectively. For any given x0 P Q, we seek the probability
density ft of xt for some t ą 0 with respect to the natural (Liouville or Lebesgue)
measure on X . Now let B Ă X be any measurable subset of X , and the define
stochastic transition function3 of the dynamics pxtqtě0 by

ppt, x,Bq “ Prob rxt P B |x0 “ xs , (18)

Further call
pµpt, A,Bq :“ Probµ rxt P B |x0 P As (19)

the transition probability between the measurable sets A Ă X and B Ă X , where
Probµ indicates that the initial condition is distributed according to a probability
measure µ. For the long term macroscopic behaviour of the system, sets A play an
important role for which pµpt, A,Aq « 1 for some physically relevant measure µ and
some characteristic times t ą 0.

Now let an initial density f0 “ dµ{dx be given. The density ft describing the
distribution of the system at time t ą 0 is then implicitely given by

ż

B

ftpxq dµpxq “

ż

X
f0pxqppt, x,Bq dµpxq (20)

which holds for all measurable sets B Ă X . Under certain (mild) conditions [25],
which are satisfied by our models, ft is uniquely defined by (20). As a consequence,
equation (20) can be seen the definition of the transfer operator with lag time t:

P tf0pxq :“ ftpxq.

By linearity we can extend the definition of P t from probability densities to arbitrary
integrable functions, and it will be convenient in what follows to consider the transfer
operator as a family of linear maps P t : L1pX , µq Ñ L1pX , µq. This family of linear
operators has the Chapman-Kolmogorov (or semigroup) property:

(i) P 0f “ f ,
(ii) P t`sf “ P t

`

P sf
˘

for all s, t ě 0.

We also have that non-expansiveness in the induced operator norm, }P t} ď 1, and
positivity, P tf ě 0 for f ě 0.

The transition probabilities (19) can be conveniently expressed in terms of the
transfer operator. If we define the scalar product on the space L2pX , µq of square
integrable functions by

xf, gyµ “

ż

X
fpxqgpxqµpdxq ,

then, for any measurable set A with µpAq ą 0,

pµpt, A,Bq “
1

µpAq

ż

B

P tχA dµ “
1

µpAq

ż

Q
P tχAχB dµ “

xP tχA, χByµ
xχA, χAyµ

with χ being the indicator function.

3 It is common to denote the transition function and transition probabilities by p. We
hope that the clash in the notation with the conjugate momenta is not going to confuse the
reader, since the transition function and -probabilities are always going to be functions of
three variables.



8 Will be inserted by the editor

The forward generator. The semigroup property means that P t is “memoryless”,
i.e. that (1)–(3) generate a Markov process. Noting that

P t “
´

P t{n
¯n

,

we may conclude all relevant information about the density transport is already con-
tained in P τ for arbitrarily small τ . This is formalized by looking at the operator

Lf “ lim
τÑ0

P τf ´ f

τ
(21)

that is defined for all f , for which the limit exists. L is called the forward generator
or infinitesimal generator of P t.

For the Hamiltonian dynamics (1) and functions f P C1pX q, where C1 is equipped
with the supremum norm, the operator L is given by

LHam “ ∇qH ¨∇p ´∇pH ¨∇q , (22)

where the dot denotes the Euclidean inner product, and ∇q, ∇p are the gradients
with respect to q or p. In case of Langevin dynamics (2) and f P C2pX q, we have

LLan “ LHam `
1

2
σσT : ∇2

p ` γ∇pH ¨∇p ` γ : ∇2
pH , (23)

where the notation A : B :“ tr pATBq denotes the inner product between matrices
A,B P Rdˆd, and ∇2

p denotes the matrix of second derivatives with respect to p.
Finally, the generator of the Smoluchowski dynamics (3) reads

LSmol “ β´1γ´1 : ∇2
q `

`

γ´1∇qV
˘

¨∇q ` γ
´1 : ∇2V , (24)

with ∇2
q being the matrix of second derivatives in q, and we have used that 2γ “ βσσT .

Fokker-Planck equations and invariant measures. By definition of the forward gen-
erator, the evolution of probability densities ft associated with any of the stochastic
dynamics (2)–(3) is described by a parabolic transport equation of the form

Btft “ Lft , ft“0pxq “ gpxq , (25)

that are called Kolmogorov forward equations or Fokker–Plack equations [23], with L
being either LLan or LSmol. When γ “ 0, then the Fokker-Planck equation with LLan

turns into the Lioville equation that describes the transport of probability densities
under the Hamiltonian dynamics (1).

Probability measures that are invariant under the dynamics play a prominent role.
The corresponding densities are fixed points of P t for any t ě 0, and equation (21)
implies that they lie in the kernel of L. For the stochastic processes considered here,
the invariant density can be shown to be unique (cf. [32]). For the Langevin dynamics
(2), the unique invariant probability density is the canonical density

fcanpq, pq “
1

Z
exp p´βHpq, pqq

“
1

ZP
exp

ˆ

´
β

2
p ¨M´1p

˙

loooooooooooooomoooooooooooooon

“:fPppq

1

ZQ
exp p´βV pqqq

loooooooooomoooooooooon

“:fQpqq

, (26)
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with Z “ ZPZQ and

ZP “

ż

P
exp

ˆ

´
β

2
p ¨M´1p

˙

dp , ZQ “

ż

P
exp

`

´ βV pqq
˘

dq .

For the Smoluchowski dynamics (3), the unique invariant measure has the density
fQpqq, which is called the Boltzmann density or Gibbs-Boltzmann density. (We assume
throughout that expp´βV q is integrable).

Under fairly mild assumptions on the potential V , the invariant densities can
be shown to be the unique asymptotically stable fixed point of P t, which implies
that P tf0 converges to the stationary distribution for any initial density f0 [30]. The
Liouville equation associated with the Hamiltonian dynamics (1) is known to have
infinitely many stationary solutions, among which is fcan.

