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We propose a discrete transition-based reweighting analysis method (dTRAM) for analyzing
configuration-space-discretized simulation trajectories produced at different thermodynamic states
(temperatures, Hamiltonians, etc.) dTRAM provides maximum-likelihood estimates of stationary
quantities (probabilities, free energies, expectation values) at any thermodynamic state. In contrast
to the weighted histogram analysis method (WHAM), dTRAM does not require data to be sam-
pled from global equilibrium, and can thus produce superior estimates for enhanced sampling data
such as parallel/simulated tempering, replica exchange, umbrella sampling, or metadynamics. In
addition, dTRAM provides optimal estimates of Markov state models (MSMs) from the discretized
state-space trajectories at all thermodynamic states. Under suitable conditions, these MSMs can be
used to calculate kinetic quantities (e.g. rates, timescales). In the limit of a single thermodynamic
state, dTRAM estimates a maximum likelihood reversible MSM, while in the limit of uncorrelated
sampling data, dTRAM is identical to WHAM. dTRAM is thus a generalization to both estimators.

I. INTRODUCTION

The dynamics of complex stochastic systems are of-
ten governed by rare events - examples include protein
folding, macromolecular association, or phase transitions.
These rare events lead to sampling problems when try-
ing to compute expectation values from computer sim-
ulations, such as molecular dynamics (MD) or Markov
chain Monte Carlo (MCMC).

One approach to alleviate such sampling problems is
to increase the rate at which the rare events occur by
generating and combining simulations at different ther-
modynamic states. For example, proteins can easily be
unfolded at high temperatures, and protein-ligand com-
plexes can dissociate at artificial Hamiltonians, where
protein and ligand have reduced interaction energies.
Generalized ensemble methods, such as replica exchange
molecular dynamics1, parallel tempering2–4 and simu-
lated tempering5 exploit this observation by coupling
simulations at different temperatures or Hamiltonians
within an MCMC framework. Yet another example is
umbrella sampling6 which uses a set of biased Hamilto-
nians to ensure approximately uniform sampling along a
set of pre-defined slow coordinates.

All of the aforementioned enhanced sampling meth-
ods are constructed such that for long simulation times,
the equilibrium distribution of each thermodynamic state
will be sampled from. With that in mind, reweighting es-
timators make use of all simulation data by reweighting
each probability density from the thermodynamic state
sampled at to the condition of interest via the Boltzmann
density. The most frequently used reweighting estimators
are the weighted histogram analysis method (WHAM)7,8,
bin-less WHAM9 and the multi-state Bennett acceptance
ratio (MBAR) method10. The most common use of
reweighting is to obtain equilibrium expectations or free
energy differences. Reweighting can also be applied to
obtain dynamical information from the available con-
tiguous trajectory pieces11. When the probability den-

sity of trajectories can be evaluated, MBAR can be ap-
plied to trajectories instead of sample configurations, ob-
taining estimates of dynamical expectations12–15. Both
WHAM and MBAR are statistically optimal under spe-
cific assumptions as they can be derived from maximum-
likelihood or minimum variance principles7,8,10,16. How-
ever, a key assumption of both estimators is that data
is given as statistically independent samples of the re-
spective equilibrium distributions. In reality, MD and
MCMC simulations provide time-correlated data trajec-
tories. Consequently, estimators exploiting the time-
correlation in the data can achieve significantly better
results17–20. In particular, WHAM and MBAR cannot
obtain unbiased estimates from datasets for which the
initial conditions of harvested trajectories do not come
from a probability density that is known a priori. Ex-
amples of such datasets are swarms of short uncoupled
trajectories21–23 or Metadynamics and conformational
flooding during the fill-up phase24,25.

A complementary approach to address sampling prob-
lems is Markov state modeling11,26–32. A Markov state
model (MSM) transition matrix contains conditional
transition probabilities between discrete configuration
states at some lagtime τ . Given the transition matrix,
an equilibrium distribution can be computed that is un-
biased if each transition event used for estimating the
MSM originates from a local equilibrium distribution re-
stricted to respective discrete state33. In this case, MSMs
are able to reweigh trajectories that are not sampled from
global equilibrium without any a priori knowledge of the
transition probabilities. In order to use MSMs for com-
puting kinetics, τ must be long enough for transition
events to approximately decorrelate for a given config-
uration space discretization27,32,33. Since MSM estima-
tors are purely based on observed transition statistics
they cannot combine the information from different ther-
modynamic states. Therefore, the orders-of-magnitude
speedup that can sometimes be achieved with enhanced
sampling methods has not been accessible to MSMs as
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yet.

The transition-based reweighting analysis method
(TRAM)18,19 aims at combining the advantages of
reweighting estimators and MSMs. In Ref.19, we have
defined TRAM as a class of estimators that (1) take the
statistical weights of samples at different thermodynamic
states into account, in order to reweigh these samples;
and (2) exploits transitions observed in the sampled tra-
jectories, without assuming that these trajectories are
sampled from equilibrium. Ref.34 introduced a statisti-
cally optimal estimator for non-equilibrium trajectories
given that the statistical weight of each trajectory can
be evaluated. Conceptually, an optimal TRAM estima-
tor could be formulated from this principle. In practice,
however, data is typically not stored at every integration
time step, such that trajectory probability densities are
not available.

