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Der Mensch hat dreierlei Wege, klug zu handeln:
Erstens durch Nachdenken, das ist der edelste;

zweitens durch Nachahmen, das ist der leichteste;
drittens durch Erfahrung, das ist der bitterste.

Kung Fu Tse (551-479 v. Chr.), chinesischer Philosoph.





Abstract

Computational mass spectrometry is a fast evolving field that has attracted increased at-
tention over the last couple of years. The performance of software solutions determines the
success of analysis to a great extent. New algorithms are required to reflect new experimental
procedures and deal with new instrument generations.

One essential component of algorithm development is the validation (as well as comparison)
of software on a broad range of data sets. This requires a gold standard (or so-called ground
truth), which is usually obtained by manual annotation of a real data set. Comprehensive
manually annotated public data sets for mass spectrometry data are labor-intensive to produce
and their quality strongly depends on the skill of the human expert. Some parts of the data may
even be impossible to annotate due to high levels of noise or other ambiguities. Furthermore,
manually annotated data is usually not available for all steps in a typical computational analysis
pipeline. We thus developed the most comprehensive simulation software to date, which allows to
generate multiple levels of ground truth and features a plethora of settings to reflect experimental
conditions and instrument settings. The simulator is used to generate several distinct types of
data. The data are subsequently employed to evaluate existing algorithms. Additionally, we
employ simulation to determine the influence of instrument attributes and sample complexity
on the ability of algorithms to recover information. The results give valuable hints on how to
optimize experimental setups.

Furthermore, this thesis introduces two quantitative approaches, namely a decharging al-
gorithm based on integer linear programming and a new workflow for identification of differ-
entially expressed proteins for a large in vitro study on toxic compounds. Decharging infers
the uncharged mass of a peptide (or protein) by clustering all its charge variants. The latter
occur frequently under certain experimental conditions. We employ simulation to show that
decharging is robust against missing values even for high complexity data and that the algo-
rithm outperforms other solutions in terms of mass accuracy and run time on real data. The last
part of this thesis deals with a new state-of-the-art workflow for protein quantification based
on isobaric tags for relative and absolute quantitation (iTRAQ). We devise a new approach
to isotope correction, propose an experimental design, introduce new metrics of iTRAQ data
quality, and confirm putative properties of iTRAQ data using a novel approach.

All tools developed as part of this thesis are implemented in OpenMS, a C++ library for
computational mass spectrometry.





Zusammenfassung

Rechnergestützte Massenspektrometrie steht seit Jahren im Fokus von Forschungsbestrebun-
gen und erlangt immer mehr Aufmerksamkeit. Die Güte von Software bestimmt zu einem erheb-
lichen Teil den Erfolg oder Misserfolg einer Datenanalyse. Neue experimentelle Möglichkeiten
und Instrumentengenerationen erfordern die Anpassung bzw. Neuentwicklung von Algorithmen.

Ein essentieller Gesichtspunkt der Algorithmenentwicklung ist die Validierung (oder auch
der Vergleich) von Software auf einer möglichst großen Bandbreite an Eingabedaten. Eine Vali-
dierung erfordert einen Goldstandard, der meist durch manuelle Annotation eines Datensatzes
erzeugt wird. Umfassende manuell annotierte, öffentliche Datensätze für Massenspektrometrie
sind zeitaufwändig in der Herstellung und ihre Qualität hängt stark von den Fähigkeiten des
Experten ab. Nicht alle Teile des Datensatzes sind annotierbar, da es teilweise hohe Rauschpegel
und andere Störquellen gibt die eine zuverlässige Annotation verhindern. Weiterhin sind manuell
annotierte Datensätze üblicherweise nicht für alle Ebenen eines Goldstandards verfügbar. Um
dieses Dilemma zu beheben entwickelten wir die zurzeit umfassendste Simulationssoftware, wel-
che viele Ebenen eines Goldstandards unterstützt, ebenso wie eine Vielzahl von Einstellungen,
die es erlauben, viele experimentelle Bedingungen und Instrumenteneinstellungen nachzubilden.
Der Simulator wird benutzt um mehrere verschiedenartige Datensätze zu erzeugen. Diese wer-
den anschließend eingesetzt um existierende Algorithmen zu bewerten. Zusätzlich benutzen wir
Simulationen um den Einfluss von Instrumenteneigenschaften und Probenkomplexität auf die
Güte und Vollständigkeit der von Algorithmen extrahierten Informationen zu bestimmen. Die
Ergebnisse geben wertvolle Hinweise für die Optimierung von Versuchsaufbauten.

