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We present a recently developed clustering method and specify it for the problem of identification
of metastable conformations in non-equilibrium biomolecular time series. The approach is based on
variational minimization of some novel regularized clustering functional. In context of conforma-
tional analysis, it allows to combine the features of standard geometrical clustering techniques (like
the K-Means algorithm), dimension reduction methods (like principle component analysis (PCA))
and dynamical machine learning approaches like Hidden Markov Models (HMMs). In contrast to
the HMM-based approaches, no a priori assumptions about Markovianity of the underlying pro-
cess and regarding probability distribution of the observed data are needed. The application of the
computational framework is exemplified by means of conformational analysis of some penta-peptide
torsion angle time series from a molecular dynamics simulation. Comparison of different versions
of the presented algorithm is performed wrt. the metastability and geometrical resolution of the
resulting conformations.
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Introduction

The field of simulation of large molecular systems has attracted enormous attention with applications
ranging from materials science to modelling of highly complex biomolecules like proteins and DNA.
Huge amounts of simulation data have been produced and the complexity and thus dimensionality of
molecular dynamics simulations is simultaneuosly growing. However, the development of tools for the
post-processing of such simulations is still in its infancies. The need for coarse-graining simulation
results that allow understanding and appropriate visualization is increasing.

The macroscopic dynamics of typical biomolecular systems is mainly characterized by the existence
of biomolecular conformations which can be understood as geometries or structures that are persistent
for long periods of time. A typical biomolecular systems possess only few dominant conformations that
can be understood as metastable states in state or configuration space [1, 2, 3]. In other words, the
effective or macroscopic dynamics is given by a process that hops between the metastable states while
within these states some geometric, statistical or dynamical patterns or features are persistent thus
being characteristic for the state.

There are a manifold of approaches to the identification of patterns, clusters or features in com-
plex data. In the context of molecular dynamics data the most prominent are geometrical clustering
methods like K-Means and fuzzy K-Means (F-K-Means) [4, 5], dimension reduction methods like prin-
cipal component analysis (PCA) or its variants [6, 7], and Markov- and hidden Markov approaches like
HMM-SDE, or HMM-PCA [8, 9, 10]. Unfortunately all of these methods have certain shortcomings:
(i) K-Means does not incorporate the dynamical information and is bad for overlapping data; the same
is valid for fuzzy-K-Means, (ii) Markov approaches scale unfavorably with dimension and sometimes
suffer from long-term memory in the data, (iii) HMMs rely on assumptions about the Markovianity of
the hidden process and need an explicit functional form of the probability distribution or likelihood.
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We will present an application of the newly developed adaptive FEM-clustering technique [11, 12, 13]
to the conformational analysis of biomolecular time series data. The approach is based on finite ele-
ment method (FEM) discretization of the regularized clustering functional. The clustering functional
measures the quality of describing the time series in terms of a fixed number of local models. The main
structural advantage of the method in biomolecular context is the following: it allows to combine stan-
dard geometrical clustering or dimension reduction techniques (like K-Means or PCA) with dynamical
machine learning approaches like HMMs. In contrast to HMM-based approaches [14, 8, 10, 9], no a
priory assumptions about the Markovianity of the underlying process and the probability distribution
of the observed data are needed.

We will demonstrate how to apply the FEM-Clustering framework to identification of the conforma-
tional states for the realistic penta-peptide simulation data. In particular, we will compare different
forms of the model distance functional, investigate their influence on the conformational resolution and
compare the resulting mean metastable geometrical structures.

The paper is organized as follows: In Sec. 1 we will follow the modelling steps that relate the concept
of locally optimal representation of the data to a specific constrained minimization problem. We then
will discuss why and how the problem is regularized and then discretized by FEM. The resulting FEM
clustering algorithm contains some free parameters; in Sec. 2 we will consider how to choose these
parameters, and what may be the possible pitfalls. Finally, in Sec. 3 we will perform some numerical
experiments on realistic molecular dynamics simulation data for a penta-peptide.