In Ref.18, we have introduced the first TRAM esti-
mator that is applicable to practical molecular dynamics
data, and could show that it can provide superior esti-
mates of equilibrium probabilities and free energy com-
pared with WHAM. However, the estimator in Ref.18

is only approximately optimal and is very tedious to
compute. Another TRAM estimator is presented in
Ref.20 and called the dynamic histogram analysis method
(DHAM). DHAM was shown to avoid systematic errors
that may occur when analyzing umbrella sampling with
WHAM. DHAM uses a dynamical model (diffusion along
a reaction coordinate) to relate transition matrices of
simulations at different bias potentials. This assump-
tion is helpful when a diffusion model is appropriate
and there is one or a few slow reaction coordinates only
(e.g. as in the case of umbrella sampling). In this way
it regularizes the solution and therefore makes the esti-
mates statistically more stable. In Ref.19 we introduced
xTRAM, which does not assume a specific dynamical
model but only exploits the fact that samples can be
reweighted in order to couple different thermodynamic
states. Moreover, xTRAM is as yet the only TRAM es-
timator that avoids the discretization of reweighting fac-
tors required in the other TRAM methods and as well as
in WHAM. xTRAM may provide substantial improve-
ments compared to MBAR for time-correlated data, is
shown to be asymptotically exact, and is shown to con-
verge to MBAR when the data is not time correlated19.
However, xTRAM was not derived from a maximum-
likelihood or minimum-variance principle and is therefore
probably not statistically optimal for finite data sets.

In the present paper, we provide for the first time
a statistically optimal TRAM method by presenting
a maximum-likelihood solution to the discrete TRAM
problem formulated in Ref.18. We derive a set of self-
consistent equations whose solution yields the maximum
likelihood dTRAM estimator. It is shown that the
dTRAM solution is an asymptotically correct estimator,
i.e. it converges to the exact equilibrium probabilities
and transition probabilities with an increasing amount of
simulation data. The dTRAM equations can be solved

using a Newton method, as done before for WHAM and
MBAR35,36, or an easy-to-implement iterative algorithm
provided here.

We show that dTRAM becomes identical to WHAM in
the limit of statistically independent samples, i.e. sam-
pled from the global equilibrium at each thermodynamic
state. Moreover, dTRAM becomes identical to a re-
versible MSM when we have only a single thermodynamic
state. A number of applications are shown to demon-
strate the usefulness and versatility of dTRAM.

II. DISCRETE TRAM

A. Likelihood of WHAM, reversible Markov
models and TRAM

We assume that a set of MD or MCMC simulations
have been performed, each in one of K thermodynamic
states (indexed by the superscript k ∈ {1, ...,K}). For
simulations in which the thermodynamic state is fre-
quently changed, such as in replica-exchange simulations,
each contiguous sequence is treated as a separate trajec-
tory at one of the K thermodynamic states. Further-
more, we assume that the data has been discretized to
a configuration space partition (indexed by subscripts
i, j ∈ {1, ..., n}). We are primarily interested in the
free energy, or equivalently, the equilibrium probability
of discrete states in some unbiased or reference ensemble
(πi)i=1,...,n. In addition we might be interested in the
equilibrium probability of states under all biased ensem-
bles. If the simulation trajectories are long enough, we
will also be able to compute kinetic properties, as dis-
cussed later.

We will be dealing with simulations where the unbi-
ased, or reference probability πi and the biased probabil-

ity at simulation condition k, π
(k)
i are related by a known

and constant bias factor γ
(k)
i :

π
(k)
i = f (k)πiγ

(k)
i , (1)

f (k) =
1∑

l πlγ
(k)
l

(2)

where f (k) is a normalization constant. Thus, the bias
is multiplicative in probabilities or additive in the poten-
tial. This formalism is applicable whenever one has sim-
ulations conducted at different thermodynamic states,
such as replica-exchange methods or umbrella sampling,
but also direct simulations at different temperatures or
Hamiltonians. In the results section, we will show how

the reweighting factor γ
(k)
i can be computed for a few

selected examples. The most common analysis method
used in the present scenario is WHAM. WHAM uses

the histogram counts N
(k)
i , i.e. the number of samples

falling into bin i at thermodynamic state k. Although
WHAM was originally derived as a minimum-variance
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estimator7,8, it can be derived as a maximum-likelihood
estimator16 using the likelihood

LWHAM =
∏
k

∏
i

(π
(k)
i )N

(k)
i (3)

which simply assumes that every count N
(k)
i is indepen-

dently drawn from the biased distribution π
(k)
i , which is

linked to the unbiased distribution π via Eq. (1).
Let us now turn to reversible Markov state

models31,32,37,38. The maximum likelihood Markov
model is the transition matrix P = (pij) between n dis-
crete configuration states, that maximizes the likelihood
of the observed transitions between these states. The
likelihood of a Markov model is well known39, and sim-
ply a product of all transition probabilities corresponding
to the observed trajectory. To obtain a reversible Markov
state model, this likelihood is maximized using the con-
straints that the transition probabilities pij must fulfill
detailed balance with respect to the equilibrium distri-
bution π:

LMSM =
∏
i

∏
j

p
cij
ij (4)

s.t. πipij = πjpji for all i, j, (5)

where cij is the number of times the trajectories were
observed in state i at time t and in state j at a later
time t+ τ , where τ is the lag time at which the Markov
model is estimated. For an MSM, all simulation data
producing counts cij , has to be generated at the same
thermodynamic state (e.g. temperature, Hamiltonian),
and the estimated P is then only valid for this thermody-
namic state. The reversibility of the MSM is ensured by
the constraint equations (5). Estimators that maximize
Eqs. (4-5) usually provide both P and the equilibrium
distribution π32,38.

In TRAM, we combine these two approaches as fol-
lows: we avoid the WHAM assumption that every count
is sampled from global equilibrium, and instead treat ev-
ery trajectory at thermodynamic condition k as a Markov

chain with the configuration-state transition counts c
(k)
ij .

