
BALANCING OF DISSIPATIVE HAMILTONIAN SYSTEMS

C. Hartmann
Freie Universität Berlin, Germany

Corresponding author: C. Hartmann
Institut für Mathematik, Freie Universität Berlin

Arnimallee 6, 14195 Berlin, Germany
E-mail: chartman@mi.fu-berlin.de

Abstract. For stable linear input-output systems, the method of Balanced Truncation (B.C. Moore,
IEEE Trans. Auto. Contr. AC-26, 17-32, 1981) is a rational model reduction strategy that allows
for computable error bounds. A drawback is that projecting the original equations of motion onto the
subspace of interest typically fails to preserve the problem’s physical structure, e.g., if the original
equations are of second-order form or Hamiltonian. For Hamiltonian systems, a natural way of restrict-
ing a system to a subspace is by means of constraints, and we show, employing singular perturbation
arguments, that Balanced Truncation can be done in a structure-preserving fashion. The thus obtained
reduced Hamiltonian system preserves stability and passivity and satisfies the usual Hankel norm error
bound. Moreover the approach allows for a straightforward generalization to stochastic systems which
has also useful implications for the numerical realization of Balanced Truncation.

1 Introduction
Model reduction is a major issue for control, optimization and simulation of large-scale systems [1]. We present
a method for model reduction of perturbed linear Hamiltonian systems. The Hamiltonian approach involves also
second-order equations that appear in a variety of physical contexts, e.g., in molecular dynamics or structural
mechanics. Common spatial decomposition methods such as Proper Orthogonal Decomposition, Principal Com-
ponent Analysis or the Karhunen-Loève expansion aim at identifying a subspace of “high-energy” modes onto
which the dynamics is projected (Galerkin projection). These modes, however, may not be relevant for the dy-
namics. Moreover these methods tacitly assume that all degrees of freedom can actually be observed or measured.
Unlike the aforementioned approaches Balanced Truncation accounts for incomplete observability [2]. It con-
sists in finding a coordinate (or balancing) transformation such that modes which are least sensitive to the input
variable (controllability) also give the least output (observability) and therefore can be neglected. Accordingly,
a dimension-reduced model is obtained by restricting the dynamics to the subspace of the best controllable and
observable modes (truncation). A great advantage of the method is that it gives computable a priori error bounds
[3]; a drawback is that it typically fails to preserve the problem’s physical structure (e.g., being Hamiltonian) and
that its second-order variants suffers from lack of stability [4, 5].

Here we adopt a Hamiltonian framework that allows for a generalization of Balanced Truncation to second-order
problems [6, 7]. The control variable function may be either deterministic or random where systems of the latter
class are known by the name of second-order (also: underdamped) Langevin equations [8]. Confining a Hamilto-
nian system to a given subspace is well understood in terms of (holonomic) constraints and, although the balancing
transformation mixes positions and momenta, the truncation step can be formulated as a holonomic constraints.
The negligible modes in the system are associated with certain small Hankel singular values, and by borrow-
ing arguments from singular perturbation theory, we show that sending them to zero forces the dynamics to the
best controllable and observable subspace. The resulting low-dimensional system is a again a stable and passive
Hamiltonian system with collocated inputs and outputs.

It is interesting to note that the singular perturbation argument applies to both the deterministic and the noisy
case, and it turns out that the coefficients of the reduced systems are exactly the same. The types of convergence
are very different though; in particular the stochastic dynamics does not converge point-wise to the controllable
and observable subspace as the small singular values go to zero but rather in the sense of expectations over all
realizations of the driving noise process. The deterministic problem has been addressed in [7] and we shall focus
mainly on the stochastic case here, discussing convergence and issues of structure-preservation. To see how the
classical notions of controllability and observability carry over to stochastic systems, we employ a large deviations
principle that allows for relating the sample paths of noise process to a smooth control variable [9]. This connection
is not new indeed, and a variety of large deviations problems boil down to control arguments. What is new, however,
is the systematic use of controllability arguments for the purpose of model reduction of stochastic differential
equations. For the stochastic system, the balancing transformation can be computed from simulation data without
solving Lyapunov equations, and the similarity between the deterministic and the stochastic case suggests to exploit
this correspondence as well for the deterministic system if the dimension of state space is too high to solve the
corresponding Lyapunov equations.



2 Set-up: balancing dissipative Hamiltonian systems
Given a quadratic Hamiltonian

H : R2n ⊇ X→ R , H(x) =
1
2

x ·Ex

with E = ET � 0 (“�” means positive definite), we consider systems of the form

ẋ(t) = (J−D)∇H(x(t))+Bu(t)
y(t) = C∇H(x(t)) ,

(2.1)

where J ∈ R2n×2n is an invertible skew-symmetric matrix, D ∈ R2n×2n is symmetric positive semi-definite, B ∈
R2n×m and C ∈ Rl×2n (all constant). The vector y(·) ∈ Rl denotes a linear observable, and the input variable
u(·) ∈ Rm may be either deterministic (typically L2) or random (white noise). For C = BT and deterministic input
u ∈ L2(R), systems of type (2.1) are called port-Hamiltonian (see [10]).