1 Finite Element Clustering Method

In the following, we will briefly described the FEM-Clustering framework first in general introduced in
[11, 12, 13]. Special emphasis will be paid to the numerical and interpretational aspects of the framework
in context of high dimensional biomolecular applications.

1.1 Model distance functional

Let x(t) : [0, T ] → Ψ ⊂ Rn be the analyzed molecular dynamics (MD) time series describing some
molecular degrees of freedom (like atomic coordinates, intramolecular distances, or some torsion angles
as functions of time). In the concluding section on numerical experiments we will look at the time
series of the essential torsion angles describing the geometrical form of the molecular backbone (n is
thus defined by the number of the torsion angles considered). In order to identify the K conformational
states characteristic for the analyzed molecular system, we look for K different local models characterized
by K distinct sets of a priory unknown model parameters

θ1, . . . , θK ∈ Ω ⊂ Rd, (1)

(where d is the dimension of a model parameter space) for the description of the observed time series.
That is, the conformational states are implicitly characterized by certain patterns related to specific
values of the associated parameters. Let

g (xt, θi) : Ψ× Ω → [0,∞) , (2)

be a functional describing the distance from the observed molecular configuration xt = x(t) to the
model i. In such a case g(xt, θ) has to be chosen so that it measures the deviation of xt from the pattern
identified by θ. For a given model distance functional g, under data clustering we will understand the
problem of finding for each t a vector Γ(t) = (γ1(t), . . . , γK(t)) called the affiliation vector (or vector of
the cluster weights) together with model parameters Θ = (θ1, . . . , θK) which minimize the functional

L(Θ,Γ) =
∫ T

0

K∑

i=1

γi (t) g (xt, θi) dt → min
Γ,Θ

, (3)
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subject to the constraints on Γ(t):

K∑

i=1

γi(t) = 1, ∀t ∈ [0, T ] (4)

γi(t) ≥ 0, ∀t ∈ [0, T ] , i = 1, . . . ,K. (5)

That is, for each time t the affiliations γi(t), i = 1, . . . ,K tell us whether the observation xt belongs to
a certain pattern/cluster (i.e., all γi(t) except one are small), or whether xt cannot be assigned clearly
(i.e., several affiliations are significantly different from 0).

When considering this constrained minimization of L we obviously have to specify the regularity class
of Γ, i.e., the function space from which the affiliations Γ may be taken. We will turn unto this question
next but first we will give an example of two basic forms of the model distance functional (2) relevant for
two important classes of cluster models: (I) geometrical clustering and (II) dynamical clustering based
on the principle components (dominant PCA modes.

Example (I): Geometrical Clustering One of the most popular techniques of biomolecular con-
formational analysis is the so-called K-means algorithm. It is based on the iterative minimization of
the distance of molecular configurations to a set of K cluster centers θi, i = 1, . . . , K. The affiliation
to a certain cluster i is defined by the proximity of the observed molecular configuration xt ∈ Ψ to the
cluster center θi ∈ Ψ. In this case, the model distance functional (2) takes the form of the square of the
simple Euclidean distance between the points in n dimensions:

g (xt, θi) = ‖ xt − θi ‖2, (6)

or some weighted variant of it.

Example (II): PCA clustering In many cases the dimensionality of the data xt can be reduced to
few essential degrees of freedom without significant loss of information. Dimension reduction becomes
crucial when analyzing the data from realistic biomolecular systems (since the dimension n of the ana-
lyzed data becomes a limiting factor in the numerical computation). One of the most popular dimension
reduction approaches used in applications is the method of essential orthogonal functions (EOFs) also
well-known under the name of principal component analysis (PCA) [15]. As was demonstrated recently,
it is possible to construct clustering methods based on the decomposition of data sets according to
differences in their essential degrees of freedom allowing to analyze data of very high dimensionality
[10, 16, 17, 18]. If the cluster i is characterized by a linear m-dimensional manifold (m ¿ n) of essential
degrees of freedom, the respective model parameter is defined by the corresponding orthogonal projector
θi = Ti ∈ Rn×m onto this manifold and the model distance functional (2) is given by the Euclidean
distance between the original data {xt} and its orthogonal projection on the manifold:

g (xt, θi) = g (xt,Ti) = ‖ xt − TiT T
i xt ‖2 . (7)

In context of molecular dynamics, this manifolds describe the directions of maximal flexibility of the
molecule and can help to understand the differences in its basic dynamical behavior.