However, in contrast to Markov models we exploit the
fact that equilibrium probabilities can be reweighted be-
tween different thermodynamic states via (1-2). The re-
sulting likelihood of all P(k) and π, based on simulations
at all thermodynamic states can be formulated as:

LTRAM =
∏
k

∏
i

∏
j

(p
(k)
ij )c

(k)
ij (6)

s.t. π
(k)
i p

(k)
ij = π

(k)
j p

(k)
ji for all i, j, k. (7)

Here, P(k) = (p
(k)
ij ) is the Markov transition matrix at

thermodynamic state k, and c
(k)
ij are the number of tran-

sitions observed at that simulation condition. π(k) is
the vector of equilibrium probabilities of discrete states
at each thermodynamic state. Note that all of these K

equilibrium distributions are coupled through Eqs. (1-2).
Because each Markov model P(k) must have the distribu-
tion π(k) as a stationary distribution, all Markov models
are coupled too. This is what makes the maximization
of the TRAM likelihood Eqs. (6-7) difficult, and it can
neither be achieved by WHAM, nor by existing MSM es-
timators. We call Eqs. (1,2,6,7) the TRAM equations. In
the present paper we will obtain the reweighting factors

γ
(k)
i in Eqs. (1-2) by a configuration space discretization

or binning, such as in WHAM. For this reason we call the
present solution a discrete TRAM method, which should
be distinguished from approaches where the reweighting
is done for individual samples10,19.

B. dTRAM log-likelihood and self-consistent
solution equations

We will seek the maximum likelihood of Eq. (6). As
in common practice, we work with the logarithm of the
likelihood, because it has the same maximum point as
the likelihood but can be treated more easily:

logLTRAM =

K∑
k=1

n∑
i=1

n∑
j=1

c
(k)
ij ln p

(k)
ij (8)

Moreover, we have the following constraints. Using de-
tailed balance Eq. (7) with the reweighting equations
(1-2) results in

πiγ
(k)
i p

(k)
ij = πjγ

(k)
j p

(k)
ji for all i, j, k. (9)

Note that the normalization factors, f (k), have cancelled.
In addition, P(k) should be a transition matrix and π
should be a probability vector, so we have the normal-
ization conditions:

∑
j

p
(k)
ij = 1 ∀i, k (10)

∑
j

πj = 1 (11)

The normalization of π(k) is achieved by the normaliza-
tion constants in Eq. (1)-(2).

In order to solve the discrete TRAM problem we have
to maximize the log likelihood (8) under the constraints
(9-11). The variables are both the unbiased equilibrium
probabilities π (providing n−1 variables due to the con-
straint (17)), and the biased transition matrices P(k)

(each having n(n − 1)/2 remaining free variables that
are not fixed by constraints (9)-(10)).

Note that changing the simulation conditions, such as
bias or temperature, will modify the transition proba-
bilities in a non-trivial way that depends on the simula-
tion condition, the integrator and thermostat used, and
the state space discretization. Therefore we cannot re-
late the different P(k) without restricting the generality
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of our estimator. The only general connection between
these Markov models is the coupling of their equilibrium
distributions via Eqs. (1-2).

In Appendix A.1-3, we use Lagrange duality theory to
show that the optimal solution of the discrete TRAM
problem above fulfills the following two conditions:

∑
k

∑
j

(
c
(k)
ij + c

(k)
ji

)
γ
(k)
i πiv

(k)
j

γ
(k)
i πiv

(k)
j + γ

(k)
j πjv

(k)
i

=
∑
k

∑
j

c
(k)
ji (12)

∑
j

(
c
(k)
ij + c

(k)
ji

)
γ
(k)
j πj

γ
(k)
i πiv

(k)
j + γ

(k)
j πjv

(k)
i

= 1 (13)

where v
(k)
i are unknown Lagrange multipliers. In the

setting with detailed balance we can unfortunately not
give a closed expression for them, but we can optimize
them along with the equilibrium distribution π. Note
that the equations above do not require the transition

probabilities p
(k)
ij to be computed explicitly. If these are

desired, they can be subsequently computed from the
solution of Eqs. (12-13) (see Sec. II D below).

In Appendix A.4 we prove that the dTRAM equations
above are asymptotically correct. This means that in the
limit of a lot of simulation data - either realized by long
trajectories or many short trajectories - the estimate will
converge to the correct stationary distributions π and
π(k).

C. Solution methods

We can rewrite the self-consistent equations (12,13) to
derive the following iteration (fixed-point method), that
can be used to numerically solve the discrete TRAM
problem. First we initialize π and v(k) by the simple
guess:

πiniti := 1/n (14)

v
(k),init
i :=

∑
j

c
(k)
ij (15)

and then we iterate the following equations until π is
converged:

v
(k),new
i := v

(k)
i

∑
j

(
c
(k)
ij + c

(k)
ji

)
γ
(k)
j πj

γ
(k)
i πiv

(k)
j + γ

(k)
j πjv

(k)
i

(16)

πnewi :=

∑
k,j c

(k)
ji∑

k,j

(
c
(k)
ij +c

(k)
ji

)
γ
(k)
i v

(k)
j

γ
(k)
i πiv

(k)
j +γ

(k)
j πjv

(k)
i

(17)

Instead of the simple 1/n initialization for πi in Eq. (14),
we could use the standard WHAM algorithm to obtain a
much better guess7,8. While a better starting point might
be relevant for optimizing computational performance,
we have not observed the estimation result to depend on
this choice.

As an alternative to the fixed-point iteration (16,17),
we can solve equations (12,13) by using the multidimen-
sional Newton method for root finding available in many
numerics packages.

D. Kinetics and the selection of the estimation lag
time τ

Given π and v(k) at their optimal values, the transition
probabilities can be computed for any thermodynamic
state k simulated at by:

p
(k)
ij (τ) =

(
c
(k)
ij (τ) + c

(k)
ji (τ)

)
γ
(k)
j πj

γ
(k)
i πiv

(k)
j + γ

(k)
j πjv

(k)
i

(18)

See Appendix A.2 for the derivation. In Eq. (18) we
have explicitly stated that transition counts, and hence
the transition probabilities are estimated at a given lag
time τ . As a consequence of the asymptotic correctness

of dTRAM (Appendix A.4), the estimates of p
(k)
ij (τ) are

also asymptotically correct, that is for either long trajec-
tories or many short trajectories we will get an unbiased
estimate of the transition probabilities.