Zusätzlich führt diese Arbeit zwei quantitative Ansätze ein: einen Decharging-Algorithmus
basierend auf ganzzahligen linearen Programmen sowie einen neuen Workflow für die Identifi-
zierung von differentiell exprimierten Proteinen für eine große In-vitro-Studie zur Systemtoxi-
kologie. Decharing inferiert die ungeladene Masse eines Peptids (oder Proteins) durch Cluste-
ring aller seiner Ladungsvarianten. Letztere entstehen häufig unter bestimmten experimentellen
Bedingungen. Wir verwenden Simulationen, um zu zeigen, dass Decharging robust gegen Da-
tenlücken sogar auf hochkomplexen Datensätzen ist, und dass der Algorithmus anderen Lösungen
hinsichtlich der Massengenauigkeit und Laufzeit auf realen Daten überlegen ist. Der letzte Teil
der Arbeit widmet sich einem modernen Workflow für Proteinquantifizierung mit Hilfe von
iTRAQ (isobaric tags for relative and absolute quantitation). Wir stellen einen neuen Ansatz
für Isotopenkorrektur vor, entwerfen ein experimentelles Design, konzipieren neue Metriken für
die Datenqualität von iTRAQ-Daten und verifizieren vermutete Eigenschaften dieser Art von
Daten anhand von neuen Verfahren.

Alle Softwarewerkzeuge, die als Teil dieser Arbeit entstanden sind, wurden in OpenMS –
einer C++-Bibliothek für Massenspektrometrie – implementiert.
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Chapter 1

Introduction

Synopsis: We motivate the topic of this thesis: the development and application of algorithms

for simulation and quantification for mass spectrometry data analysis. Since mass spectrometry

is a fast-moving field, we give an overview of the current state of the art and challenges.
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1.1 Mass Spectrometry-based Proteomics

Proteomics – commonly defined as the study of the ensemble of proteins at a given point in time,

especially their expression pattern, structure and function – is one of the key research areas of

today enabling us to extend our knowledge of regulation and control in living systems. Many

emerging or already established fields dealing with large-scale biological data are designated by

adding the suffix “-omics” to previously used terms, e.g., metabonomics or genomics, where

ongoing efforts are now focusing on personalized and population aspects [1]. The proteome is

thought to capture the cellular processes much closer than, for example, the genome or tran-

scriptome. Regulation on protein level includes post-translational modifications, degradation,

transport and (protein) interaction. These regulation steps cannot be adequately described or

modeled on the genome- or transcriptome level. Recently it was found that RNA-editing, i.e.,

the alteration of RNA sequence, is not a seldom process in humans [2] but occurs rather fre-

quently. This discovery shifts our understanding of the central dogma of molecular biology in

the sense that translation from DNA to protein is not faithful but merely gives the direction of

information transfer, thus implying that one cannot fully explain the protein content of a cell,

given genes and their splice variants alone. Not only does RNA-editing lead to diversification of

the proteome, but it also implies that protein databases derived from DNA alone cannot contain

the complete set of protein sequences.

Mass Spectrometry (MS) coupled to liquid chromatography (LC) is currently the major

workhorse in proteomics, due its unparalleled automation and high throughput capabilities. It

can be used as a “hypothesis-generating engine” [3] and is increasingly replacing techniques like

2D gels and western blotting, especially in exploratory settings, although the latter are still

used for confirmatory experiments. Mass Spectrometry itself is an established technique. The

introduction of soft-ionization methods, i.e., electrospray ionization (ESI) as proposed by Fenn

[4] and matrix-assisted laser desorption/ionization (MALDI) as invented by Tanaka, made MS

applicable to the analysis of biomolecules. Fenn and Tanaka both received the Nobel Prize in

Chemistry in 2002. Soft ionization prevents larger biomolecules to break upon ionization and

thus allows to measure their intact mass.