Remark 3 It can be readily seen that the Smoluchowski dynamics (16) in generalized
coordinates u P Q1 has the unique invariant probability measure

dρpuq “ pfQ ˝ Φqpuq dΣpuq , (27)

with
dΣpuq “

a

dethpuq du

being the Riemannian volume element on Q1 where hpuq “ p∇ΦT∇Φqpuq is the cor-
responding metric tensor. Note that (27) is simply the pullback of the Boltzmann
distribution in Cartesian coordinates by the coordinate transformation Φ. As a con-
sequence, dρ{du is the Q1-marginal of the canonical density fcan, for we can replace
the metric tensor h on Q1 by the generalized mass matrix G “ ∇ΦTM∇Φ or the
corresponding expression for the friction coefficient γ without changing the invariant
measure as the constant mass or drag matrices cancel out.

2.3 More on semigroups and their generators

Before we proceed, let us recall two results relating the transfer operator semigroup
and its generator. For our purposes the main connection between them is given by
the following

Theorem 1 (Spectral mapping theorem [36]) Let X be a Banach space, T t :
X Ñ X , t ě 0, a C0 semigroup of bounded linear operators (i.e. T tf Ñ f as t Ñ 0
for every f P X , and T t bounded for every t), and let A be its infinitesimal generator.
Then

etσ‚pAq Ă σ‚pT
tq Ă etσ‚pAq Y t0u,

with σ‚ denoting the point spectrum. The corresponding eigenvectors are identical.

Evidently, a function f is an invariant density of P t for all t ě 0, if and only if
Lf “ 0. Further, since }P t} ď 1, the eigenvalues of L lie in the left complex half-plane.
The family P t can be approximated by a truncated “Taylor series”:

Proposition 1 ([2]) If f is 2N ` 2 times continuously differentiable and LNf is
integrable with respect to µ, then

›

›

›

›

›

P tf ´
N
ÿ

n“0

tn

n!
Lnf

›

›

›

›

›

“ OptN`1q for tÑ 0.
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3 Spatial dynamics and metastability

Consider an ensemble, i.e. an infinite number of systems modeled by (2) in thermody-
namic equilibrium, i.e. identically and independently distributed according to fcan. To
determine which portion of these systems undergo a certain configurational change,
i.e. leave a subset A Ă Q, we have to track the evolution of all these systems starting
from A, i.e. the evolution of χAfcan, which is given by P tpχAfcanq.

The spatial transfer operator. Since we are only interested in the distribution of
their configurations at time t ě 0, we compute the marginal with respect to q. The
resulting spatial transfer operator is [37,43]

Stupqq :“
1

fQpqq

ż

P
P tLan

`

upqqfcanpq, pq
˘

dp. (28)

Metastability on configuration space. Using the scalar product

xu, vyfQ :“

ż

Q
upqqvpqqfQpqqdq

(which gives rise to the norm } ¨ }L2
fQ

), and the “slice” Γ pAq :“
 

pq, pq P Q | q P A
(

in state space, we define transition probabilities between slices via

p pt, Γ pAq, Γ pBqq “
xStχA, χByfQ
xχA, χAyfQ

. (29)

We call a disjoint union A1 Y . . . Y An “ Q of position space metastable or almost
invariant if

p pt, Γ pAjq, Γ pAjqq « 1, j “ 1, . . . , n.

The link between almost invariant/metastable sets and eigenvalues close to one
and the corresponding eigenvectors of some transfer operator was first established in
[9] and used for conformation dynamics in [10]. We here cite an extension to a broader
class of transfer operators from [22].

Theorem 2 (Application of [22], Theorem 2) Let σpStq Ă ra, 1s with a ą ´1
and λn ď . . . ď λ2 ă λ1 “ 1 be the n largest eigenvalues of St, with eigenvectors
vn, . . . , v1. Let tA1, . . . , Anu be a measurable decomposition of Q and Π be the or-
thogonal projection onto spanpχA1 , . . . , χAnq. Then

1`ρ2λ2`¨ ¨ ¨`ρnλn`c ď ppt, Γ pA1q, Γ pA1qq`¨ ¨ ¨`ppt, Γ pAnq, Γ pAnqq ď 1`λ2`¨ ¨ ¨`λn,

where ρj “ }Πvj} P r0, 1s and c “ ap1´ ρ2 ` . . .` 1´ ρnq.

Note that the spatial transfer operator St from (28) satisfies the assumptions in
Theorem 2; see [2], Appendix B.

Unfortunately, St lacks the semi-group property, and so cannot be the solution
operator of an autonomous transport equation, such as the Fokker–Planck equation.
Equivalently, spatial dynamics is not induced by an Itô diffusion process, and thus
has no infinitesimal generator in the sense of (25).
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3.1 Pseudo generators

Formally, however, the time-derivatives of St can still be defined, in analogy to (21).
We will see in the following that the resulting operators can play the role of the
infinitesimal generator in the context of metastability analysis.

Definition 1 Let X be a Banach space, T t : X Ñ X , t ą 0 be a time-parametrized
family of bounded linear operators. The operator

d

dt
T tf “ lim

hÑ0

T t`hf ´ T tf

h

is called the time-derivative of T t. Iteratively, we define by dn

dtnT
t :“ d

dt

`

dn´1

dtn´1T
t
˘

the
n-th time-derivative. The operator

Gn :“
dn

dtn
T t

ˇ

ˇ

t“0

is called the n-th pseudo generator of T t.

For T t “ P t, the transfer operator of an Itô process, the pseudo generators are simply
Gn “ Ln, where L is the infinitesimal (forward) generator.

The pseudo generators of the spatial transfer operator St can be expressed by the
generator LLan of the full Langevin transfer operator:

Lemma 2 ([2]) The n-th pseudo generator Gn of St takes the form

Gnupqq “
1

fQpqq

ż

P
LnLan

`

upqqfcanpq, pq
˘

dp.

Explicitly, we have

(1) G1 “ 0,

(2) G2 “
1

β
∆´∇V ¨∇. In particular, G2 is independent of γ.