In order to compute kinetics, such as transition rates
or timescales, the transition matrices P(k) do not only
have to be valid for the lag time τ estimated at, but
they have to be Markov models that predict the kinetics
at longer times correctly. How adequate P(k) is as a
Markov model should be tested by validating that the
relaxation timescales computed from the eigenvalues of
P(k) are approximately constant in τ27 and by checking
that the Chapman-Kolmogorow P(k)(nτ) ≈ [P(k)(τ)]n

approximately holds32.
The P(k) can only be used as Markov models when

the contiguous simulation trajectories are long enough to
support a suitable lag time τ . Generalized ensemble sim-
ulations, such as replica-exchange, parallel or simulated
tempering generally only provide very short contiguous
trajectory pieces and are only suitable for constructing
Markov models of small systems and using excellent con-
figuration state discretizations11,13,14.

Based on umbrella sampling simulations, the construc-
tion of Markov models at the different umbrellas k is
usually possible, but for the unbiased system we can
only obtain the equilibrium distribution π and not the
Markov model. The reason is that the transition ma-
trices (18) can only be estimated at the different simu-
lation conditions k, whereas the equilibrium probability
of the chosen reference ensemble π is computed through
reweighting, and is thus also available for thermodynamic
states not simulated at. However, the umbrella-Markov
models P(k) could still provide useful information. For
example comparing the longest relaxation timescale of
each umbrella Markov model with the respective simula-
tion length could be used as an indicator of convergence,
and whether some or all simulation lengths should be
increased20.
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Unbiased MD simulations at different thermodynamic
states are most suitable for constructing Markov models,
because one has the choice of running simulations long
enough to accommodate a suitable lag time τ . A system-
atic way of constructing such simulations is the random
swapping protocol19. Note that such simulations may
not only violate the sampling from global equilibrium,
but also the sampling from local equilibrium, it is possi-
ble that the estimation of π and all associated station-
ary estimates are biased for short lag times τ . Therefore,
when using dTRAM to analyze unbiased MD simulations
at different thermodynamic states, one should definitely
compute the estimates as a function of τ in order to en-
sure that a large enough τ is used to obtain unbiased
estimates.

E. WHAM is a special case of dTRAM

We now show that the commonly used WHAM method
is obtained as a special case of dTRAM. Starting from
the dTRAM estimator, we employ the WHAM assump-
tion that each sample at thermodynamic state k is inde-
pendently generated from the biased probability distribu-

tion π(k). This means that transition probabilities p
(k)
ij

are equal to the probability of observing state j without
knowledge of i:

p
(k)
ij = π

(k)
j (19)

In a setting where counts are generated independently,

the transition counts c
(k)
ij can be modeled by splitting up

the total counts ending in bin j according to the equi-
librium probability that they have been in a given bin i
before:

c
(k)
ij = π

(k)
i N

(k)
j (20)

Note that this selection generates actually observed his-

togram counts as
∑
i c

(k)
ij = N

(k)
j

∑
i π

(k)
i = N

(k)
j . Substi-

tuting π
(k)
j in (19-20) using (1-2) and inserting the result

into Eq. (18) yields the equalities

N
(k)
j γ

(k)
i πi +N

(k)
i γ

(k)
j πj = γ

(k)
i πiv

(k)
j + γ

(k)
j πjv

(k)
i (21)

which must hold for all i and k. This is exactly the case
when the Lagrange multipliers become:

v
(k)
i = N

(k)
i . (22)

Substituting (20) and (22) into (17) gives us the solution
for the unbiased stationary probabilities:

πnew
i =

∑
kN

(k)
i∑

kN
(k)f (k)γ

(k)
i

(23)

f (k),new =
1∑

j γ
(k)
j πj

(24)

which is exactly the WHAM algorithm7,8. Therefore,
WHAM is a special case of dTRAM, suggesting that
TRAM should yield estimates that are at least as good
as WHAM, but should give better estimates when the
WHAM assumptions of sampling from global equilibrium
at condition k does not hold.

F. A reversible Markov state model is a special
case of dTRAM

Now we relate dTRAM to reversible Markov mod-
els. Suppose we only have a single thermodynamic state
k and one or several simulation trajectories generating
counts cij at this condition. In this case we can drop
the index k, all reweighting factors are unity γi ≡ 1, and
equations (12-13) become:∑

j

(cij + cji)πivj
πivj + πjvi

=
∑
j

cji (25)

∑
j

(cij + cji)πj
πivj + πjvi

= 1 (26)

We can combine both equations to:∑
j

cji + vi =
∑
j

(cij + cji)πivj
πivj + πjvi

+
∑
j

(cij + cji)πjvi
πivj + πjvi

=
∑
j

(cij + cji) (27)

Thus we solve for the Lagrange multipliers:

vi =
∑
j

cij = Ni. (28)

Substituting vi = Ni into (13) leads to the optimality
condition for πi:

πi =
∑
j

cij + cji
ci
πi

+
cj
πj

(29)

Inserting the result into (18) yields the reversible transi-
tion matrix estimator:

πipij =
cij + cji
cj
πj

+ ci
πi

(30)

which is identical to the known optimality condition for a
reversible Markov model transition matrix and the corre-
sponding iterative estimator32,38. Therefore, a reversible
MSM is a special case of dTRAM.

III. RESULTS

A. Illustrative example

We start with a simple example to illustrate a scenario
in which the classical WHAM estimator fails because the
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assumption of sampling from global equilibrium is not
fulfilled. Fig. 1a shows the energy levels (uA = 4, uTS =
8, uB = 0) of a discrete three-state system. We consider
a Metropolis-Hastings jump process between neighboring
states. Due to the high-energy transition state TS, the
minima A and B are long-lived and escaping them is a
rare event. Now we run a simulation consisting of three
independent trajectories:

1. An unbiased trajectory of length L starting state
A

2. An unbiased trajectory of length L starting state
B

3. A trajectory of length L using bias (bA = 4, bTS =
0, bB = 8) starting in state TS.

The biased trajectory 3 samples from an energy land-
scape that is flat over A, B and TS. Trajectories 1 and
2 will be stuck in states A or B, respectively, and only
be able to escape them when L is sufficiently long.