1.2 Regularization

We have to minimize L subject to the constraints (1) and (4-5). The expression in (3) is similar to one
that is typically used in the context of finite mixture models [19, 20] but is more general, since neither
the function g (·, ·) nor Γ (·) have to be connected to some probabilistic models of the data (which is the
case for finite mixture models).

However, direct treatment of the problem (3) is hampered by the three following facts: (i) the
optimization problem is infinitely-dimensional (since Γ(t) belongs to some not yet specified function
class), (ii) the problem is ill-posed since the number of unknowns can be higher then the number of
known parameters, and (iii) because of the non-linearity of g the problem is in general non-convex and
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the numerical solution gained with some sort of local minimization algorithm depends on the initial
parameter values [21].

It perhaps is even more important that the solution Γ of the above constrained minimization task
may be unregular function: To see this let us assume that we already know the minimizer values Θ∗ for
Θ. Then, the minimizer Γ∗ for the affiliation vector Γ has the following form:

γ∗,i(t) =
{

1 if i = argminj g(xt, θ∗,j)
0 otherwise , (8)

that is, the datum xt has perfect affiliation with state i if the model distance functional for xt is minimal
in state i. That is, if the process exhibits strong variability then the affiliations are rather non-smooth
functions. Whenever the affiliation functions just take values 0 or 1 we will call them deterministic in
the following, which is meant in the sense that then for every datum in the time series it is certain to
which cluster it belongs.

One of the possibilities to approach the last problem together with the problems (i)-(ii) simulta-
neously is first to incorporate some additional information about the regularity of the observed pro-
cess (e.g., in the form of smoothness assumptions in space of functions Γ (·)) and then apply a finite
Galerkin-discretization of this infinite-dimensional Hilbert space. For example, we can assume the weak
differentiability of functions γi, i. e.:

|γi|H1(0,T ) =‖ ∂tγi (·) ‖L2(0,T )=
∫ T

0

(∂tγi (t))2 dt ≤ Ci
ε < +∞, i = 1, . . . ,K. (9)

As was demonstrated in [11], the above constraint limits the total number of transitions between the
clusters and is connected to the metastability of the hidden process Γ(t).

Another possibility to incorporate a priori information from (9) into the optimization is to modify
the functional (3) and to write it in the regularized form

Lε(Θ,Γ, ε2) = L(Θ, Γ) + ε2
K∑

i=1

∫ T

0

(∂tγi (t))2 dt → min
Γ∈H1(0,T ),Θ

. (10)

This form of penalized regularization was first introduced by A. Tikhonov for solution of ill-posed linear
least-squares problems [22] and was frequently used for non-linear regression analysis in context of
statistics [23] and multivariate spline interpolation [24]. In contrast to the aforementioned applications of
Tikhonov-type regularization (where the regularization is controlling the smoothness of some non-linear
functional approximation of the given data), the regularization of the averaged clustering functional
(10) allows to control the metastability of the assignment Γ(t) of the given data to K distinct a priory
unknown clusters, cf. [11].

1.3 FEM-discretization

Let {0 = t1, t2, . . . , tN−1, tN = T} be a finite subdivision of the time interval [0, T ] with uniform timestep
∆t. We can define a set of continuous functions {v1(t), v2(t), . . . , vN (t)} called hat functions or linear
finite elements [25]

vk(t) =





t−tk

∆t
2 ≤ k ≤ N − 1, t ∈ [tk−1, tk] ,

tk+1−t
∆t

2 ≤ k ≤ N − 1, t ∈ [tk, tk+1] ,
t2−t
∆t

k = 1, t ∈ [t1, t2]
t−tN−1

∆t
k = N, t ∈ [tN−1, tN ] .