Surprisingly, one has

Corollary 1 ([2]) The pseudogenerator G2 (of the spatial transfer operator) is the
infinitesimal generator of the Smoluchowski dynamics:

G2 “ GSmol.

Remark 4 Note that G2 “ GSmol actually has the form of the backward Smolu-
chowski generator ASmol (cf. Section 4). Still, G2 is also the forward generator of the
Smoluchowski process, if distributions are thought of as distributions on top of the
Gibbs–Boltzmann fQ. This is in accordance with the definition of the spatial transfer
operator (28), which also describes redistribution of mass with respect to fQ. The
formal coincidence “GSmol “ ASmol” is not by chance: it reflects the reversibility of
the Smoluchowski process.

Taylor reconstruction of the spatial transfer operator. It is natural to ask whether
there is an analogue of Proposition 1 for St and its pseudo generators. We have the
following result:
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Theorem 3 ([2]) If u is sufficiently regular, then
›

›

›

›

›

Stu´
K
ÿ

k“0

tk

k!
Gku

›

›

›

›

›

L2
fQ

“ OptK`1q, ptÑ 0q.

Unfortunately, for k ą 3, higher derivatives of the potential V appear in the ex-
pressions for Gk, which are therefore impractical to work with, while the gradient ∇V
is typically available. We call

Rtu :“
´

id`
t2

2
G2

¯

u “ u`
t2

2

´ 1

β
∆u´∇u ¨∇V

¯

(30)

the (2nd order) Taylor approximation of St such that if u is sufficiently regular,
›

›Stu´Rtu
›

›

L2
fQ
“ Opt3q, ptÑ 0q.

Exponential reconstruction. Unfortunately, unlike St, Rt is not norm-preserving for
densities with respect to fcan. Therefore, when transporting u, we lose the interpre-
tation of pRtuq fcan as a physical density. Moreover, Rtu is not even bounded in t [2].
This quickly (i.e. for small t) destroys the interpretation of the eigenvalues of Rt as a
measure of metastability.

An alternative approximation to St preserves those properties. With

Gλ2 :“ λG2pλI ´G2q
´1 for λ P R` ,

(the so-called Yosida approximation), which is a bounded operator, we define

Etf :“ lim
λÑ8

exp

ˆ

t2

2
Gλ2

˙

f,

which is norm preserving [2]. For Et we get the following analogue for Proposition 1:

Lemma 3 ([2]) If u is sufficiently regular, then for tÑ 0,

›

›

›

›

Etu´
N
ÿ

n“0

`

t2

2 G2

˘n

n!
u

›

›

›

›

L2
fQ

“ Opt2N`1q.

In particular,
›

›Etu´ Stu
›

›

L2
fQ
“ Opt3q ptÑ 0q.

Reconstruction of eigenspaces. The error asymptotics carries over to the spectrum
and eigenvectors of St, Rt and Et in the following way:

Corollary 2 ([2]) Let u be a sufficiently regular eigenvector of Rt or of Et to eigen-
value λ. Then

}Stu´ λu}L2
fQ
“ Opt3q.

Thus, for small t we may interpret dominant eigenpairs pu, λq of Et and Rt as good
approximations to dominant eigenpairs of St. Hence, they yield metastable sets [11].

Remark 5 The eigenfunctions of interest, those of St, Et, and Rt, can be shown to
be sufficiently regular under fairly general conditions, cf. [2], Appendix C.
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3.2 Towards spatial generators in essential coordinates

We have discussed the concept of the spatial transfer operator that is obtained by
projecting the phase space dynamics onto the spatial components. We shall now
consider the restriction of the dynamics to a given collective variable, also termed
essential coordinate. To this end, let ξ : Q Ñ Z Ă R be a smooth map with the
property that, for every regular value z P Z of ξ, the level sets

Mz “ tq P Q : ξpqq “ zu Ă Q

are smooth submanifolds of Q with codimension 1 (i.e. hypersurfaces). We suppose
that ξ is a physically relevant observable of the dynamics, such as a reaction co-
ordinate or some collective variable that monitors a conformational transition, and
call ξ the essential coordinate; the unessential coordinates are then implicitly defined
through the foliation of Q by the map ξ, in other words: the unessential coordinates
parameterize the leaves Mz of the foliation for every (regular) value z of ξ.

To define the analogue of the spatial transfer operator (28) for the essential coor-
dinate, firstly note that [16]

ż

Q
gpqq dq “

ż

Z

ˆ
ż

Mz

g|∇ξ|´1dσz

˙

dz (31)

for any integrable function g : Q Ñ R where dσz denotes the Riemannian volume
element on Mz. Equation (31) is called the coarea formula and can be considered a
nonlinear variant of Fubini’s theorem.

Together with the law of total expectation, the coarea formula thus entails that
the canonical probability measure µ conditional on ξpqq “ z has the form

dµz “
1

Npzq
fcan|∇ξ|´1dσzdp , (32)

with the normalization constant

Npzq “

ż

X
fcan|∇ξ|´1dσzdp . (33)

The spatial transfer operator St for essential coordinates can now be defined as

Stesswpzq :“
1

Npzq

ż

X
P tLan

`

wpξpqqqfcanpq, pq
˘

|∇ξpqq|´1dσzdp , (34)

Projected pseudo-generators. To compute the corresponding pseudo-generators, let
ρ be the configurational marginal probability measure that is obtained by projecting
µ onto the configurations by integrating out the momenta, i.e., dρpqq “ fQpqqdq. Let
us further introduce a projection operator Πz : L2pQ, ρq Ñ L2pQ, ρq by

pΠzuqpzq “
1

NQpzq

ż

Q
upqq fQpqq|∇ξpqq|´1dσzpqq (35)

where fQ is the q-marginal of fcan andNQ is the corresponding normalization constant
for the conditional density. It can be readily seen that, Πz is an orthogonal projec-
tion with respect to the natural (weighted) scalar product in the space L2pQ, ρq and
amounts to the expectation of functions with respect to ρ conditional on ξpqq “ z.
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Thus, for functions upqq “ wpξpqqq, the reduced spatial transfer operator Stess and
the spatial transfer operator (28) are related by (cf. [37])

Stesswpzq “ pΠzS
tuqpzq . (36)

The last identity is helpful in computing the corresponding pseudo generators Gess
n .