In clinical proteomics, LC-MS (and especially MALDI-MS) initially triggered a wide range

of exploratory studies but has not found wide applicability yet [5], though some remarkable

breakthroughs like early detection of kidney scarring have been achieved [6]. About 200 protein

biomarkers [7] as approved by the FDA (Food and Drug Administration) are used in clinical

practice, but only a small subset of these were initially discovered using mass spectrometry.

This is in parts due to the high standards required for clinical biomarkers (with 80 replicates

recommended – see [5]) as well as limited reproducibility and robustness of LC-MS. Protein

abundance covers more than nine orders of magnitude in human blood, whereas a mass spec-

trometer covers a linear dynamic range of 2-4 (possibly up to 6) orders of magnitude. Linear

dynamic range is defined as the range over which ion signal is linear with analyte concentration

[8].

Unfortunately, most biomarkers found to date typically occur at concentrations of several

ng/ml, thus evading exploratory mass spectrometry [5]. Also, mass spectrometry currently lacks

the standardization protocols required for wide clinical applicability. This is partly due to the

fact that MS is much more variable than other omics techniques [9], such as microarrays; thus

the effort of finding standard operating procedures (SOPs) is more involved. This does not

only apply to experimental procedures but also very much to subsequent computational data

analysis.
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Advancements and gain of public interest for MS-based proteomics can be attributed to

improvements in targeted proteomics and instrument design by increasing sensitivity, mass res-

olution, but also in analytical terms where new multiplexing methods have been developed,

allowing the concurrent measurement of multiple samples. Finally, computational biology has

made progress, providing better models and software in order to analyze the increasing amounts

of data generated by high-throughput techniques such as LC-MS. The community has realized

the importance of sustainable software solutions, which are accessible to a wide audience. MS

excels in certain areas like annotation of post-translational modifications [10], and remarkable

discoveries were made possible by MS [3].

Mass Spectrometric Imaging (MSI) [11], which was developed in the late nineties, is becoming

more popular as spatial resolution, sample preparation methods and sensitivity are improving.

An alternative technique to LC (or LC-MS), namely conventional 2D gels with staining,

has advantages in costs and when it comes to the detection of protein isoforms with diverging

modifications but is labor-intensive, has low dynamic range and lacks gel-to-gel reproducibility

[12]. Formerly it was thought that LC(-MS) will replace 2D gels. However, it becomes more and

more clear that they complement each other [13, 14]. Immuno-assays like the enzyme-linked

immunosorbent assay (ELISA) are still in wide use in the clinical setting and during validation

phase, where MS is still only beginning to become the method of choice [15].

The role of computational proteomics is becoming more and more important, as data gen-

eration is currently vastly outpacing data analysis [16]. For example, several hundred patient

samples (i.e., human serum) can be screened by a single MALDI platform in one day [5], a

single LC-MS run on a modern Orbitrap mass analyzer yields many gigabytes of data per day

and public data repositories like PRIDE [17] contain hundreds of millions of spectra1.

Recently, the field has shifted toward high-throughput analysis of (so far unsequenced) or-

ganisms/cells trying to achieve maximum proteome coverage while also attempting to increase

knowledge about modification states and sites of proteins. New techniques like concurrent pep-

tide fragmentation (MSE) [18], fragmenting all peptides, or sequential windowed acquisition of

all theoretical fragment ion mass spectra (SWATH-MS) [19], are emerging, aiming to push the

limits of identification. This also poses a challenge to algorithm development as for each new

technique, new solutions are required to make optimal use of the data and avoid time-consuming

and error-prone manual analysis.