(11)

Assuming that γi ∈ H1 (0, T ), standard FEM theory tells us we can approximate the continuous solution
by means of a Galerkin ansatz with ansatz space

VN = span{vk, k = 1, . . . , N}.
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The discretized constrained minimization task then reads

L̃ε =
K∑

i=1

[
a(θi)Tγ̃i + ε2γ̃T

i Hγ̃i

] → min
γ̃i,Θ

, (12)

K∑

i=1

γ̃ik = 1, ∀k = 1, . . . , N, (13)

γ̃ik ≥ 0, ∀k = 1, . . . , N, i = 1, . . . ,K, (14)

where γ̃i = (γ̃11, . . . , γ̃iN ) is the vector of discretized affiliations to cluster i, yielding the approximate
affiliations

γ̃N
i (t) =

N∑

k=1

γ̃ikvk(t),

while

a(θi) =

(∫ t2

t1

v1(t)g(xt, θi)dt, . . . ,

∫ tN

tN−1

vN (t)g(xt, θi)dt

)
, (15)

is a vector of discretized model distances and H is the symmetric tridiagonal stiffness-matrix of the
linear finite element set with 2/∆t on the main diagonal, −1/∆t on both secondary diagonals and zero
elsewhere.

Standard FEM theory tells us that the solution γ̃N of the discretized problem converges to the
continuous one γ for N →∞. However for finite N we will have to face a discretization error. Whenever
we solve the above minimization problem (12-14) for fixed cluster model parameters, we will denote the
discretization error by δN = ‖γ − γ̃N‖L2(0,T ). Standard techniques from numerical mathematics are
available using reliable estimators of the discretization error for controlling N adaptively such that some
pre-defined tolerance is undercut [25].

Whenever the process under investigation is not observed in continuous time but in form of a time
series with discrete time lags, then the discretized model distances a from (15) have to be computed
based on these discrete information. That is, the integrals in (15) have to be replaced by appropriate
quadrature formula. This poses no problem as long as the time lags in the time series are sufficiently
small compared to the uniform timestep ∆t of the FEM discretization.

If ε2 = 0, then the above minimization problem (12-14), can be solved analytically wrt. γ̃il for a fixed
set of cluster model parameters Θ resulting in

γ̃il =

{
1 i = argminj

∫ tl+1

tl
vl(s)g(xs, θj)ds,

0 otherwise,
(16)

in analogy to the continuous solution (8) for ε2 = 0.
If ε2 > 0, for some fixed set of cluster model parameters Θ(l), the minimization problem (12-14) reduces

to a sparse quadratic optimization problem with linear constraints which can be solved by standard tools
of sparse quadratic programming (sQP) with computational cost scaling as O (N log (N)) [26].

In addition, the minimization problem (12 -14) wrt. the parameters Θ for a fixed set of discretized
cluster affiliations γ̃i is equivalent to the unconstrained minimization problem

K∑

i=1

a(θi)Tγ̃
(l)
i → min

Θ
. (17)

For both of the K-Means and K-EOFs model distance functionals (6,7), the above problem (17) can be
solved analytically and explicit estimators for the cluster parameters can be given.

Therefore, the resulting FEM-clustering algorithm can be implemented as the following iterative
numerical scheme:
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FEM-clustering Algorithm.