Here we are interested only in the second pseudo generator Gess
2 , for which we have

the following analogue of Lemma 2:

Lemma 4 For sufficiently smooth functions upqq “ wpξpqqq, the n-th pseudo gener-
ator of Stess reads

Gess
n wpzq “ pΠzGnuqpzq

Specifically, we have

Gess
2 “ β´1apzq

B2

Bz2
` bpzq

B

Bz
,

with the noise and drift coefficients

apzq “ pΠz|∇ξ|2qpzq , bpzq “
`

Πzpβ
´1∆ξ ´∇ξ ¨∇V q

˘

pzq .

Proof The first part of the assertion is a straight consequence of Lemma 2 and the
coarea formula. As for the second part, observe that the second pseudo generator is
given by G2 “ β´1∆´∇V ¨∇ which by chain rule implies:

G2wpξpqqq “ β´1|∇ξ|2w2pzq|z“ξpqq ` pβ´1∆ξ ´∇ξ ¨∇V qw1pzq|z“ξpqq .

Letting the projection Πz act from the left using that Πzw
1pzq|z“ξpqq “ w1pzq and

likewise Πzw
2pzq|z“ξpqq “ w2pzq gives the desired result.

A few remarks are in order:

1. In accordance with Corollary 1, the second projected pseudo generator Gess
2 is the

infinitesimal generator of the diffusion

dz

dt
“ bpzq `

a

2β´1σpzqξt , (37)

with σpzq “
a

apzq and ξt being a one-dimensional uncorrelated Gaussian white
noise process. Equation (37) has been derived by Legoll and Lelièvre [26] using
first-order (Markovian) optimal prediction.

2. In [26], the authors prove an error bound for the projected dynamics (37) under the
assumption that the conditional probability µz satisfies a logarithmic Sobolev in-
equality. We refrain from transferring the analysis to our situation as the existence
of logarithmic Sobolev constants is difficult to verify (beyond the case of strictly
convex potentials), hence the approach is of limited practical use. Nonetheless, we
believe that the projected pseudo generator Gess

2 will provide a good approxima-
tion of the dominant spectrum of LLan whenever ξ is a slow coordinate relative to
the unessential configuration variables and the momenta.

3. If |∇ξ| is bounded above and away from zero, it can be shown (see [26]) that the
process pztqtě0 generated by Less “ Gess

2 has the unique invariant measure

dνpzq “ expp´βF pzqq dz

with

F pzq “ ´β´1 log

ż

fQ|∇ξ|´1dσz
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being the thermodynamic free energy in the essential coordinate. Note that ν “
µ˝ξ´1 is the push-forward of the canonical distribution by ξ (i.e. the ξ-marginal).

4. Naively, one might expect the projected Smoluchwski equation to be of the form

dy

dt
“ ´F 1pyq `

a

2β´1ξt , (38)

and it can be shown that (37) can be transformed into (38) according to y “ ϕpzq
using Ito’s Lemma with ϕ being the volatility transform

ϕpzq “

ż z

0

pσpsqq´1ds

that leads to a Smoluchowski equation with unit noise coefficient; see [13].

5. In order to useGess
2 in metastability analysis (analogous toG2 in section 3.1), it has

to be discretized. The method of choice is spectral collocation due to the regularity
of the objects of interest (i.e. eigenfunctions of Stess). Here, collocation requires
the evaluation of Gess

2 φipzjq for ansatz functions φi at collocations points zj . This
in turn requires the evaluation of the noise and drift-coefficients apzjq, bpzjq in
Lemma 4, which involve (potentially high-dimensional) integrals that represent
averages over the non-essential degrees of freedom; see, e.g., [6,20,27] for Monte-
Carlo methods to efficiently compute these high-dimensional integrals.

4 Approximation quality for larger time scales

We have seen in Section 3.1 that Et “ P
t2{2
Smol approximates St well (pointwise) for

small times t. However, for metastability analysis, spectral properties of the spatial
operator for larger time scales are of interest. In this section we make use of two well-
known techniques—perturbation expansion, already seen in Section 2.1, and the Mori–
Zwanzig formalism—with the aim of explaining the approximation quality of pseudo
generator reconstructions of St, and extending them to larger time scales. Then,
we discuss how to utilize the ergodicity of the Langevin process to show an almost
Markovian behaviour of the spatial dynamics on long time scales. This eventually
leads to a bound on the time scale on which the spatial dynamics is well approximated.

4.1 Perturbation expansion

The idea of perturbation expansion rests on the assumption that there exists a small
problem parameter in which one can expand the objects of interest in a (formal) power
series. As in Section 2.1, here this small parameter is the inverse of the damping in the
Langevin dynamics, i.e. ε :“ γ´1 where, for simplicity, we assume that the friction
coefficient is scalar. For ease of presentation, we set the inverse temperature β “ 1.

It turns out to be advantageous to work with the propagators (Koopman opera-
tors) instead of the transfer operators themselves. The difference is only of technical
nature, since the propagators are the adjoints of the corresponding transfer operators.
Denoting the propagators of the Langevin, Smoluchowski, and spatial dynamics by
T tLan, T tSmol, and T tQ, respectively, we have the explicit representations

T tLanupq, pq “ E
“

upqLant , pLant q
ˇ

ˇ qLan0 “ q, pLan0 “ p
‰

(39)

T tSmolwpqq “ E
“

wpqSmol
t q

ˇ

ˇ qSmol
0 “ q

‰

(40)

T tQwpqq “

ż

P
E
“

wpqLant q
ˇ

ˇ qLan0 “ q, pLan0 “ p
‰

fPppqdp (41)
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where the expectation Er¨s is taken with respect to the law of the stochastic forcing
in the Langevin (for T tLan and T tQ) and Smoluchowski (for T tSmol) equations. The
propagators T tLan and T tSmol are semigroups with generators

ASmol “ ∆q ´∇qV ¨∇q

ALan “ p ¨∇q ´∇qV ¨∇p ` ε
´1 p∆p ´ p ¨∇pq “ AHam ` ε

´1AOU

while T tQ is not a semigroup, but d2

dt2T
t
Q
ˇ

ˇ

t“0
“ ASmol; in complete analogy with the

theory presented above.