Many publications have called for a set of credible benchmark data providing a gold standard

[20, 21, 22, 23, 24, 25] which allows to compare and evaluate algorithmic approaches. The

premise of the exact nature of this data is not necessarily unified though. Some require a gold

standard (so-called ground truth) for lower-level signal processing of raw LC-MS data [20, 22, 23,

24], others require pre-processed data with protein expression values from different conditions

[25]. One common solution is the use of small protein mixtures (so-called standard mixtures),

which are commercially available and can be used to generate data sets with known protein

content. However, these mixtures often lack the complexity inherent to real biological samples,

and the data quality (e.g., in terms of contaminants from sample handling) strongly depends on

the expertise of the laboratory. Inevitably, such controlled experiments cannot provide the lower

levels of a gold standard, e.g., for peak picking (a low-level data reduction step), whereas they are

useful for peptide identification and quantification problems. Of course, manual annotation can

be employed for many levels of ground truth. However, manual annotation is labor-intensive

and the quality of the annotation strongly depends on the skill of the human expert. Some

1as of PRIDE Basis Statistics at http://www.ebi.ac.uk/pride on 04/22/2012.

http://www.ebi.ac.uk/pride
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parts of the data may even be impossible to annotate due to high levels of noise or other

ambiguities. Public data sets with comprehensive manual annotation are usually not available

for many levels of ground truth. An orthogonal solution to the problem of a benchmark data

set is the use of extensive simulation of mass spectrometry data. This area of research is usually

neglected or is given only marginal attention when used to validate an algorithm [20, 23, 24]. The

software employed is usually written for this purpose alone and neither published nor extensively

described. One exception is the publication of LC-MSsim [26], a simulation software for LC-MS

data, which unfortunately is not maintained anymore and lacks some desirable functionality, e.g.,

simulation of fragment spectra (so called MS/MS, MS2 or tandem mass spectra) and simulation

of labeled LC-MS data. Fragment spectra allow to identify the peptide (or protein) by sequence

and/or its quantification. Fragments are created by introducing the peptide (or protein) of

interest into a collision cell. A labeling procedure allows to discern identical peptides (in terms

of sequence and post-translational modifications) from different samples within a single LC-

MS experiment (a process called multiplexing) by using chemical or metabolic labeling of some

kind to introduce a systematic mass shift. Therefore, peptides from different samples can be

identified and quantified concurrently. In order to make simulation available to a wider audience

we developed the most comprehensive and convenient simulation software to date, allowing for

many levels of ground truth. The simulator features a plethora of settings to reflect experimental

conditions and instrument configurations. We show how simulation can be used for algorithm

benchmarking and validation. Additionally, we employ simulation to determine the influence

of instrument configurations and sample complexity on the ability of algorithms to recover

information. The results give valuable hints on how to optimize experimental setups.

Labeling can also be used for higher levels of MS, e.g., MS2, where different chemical la-

bels can only be discerned upon fragmentation. One example of an MS2-based multiplexing

technique is isobaric tags for relative and absolute quantitation (iTRAQ) [27]. Like all mul-

tiplexing approaches, iTRAQ allows to save time for sample acquisition as multiple samples

are measured concurrently, and has the added benefit of easy assignment of individual peptide

abundances to samples; thus, differences in expression between peptides can easily be computed

without the need for complex algorithms which try to determine peptide content for each sam-

ple. Quantification is more challenging in label-free experiments, where each sample is measured

separately, and is even more difficult for most MS1-based labeling techniques. However, iTRAQ

suffers from other disadvantages, such as ratio underestimation and isotope impurities, which

are caused by impurities in chemical labeling reagents and give rise to artifactual intensity values

when corrected for with the conventional method of inverse matrix multiplication as proposed

in Shadforth et al. [28]. The second contribution of this thesis is the introduction of a new

procedure for isotope correction of iTRAQ-based quantification values, which is more robust

for low-intensity quantification values. Additionally we present new metrics of iTRAQ data

quality, and confirm putative properties of iTRAQ data using a novel approach. The computa-

tional analysis is made readily available as highly automated workflow and was implemented into

OpenMS [29] – a C++ library for computational mass spectrometry. In large-scale studies using

labeling techniques there is often the problem of finding a suitable experimental design, i.e. the

allocation of samples to the limited set of available labels. The set of samples usually includes

technical or biological replicates. We propose an experimental design, specifically adapted to

the requirements of a large-scale project using iTRAQ-based LC-MS.