Trajectories 1 and 2 are using the same unbiased
Hamiltonian and are therefore in the same thermody-
namic state k = 1. The corresponding reweighting factor
is simply:

γ
(1)
i = 1

for all states i = A, TS, B. Trajectory 3 is in a different
thermodynamic state with a biased Hamiltonian that we
shall call k = 2. We use the bias as a reweighting factor:

γ
(2)
i = e−bi

for all states i = A, TS, B. In this way we can reweigh
all samples between the two thermodynamic states and
produce estimates of the energies uA, uTS , uB using both
WHAM with Eqs. (23-24) and dTRAM with Eqs (16-17).

Because states A and B are long-lived, we expect that
the unbiased trajectories 1 and 2 cannot sample from
the global equilibrium, unless the simulation times L is
very long. As a result the WHAM estimator is strongly
biased initially and systematically underestimates the en-
ergy differences - see solid lines in Fig. 1b. Only after
about L = 10, 000 steps, the bias of the WHAM estima-
tor is negligible. In contrast, the dTRAM estimate is un-
biased even for short simulation lengths - see dashed lines
in Fig. 1b. dTRAM does not suffer from the WHAM
bias because each transition count is indeed independent
from the previous transition count, even when the simula-
tion does not sample from global equilibrium. Moreover,
the uncertainty of the dTRAM estimate is much smaller
than the uncertainty of the WHAM estimate. This is
because every transition count is an independent sam-
ple, and therefore dTRAM benefits from a much larger
statistical efficiency than WHAM.

While illustrative, this example is over-simplistic. In
reality, we do not have discrete states and the dynamics
is no Markov chain. Let us investigate next how dTRAM
performs in a more realistic setting.

B. Umbrella sampling

In umbrella sampling, one introduces for each simu-
lation k an additive bias potential, such that our total
potential in simulation k is given by

u
(k)
i = ui + b

(k)
i (31)

where i is a bin index of one or several finely discretized
coordinates in which the bias potential is acting. ui is
the unbiased potential evaluated at bin i (usually at its

center), and b
(k)
i is the value of the kth umbrella (bias)

potential. All energies are dimensionless (i.e. in units of
the thermal energy kBT ). The biased equilibrium prob-
abilities are proportional to:

π
(k)
i ∝ e−u

(k)
i = γ

(k)
i πi (32)

with the unbiased equilibrium probability and the
reweighting factors given by :

πi =
e−ui∑
j e−uj

(33)

γ
(k)
i = e−b

(k)
i (34)

Umbrella sampling is typically employed using stiff con-
straining potentials, such that the simulations quickly
decorrelate. In such a scenario, WHAM is a suitable
estimator for extracting unbiased equilibrium probabil-
ities and free energy differences. However, an analysis
of umbrella sampling data can indeed benefit from us-
ing dTRAM. Firstly, dTRAM uses conditional transition
events, and the number of statistically independent ob-
servations thus depends on a lag time τ which can be
thought of as a local decorrelation time, i.e. a time at
which transitions become statistically independent. This
time is generally shorter than the global decorrelation
time (or statistical inefficiency) tcorr, at which samples
generated by the trajectory become statistically indepen-
dent. Thus, whenever tcorr is longer than the interval at
which configurations are saved, dTRAM will be able to
exploit that this data more efficiently than WHAM. This
should lead to improved estimates.

Moreover, umbrella sampling can, in conjunction with
WHAM, result in systematic errors that can be avoided
with a TRAM estimator: As shown in20, using umbrellas
that are too weak to stabilize the simulation at a tran-
sition state can lead to umbrella simulations that still
have high internal free energy barriers and therefore do
not generate samples that are drawn from the respective
equilibrium distribution. Although a WHAM estimate
would be correct in the limit of infinitely long simula-
tion times, it may provide drastically biased estimates
for practical simulation times.

Here, we employ umbrella sampling simulations on a
one-dimensional double-well potential with a dimension-
less energy:

u (x) =
1

4
x4 − 5x2 − 9.9874, (35)
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illustrated in Fig. 2B,C. The configuration space is
discretized using a one dimensional binning: All x-
values are assigned to the closest point from the set
{−5,−4.9, . . . , 4.9, 5}, generating up to 101 discrete
states. However, in practice only about 80 states are vis-
ited and we exclude empty bins from the analysis. Um-
brella sampling simulations are conducted using K = 11
different biasing potentials given by:

b(k) (x) = 4
(
x− x̄(k)

)2
, for k = 1, . . . , 11 (36)

where x̄(k) = k − 6 is the center of the k-th biasing po-
tential. The dynamics are simulated using the Metropo-
lis process described in Appendix C. The bias potentials
are chosen relatively weak, such that the umbrella simu-
lations near the transition state contain rare events . In
this case, WHAM is a poor estimator because it takes
relatively long to generate statistically independent sam-
ples.

In order to apply dTRAM, we evaluate all bias poten-
tials for each discrete state, compute the reweighting fac-
tors according to Eq. (34), and store this information in
a reweighting matrix. We additionally store all state-to-

state transition counts c
(k)
ij for each umbrella simulation

k. Given this data the dTRAM estimation is computed
by iterating equations (16-17) to convergence.

The performances of WHAM and dTRAM are com-
pared in terms of the mean error of the estimated energy
barriers:

error =
1

2
(|∆uAB −∆uapproxAB |+ |∆uBA −∆uapproxBA |)

(37)
where ∆uAB and ∆uBA are the energy barriers for the
A → B and B → A process, respectively, and the su-
perscript “approx” represents the approximate value ob-
tained from the estimated u(x). Fig. 2A compares the
energy barrier estimation error using WHAM (black) and
dTRAM (red) as a function of the length of the umbrella
simulations. In addition, estimation results our earlier
approximate TRAM method from18 are shown in blue.
Fig. 2B and C show the energy profile estimated from
the data using trajectory lengths of 910 and 10000 steps
per umbrella, respectively. All means and standard devi-
ations are obtained by repeating the simulation 30 times.