To proceed, set Aε :“ ε´1ALan. This scaling of ALan is called diffusive scaling and
is due to the fact that the spatial dynamics gets slower and slower when friction is
increased, and nontrivial dynamics only takes place on time scales of order ε´1. The
scaling of ALan by ε´1 thus restores the relevant dynamics; see also (14).

Now let pλε, uεq be an eigenpair of Aε, such that Aεuε “ λεuε, and assume the
existence of formal series expansions

uε “ u0 ` εu1 ` ε
2u2 ` . . .

λε “ λ0 ` ελ1 ` ε
2λ2 ` . . .

It follows (see, e.g., [38,35]) that u0pq, pq “ u0pqq, withASmolu0 “ λ0u0, and u1pq, pq “
p ¨∇qu0pqq. This already gives a formal justification of the Smoluchowski dynamics
as overdamped limit of the Langevin dynamics: on a time scale τ “ εt (recall that
ALan “ εAε) the position coordinate of the Langevin dynamics is governed by the
Smoluchowski dynamics, up to fluctuations of order ε.

A closer look at the structure of the first terms in the eigenfunction expansion
reveals even more. Metastability information is contained in eigenfuntions at nonzero
eigenvalues, hence let λ0 ‰ 0 ‰ λε. Since ASmol is the formal adjoint of LSmol and
ALan is the formal adjoint of LLan in L2, their eigenfunctions to different eigenval-
ues are orthogonal with respect to the corresponding scalar product. And, since the
eigenfunctions of LLan and LSmol at the eigenvalue 0 are the canonical and Gibbs–
Boltzmann densities fcan and fQ, respectively, we have that

ż

Q

ż

P
fcanpq, pquεpq, pqdpdq “ 0 ,

and
ż

Q

ż

P
fcanpq, pqu0pq, pqdpdq “

ż

Q
fQpqqu0pqqdq “ 0 .

Being in the subspace orthogonal to fcan, both functions decay exponentially under
the action of the propagator. More precisely, let

η :“ max tReλε | 0 ‰ λε P σpAεqu ă 0

be the real part of the nonzero eigenvalue of Aε which is closest to zero; i.e. pε|η|q´1

is the dominant time scale of the Langevin dynamics. Note that η “ ηpεq “ Op1q
as ε Ñ 0, and lim supεÑ0 η ă 0. Now, both T tLanuε and T tLanu0 decay as exppεηtq
for t Ñ 8. We will utilize this with the perturbation expansion in the following
computation. Its purpose is to estimate how far the Smoluchowski eigenfunction u0
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is from being an eigenfunction of the spatial propagator T tQ.

T tQu0pqq “

ż

P

`

T tLanu0
˘

pq, pqfPppqdp

“

ż

P

`

T tLan puε ´ puε ´ u0qq
˘

pq, pqfPppqdp

“ eελεt

ż

P
uεpq, pqfPppqdp`Opeεηtεq

“ eελεt

ż

P

`

u0pqq ` εu1pq, pq `Opε2q
˘

fPppqdp`Opeεηtεq

“ eελεtu0pqq `Opeελεtε2q `Opeεηtεq as εÑ 0 ,

where the third equality is obtained by utilizing the exponential decay of T tLanpuε ´ u0q.
The last equality follows from u1 and fP being odd and even functions of p, respec-
tively, hence the integral of their product vanishes. On the new, slower time scale
τ “ εt we obtain

T ε
´1τu0 “ eλ0τ`Opεqu0 ` e

λ0τ`OpεqOpε2q ` eητOpεq .

This means that u0 is an approximate eigenfunction of the spatial propagator T ε
´1τ

Q
as long as eλ0τ dominates the last two terms on the right hand side.4 It clearly
dominates the second term (since we assume ε to be small), hence we arrive at the
desired condition by comparing it with the third:5

τ À
1

|λ0 ´ η|
| log ε| or t À

1

|λ0 ´ η|
ε´1| log ε| (42)

These estimates allow the following interpretation:

1. While the standard result allows an approximation of the (position coordinate of
the) Langevin dynamics by the Smoluchowski dynamics on a time scale εt “ τ “
Op1q (as εÑ 0), our estimate suggests that with respect to metastability analysis
this time scale can be stretched by a factor | log ε|.

2. The more dominant an eigenvalue, i.e. the smaller |λ0 ´ η|, the longer the time
scale is on which the Smoluchowski eigenmode approximates the corresponding
eigenmode of the spatial propagator well. For the first subdominant eigenmode,
where λε “ η, and hence λ0 ´ η “ Opεq, the estimate reads as τ À ε´1| log ε|, or
equivalently, t À ε´2| log ε|.

In order to validate the estimate (42) also numerically, we perform the following
experiment: Consider the Langevin system induced by the one-dimensional periodic
potential

V pqq “ 1` 3 cosp2πqq ` 3 cos2p2πqq ´ cos3p2πqq

with constant mass matrix M “ 1 at temperature β “ 1.

4 The spatial transfer operator is self-adjoint, hence normal. From the theory of pseu-
dospectra for normal operators [41] we know that if Tu “ λu`εv for some linear operator T ,
u, v of modulus one, and λ P R, then T has an eigenvalue in the ε-neighborhood of λ.

5 Note that for x, y ą 0 one has e´x ! e´y if ey´x ! 1, already achieved if y À x, meaning
“y smaller than x up to some additive constant”.
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Fig. 1. The two wells of the periodic double well potential indicate two metastable regions in
configuration space. The sign structure of the dominant eigenfunctions of T tQ reveals them.