As can be readily checked, the second-order system

Mq̈(t)+Rq̇(t)+Kq(t) = B2u(t)
y(t) = C1q(t)+C2q̇(t)

(2.2)

with M,R,K ∈Rn×n being symmetric positive definite, B2 ∈Rn×m and C1,C2 ∈Rl×n is an instance of (2.1) where
x = (q,Mv) with (q,v) are coordinates on the tangent space T Rn, and the total energy is given by the Hamiltonian

H(q, p) =
1
2

p ·M−1 p+
1
2

q ·Kq , p = Mv . (2.3)

Furthermore

J =
(

0 1
−1 0

)
, D =

(
0 0
0 R

)
(2.4)

in (2.1) and control and observable matrices in (2.1) and (2.2) are related by

B =
(

0
B2

)
, C =

(
C1K−1 C2

)
. (2.5)

2.1 Stochastic Langevin equation

A prevalent model for Newtonian dynamics in a heat bath is the stochastic Langevin equation (e.g., [11])

Mq̈(t)+ γ q̇(t)+Kq(t) = ξ (t) (2.6)

where ξ (t) ∈ Rn denotes a Gaussian white noise process with covariance matrix

E
[
ξ (t)ξ (t)T ]

∝ σσ
T .

Here and in the following we shall use the symbol E[·] to denote the expectation of a (measurable) stochastic
process over all its possible realizations. For equilibrium phenomena the noise process is chosen so as to balance
the energy dissipation due to the viscous friction. That is, setting ξ (t) = σẆ (t) with σ ∈ Rn×n and Ẇ denoting
Gaussian white noise, friction and noise coefficients are related by the fluctuation-dissipation relation

2γ = βσσ
T , β > 0 . (2.7)

The parameter β = (kT )−1 with k denoting Boltzmann’s constant and T > 0 being the temperature of the system
is called the inverse temperature and has the physical dimension of energy.

An important entity associated with (2.6) is its infinitesimal generator that generates the semigroup of solutions.
Using the notation of (2.1) the generator can be written as a the following second-order differential operator,

L =
1
2

BBT : ∇
2 +(J−D)∇H ·∇ (2.8)

where A : B = tr(AT B) denotes the matrix inner product. If γ = γT � 0 in (2.6), i.e., the noise acts on all the
momentum variables, the Langevin process is stable and the operator L is hypoelliptic, satisfying Hörmander’s
condition [13]. As a consequence, (2.6) has a smooth ergodic invariant measure, given by the Boltzmann measure

dµ(x) =
1
Z

exp(−βH(x))dx , Z =
∫

X
exp(−βH(x))dx



with β > 0 as defined by (2.7). Ergodicity means that any infinitely long realization of the Langevin process
samples µ , and we shall exploit this property later on to extract balancing transformations from simulation data.
Using the shorthand A = (J−D)E with E = ∇2H(x) for the drift matrix and given an initial value x(0) = x, the
solution X(t), t > 0 of (2.1) with white noise input u(t) = Ẇ (t) can be expressed by the stochastic integral

X(t) = x+
∫ t

0
AX(s)ds+

∫ t

0
BdW (s) .

As is straightforward to verify employing Itô’s formula [12], the solution can be recast as

X(t) = exp(At)x+
∫ t

0
exp(A(t− s))BdW (s) (2.9)

which resembles the known variation-of-constants-formula in the deterministic case.1

2.2 Balancing transformations

We shall make precise what it means that (2.1), (2.2) or (2.6) are easily controllable and observable. To this end
we confine our attention to the deterministic case first and suppose that u ∈ L2(R) which obviously does not entail
u being white noise. We further assume that the first-order system (2.1) is stable in the sense that all eigenvalues of

A = (J−D)E , E = ∇
2H(x)

are lying in the open left complex half-plane; for, e.g., the coefficient matrices M,R,K in (2.2) being symmetric
and positive definite matrices this will be the case [7]. If (2.1) is stable, the controllability function

Lc(x) = min
u∈L2

∫ 0

−∞

|u(t)|2 dt , x(−∞) = 0, x(0) = x (2.10)

measures the minimum control energy that is needed to steer the system from the initial state x(−∞) = 0 to the
final state x(0) = x. In turn, the observability function

Lo(x) =
∫

∞

0
|y(t)|2 dt , x(0) = x, u≡ 0 (2.11)

measures the control-free energy of the output as the system evolves from x(0) = x to x(∞) = 0. Note that x(∞) = 0
if u = 0 by asymptotic stability. It is easy to see that controllability and observability function are of the form

Lc(x) = x ·W−1
c x , Lo(x) = x ·Wox

where the controllability Gramian Wc and the observability Gramian Wo are the unique and symmetric solutions of
the Lyapunov equations

AWc +WcAT =−BBT , ATWo +WoA =−QT Q (Q = C∇
2H) .