It is apparent that both estimators converge to the
correct energy barriers and energy profile in the limit of
a large amount of simulation data. For short simulations,
the dTRAM estimates are significantly better than the
WHAM and approximate TRAM estimates - or in other
words much less simulation data is needed with dTRAM
to obtain estimates of equal quality than when WHAM
or approximate TRAM are used.

In order to demonstrate the validity of dTRAM on
molecular dynamics data of a large protein system, we
have used it to analyze umbrella sampling simulations of
the passage of Na+ ions through the transmembrane pore
of the GLIC channel (Fig. 3). The data was generated

in the simulations of Zhu and Hummer36. WHAM and
dTRAM provide a similar free energy profile (Fig. 3B),
but for a given number of bins used to discretize the
membrane normal used as a reaction coordinate, dTRAM
provides a smaller systematic error. The systematic error
is measured in terms of the energy difference calculated
for the two end-states which should be 0 as a result of
the periodic boundary conditions used in the simulation
(Fig. 3C).

IV. CONCLUSIONS

We have derived a maximum likelihood estimator
for the transition-based reweighting analysis method
(TRAM). This estimator optimally combines simulation
trajectories produced at different thermodynamic states.
This is done by taking into account both the time corre-
lations in the trajectories via transition counts, and by
considering that the weight of every configuration can
be given in any thermodynamic state via the Boltzmann
distribution. The present estimator operates a config-
uration space discretization, and in particular also dis-
cretizes the reweighting factors between different ther-
modynamic states. Hence we call the present method
discrete TRAM, or in short dTRAM.

dTRAM combines ideas from the weighted histogram
analysis method (WHAM) and reversible Markov state
models (MSMs). We have shown that dTRAM is in
fact a proper generalization of both methods, i.e. both
the WHAM estimator and the reversible MSM estima-
tor can be derived as special cases from the dTRAM
equations. Consequently, dTRAM can be applied to any
kind of simulation data that either WHAM or MSMs
can be applied to. In particular, dTRAM is useful for
getting improved estimates from general-ensemble simu-
lations (replica-exchange molecular dynamics, parallel or
simulated tempering), multiple biased simulations (um-
brella sampling, metadynamics, conformational flooding
etc). Like MSMs, dTRAM is useful for obtaining es-
timates from swarms of short simulations that are not
in global equilibrium, but beyond MSMs it can do so
for trajectories produced under different thermodynamic
conditions, such as temperatures or Hamiltonians.

dTRAM provides estimates for both the equilibrium
distribution at a thermodynamic state of interest, and
the kinetics at the thermodynamic states simulated at.
The kinetic estimates should be treated with care as they
are only useful when the data admits the choice of a lag-
time that is sufficiently long to parametrize a Markov
model that can predict long-term kinetics. For such esti-
mates, it should be checked whether they are converged
as a function of the lag time, as it is common practice in
Markov state modeling. We will investigate the suitabil-
ity of dTRAM to estimate kinetic data in future work.
In the present paper we have only worked with short
trajectory segments, and hence have only used dTRAM
in order to estimate equilibrium distributions and free
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energies. It has been demonstrated that dTRAM pro-
vides superior estimates of these properties compared to
WHAM when applied to biased simulations.

The present reweighting formulation is straightfor-
wardly applied when the configuration space can be dis-

cretized in such a way that the bias factor γ
(k)
i is ap-

proximately constant within each bin. Although such a
discretization is easily done for umbrella sampling while
biasing one or two coordinates, it is unsuitable in other
cases, such as replica-exchange simulations. It has been
suggested to construct a joint discretization in configu-
ration and energy space40. An optimal solution to the

problem will involve a self-consistent evaluation of γ
(k)
i

in a way that integrates the sampled configurations as-
signed to bin i with a MBAR-like approach10.

A python implementation of the
dTRAM method is available under
https://github.com/markovmodel/pytram.
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18 H. Wu and F. Noé, SIAM Multiscale Model. Simul. 12, 25
(2014).

19 A. S. J. S. Mey, H. Wu, and F. Noé, Phys. Rev. X 4,
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Phys. 134, 174105 (2011).
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(a)

(b)

Figure 1. Comparison of WHAM and dTRAM estimation re-
sults using three independent trajectories sampling from three
discrete states (two unbiased trajectories starting in A and B
respectively, and biased trajectory sampling from a flat energy
landscape over A, TS and B). (a) Schematic of the energies
of three states. Error bars correspond to one standard de-
viation of the estimate computed over 25 independent runs.
(b) Estimation of the energies of A, TS and B using WHAM
(solid lines) and dTRAM (dashed lines).

(A)

(B)

(C)

Figure 2. Estimation results of WHAM, the present method
(dTRAM), and our early approximate TRAM method
(aTRAM) from18 based on umbrella sampling simulations in
a double-well potential. (A) Mean and standard deviation
of the energy barrier estimation error calculated over 30 inde-
pendent umbrella sampling runs with K = 11 umbrellas each.
The x-Axis shows the number of steps in an umbrella trajec-
tory. (B) Mean and standard deviation of estimates of the
potential u(x) generated by WHAM, dTRAM and approxi-
mate TRAM using a trajectory length of 500. (C) Same as
(B), but with a trajectory length of 10000.
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Figure 3. Estimation results of WHAM and dTRAM based
on umbrella sampling simulations of Na+ passage through
a GLIC channel using simulations of Zhu and Hummer36.
(A) Structure of the ion channel. (B) Free energy profile
computed by WHAM and dTRAM when using 400 bins to
discretize the reaction coordinate (membrane normal). (C)
Systematic estimating error of the energies of the end-states,
measured by its difference from 0, as a function of the number
of discretization bins used.
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APPENDIX A: DISCRETE TRAM: DERIVATION
AND PROOFS

A.1 Lagrange duality

A detailed description of Lagrange duality theory we
refer to textbooks41,42. Here we just summarize a few as-
pects of the theory relevant for solving the TRAM prob-
lem.