For varying ε “ γ´1, we computed the largest lag time t “ tνpεq such that the
eigenfunctions uε “ u1ε at the subdominant eigenvalue λε “ λ1ε of T tQ and T tSmol differ
by less than a given threshold ν, i.e. we compute

tνpεq :“ inf
!

t ą 0 : }u1εpT
t
Qq ´ u

1
εpT

t
Smolq}L2

fQ
ą ν

)

.

Figure 2 shows ε ÞÑ tνpεq for ν “ 0.05, and for comparison, the graph of ε ÞÑ
c1 logpεqε´2` c2 (where we obtained the constants c1 and c2 by a least squares fit on
the given data). Clearly, on the chosen domain for tν , there is an excellent agreement
with the estimate (42).
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Fig. 2. ε-dependence of the maximal lag time. The blue graph shows the largest lag time
such that }u1

εpT
t
Qq ´ u1

εpT
t
Smolq}L2

fQ
ă 0.05. The black graph is c1 logpεqε´2

` c2 with c1 «

´1.04 ¨10´4, c2 « 1.07 ¨10´1 (from least-squares fitting). The eigenfunctions were computed
using a simple Ulam discretization [2] of T tQ and T tSmol with resolution 256.

Although these first estimates allow merely a slight quantitative extension of the
time scale on which the Smoluchowski dynamics approximates the spatial component
of the Langevin dynamics well, it suggests that the consideration of further struc-
tural information from the perturbation expansion may allow for an extension of
approximation time scales beyond the current, or inspire corrections terms to do so.
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4.2 The Mori–Zwanzig formalism

In the previous section, we have analyzed a possibility to extend the time scales on
which metastability information gained from the Smoluchowski equation is a good
approximation to that of the actual model of interest, the Langevin dynamics. The
argument, however, required the smallness of the inverse damping coefficient ε “ γ´1.
In this section we turn to the question what can be done without this assumption.

The Mori–Zwanzig representation decomposes the differential equation governing
the state variable of interest into terms according to their dependence on the same
quantities of interest. Note that the formalism itself is quite general [44,4,5]; we will
give an brief introduce that is tailored to our needs.

Let A be the infinitesimal generator of some propagator semigroup, which we will
formally denote by peAtqtě0. This propagator acts on scalar functions f which are
functions of the full state x. Let x “ px̂, x̃q, where x̂ is the state of interest (also
called the resolved variables). Let a distribution µ be given over the state space, and
define the projection operator Π as expectation with respect to µ conditional on x̂:

Πfpxq “ Πfpx̂q :“ Eµ
“

fpxq
ˇ

ˇ x̂
‰

“

ş

fpxqdµpx̃q
ş

dµpx̃q

We are only interested in the evolution of average quantities conditional on x̂, i.e.
in ΠetA. Note that in the conformational analysis setting x “ pq, pq, x̂ “ q, µ is the
canonical measure with density fcan, A “ ALan from above, and thus ΠetA “ T tQ,
the spatial propagator.

Let ΠK “ Id´Π denote the projection orthogonal on the space of functions of x̂.
A modified Mori–Zwanzig representation yields

d

dt
ΠetA “ ΠAΠetA `ΠAΠK

ż t

0

esAΠKAept´sqΠA ds`ΠAΠKetΠA . (43)

It can be obtained by applying Dyson’s formula [15] on etAin the second term on the
right hand side of the identity d

dtΠe
tA “ ΠAΠetA ` ΠAΠKetA, where we tacitly

assume that the orthogonal dynamics in the space of the unresolved variables is well-
posed; see [18] for details.

Equation (43) is hard to interpret in this form. Again, the structure of the problem
at hand aids us: the assertions of the following Lemma can be checked by direct
computation.

Lemma 5 Let f be a function independent of the variable p, i.e. fpq, pq “ fpqq @q, p.
Then the following holds:

(a) Πf “ f and ΠKf “ 0;
(b) ΠAf “ 0, thus etΠAf “ f @t ě 0, and ΠAΠ “ 0;
(c) ΠAΠKAf “ ASmolf .

Applying identity (43) to some f being a function only of the spatial variable q, we
obtain with Lemma 5:

d

dt
T tQf “ ΠAΠK

ż t

0

esAΠKAf ds . (44)

Approximating the integral as
şt

0
hpsqds “ t hp0q `Opt2q, we get

d

dt
T tQf “ tΠAΠKAf `Opt2q “ tASmolf `Opt2q .
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Integrating over t yields

T tQf “ f `
t2

2
ASmolf `Opt3q . (45)

This result can be seen as an analogue to (30), with the advantage that it has been
derived from an identity, (44), which now offers the possibility of a systematic ex-
ploitation of quadrature rules of increasing order to approximate the integral on its
right hand side. To this end, note that the range of ΠK is orthogonal to fcan. Thus, by
the considerations in the previous section, etAΠKu “ T tLanΠ

Ku decays exponentially
as t Ñ 8. This means that for some unknown λ ă 0 the integral in (44) has the

form
şt

0
e´λsgpsqeλsds, where gpsqe´λs “ Op1q as s Ñ 8. Integrals with exponential

weights can be approximated by the Gauß–Laguerre quadrature rule.
There are two issues which have to be addressed: the unknown λ ă 0 and that

we do not have an explicit expression for the function gpsq “ T sLanΠ
Ku for s ą 0.

For the former, one could use the eigenvalues of the Smoluchowski propagator as an
initial guess, and try to refine this estimate subsequently. For the latter, bootstrap-
ping techniques (just as used for the derivation of Runge–Kutta methods in numerical
integration) could help us to approximate gpsq from derivatives of g at s “ 0.

We shall summarize which lines of attack so far the Mori–Zwanzig formalism offers
to extend the time scales of approximation in molecular conformation analysis.

1. Based on (44) we are able to state a second-order accurate approximation of the
spatial propagator by the Smoluchowski propagator. Using higher order quadra-
ture rules (either based on Taylor expansions of the integrand or Gauß–Laguerre
quadrature), it should be investigated whether simple higher order approximations
can be derived as well.