Moore [2] has shown that if Wc,Wo � 0 (positive definiteness = complete controllability/observability), there exists
a coordinate transformation x 7→ T x such that the two Gramians become equal and diagonal, i.e.,

T−1WcT−T = T TWoT = diag(σ1, . . . ,σ2n)

where the Hankel singular values (HSV) σ1 ≥ σ2 ≥ . . . ≥ σ2n > 0 are independent of the choice of coordinates.
A convenient way to express the balancing transformation is the following: Noting that Σ2 contains the positive
eigenvalues of the product WcWo we decompose the two Gramians according to

Wc = XXT , Wo = YY T

and do a singular value decomposition (SVD) of the matrix Y T X , i.e.,

Y T X = UΣV T =
(

U1 U2
)( Σ1 0

0 Σ2

)(
V T

1
V T

2

)
. (2.12)

The partitioning Σ1 = diag(σ1, . . . ,σd) and Σ2 = diag(σd+1, . . . ,σ2n) indicates which singular values are important
and which are negligible. The remaining matrices satisfy UT

1 U1 = V T
1 V1 = 1d×d and UT

2 U2 = V T
2 V2 = 1r×r with

r = 2n−d. In terms of the SVD the balancing transformation T and its inverse S = T−1 take the form

T = XV Σ
−1/2 , S = Σ

−1/2UTY T . (2.13)
1Strictly speaking, the notation Ẇ does not make sense as the paths of the Brownian motion W are nowhere differentiable. However we will

sometimes use this notation for the sake of convenience and point out that the Langevin equation has to be understood in the sense of (2.9).



It can be readily seen that the balancing transformation leaves the structure of the equations of motion (2.1) un-
changed and preserves both stability and passivity. In the balanced variables z = Sx our Hamiltonian system reads

ż(t) = (J̃− D̃)∇H̃(z(t))+ B̃u(t)

y(t) = C̃∇H̃(z(t))
(2.14)

with the balanced Hamiltonian H̃(z) = H(T z), i.e.,

H̃(ξ ) =
1
2

z · Ẽz , Ẽ = T T ET , (2.15)

where E = ∇2H(x). The transformed coefficients are given by

J̃ = SJST , R̃ = SRST , B̃ = SB , C̃ = CST . (2.16)

3 Balanced Truncation revisited
Balancing amounts to changing coordinates such that those states that are least influenced by the input also have
least influence on the output. Accordingly Balanced Truncation consists in first balancing the system, and then
truncating the least observable and controllable states which have little effect on the input-output behaviour.

3.1 Strong confinement limit

There are many possible ways to a truncate a balanced system such as (2.14)–(2.16); standard projection meth-
ods or naive singular perturbation methods, however, fail to preserve the systems inherent Hamiltonian structure.
For mechanical system, a natural way to restrict a system to a subspace is by means of constraints which, in a
Hamiltonian framework, amounts to a restriction of structure matrix (or symplectic form) and the Hamiltonian.

As has been shown in [7], letting the small Hankel singular values go to zero gradually eliminates the least observ-
able and controllable states, thereby constraining the system to the dominant subspace. To understand the idea of
the confinement limit, we suppose that d is even and scale the HSV uniformly according to

(σ1, . . . ,σd ,σd+1, . . . ,σ2n) 7→ (σ1, . . . ,σd ,εσd+1, . . . ,εσ2n) , (3.1)

i.e., in (2.12)–(2.13) we replace Σ2 by εΣ2 and partition the thus obtained balancing matrices accordingly,

S(ε) =
(

S11 S12
ε−1/2S21 ε−1/2S22

)
, T (ε) =

(
T11 ε−1/2T12
T21 ε−1/2T22

)
.

Splitting the state variables z = (z1,z2) in the same fashion and omitting the free variable in what follows, the
balanced equations of motion (2.14) take the form

żε
1 = (J̃11− D̃11)

∂ H̃ε

∂ z1
+

1√
ε
(J̃12− D̃12)

∂ H̃ε

∂ z2
+ B̃1u

żε
2 =

1√
ε
(J̃21− D̃21)

∂ H̃ε

∂ z1
+

1
ε
(J̃22− D̃22)

∂ H̃ε

∂ z2
+

1√
ε

B̃2u

yε = C̃1
∂ H̃ε

∂ z1
+

1√
ε

C̃2
∂ H̃ε

∂ z2

(3.2)

where H̃ε denotes the scaled Hamiltonian

H̃ε(z) =
1
2

z · Ẽε z , Ẽε =
(

Ẽ11 ε−1/2Ẽ12
ε−1/2Ẽ21 ε−1Ẽ22

)
.

Boundedness of the total energy implies that z2 = O(
√

ε) as ε→ 0. This suggests that we introduce new variables
(ζ1,ζ2) = (z1,ε

−1/2z2) in terms of which the scaled equations (3.2) become

ζ̇
ε
1 = (J̃11− D̃11)

∂ H̃
∂ζ1

+
1
ε
(J̃12− D̃12)

∂ H̃
∂ζ2

+ B̃1u

ζ̇
ε
2 =

1
ε
(J̃21− D̃21)

∂ H̃
∂ζ1

+
1
ε2 (J̃22− D̃22)

∂ H̃
∂ζ2

+
1
ε

B̃2u

yε = C̃1
∂ H̃
∂ζ1

+
1
ε

C̃2
∂ H̃
∂ζ2

(3.3)

with H̃(ζ ) = H̃ε(ζ1,
√

εζ2) being now independent of ε . We have the following statement.