Setting of optimization parameters and generation of initial values:
· Set the number of clusters K, regularization factor ε2, discretization error tolerance δ,

additional internal parameters of the distance model g, and the optimization tolerance TOL
· Set the iteration counter l = 1
· Choose random initial γ̃

(1)
i , i = 1, . . . ,K satisfying (13-14)

· Calculate Θ(1) = argmin
Θ

L̃ε
(
Θ, γ̃

(1)
i

)
solving the problem (17)

Optimization loop:
do
· Compute γ̃(l+1) = argminγ̃ L̃ε

(
Θ(l), γ̃

)
satisfying (13-14) by applying sQP and

adapting N until the discretization error is less than δ (for ε2 > 0),
or by applying (16) (if ε2 = 0)
· Calculate Θ(l+1) = argmin

Θ
L̃ε

(
Θ, γ̃

(l+1)
i

)
solving the problem (17)

· l := l + 1
while

∣∣∣L̃ε
(
Θ(l), γ̃

(l)
i

)
− L̃ε

(
Θ(l−1), γ̃

(l−1)
i

)∣∣∣ ≥ TOL.

Major advantage of the presented algorithm compared to HMM-based strategies [14, 9, 17, 18] and
to finite mixture models [19, 20] is that no a priori assumptions about the probability model for hidden
and observed processes are necessary in the context of the FEM-clustering algorithm.

2 Selection of parameters

The quality of the clustering very much depends on the original data, especially on the length of the
available time series. The shorter the observation sequence is, the bigger the uncertainty of the resulting
estimates. The same is true, if the number K of the hidden states is increasing for the fixed length
of the observed time series: the bigger K, the higher will be the uncertainty for each of the resulting
clusters. Therefore, in order to be able to statistically distinguish between different hidden states, we
need to get some notion of the model robustness, and how it is influenced by the selection of the cluster
number K, the regularization factor ε2, and the details of the model distance functional g. This can be
achieved through the postprocessing of the clustering results and analysis of the transition process and
model parameters estimated for each of the clusters.

Identification of optimal K. Let us assume for a moment, that ε2 and the details of g are fixed,
and reflect on the question of how to select K. If there exist two states with overlapping confidence
intervals for each of the respective model parameters, then those are statistically indistinguishable, K
should be reduced and the optimization repeated. In other words, confidence intervals implicitly give
a natural upper bound Kmax for the number of possible clusters. Algorithmically, one starts with
some large K, performs clustering, compares the confidence intervals of the resulting cluster model
parameters and sets K = K − 1 if the confidence intervals are overlapping. If at certain step of this
procedure all of the confidence intervals are non-overlapping, the correspondent value K is equal to the
maximal number of statistically distinguishable robust clusters Kmax for given data and some chosen
model distance functional.

Another possibility to estimate the optimal number of clusters can be used, if the identified transition
process Γ (t) is shown to be Markovian for given K, ε2. Markovianity can be verified applying some
standard tests, e. g., one can check the generator structure of the hidden process, see [27]. In such a case
the hidden transition matrix can be calculated and its spectrum can be examined for a presence of the
spectral gap. If the spectral gap is present, then the number of the dominant eigenvalues (i.e., eigenvalues
between the spectral gap and 1.0) gives the number of the metastable clusters in the system [28]. Positive
verification of the hidden process’ Markovianity has an additional advantage: it allows to construct a
reduced dynamical model of the analyzed process and to estimate some dynamical characteristics of
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the analyzed process, e.g., one can calculate relative statistical weights, mean exit times and mean first
passage times for the identified clusters [18].

Choosing the model distance functional g. It should not be necessary to emphasize that the
results of the minimization will strongly depend on the selection of the functional g. In Sec. 3 we will
demonstrate that, for example, there are significant differences between PCA-based and geometrical
clustering even if applied to the same time series. Furthermore the selection of internal parameters of
g will also be decisive. For example, when considering PCA-based clustering we can choose different
values for the dimension m of the low-dimensional manifold to be identified; we will comment on this in
Sec. 3 also. However, in general there is no algorithmic scheme for choosing g or internal parameters in
g; these choices should not be made without careful analysis of the system under consideration and of
the properties of interests, perhaps in combination with appropriate model discrimination approaches.