2. Repeating the Mori–Zwanzig procedure starting from the decomposition

d
dtΠe

tA “ ΠetAΠA`ΠetAΠKA ,

one arrives at different representations than (43). This is the usual approach
(cf. [5]), as it allows the interpretation of the arising terms as “optimal predic-
tion”, “memory”, and “noise”, however does not lead as simply to (45) as (43)
does. Nevertheless, it should be considered parallel to (43), as it may reveal other
important characteristics of the spatial dynamics.

3. In [5], the short memory approximation
şt

0
hpsqds « t hp0q has been used, however

not for the position-momentum decomposition that we consider here. In the same
work, different projections Π have been considered, e.g. finite rank projections
to a set of basis functions. The results of Section 4.1 suggest, that a projection
of the spatial dynamics to the space spanned by dominant eigenfunctions of the
Smoluchowski propagator may give a good approximation for larger times as well.

4.3 Almost Markovian behaviour: on bounding the approximation time scales

For small t, the non-Markovianity of spatial dynamics is an important feature which
characterizes the density transport and metastability. We have seen that a λ P σpStq
satisfies λ Ñ 1 as t Ñ 0 with a rate of Opexp p´κt2{2qq (for some suitable κ), in
contrast to the rate for semigroups of operators, which is Opexp p´κtqq.

However, for larger t, St exhibits a more regular, almost Markovian behaviour [3,
40]. We give ideas as to how this could be exploited for efficient computation of the
eigenvalues of St in this time region.



Will be inserted by the editor 21

Relaxation times for momenta distributions. Langevin dynamics, the underlying
model of St, is both Markovian and ergodic [29]. Due to ergodicity, we observe the
convergence of any density to the canonical density fcan. Moreover, for sufficiently
large damping, the relaxation of the momentum coordinates is significantly faster
than of the position coordinates, which can be seen by considering the associated
Fokker–Planck equation:

Bf

Bt
“ pLHam ` γLOUqf , with LOUg “

1

β
∆pg `∇p ¨

`

gM´1p
˘

.

Thus, higher friction γ implies that the Ornstein–Uhlenbeck-part dominates the time
evolution. The solution of the Ornstein–Uhlenbeck Fokker–Planck equation is

gpt, pq “

ż

P
Kpt, p, rqgp0, rqdr, (46)

with

Kpt, p, rq “
`

detp2πβ´1Cptqq
˘´1{2

exp

ˆ

´
β

2

`

p´ re´γt
˘T
Cptq´1

`

p´ re´γt
˘

˙

.

and the covariance matrix

Cptq “M
´

id´ e´2γM´1t
¯

.

Observe that the time variable t appears in K always multiplied by γ. Thus, the
larger the damping γ, the more rapidly gpt, ¨q tends towards the stationary solution:

lim
tÑ8

Kpt, p, rq “ fPppq .

This suggests that we can find an optimal lag time τ , such that for all t ě τ and
for all f : X Ñ R

P tLanfpq, pq « f tpqqfcanpq, pq

for some f t : QÑ R.
We use this to argue in favor of “almost-Markovianity” of St: In the following let

t ě τ . For u : QÑ R there is an ut : QÑ R such that

P tLan
`

upqqfcanpq, pq
˘

« utpqqfcanpq, pq.

Using this and the semi-group property of P tLan, we get

S2tupqq “
1

F pqq

ż

P
P 2t
Lan

`

upqqfcanpq, pq
˘

dp

«
1

F pqq

ż

P
P tLan

`

utpqqfcanpq, pq
˘

dp

“ Stutpqq

“ St
´ 1

F pqq

ż

P
utpqqfcanpq, pqdp

¯

« St
´ 1

F pqq

ż

P
P tLan

`

upqqfcanpq, pq
˘

dp
¯

“ pStq2upqq.

Inductively, it follows that Snt « pStqn for t ě τ , so in this sense, St is almost a
semigroup for big enough t. As the relaxation rate in (46) scales with 1{γ, we expect
the optimal lag time to do the same.
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Extrapolating the restored operator. Now assume that τ ą 0 is small enough to
allow Rτ (or Eτ ) to be a reasonable approximation to Sτ . Then

Spnτq « pSτ qn « pRτ qn.

We validate this with a simple numerical example. Using the one-dimensional pe-
riodic double-well potential introduced in Section 4.1, we want to compute the second
largest eigenvalue λ1pStq ă λ0pStq “ 1, which provides insights into the stability of
the two metastable sets, as of Theorem 2. Note that λ1pRtq does not provide a good
approximation for t significantly larger than τ , as the error assymptotics of Corollary
2 only hold for tÑ 0.

With damping γ “ 5, a choice of τ “ 1{γ “ 0.2 seems reasonable, as by visual
inspection, λ1pStq in this region begins to show exponential decay. Moreover, Rτ and
Eτ still approximate Sτ well enough:

|λ1pSτ q ´ λ1pRτ q| « 0.15 , |λ1pSτ q ´ λ1pEτ q| « 0.12 .

Figure 4.3 compares λ1pStq with λ1
`

Sτ
˘n

, λ1
`

Rτ
˘n

and λ1
`

Eτ
˘n

for n “ 1, . . . , 10.
As an error estimate for the eigenvalues, we get
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λ1
`

Eτ
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Fig. 3. Dominant eigenvalue of St and its approximations

∣∣λ`Snτ˘´ λ`pRτ qn˘∣∣ ď ∣∣λ`Snτ˘´ λ`pSτ qn˘∣∣` ∣∣λ`pSτ qn˘´ λ`pRτ qn˘∣∣
ď

∣∣λ`Snτ˘´ λ`Sτ˘n∣∣` ∣∣λ`Sτ˘´ λ`Rτ˘∣∣n,
with using the binomial formula to obtain the second inequality. The first term on
the right hand side depends on the relaxation of the underlying process after lagtime
τ , and (for fixed n) decreases with increasing τ . The second term depends on the
approximation error of Rτ on Sτ and increases with increasing τ . A balance between
these two error sources must thus be found. Typically, the optimal lag time lies
in the approximation region of Rt and Et only for high damping γ. This may or
may not correspond to the physical model at hand, and is a significant limitation of
the eigenvalue extrapolation method. Alternative restored operators (as proposed in
Section 4.2) may allow the application for smaller values of γ.
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5 Discussion