Theorem 3.1 (Hartmann 2008). Let (ζ ε
1 (t),ζ ε

2 (t)) ⊂ Rd ×R2n−d be a solution of (3.3) with initial conditions
(ζ ε

1 (0),ζ ε
2 (0)) = (ζ1,ζ2) independent of ε . Then

ζ
ε
2 (t)→−Ẽ−1

22 Ẽ21ζ1(t)

as ε → 0 where ζ1(t) is the solution of the stable system

ξ̇ (t) = (J̃11− D̃11)∇H̄(ξ (t))+ B̃1u(t)

y(t) = C̃1∇H̄(ξ (t)) .
(3.4)

with the effective Hamiltonian

H̄(ξ ) =
1
2

ξ · Ē1ξ , Ē1 = Ẽ11− Ẽ12Ẽ−1
22 Ẽ21 . (3.5)

Sketch of derivation For a rigorous derivation of (3.4)–(3.5) using multiscale analysis of the perturbed equations
(3.3) the reader is referred to [7], but we shall give some brief motivation using an energy argument. Equation
(3.3) is an instance of a slow/fast system, and we seek an effective equation for the slow variable z1 = ζ1. Now let
(ζ1(t),ζ2(t))⊂ Rd×R2n−d be a solution of (3.3). By definition, it obeys the energy balance

dH̃
dt

=− ∂ H̃
∂ζ1
· D̃11

∂ H̃
∂ζ1
− 2

ε

∂ H̃
∂ζ1
· D̃12

∂ H̃
∂ζ2
− 1

ε2
∂ H̃
∂ζ2
· D̃22

∂ H̃
∂ζ2

+
∂ H̃
∂ζ1
· B̃1u+

1
ε

∂ H̃
∂ζ2
· B̃2u

as follows immediately upon differentiating H and inserting the equations of motion. Assuming that H̃ remains
bounded as ε goes to zero and using the asymptotic stability of the overall dynamics, we conclude that

∂ H̃
∂ζ2
→ 0 as ε → 0 .

Latter implies that the dynamics admit an invariant manifold that is defined by

ζ2 =−Ẽ−1
22 Ẽ21ζ1 .

It furthermore follows from the stability results in [7] that the invariant manifold is uniformly hyperbolic, i.e., all
trajectories with finite initial energy are exponentially attracted to the invariant manifold as ε → 0. Inserting the
last identity into (3.3), we obtain a closed equation for z1 = ζ1, viz.,

ż1 = (J̃11− D̃11)(Ẽ11− Ẽ12Ẽ−1
22 Ẽ21)z1 + B̃1u

y = C̃1(Ẽ11− Ẽ12Ẽ−1
22 Ẽ21)z1 .

Equation (3.4) is Hamiltonian with the energy

H̄(z1) =
1
2

z1 · Ē1z1 , Ē1 = Ẽ11− Ẽ12Ẽ−1
22 Ẽ21

and hence the assertion follows. Notice that J̃11 = −J̃T
11 and D̃11 = D̃T

11 < 0 are simply the original structure
and friction matrices restricted to the subspace of the most controllable and observable states. That is, in the
limit of vanishing small HSV the dynamics are confined to the controllable and observable subspace. Moreover
E = ET � 0 implies Ē1 = ĒT

1 � 0 for the Schur complement, and it is easy to see that the reduced system is passive
if the original system was. As for the stability of the limiting system and the invariant manifold we refer to [7].

Transfer function Theorem 3.1 is an assertion regarding convergence of the (possibly unobserved) state vari-
ables. By the linear dependence of the observable y on the state variable x this clearly entails clearly convergence
of the observable. Another (and perhaps more common way) to prove convergence of the output variable refers
directly to the transfer function that can be regarded as a mapping G : L2([0,∞[,Rm)→ L2([0,∞[,Rl) in the Laplace
domain that maps the system’s input to the output. In case of (3.3), the transfer function reads (see [15])

Gε(s) = C̃ε Ẽ(s− (J̃ε − D̃ε)Ẽ)−1B̃ε (3.6)

where Ẽ = ∇2H̃ is independent of ε , and the scaled coefficient matrices are given by

J̃ε − D̃ε =
(

J̃11− D̃11 ε−1(J̃12− D̃12)
ε−1(J̃21− D̃21) ε−2(J̃22− D̃22)

)
and

B̃ε =
(

B̃1
ε−1B̃2

)
, C̃ε =

(
C̃1 ε−1C̃2

)
.



Provided that the system is stable, the transfer function is analytic in the open right half-plane, and the H∞ norm of
G can be defined as the supremum of the largest singular value of the transfer function on the imaginary axis [1],

‖G‖∞ = sup
ω∈R
{σmax (G(iω))} .

It has been shown in [7] that the transfer function Gε converges in H∞ to the limiting transfer function

Ḡ(s) = C̃1Ē1(s− (J̃11− D̃11)Ē1)−1B̃1 (3.7)

as ε → 0. That is, we have

‖Gε − Ḡ‖∞→ 0 as ε → 0 .

The following can be easily shown by adapting the results in [14]:
Theorem 3.2 (Liu 1989). Let (3.7) be the transfer function of the limit system (3.4)–(3.5). Then

‖G− Ḡ‖∞ < 2(σd+1 + . . .+σ2n)

where G = Gε=1 is the transfer function associated with (2.1).

4 The stochastic Langevin equation
In equation (2.1), we replace the smooth control variable by Gaussian white noise and consider the family of stable
hypoelliptic Langevin equations (i.e., degenerate diffusion equations)

dX(t) = (J−D)∇H(X(t))dt +BdW (t) , X(0) = x
Y (t) = C∇H(X(t)) .