A common problem, especially in ESI-MS, is the presence of multiple charge variants, i.e., a

peptide or protein occurs in multiple charge states and possibly with different adducts. This gives

rise to so-called charge ladders. This signal partitioning unfortunately leads to dense spectra,
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but it also allows for multiple measurement points for a single species, which can be used for a

more precise mass estimation. An algorithm which can find charge variants can thus not only

be applied to find the overall signal contribution originating from a single peptide or protein,

thus finding a more clear representation of sample content, but also to determine peptide or

protein mass more precisely. Decharging infers the uncharged mass of a peptide (or protein) by

clustering all its charge variants. The latter occur frequently during ESI, but can also be observed

in MALDI-based experiments under certain conditions [30]. One of the first algorithms by Mann,

Meng, and Fenn [31] is able to decharge spectra from whole protein samples, but is prone to

dense spectra and likely to create artifact signals. Later algorithms have drawbacks in other

areas, e.g., the heuristic approach by Malyarenko et al. [30] is only applicable to MALDI spectra.

The well known ZScore-Algorithm [32] supports decharging either using charge ladders or local

charge information, but not both simultaneously. An algorithm by Wehofsky and Hoffmann [33]

can use both local charge and charge ladders but does not take into account retention time, only

considers proton adducts, and requires charge ladders without gaps. None of the algorithms

mentioned above is able to model charge ladders with multiple adduct combinations, e.g., a

combination of pure proton adduct species with a proton/sodium species from the same peptide

or protein. Our decharging algorithm based on integer linear programming (ILP) is suitable for

finding pairs of labeled data concurrently with charge variants and supports arbitrary adduct

combinations. We employ simulation to show that the algorithm is robust against missing values

even for high complexity data and that it outperforms other solutions in terms of mass accuracy

and run time on real data. The decharging algorithm constitutes our third contribution.

1.2 Guide to this Thesis

This thesis focuses on the algorithmic aspects of mass spectrometry-based proteomics while also

touching on biomarker identification and statistical evaluation.

The remainder of this thesis is structured as follows: The second chapter gives an overview of

the wide field of computational proteomics, especially covering quantification of peptide signals

from LC-MS samples, while also elucidating our contribution to OpenMS [29] – a widely used

framework for computational mass spectrometry. We also cover current algorithmic problems,

some of which are addressed in the following chapters. Every algorithm described in this thesis

was implemented in OpenMS and is part of the official OpenMS release, readily available as

binary package from the official website.

In the third chapter, we describe our simulation tool MSSimulator; motivate why simulation

of MS1 and MS2 data provides a valuable tool for algorithm prototyping, benchmarking and

experimental setup optimization and describe the capabilities of the simulator as well as the

properties of the underlying instruments. This chapter was, in parts, published in Bielow et al.

[34].

The fourth chapter introduces a deconvolution algorithm designed to cluster charge variants,

differently labeled peptides, and common adducts in MS experiments. We show the theoretical

details and multiple applications of this versatile approach. The algorithm is benchmarked

using the simulator described in Chapter 4. An earlier version of this algorithm was published

in Bielow et al. [35].

The fifth chapter represents our contribution to the analysis of iTRAQ data, including ex-

perimental design, a novel isotope correction procedure, and new metrics of iTRAQ data quality.

Parts of the analysis along with the biological interpretation are currently being prepared for

publication in Wilmes et al. [36].
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In Chapter 6 we conclude this thesis with a summary of our work and point to future

extensions.
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Chapter 2

Computational Mass Spectrometry

Synopsis: This chapter introduces common terms used in proteomics and especially mass

spectrometry with the focus on their algorithmic aspects and serves as a foundation for the

following chapters. We also briefly recapitulate the pros and cons of the major existing software

packages as well as our contribution to the OpenMS software library.
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Computational biology, and computational mass spectrometry as a special case, deals with

providing computational methods to analyze and interpret data from molecular biology. Al-

though the idea is not new, the field has received increasing attention in the last years as data

volumes increase to a point unmanageable for manual analysis.