We have considered the dynamics of the position coordinate for a molecular dynam-
ics system given by the Langevin process in thermal equilibrium. After deriving the
high friction limit in generalized coordinates, and obtaining the associated Kramers–
Smoluchowski dynamics, we have seen that the Smoluchowski equations show up in
the evolution of the position coordinates also for any γ, in the short time asymp-
totics after rescaling time according to t ÞÑ t2{2. This can be extended from position
coordinates to essential and reaction coordinates (shown for the scalar case here).
Finally, we discussed possible approaches to stretch the approximation time scales of
these pseudo generator methods. Here we argued that these time scales on which a
good approximation has to be achieved, are actually finite due to the ergodicity of
the Langevin process, and their upper bound decreases with increasing damping γ.

The numerical experiments in [2] suggest that our theoretical findings on the
asymptotic approximation error can be extended to the dominant spectrum as well,
hence that the approach is applicable for metastability analysis. In order to be appli-
cable to bio-chemically relevant systems, two main points have to be addressed:

(a) Extension of the approximation quality for larger time scales.
An important aspect of the pseudo generator approach is that it gives a practical
tool to systematically derive coarse-grained models of molecular motion by pro-
jecting the dynamics onto a subspace of essential coordinates. It is yet unclear,
however, how the projection onto essential coordinates influences the approxi-
mation quality of the projected pseudo generator Gess

2 on the original process.
We expect the dominant eigenfunctions of Gess

2 to be usable to reliably identify
metastable sets, if the selected essential coordinates are slow-moving in compar-
ison to the ”non-essential” coordinates. A perturbation expansion in the style of
Section 4.1 might be be able to provide a rigorous error estimate, and identify the
role of the non-essential coordinates in the approximation. Also, the involvement
of higher order derivatives of Stess in the approximation scheme seems promising
(cf. [4]). Taking into account higher order terms in the derivation of the pseudo
generators seems especially useful when accurate coarse-grained diffusion models
in terms of few collective variables are sought in cases when no explicit small pa-
rameter is available and therefore traditional averaging or homogenization meth-
ods to eliminate unresolved degrees cannot be applied [26,28].

(b) Numerical discretization.
We derived a differential operator expression for projected pseudo-generators in
essential coordinates (Gess

2 , cf. Lemma 4) and saw that this operator has a simple,
closed form that can again be interpreted as the generator of a diffusion process.
The discretization of this operator via spectral collocation, however, seems to be
somewhat more difficult: While for the unprojected operator, G2, the collocation
matrix can be set up analytically, for the projected one high-dimensional integrals
over non-essential degrees of freedom are involved. Sampling-based quardature
seems to be the natural treatment here (see [6,20,27]).
Further, even if the reduction to a comparatively small number of reaction co-
ordinates can be carried out, the discretization of the corresponding pseudo gen-
erators will become computationally challenging due to the curse of dimension
if there are more than, say, six of these degrees of freedom. On the other hand,
the macroscopic dynamics of the molecular system is taking place on an essen-
tially one-dimensional skeleton: Apart from motion within metastable states (i.e.
the conformations of the molecule), the vast majority of conformational transi-
tions occur along a few dominant, low dimensional transition pathways [13,14,
42]. While metastable states correspond to densities which are almost fixed points
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under the action of some transfer operator, the transitions can be modelled as
curves in the space of densities. This picture alludes to numerical techniques for
computing low-dimensional (invariant) sets in systems with higher dimensional
state spaces [8,9], using ansatz functions of higher smoothness in combination
with a meshfree approach [43].

A Coordinate expressions for the Smoluchowski equation

In order to compute the right hand side in (12) explicitly, we observe that, for func-
tions ψ “ ψpu, tq,

AHamψ “ pG
´1vq ¨∇ψ

where ∇ψpu, tq is understood as the derivative with respect to the spatial argument,
here u. Upon noting that

AOU

`

γ´1v
˘

“ ´G´1v ,

with AOU acting component-wise from the left, we find that

A´1
OUAHamψ “ ´pγ

´1vq ¨∇ψ

for the action of A´1
OU on AHamψ P ranAOU. Therefore

AHamA
´1
OUAHamψ “

ÿ

i,j

γij
„

B

Buj

ˆ

V `
1

2
v ¨G´1v

˙

Bψ

Bui

´
ÿ

i,j

`

G´1v
˘

i

„

B

Bui

`

γ´1v
˘

j



Bψ

Buj

´
ÿ

i,j

`

G´1v
˘

i

`

γ´1v
˘

j

B2ψ

Bujui
,

where upper indices indicate inverse matrices, i.e., γij “ pγ´1qij . Using the identity
ż

Rd

v ¨Bv %upvq dv “
1

β
tr pGBq , B P Rdˆd ,

with %u as given by (13), we can easily evaluate the integral in (12), which yields

Āψ “
ÿ

i,j

„

γij
ˆ

´
BV

Buj
`

1

2β
tr

ˆ

G´1 BG

Buj

˙˙

Bψ

Bui
`

1

β

ˆ

Bγij

Buj

B

Bui
` γij

B2ψ

Buiuj

˙

.

In the last equation we have used the shorthand

Āψ “ ´

ż

P

`

AHamA
´1
OUAHamψ

˘

%upvq dv ,

Employing Jacobi’s formula pdetGq1 “ detG trpG´1G1q and the fact that detG “

detM detp∇ΦT∇Φq, the above expression for Ā can be recast as desired:

Ā “ β´1∆̃´∇V ¨ ∇̃ ,

where

∇̃ “ γ´1∇ and ∆̃ “
1

?
det γ

∇ ¨
´

a

det γ γ´1∇
¯

,

denote gradient and Laplace-Beltrami operator with respect to γ. Note that Ā no
longer depends on the constant mass matrix M .
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