(4.1)

The Itô equation (4.1) is the differential version of (2.9) with W denoting standard Brownian motion in Rn so that
B ∈ R2n×n. If moreover the fluctuation-dissipation relation (2.7) is in force, i.e., if 2D = βBBT , the system admits
the ergodic invariant probability measure (so-called Boltzmann measure)

dµ(x) =
1
Z

exp(−βH(x))dx , Z =
∫

X
exp(−βH(x))dx . (4.2)

There is no control variable any longer, yet we may ask to what extend a state can be excited by the noise. Roughly
speaking and in analogy with the controllability function (2.10), we would like define a function of the form

L̃c(x) = inf
W∈H1

∫ T

0
|Ẇ (t)|2 dt , X(0) = 0, X(T ) = x

where we declare that L̃c(x) = ∞ if no such realization W ∈ H1([0,T ]) exists. However the typical realizations of
W are Hölder continuous with exponent α ≤ 1/2, hence not absolutely continuous. Even worse, the admissible
H1 realizations form a set of measure zero which renders the naive definition of the function L̃c(x) useless.

4.1 A large deviations principle

We should bear in mind that the Langevin dynamics admit the invariant measure (4.2) with smooth density ρ(x) ∝

exp(−βH(x)). Since ρ has full topological support and is positive everywhere, this suggests that all states x ∈
X are reachable in the sense of control theory. To come up with a meaningful notion of controllability of the
Langevin equation, we exploit the correspondence between stochastic differential equations and control systems
that is established by the famous Support Theorem of Stroock and Varadhan [9].

For this purpose we replace dW (t) in (4.1) by the control force u(t)dt with u(·) ∈ Rn in which case the Langevin
equation boils down to the deterministic system (2.1). Now let V = C([0,T ]) be the space of continuous functions
ϕ taking values on X ⊆ R2n, and define Vx = {ϕ ∈ V : ϕ(0) = x}. Let further Xx(t) be the (unique) solution of
the Langevin equation (4.1) with initial value Xx(0) = x. Obviously, Xx ∈Vx and we may define the support of the
diffusion process X as the smallest closed subset Ux ⊂Vx for which

P [X ∈Ux] = 1

with P[·] being the probability measure on the path space Vx that is induced by the Brownian motion W .
Theorem 4.1 (Stroock & Varadhan 1972). Let Fx(t;u) denote the solution of the deterministic equation (2.1) with
control u. Then the support of the (degenerate) diffusion process Xx is given by

Ux = {Fx(t;u) : u ∈ L(R)}

where L(R) is the space of piecewise constant functions with values in Rn.



Rate function It is a straight consequence of the last theorem that the reachable subspace of the Langevin equa-
tion is given by the set of states that can be reached using piecewise constant control input. In particular the space
of integrable step functions is dense in L2, so we can approximate any L2 control by a series of step functions. This
implies that we can carry over the balancing procedure to the Langevin equation by introducing the rate function

Lr(x) = inf
u∈L2

∫ T

0
|u(t)|ds , F0(T ;u) = x (4.3)

where Fx(·;u) : [0,T ]→ X is given by the map

Fx(t;u) = exp(At)x+
∫ t

0
exp(A(t− s))Bu(s)ds .

The term rate function for Lr is owed to its use in Large Deviations Theory [16]. For our purposes it suffices to say
that the rate function measures the minimum noise that is needed for the process to reach x ∈ X after time t = T ,
when it was started at x = 0 at time t = 0. Now we can state:
Lemma 4.2. The rate function of the Langevin equation (4.1) is given by

Lr(x) = x ·Σ(T )−1x , (4.4)

where

Σ(t) = E
[
X(t)X(t)T ]

is the 2n×2n covariance matrix of the Langevin process (2.9) started at X(0) = 0.

Proof. We start by revisiting the well-known property of linear control systems to have a quadratic controllability
function, and then show that it can be expressed in terms of the covariance matrix. Regarding the first, let u ∈ L2

be such that F0(T ;u) = x and consider the linear mapping S : L2([0,T ])→ X defined by

Su =
∫ T

0
exp(A(T − s))Bu(s)ds .

By construction, we have x = Su. The adjoint map S∗ : X→ L2([0,T ]) is defined by means of the inner products

〈S∗x,u〉L2 = x ·Su .

Hence

(S∗x)(t) = BT exp(AT (T − t))x

is an admissible control, i.e., the process with control u = S∗x reaches x at time T . Since the Langevin process
X(t) is hypoelliptic (i.e., its generator L satisfies Hörmander’s condition), the associated control system (2.1)
is completely controllable. Consequently the map S is onto which implies that SS∗ : X→ X is invertible. Now
consider any u ∈ L2 with the property that x = Su. The optimal such u is given by minimizing ‖u‖2

L2 subject to the
linear constraint x = Su. The solution to this problem is known and given by the projection theorem, viz.,

u∗ = S∗ (SS∗)−1 x .

Obviously u∗ ∈ L2 and, by the definition of the rate function, we obtain

Lr(x) = x · (SS∗)−1 x

which completes the first part of the proof. As for the identity SS∗ = Σ(t) recall equation (2.9) and consider the
solution of the Langevin equation (4.1) for the initial value X(0) = 0:

X(t) =
∫ t

0
exp(A(t− s))BdW (s) .

The covariance matrix of X(t) is defined as

cov(X(t)) = E
[
(X(t)−EX(t))(X(t)−EX(t))T ] .