To familiarize the reader with our terminology and the current state-of-the-art methods, we

describe the most typical LC-MS setups and analysis pipelines while also covering algorithmic

challenges and solutions to quantification and identification scenarios. Our contribution to the

widely used software library OpenMS is also covered in this chapter.

2.1 Separation

A separation step is advisable for high-complex samples like serum or whole cell lysates before

the samples are measured by MS. The former method of choice was two-dimensional gel elec-

trophoresis (2-DE), which nowadays is seldomly used since the method is not automatable, thus

very time-consuming, lagging reproducibility, thus not cost-effective [37]. Furthermore, 2-DE

only offers a very limited dynamic range, preventing identification of low abundance species [38].

On top of that, it has problems with hydrophobic proteins and species of extreme low or high

molecular weight or isoelectric point [39].

An alternative to gels is capillary electrophoresis (CE). It offers robustness against inter-

fering substances and uses inexpensive capillaries, it is compatible with practically all buffers

and analytes, delivering high separation efficiency and speed [40, 41, 42, 43]. Furthermore, it

produces visible trends, which can aid in peptide identification [44]. However, decreased loading

capacity, which highlights the potential problem of sensitive detection [42] and (earlier) poor

reproducibility in migration time [41, 45], are drawbacks of this technology.

The term CE refers to a family of separation techniques that use narrow-bore fused-silica

capillaries to separate a complex mixture of large and small charged molecules. In a high elec-

tric field, molecules are separated based on their physical-chemical properties which determine

their migration time, which is further dependent on the background electrolyte (BGE) and its

properties, e.g., ionic strength, pH, or type of ions [46]. The most commonly used trade of CE

is capillary zone electrophoresis (CZE), for which CE will be used synonymously from now on.

In CZE, the separation mechanism is largely based on differences in the charge-to-mass ratio of

the analytes and requires homogeneity of the buffer solution as well as a constant field strength

throughout the length of the capillary. An acetate buffer is usually employed in CE-MS exper-

iments because it is a volatile buffer and is fully MS compatible. Neutral molecules pass down

the column at the pace of water while positively charged analytes are accelerated and negatively

charged analytes are retarded by the electrical field [47]. More precisely, the time taken for the

analyte to migrate through the column is described as the “migration time” (MT) rather than

the “retention time” (RT) as in high-performance liquid chromatography (HPLC). MT is the

product of the electric field strength times the apparent mobility (electrophoretic mobility +

electroosmotic flow mobility) in the BGE. The electrophoretic mobility of an analyte depends

on charge, size, shape, and hydrophobicity properties [48]. The electroosmotic flow is the bulk

flow of liquid through the capillary. It is influenced by the dielectric constant and viscosity of

the buffer. The electric field strength is a function of applied voltage divided by the capillary

length [46].

A model-oriented discussion on the topic of migration time can be found in Section 3.1.

The most commonly used fractionation technique is high-performance liquid chromatogra-

phy (HPLC), which is highly automatable and easily coupled to a mass spectrometer. The
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term “high performance” hints at its ability to cleanly separate nearby species, i.e., achieve a

high resolution. HPLC instrumentation includes a pump, injector, column, detector and data

system. In brief, the mixture is forced through a stationary phase by the flow of a mobile phase

at high pressure, separating the mixture into its components. The stationary phase is defined

as the immobile packing material in the column, whereas the mobile phase is the solvent added

to promote elution. The solvent’s composition can be changed in time to change the interaction

of the solute with mobile and stationary phase.

HPLC has also received attention from the machine learning community, where multiple ap-

proaches for predicting retention times have been published [49, 50]. This allows to weed out

false positive peptide identifications based on a trained RT model, to predict peptide retention

time for in silico experiments, and to design targeted proteomics experiments, e.g., for multiple

reaction monitoring (MRM).