Consider a constrained minimization problem of the
following form:

minx f (x)
s.t. fe (x) = 0

(38)

The Lagrangian function can be defined by

Λ (x,v) = f (x) + vᵀfe (x) (39)

If (38) is a convex problem and some technical assump-
tion such as Slater condition holds, it can be proven that
(38) is equivalent to the following maximization problem:

max
v

g(v) (40)

where g(v) is the Lagrange dual function defined by

g(v) := min
x

Λ (x,v) (41)

The equivalence here means the optimal values of the two
problems are equal, i.e., the solution x∗ to (38) and the
solution v∗ to (40) satisfies g (v∗) = f (x∗). Moreover,

x∗ = arg min
x

Λ (x,v∗) (42)

A.2 Single thermodynamic state

We first consider the dual Lagrange approach to solv-
ing dTRAM at a single thermodynamic state, i.e. the sit-
uation that is equivalent with a reversible Markov state
model. Here we first ignore the normalization of the sta-
tionary distribution π, i.e.,

∑
i πi may not be equal to

1. The maximum likelihood estimation of the transition
matrix P with a fixed equilibrium distribution π is given
by the following optimization problem:

minP −L (P | C)
s.t. πipij = πjpji∑

j pij = 1
(43)

where

L (P | C) =
∑
i,j

cij ln pij (44)

is the log-likelihood function of P. By using the Lagrange
duality theory, we have the following lemma:

Lemma: The minimization problem (43) is equivalent
to the maximization problem

minv hC (π,v) =
∑
i,j cij ln (πivj + πjvi)

−
∑
i,j cij lnπj −

∑
i vi

−
∑
i,j cij ln (cij + cji) +

∑
i,j cij

(45)
and the optimal solution P∗ to (43) and the optimal so-
lution v∗ to (45) satisfy

p∗ij =
(cij + cji)πj
πiv∗j + πjv∗i

(46)

Proof : The Lagrangian function of (43) is defined as

Λπ (P,λ,v) = −
∑
i,j

cij ln pij +
∑
i,j

λij (πipij − πjpji)

+
∑
i

vi

∑
j

pij − 1


= −

∑
i,j

cij ln pij +
∑
i,j

(πi (λij − λji) + vi) pij

−
∑
i

vi. (47)

Note that

∂Λπ

∂pij
= − cij

pij
+ πi (λij − λji) + vi (48)

Then the dual function of (43) is

gπ (λ, ν) = min
P

Λπ (P,λ,v)

= Λ

([
cij

πi (λij − λji) + vi

]
,λ,v

)
= −

∑
i,j

cij ln

(
cij

πi (λij − λji) + vi

)
+
∑
i,j

cij −
∑
i

vi

=
∑
i,j

cij ln (πi (λij − λji) + vi)−
∑
i

vi

−
∑
i,j

cij ln cij +
∑
i,j

cij (49)

and (43) is equivalent to the maximization problem

max
λ,v

gπ (λ,v) (50)

From (49), we can get

∂gπ (λ,v)

∂λij
=

cijπi
πi (λij − λji) + vi

− cjiπj
πj (λji − λij) + vj

(51)
and

∂gπ (λ,v)

∂λij
= 0⇔ λij − λji =

cijπivj − cjiπjvi
(cij + cji)πiπj

(52)



12

Therefore,

max
λ

gπ (λ,v) =
∑
i,j

cij ln

(
πi
cijπivj − cjiπjvi
(cij + cji)πiπj

+ vi

)
−
∑
i

vi −
∑
i,j

cij ln cij +
∑
i,j

cij

=
∑
i,j

cij ln

(
cij (πivj + πjvi)

(cij + cji)πj

)
−
∑
i

vi −
∑
i,j

cij ln cij +
∑
i,j

cij

=
∑
i,j

cij ln (πivj + πjvi)−
∑
i,j

cij lnπj

−
∑
i

vi −
∑
i,j

cij ln (cij + cji) +
∑
i,j

cij

= hC (π,v) (53)

and the optimal value of (43) is equal to

max
λ,v

gπ (λ,v) = max
v

(
max
λ

gπ (λ,v)

)
= max

v
hC (π,v)

(54)
and

p∗ij =
cij

πi
(
λ∗ij − λ∗ji

)
+ v∗i

=
cij

πi
cijπiv∗j−cjiπjv∗i
(cij+cji)πiπj

+ v∗i

=
(cij + cji)πj
πiv∗j + πjv∗i

(55)

where

λ∗ij − λ∗ji =
cijπiv

∗
j − cjiπjv∗i

(cij + cji)πiπj
(56)

We now consider the case that the stationary distribu-
tion is unknown. In this case, the maximum likelihood
estimate of π is

π∗ = arg min
π

(
min

P is feasible to (43)
−L (P)

)
= arg min

π

(
max
v

hC (π,v)
)

(57)

A.3 Multiple Simulations

If we further consider multiple biased simulations with

π
(k)
i ∝ γ

(k)
i πi, we can also conclude that the maximum

likelihood estimate of π can be given by the following
min-max problem:

min
π

max
v(1),...,v(K)

∑
k

hC(k)

(
diag

(
γ(k)

)
π,v(k)

)
(58)

For the sake of convenience, here we define ui = − lnπi.
Then (58) can be rewritten as

min
u

max
v(1),...,v(K)

∑
k

hC(k)

(
diag

(
γ(k)

)
exp (−u) ,v(k)

)
(59)

Because h (exp (−u) ,v) is a concave function of v if u is
fixed and a convex function of u if v is fixed, the solution
to (59) is a saddle point and characterized by (see Section
10.3.4 in43)

∂hC(k)

(
diag

(
γ(k)

)
exp (−u) ,v(k)

)
∂ν

(k)
i

= 0,

i = 1, . . . , n, k = 1, . . . ,K (60)

∂
∑
k hC(k)

(
diag

(
γ(k)

)
exp (−u) ,v(k)