Since EX(t) = 0 by the first Itô isometry [12], the covariance matrix at time t = T turns out to be

E
[
X(T )X(T )T ] = E

[∫ T

0
exp(A(T − s))BdW (s)

∫ T

0
dW (s)T BT exp(AT (T − s))

]
=

∫ T

0
exp(A(T − s))BBT exp(AT (T − s))ds

=
∫ T

0
exp(As)BBT exp(AT s)ds

where we have used the second Itô isometry in the second line. The assertion follows upon noting that the last
integral equals SS∗ from above, evaluated at time t = T .

4.2 Balanced Averaging of the Langevin equation (main result)

For T →∞, the rate Gramian Σ (i.e., the covariance matrix) of the stable Langevin equation can again be computed
as the unique positive definite solution of the Lyapunov equation

AΣ+ΣAT =−BB .

Keeping the previous notion of observability (i.e., Lo(x) measures the noise-free output), we can balance the system
such that states that are most sensitive to the noise also give the highest output. Scaling the Hankel singular values
according to (3.1) yields again a singularly perturbed system of the form (see Section 3.1 for details)

dζ
ε
1 = (J̃11− D̃11)

∂ H̃
∂ζ1

dt +
1
ε
(J̃12− D̃12)

∂ H̃
∂ζ2

dt + B̃1dW

dζ
ε
2 =

1
ε
(J̃21− D̃21)

∂ H̃
∂ζ1

dt +
1
ε2 (J̃22− D̃22)

∂ H̃
∂ζ2

dt +
1
ε

B̃2dW

yε = C̃1
∂ H̃
∂ζ1

+
1
ε

C̃2
∂ H̃
∂ζ2

(4.5)

with H̃(ζ ) = H̃ε(ζ1,
√

εζ2) being independent of ε .

Unlike in the deterministic case, sending ε to zero does not result in contraction to the most excitable (i.e. con-
trollable) and observable subspace as the white noise process is not of bounded variation. Hence the unbounded
noise will eventually push the dynamics arbitrarily far away from the essential subspace, no matter how small ε

is. Still the process is stable in the sense that its stationary distribution is Gaussian with finite covariance matrix.
This can be rephrased by saying that the limit ε→ 0 leads to fast random oscillations of the fast modes around the
essential subspace with the fast variables becoming stationary Gaussian random variables with mean −Ẽ−1

22 Ẽ21ζ1

and covariance β−1Ẽ−1
22 whereas the slow variables remain nonstationary on time scales of order one.

Since the distribution of the fast variables follows the slow variables instantaneously we might well replace them by
their stationary distribution (i.e., their stationary averages), thereby eliminating the fast variables from the equation.
The following Averaging Principle is our main result.
Theorem 4.3. Let Y ε(t) = C∇H(ζ ε(t)) be the observed solution of the Langevin equation (4.5) with initial con-
ditions independent of ε . Then, as ε goes to zero, Y ε(t) converges in probability to Y (t), i.e.,

lim
ε→0

P

[
sup

t∈[0,T ]
|Y ε(t)−Y (t)|> δ

]
→ 0 ∀δ > 0,T > 0 .

where Y (t) is a Markov process that is governed by the reduced Langevin equation

dξ (t) = (J̃11− D̃11)∇H̄(ξ (t))dt + B̃1dW (t)

y(t) = C̃1∇H̄(ξ (t))
(4.6)

with all coefficients and the effective Hamiltonian as in Theorem 3.1. If the original friction and noise coefficients
satisfy the fluctuation-dissipation relation (2.7) for some β > 0, then also 2D̃11 = β B̃1B̃T

1 and the reduced system
admits an ergodic invariant measure that is given by the marginal Boltzman measure

dµ̄(x) =
1
Z̄

exp(−β H̄(ξ ))dξ , Z̄ =
∫

Rd
exp(−β H̄(ξ ))dξ .

Moreover H̄ can be expressed as the thermodynamical free energy

H̄(ξ ) =−β
−1 lnPµ(ξ ) , Pµ(ξ ) =

∫
X

δ (ζ1−ξ )dµ

which is independent of β .



Proof. For the sake of brevity, we give only a formal justification of the limit equations and refer to [17] regarding
convergence issues. For the observables y are linear transformations of the state variables, it suffices to restrict
one’s attention to them. We aim at a perturbative expansion of the solutions to (4.5). To this end we observe that
the associated generator L ε that generates the semigroup of solutions can be split acccording to

L ε = L0 +
1
ε
L1 +

1
ε2 L2

with

L0 =
1
2

B̃1B̃T
1 :

∂

∂ζ1
⊗ ∂

∂ζ1
+ f11(ζ1,ζ2) ·

∂

∂ζ1

L1 = f12(ζ1,ζ2) ·
∂

∂ζ1
+ f21(ζ1,ζ2) ·

∂

∂ζ2

L2 =
1
2

B̃2B̃T
2 :

∂

∂ζ2
⊗ ∂

∂ζ2
+ f22(ζ1,ζ2) ·

∂

∂ζ2

and the shorthand

fi j = (J̃i j− D̃i j)
∂ H̃
∂ζ j

.