Selection of regularization factor ε2. As was demonstrated in [11], there is a connection between
the regularization factor ε2 and metastability of the resulting data decomposition. This means that
respective mean exit times for the identified clusters get longer and the corresponding cluster decompo-
sitions become more and more metastable. Careful inspection of the transition process Γ (t) identified
for different values of ε2 is essential for choosing the appropriate value of ε2. In order to illustrate this let
us consider the one-dimensional time series shown in Fig. 1. The data obviously exhibits two different
states both with significant metastability. For ε = 0 and K = 2, however, we find two cluster centers
θ1 = −1 and θ2 = 1 and the affiliation functions get the form

γi(t) =
{

1 if i = 1, xt <= 0 or i = 2, xt > 0
0 otherwise ,

such that they are very rough functions, i.e., both exhibit almost permanent jumps between 0 and 1.
The right hand side panel of Fig. 1 shows the FEM-Kmeans affiliation functions for several ε > 0. We
observe that for ε2 = 0.1 we get almost step functions with jumps in the right places while for larger
ε2 the functions are mollified and do no longer clearly separate the two obvious clusters/states. When
increasing ε2 further the affiliations tend to become constant functions since the the regularization part
of the functional dominates the data-based part.
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Fig. 1 One-dimensional time series (left) and FEM-Kmeans affiliation function γ1 against time for K = 2 and
different values of ε (right).

3 Analysis of a penta-peptide molecular dynamics trajectory

We will use simulation data of an artificial penta-peptide, consisting of a capped chain of five amino-
acids: Glutamine-Alanine-Phenylalanine-Alanine-Argenine, shown in Fig. 2. The peptide is itself an
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interesting object to study, as it is a small molecule which is able to form salt bridges, an important
and still not well understood matter. We will not concern with this subject but rather use a trajectory
of the peptide for demonstration purpose of our algorithm only. The trajectory was obtained from an
MD-simulation in vacuum using the NWChem software package [?, 29]. The integration time step was
set to 1 femtosecond, while the coordinates were written out every 200 femtoseconds. The trajectory we
use consists of 100000 points thus covers a length of 20 nanoseconds. What can be seen in the trajectory
is the folding of the peptide from a spread out structure where only the two long side chains interact
(the salt bridge) to a more compact structure and very stable structure, see Fig. 2.

Fig. 2 Snapshot of the analyzed MD-trajectory of the penta-peptide, consisting of a capped chain of five
amino-acids ( Glutamine-Alanine-Phenylalanine-Alanine-Argenine).

In the subsequent section we will look at the time series of the essential torsion angles describing
the geometrical form of the molecular backbone (n = 10 is thus the number of the torsion angles
considered; periodicities were removed). For an illustration of the resulting time series see Fig. ??
below. The reduction of the original time series (atomic Euklidean coordinates) to torsion angles has
been done mainly for the sake of illustration.

3.1 Clustering via FEM-Kmeans

First we apply the proposed algorithm based on the K-means distance functional (6).
As before, we chose the discretization error tolerance δ = 0.0001. Again, for different, non-extreme

values of the regularization factor ε the optimal number of clusters Kmax was determined according to
the procedure described in Sec. 2, see Fig. 8 below.

When applying FEM-K-means with the regularization factor ε2 = 0.1 and the associated optimal
cluster number Kmax = 4, the resulting affiliation functions exhibit clear jumps such that we can
again assign every time in the time series to exactly one cluster. This assignment results in the cluster
assignment shown in Fig. 3. Fig. 3 also exhibits the coarse-grained description of the molecular dynamics
time series in terms of the K-means distance functional (6): on the long time scale, the effective dynamics
can be described as a folding process, i.e., starting with the unfolded conformation 3, the molecule finally
folds into the β-sheet conformation 1 while passing through unfolded conformation 4 and partially-folded
conformation 1. Respective mean configurations of the identified conformational states are shown in the
left part of the Fig. 3 in form of 3D probability density plots of the backbone (generated by all states
of the time seires in the respective conformation).
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Fig. 3 Cluster assignment identified for ε = 0.1, Kmax = 4, and δ = 0.0001 obtained via FEM-K-means. 3D
probability density plots of the respective cluster states are shown in the left side of the plot. See text for further
explanation.