)
∂ui

= 0,

i = 1, . . . , n (61)

Considering that

∂hC (diag (γ) exp (−u) ,v)

∂vi
=
∑
j

(cij + cji) γjπj
γiπivj + γjπjvi

− 1

(62)
and

∂hC (diag (γ) exp (−u) ,v)

∂ui

=
∂hC (diag (γ)π,v)

∂πi

∂πi
∂ui

(63)

= −πi

∑
j

(cij + cji) γivj
γiπivj + γjπjvi

−
∑
j cji

πi


=
∑
j

cji −
∑
j

(cij + cji) γiπivj
γiπivj + γjπjvi

(64)

We can conclude that the optimal solution to (58) should
satisfy

∑
j

(
c
(k)
ij + c

(k)
ji

)
γ
(k)
j πj

γ
(k)
i πiv

(k)
j + γ

(k)
j πjv

(k)
i

= 1 (65)

πi
∑
j,k

(
c
(k)
ij + c

(k)
ji

)
γ
(k)
i v

(k)
j

γ
(k)
i πiv

(k)
j + γ

(k)
j πjv

(k)
i

=
∑
j,k

c
(k)
ji (66)

This leads to the following iterative algorithm for unbi-
ased estimation of multiple simulations:

v
(k),new
i = v

(k)
i

∑
j

(
c
(k)
ij + c

(k)
ji

)
γ
(k)
j πj(

γ
(k)
i πiv

(k)
j + γ

(k)
j πjv

(k)
i

) ,
for i = 1, . . . n(67)

πnew
i =

∑
k,j c

(k)
ji∑

k,j

(
c
(k)
ij +c

(k)
ji

)
γ
(k)
i v

(k)
j(

γ
(k)
i πiv

(k)
j +γ

(k)
j πjv

(k)
i

)
,

for i = 1, . . . n(68)
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A.4 Asymptotic correctness of dTRAM

Here we show that dTRAM converges to the correct
equilibrium distribution and transition probabilities in
the limit of large statistics. In this limit, either achieved
through long simulation trajectories or many short sim-

ulation trajectories, the count matrices C(k) = [c
(k)
ij ] be-

come:

c
(k)
ij = N

(k)
i p̄

(k)
ij (69)

where P̄(k) = [p̄
(k)
ij ] is the matrix of exact transition prob-

abilities (no statistical error), which satisfies

π̄iγ
(k)
i p̄

(k)
ij = π̄jγ

(k)
j p̄

(k)
ji (70)

where π = [π̄i] are the exact stationary probabilities
of configuration states. Inserting (69) into the dTRAM
equations (12-13), we obtain:

∑
k

∑
j

(
c
(k)
ij + c

(k)
ji

)
γ
(k)
i π̄iN

(k)
j

γ
(k)
i π̄iN

(k)
j + γ

(k)
j π̄jN

(k)
i

(71)

=
∑
k

∑
j

(
N

(k)
i p̄

(k)
ij +N

(k)
j p̄

(k)
ji

)
γ
(k)
i π̄iN

(k)
j

γ
(k)
i π̄iN

(k)
j + γ

(k)
j π̄jN

(k)
i

(72)

=
∑
k

∑
j

(
N

(k)
i γ

(k)
j π̄j +N

(k)
j γ

(k)
i π̄i

)
p̄
(k)
ji N

(k)
j

γ
(k)
i π̄iN

(k)
j + γ

(k)
j π̄jN

(k)
i

(73)

=
∑
k

∑
j

p̄
(k)
ji N

(k)
j (74)

=
∑
k

∑
j

c
(k)
ji (75)

and thus the first dTRAM equation is satisfied. Further-
more, we obtain:

∑
j

(
c
(k)
ij + c

(k)
ji

)
γ
(k)
j π̄j

γ
(k)
i π̄iN

(k)
j + γ

(k)
j π̄jN

(k)
i

(76)

=
∑
j

(
N

(k)
i p̄

(k)
ij +N

(k)
j p̄

(k)
ji

)
γ
(k)
j π̄j

γ
(k)
i π̄iN

(k)
j + γ

(k)
j π̄jN

(k)
i

(77)

=
∑
j

N
(k)
i p̄

(k)
ij γ

(k)
j π̄j +N

(k)
j p̄

(k)
ij γ

(k)
i π̄i

γ
(k)
i π̄iN

(k)
j + γ

(k)
j π̄jN

(k)
i

(78)

=
∑
j

p̄
(k)
ij (79)

= 1 (80)

and thus the second dTRAM equation is satisfied as well.
From the above two equations, we can conclude that in
the statistical limit (either achieved by long trajectories
or many short trajectories), the solution of the dTRAM
equations converges to the correct equilibrium distribu-
tion and the correct transition probabilities. Note that
we have assumed that all trajectory data is in local equi-
librium within each starting state i - if this is not the
case the counts cij and thus also the estimated πi and
pij will be biased. Thus, if the data is of such a nature
that local equilibrium is a concern (e.g. metadynamics
or uncoupled short MD trajectories), all estimates should
be computed as a function of the lag time τ .

APPENDIX B: DOUBLE-WELL SIMULATION
MODEL

The simulation trajectory {x(k)t }Mt=0 is generated by
a Metropolis simulation model, which is a reversible

Markov chain with initial state x
(k)
0 = x̄(k), stationary

distribution π
(k)
i ∝ e−ui−b(k)

i , and transition probability

Pr
(
x
(k)
t+1 = x′|x(k)t = x

)
(81)

=

 min

{
exp(−u(x′)−v(k)(x′))
exp(−u(x)−v(k)(x))

q (x|x′) , q (x′|x)

}
, x′ 6= x

1−
∑
y 6=x Pr

(
x
(k)
t+1 = y|x(k)t = x

)
, x′ = x

where q (x′|x) denotes the proposal distribution which
satisfies q (x′|x) ∝ 1|x′−x|≤0.2 and

∑
x′ q (x′|x) = 1.