Both CE and HPLC are highly automatable and can be coupled directly to a mass spec-

trometer (so-called online LC-MS). Here, the stream of analytes eluting from the column over

time is directly introduced into the mass spectrometer. Alternatively, the material eluting from

the column is stored (e.g., on a plate) and data acquisition in the mass spectrometer is deferred

(and might take place in another laboratory). The latter is called offline mass spectrometry.

2.2 Introduction to Mass Spectrometry and Terms

Mass spectrometry is an analytical technique that, as the name suggests, measures masses of

molecular species while offering high mass accuracy and detection sensitivity (down to a single

molecule). In general, a mass spectrometer consists of three components, namely an ionization

source (or ion source), a mass analyzer, and a detector. Mass spectrometers can handle diverse

samples (e.g., (non-)volatile, (non-)polar, solid, liquid, gaseous) and complex mixtures. As we

will see later in more detail, masses of any compound can only be measured when the ions are

in gas-phase and the compound is ionized, thus carries one or multiple charges, which can either

be positive (usually by excess of protons due to protonation) or negative (deprotonation). Only

then can the trajectory of ions be manipulated by applying an electromagnetic field for which

different instrument types use different mechanisms [51]. Thus a mass spectrometer measures

not mass but rather mass over charge also denoted using the unitless m/z, where m is the

molecular/atomic mass in u and z is the number of elementary charges. The unit of the mass-

to-charge ratio is infrequently defined as Thomson (Th), with 1 Th = 1Dae , where Da is the unit

dalton (also called u) and e is the elementary charge.

As any measurement technique, MS also suffers from measurement errors. These can be

defined in terms of accuracy and precision-, also called bias and variance respectively. Accuracy

can be corrected using calibration, as it is the difference between the measured mass of an ion

and its theoretical mass, typically given in parts per million (ppm), which can be computed as

Acc =
mmeasured −mtheoretical

mtheoretical
· 106 ppm.

Precision is an intrinsic property of the instrument and describes the reproducibility of a repeated

mass measurement as determined by its physical limits [52]. See Section 3.1 for details.

Independent of accuracy and precision is resolution, which is defined as R = m/∆m50%,

where m is the mass to be measured and ∆m50% is the minimal distance to the next theoretical

mass which can be resolved. The distance is defined in terms of the full width at half maximum

(FWHM), i.e., the width of a single mass peak at half its maximum height, which needs to be
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resolved given an adjacent peak (of the same height). Instrument resolution is typically specified

at 400m/z. The maximal possible resolution of an instrument is usually fixed by its design,

e.g., an LTQ Orbitrap XL has a maximal resolution of R = 100 0001. Resolution and sensitivity

can have a trade-off, i.e., lowering resolution can improve sensitivity or reduce the time required

to acquire the spectrum (as is the case for an Orbitrap). In limited scenarios accuracy follows

resolution, e.g., when resolution is not sufficient to resolve a peak, accuracy will suffer, but once

the peak can be clearly resolved, there is no gain in increasing resolution to increase accuracy.

The dynamic range, defined as the difference between the most and least abundant peptide,

can vary considerably in biological samples. In highly complex samples like serum it spans over

nine orders of magnitude. If the instrument has only low resolving power, peptide signals will

overlap, thus preventing the detection of low abundant peptides [53]. The observable dynamic

range is also influenced by the ionization efficiency and trapping capacity of the instrument.

Ionization efficiency is the ratio of the number of ions formed to the number of molecules

consumed in the ion source and is strongly dependent on the ion species, mostly on its pKa and

molecular volume [54]. Trapping capacity is only relevant for some types of instruments and

denotes the number of ions that can be analyzed concurrently.

Separation (see Section 2.1) can help in improving results by allowing the instrument to

record only a subset of molecular species, thereby improving the observable dynamic range of

the experiment as a whole.