3.2 Clustering via FEM-KPCA

We now can repeat the same numerical experiment based on the PCA model distance functional (7).
We select m = 1, i.e., just the most flexible mode is used for determining distances. We chose the same
discretization error tolerance δ = 0.0001 as in the previous example. Based on these parameter settings
and for different, non-extreme values of the regularization factor ε the optimal number of clusters Kmax

was determined according to the procedure described in Sec. 2, see Fig. 8 below.
Application of FEM-KPCA then leads to the affiliation functions as shown in Fig. 4 for different

values of the regularization factor ε (and K = 8). We observe that the functions for ε = 0 show many
jumps between purely deterministic affiliations, while for ε2 = 0.5 they still exhibit rather sudden (but
less frequent transitions between otherwise almost deterministic affiliations, and for ε2 = 1 the jumps
become mollified and cluster affiliations are no longer deterministic but ”‘fuzzy”’.

For the remaining experiments with FEM-KPCA we choose the regularization factor ε2 = 0.1 and
the associated optimal cluster number Kmax = 8. The resulting affiliation functions exhibit clear jumps
such that we can assign every time in the time series to exactly one cluster (the one with the largest
affiliation value). This assignment results in the coarse-grained description of the MD time series as
shown in Fig. 5. Similar to the coarse-grained description in terms of the K-means distance functional
(6), see Fig.3, the FEM-KPCA algorithm allows to interpret the overall dynamics as a folding process,
starting with the unfolded state 1 and finally ending up in the folded β-sheet conformation 5.

Last but not least, one should ask whether the choice m = 1 is sensible based on the results of
FEM-KPCA. Therefore we computed the covariance matrices of the eight clusters identified before and
analysed the spectrum of these matrices. The results are collected in Table 3.2. We observe that in
seven of the eight states there is one clearly most flexible mode which justifies the choice m = 1 in
retrospective. However, the eighth state seems to be a kind of a collective transition state (see Fig. 5)
that collects everything not belonging into the first seven states. It also has a lowest statistical weight
among other states.
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Fig. 4 Comparison of the affiliation functions γi as identified by FEM-KPCA for different values of the
regularization factor ε, and δ = 0.0001, m = 1, and cluster number K = 8. For the sake of transparency the
plots show only part of the time axis and just four of the eight affiliation functions.
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Fig. 5 Cluster assignment identified for ε = 0.1, Kmax = 8, m = 1, and δ = 0.0001 obtained via FEM-KPCA.
3D probability density plots of the respective cluster states are shown in the left side of the plot. See text for
further explanation.
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Cluster No. 1st ev. 2nd ev. 3rd ev. 4th ev. 5th ev.
1 699.9 365.4 335.9 193.9 144.8
2 772.2 413.1 350 318.3 217.7
3 26331 603 398 268 200
4 1157 392.3 322.8 293.1 242.6
5 1930 236.5 210.3 163.3 137.7
6 1029 613.5 560.3 329.7 201.8
7 1322 306.3 227.5 205.2 157.5
8 446.9 325.4 297.6 210.0 203.1

Table 1 Leading five eigenvalues of the covariance matrix for each of the eight clusters discussed in the text.
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3.3 Comparison between FEM-KPCA and FEM-K-means

State 1 (FEM−KMeans)

State 8 (FEM−KPCA)

State 5 (FEM−KPCA) State 7 (FEM−KPCA)

Fig. 6 Comparison of flexibility: The β-hairpin cluster state 1 (identified by the FEM-K-means algorithm,
see Fig. 3) can be further subdivided in three cluster substates (identified by the FEM-KPCA algorithm, see
Fig. 5). The arrows denote the dominant dynamical modes identified by the FEM-KPCA algorithm

State 3 (FEM−KMeans)

State 2 (FEM−KPCA) State 6 (FEM−KPCA)