Suppose L ε is equipped with appropriate boundary conditions, and consider the following Cauchy problem

∂tvε(ζ , t) = L ε vε(ζ , t) , vε(ζ ,0) = f (ζ ) (4.7)

that is fully equivalent to the Langevin equation (4.5) and for which we seek a perturbative expansion of the form

vε = v0 + εv1 + ε
2v2 + . . . .

Plugging the ansatz in the backward equation (4.7) and equating equal powers of ε yields a hierarchy of equations
the first three of which are

L2v0 = 0 (4.8)
L2v1 = −L1v0 (4.9)
L2v2 = −L0v0−L1v1 +∂tv0 . (4.10)

We proceed step by step: First of all, note that L2 is a differential operator in ζ2 only and that the nullspace
of J̃22− D̃22 is empty (cf. [7]). It is then easy to show that the operator satisfies a Hörmander condition, and,
employing the maximum principle, we conclude that the only functions that solve (4.8) are constant in ζ2, i.e.,
v0 = v0(ζ1, t). By the Fredholm alternative [18], equation (4.9) has a solution if and only if the right hand side is
orthogonal to the kernel of L ∗

2 where orthogonality is meant in the L2 sense. Since the fast subsystem

dζ2(t) = (J̃22− D̃22)(Ẽ21ξ + Ẽ22ζ2(t))dt + B̃2dW (t) , ζ2(0) = ζ2 , (4.11)

i.e., the diffusion process generated by L2, is exponentially mixing for each ζ1 = ξ fixed, the dynamics relax
exponentially fast towards their invariant probability distribution. Solvability of (4.9) therefore requires that the
right hand is zero when we integrate it against any function that is in the nullspace of L ∗

2 , i.e., an invariant measure
of the fast dynamics. By the exponential mixing results in [17] the invariant measure is unique and is given by

dµξ (ζ2) = ρ(ζ2;ξ )dζ2 , ρ(·;ξ ) = N
(
−Ẽ−1

22 Ẽ21ξ , β
−1Ẽ−1

22
)

.

As v0 is independent of ζ2 we find that∫
R2n−d

L1v0 dµξ = 0 ,

i.e., the solvability condition L1v0 ⊥ kerL ∗
2 is met. To solve equation (4.9) for the unknown v1 we follow the

route taken in [19] and observe that v1 must be of the form

v1(ζ1,ζ2, t) = φ(ζ1,ζ2)T
∇v0(ζ1, t)+ψ(ζ1, t)



where ψ ∈ kerL2 plays no role in what follows so we set it to zero. Equation (4.9) can now be recast as an equation
for φ : X→ Rd , the so-called cell problem

L2φ =− f T
12 . (4.12)

In (4.7), the initial condition is independent of ε , therefore v1(ζ ,0) = 0 which leaves the only possible choices
v0 = c or φ = 0. If we exclude the trivial stationary solution v0 being constant, consistency of (4.12) requires that
f12 = 0, i.e., the initial conditions for ζ2 are drawn from the equilibrium distribution µξ . (In the language of the
deterministic system this means that the admissible initial condition are restricted to the invariant subspace.) To
conclude, the Fredholm alternative for equation (4.10) entails the solvability condition∫

R2n−d
(∂tv0−L0v0−L1φ∇v0)dµξ = 0

which, for φ = 0, can be recast as an equation for ζ1, namely,

∂tv0(ζ1, t) =
(

1
2

B̃1B̃T
1 : ∇

2 + f̄ ·∇
)

v0(ζ1, t) (4.13)

where we have introduced the abbreviation

f̄ = (J̃11− D̃11)(Ẽ11− Ẽ12Ẽ−1
22 Ẽ21)ζ1 .

As can be readily checked, (4.6) is the stochastic Langevin equation associated with (4.13). The free energy
property of the Hamiltonian follows upon completing the square in the expression for the marginal distribution

H̄(ξ ) = −β
−1 ln

∫
X

δ (ζ1−ξ )dµ

= −β
−1 ln

1
Z

∫
R2n−d

exp(−β H̃(ξ ,η))
√

detT dη

=
1
2

ξ · (Ẽ11− Ẽ12Ẽ−1
22 Ẽ21)ξ + const.

with T in the second equation denoting the balancing transformation (2.13). Ergodicity of the limit dynamics with
respect to ρ̄ ∝ exp(−β H̄) follows once more from Hörmander’s condition and reference [17].

5 Numerical issues and examples
The argument from Section 4 establishes a relation between controllability and the covariance matrix of a stable
linear stochastic differential equation, and we may exploit this correspondence so as to compute controllability and
obervability Gramians without solving Lyapunov equations.

Given any discrete realization {X0,X1, . . .} of (4.1) with arbitrary initial value X0 = x, we define the empirical
covariance matrix by

ΣN =
1
N

N−1

∑
i=0

(Xi− X̄N)(Xi− X̄N)T
,

where

X̄N =
1
N

N−1

∑
i=0

Xi .

By stability of the Langevin process and the law of large numbers (i.e., ergodicity) we have ΣN → Σ as N → ∞

with probability one for almost all initial conditions X0 = x. But as the covariance matrix for N → ∞ equals
the controllability Gramian Wc — the reader should compare the respective Lyapunov equations —, we have
just computed the controllability Gramian for (2.1). Conversely, we may compute the observability Gramian Wo
from a sufficiently long realization of the adjoint stochastic system (complete observability assumed), which is
numerically feasible, even if the system’s dimension is too high to solve the corresponding Lyapunov equations.