Fig. 7 Comparison of flexibility: the unfolded cluster state 3 (identified by the FEM-K-means algorithm, see
Fig. 3) can be further subdivided in two cluster substates (identified by the FEM-KPCA algorithm, see Fig. 5).
The arrows denote the dominant dynamical modes identified by the FEM-KPCA algorithm

By comparing Figs. 5 and 3, we see that the resulting cluster assignments describe qualitatively the
same folding process. However, it seems that the FEK-KPCA approach reveals several geometrically
redundant states having the same mean configurations (compare the configurations of states 5,7 and
8 or states 2 and 6, see Fig. 5). To explain this peculiarity, one has to recall the meaning of the
PCA model distance functional (7): it allows to distinguish different conformational states due to the
differences in m essential dynamical modes of the analyzed data. In context of molecular dynamics,
these quantities describe the normal modes of the molecule in the respective state. It means that the
conformations having the same (or very similar) mean configurations can be distinguished by the FEM-
KPCA algorithm because of the differences in the local dynamics/flexibility. Figs. 6 and 7 demonstrate
that application of the FEM-KPCA procedure allows to decompose the FEM-K-means states (e.g. states
1 and 3) into states with (almost) the same mean configurations but with different essential flexibility.

Therefore, when comparing the results of FEM-KPCA and FEM-K-means, the importance of the
choice of the model distance functional g comes obvious. Let us now concentrate on the difference
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of the optimal number Kmax of statistically distinguishable clusters depending on the choice of the
regularization parameter ε2. Fig. 8 shows that for the data at hand, the resolution of FEM-KPCA
is finer than that of FEM-K-means in the sense that FEM-KPCA allows to observe more statistically
distinguishable clusters based on the same data for the same regularization factor. We should be aware,
however, that this result depends on the scaling of the data under consideration. In any case we observe
that for both approaches the number of clusters decreases with increasing regularization factor while
there average metastability increases.
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FEM−KMeans
FEM−KPCA

Fig. 8 Comparison of the maximal number of statistically distinguishable conformational states Kmax obtained

for different regularization factors ε2. FEM-KPCA: black, solid; FEM-K-means: gray, dashed.
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4 Conclusion

We presented an application of the FEM-clustering approach [11, 12, 13] to the analysis of time series
from molecular dynamics applications. The main methodological advantage of this scheme is that it
allows to combine the features of the standard geometrical clustering and dimension reduction tech-
niques (like K-Means or PCA) with dynamical machine learning approaches like HMMs for analysis of
multidimensional biomolecular time series. In contrast to HMMs, no explicit assumptions about the
Markovianity of the underlying dynamical process and probability distribution of the observables are
needed. Another advantage of the proposed framework is that it is flexible wrt. the choice of the form
of the model distance functional that describes the conformational molecular states.

When working with multidimensional molecular data, it is very important to be able to extract some
reduced dynamical description out of it (e.g., in form of hidden transition pathes or reduced dynamical
models). In order to control the reliability of the results, one has to analyze the sensitivity of obtained
conformational states wrt. the length of the time series and the number K of the identified clusters.
We demonstrated how the maximal number of statistically distinguishable conformational states Kmax

can be identified.
Two different forms of the FEM-clustering method, FEM-K-means and FEM-KPCA, were compared

and the influence of the chosen model distance functional on the metastability and clustering resolu-
tion was investigated. It was shown that: (i) increasing the regularization parameter ε2 increases the
metastability of the identified conformational states, (ii) the PCA-based metric (7) used in the FEM-
KPCA-algorithm allows for a higher resolution wrt. the identified conformational states for all levels of
regularity, (iii) local PCA modes identified with the FEM-KPCA-algorithm can help to understand the
differences between the conformations in terms of molecular flexibility.

It has been demonstrated that the impact of implicit method assumptions (like the choice of the
model distance metric used in the algorithm or the selection of the regularization factor) on the results
of the analysis and its interpretation is enormous, and requires insight in the nature of the data under
investigation as in almost all clustering approaches. The algorithm in its present form is still far from
allowing black box applications. Further investigations will be needed to come closer to this aim.
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