The situation is even easier if the fluctuation-dissipation relation (2.7) is in force. In this case any (sufficiently long)
discrete trajectory {X0,X1, . . .} is distributed according to the equilibrium distribution ρ ∝ exp(−βH). In other
words, the distribution of sample points X0,X1, . . . is Gaussian with mean zero and covariance given by β−1E−1

where E = ∇2H is the constant Hessian of H. Consequently the rate or observability Gramian for an equilibrium
system, i.e., with coefficients satisfying (2.7), is simply given by the inverse Hessian of the Hamiltonian.



Figure 1: Hankel singular values of the building model (left panel) and a comparison between Balanced Truncation
(a.k.a. Galerkin projection) and strong confinement (right panel) for an approximant of order d = 8.

Remark The empirical covariance matrix is the chief ingredient for computing low rank approximants of a given
data set. For {X0,X1, . . . ,XN−1}, the optimal rank-d approximation

min
P

N−1

∑
i=0
‖Xi−PXi‖2 s.t. P2 = P , rankP = d

is obtained by choosing P to be the orthogonal projection onto the first d eigenvectors of ΣN . Upon replacing the
Euclidean inner product in the last equation by the Gramian-weighted one ‖x‖o =

√
〈Wox,x〉 and letting N→ ∞,

the projection method recovers Balanced Truncation as has been pointed out in [20].

5.1 Deterministic systems: an example from structural mechanics

For a deterministic second-order system of the form (2.2), we compare two different model reduction methods:
standard Balanced Truncation and reduction by strong confinement as explained in Section 3.1. As a test example
we choose a stable building model with single input and output that is described in [21]. The comparison is made by
computing the spectral norms of δ Ḡd = G− Ḡd in the frequency domain, where Ḡd : L2([0,∞[,R)→ L2([0,∞[,R)
stands for the respective d-th order transfer functions. For the constrained system the transfer function is given by
(3.7) whereas Balanced Truncation yields a transfer function of the form

Ḡk(s) = Q̃1(s− Ã11)−1B̃1 .

Here Q̃1 ∈ R1×d consists of the first d columns of Q = C∇2H after balancing, Ã11 ∈ Rd×d denotes the upper left
d×d block of A = (J−D)∇2H after balancing, and B̃1 ∈ Rd×1 is simply the balanced and truncated input matrix
B; the transfer function G of the original system is given by (3.6) with ε = 1.

Figure 1 shows the results for an 8-dimensional approximation of the 48-dimensional building model. We see that
both methods are well within the usual upper H∞ bound

‖G− Ḡk‖∞ ≤ 2(σk+1 + . . .+σ2n)

that is due to Glover [3] and that hold similarly for Balanced Truncation and singular perturbation approaches.

5.2 Stochastic systems: high friction limit of the Langevin equation

The second example is concerned with stochastic dynamics and is purely pedagogical. As we have seen Balanced
Averaging preserves the structure of the Langevin equation, including its statistical equilibrium properties. How-
ever there may be situations in which the structure-preservation turns out be very subtle. An interesting scenario
in this respect is the overdamped limit of the Langevin equation that also known by the name of diffusion limit or
Smoluchowski equation. The following remarkable result is due to Nelson [22].
Theorem 5.1. Let (Qε

t ,P
ε
t )⊂ Rn×Rn denote the solutions of

q̇(t) =
∂Hε

∂ p
, d p(t) =−

(
∂Hε

∂q
+ γ

∂Hε

∂ p

)
dt +σdW (t)

where friction and noise coefficients satisfy 2γ = σσT , and Hε is a family of Hamiltonians given by

Hε(q, p) =
1

2ε
p ·M−1 p+

1
2

q ·Lq .

Then, as ε → 0, the process Qε
t converges with probability one to a diffusion process Q0

t that is the solution of

γdq(t) =−Lq(t)dt +σdW (t) .



The above limit is an example of a model reduction procedure, in which the reduced equations have a genuinely
different structure (second-order vs. first-order). Nonetheless we can interpret the above result nicely in terms of
our method as we shall illustrate with a simple example (cf. [8]). For x ∈ R2, consider the equation

ẋ1(t) = x2(t)

dx2(t) =−(εx1(t)+ x2(t))dt +
√

2εdW (t)
(5.1)

that is a rescaled version of the above system describing damped oscillations of a stochastic particle of mass ε . By
standard perturbation arguments, we might guess that, as ε → 0, the dynamics degenerates to the system

ẋ1 = x2

ẋ2 = −x2

which implies x2(t) ≈ exp(−t)x2(0) and x1(t) ≈ −x2(t) for ε � 1. However we have to be careful in neglecting
terms involving ε , for the white noise is unbounded and, hence, both εx1 and

√
2εẆ can be become arbitrarily

large. Now suppose we observe only the first component y = x1 of the system (5.1). The two Gramians are

Σ =
(

1 0
0 ε

)
, Wo =

1
2ε

(
1+ ε 1

1 1

)
with corresponding Hankel singular values σ1 ∼ 1/

√
ε and σ2 ∼

√
ε for ε → 0. After balancing and averaging

over the low energy mode we obtain the correct diffusion equation for the balanced variable ξ = x1, viz.,

dξ (t) =−εξ (t)dt +
√

2εdW (t) .
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