2.3 MS Instruments

In general, a mass spectrometer consists of three components, namely an ionization source, a

mass analyzer, and a detector. We go briefly over each component and highlight computational

challenges arising for specific instrument types. An overview of the general setup is provided in

Figure 2.1.

2.3.1 Ionization

The two most widely used soft ionization techniques are electrospray ionization (ESI) and matrix-

assisted laser desorption/ionization (MALDI).

In brief, MALDI is an offline technique, where the sample eluting from a column is mixed

with a matrix compound and spotted onto a plate. Each spot represents a certain interval of

eluting compounds. Then, a pulsed laser is used to evaporate and ionize material from a certain

spot. The ions are then introduced into the mass analyzer. As usually not all material on

a single spot is shot exhaustively during one experiment, it is possible to redo an experiment

using optimized instrument parameters or select tandem MS sites offline, which is superior to

the online solution as elution shape maxima can be detected more easily. It is possible to store

MALDI samples for several months, even years, with only minor influence on sample quality [55,

56]. However, sample depletion, i.e., the consumption of sample due to evaporation, has been

reported as a major factor for declining spectra quality [57], leading to inferior identification

results.

Due to matrix contaminations, MALDI is known to yield spectra with a baseline, especially

in low mass regions, which can obstruct peptide signal detection and quantification. Ionization

of peptides by MALDI typically yields ions of charge one, rarely higher.

1see http://sjsupport.thermofinnigan.com/techpubs/manuals/LTQ-Orbitrap-XL Hardware.pdf

http://sjsupport.thermofinnigan.com/techpubs/manuals/LTQ-Orbitrap-XL_Hardware.pdf
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Figure 2.1: Components of a typical LC-MS setup. Common alternatives are shown for each

column. Mass analyzers are aligned to ionization sources such that they reflect a typical setup.

Combinations of several instruments are not shown, e.g., LTQ Orbitrap or quadrupole time-of-

flight hybrid. For low complexity samples the separation step can be omitted.

ESI, on the other hand, is an online technique and can be coupled directly to an LC column.

The analyte is forced through a needle at high voltage, leading to solvent evaporation. The

exact mechanism of evaporation is unclear, the two most prominent theories being the Ion

Evaporation Model and the Charge Residue Model. A good overview can be found in Wilm

[58]. Protonation sites are usually attributed to accessible basic residues (Arg, Lys, His and

N-terminus) [59, 60]. The number of charges that is taken up by a peptide/protein during ESI is

highly complex and depends on a number of factors, e.g., number of basic and acidic residues [61,

62], solution pH, solvent system [63], presence of proton sponges [64, 65], supercharging additives

[66], and instrumental factors. Suggestions have been made to experimentally shift and/or

compress the charge distribution by ESI [62] to facilitate disentanglement of spectra. Recently,

Kaltashov and Abzalimov [67] reviewed the information hidden in charge state distributions

to infer macromolecular structure. A peptide species will usually be observable in multiple

charge states with a charge of two being the most common and abundant. Multiple charge

variants cause signal congestion and denser spectra with redundant signals. This can hamper

quantification as the chance of signal overlap increases. Furthermore, algorithms which identify

isotope patterns need to be able to scan a wider range (typically charges one to six, with charge

two and three being the most common). For proteins, very high charge states (z > 100) can be

observed with ESI.

Some percentage of a given peptide population can have one or more non-proton adducts.

Depending on (column) conditions, this results in potentially many signals belonging to a certain

state of a peptide, that have to be identified to get an accurate assessment of the total ion count.
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2.3.2 Mass Analyzers

All mass analyzers separate ions by their mass-to-charge ratio in an electromagnetic field. There

are many types of mass analyzers; we will describe the most common ones in terms of important

characteristics such as resolution, mass accuracy, cost, and dynamic range. Common to all

instruments is that from this step onwards, ions are kept under high vacuum to avoid collision

(and damage) of analyte ions with other species. Exceptions are tandem MS and variants where

ions are introduced into a collision cell on purpose (see below).

One of the earliest class of mass analyzers used in proteomics was the ion trap, where the

linear ion trap is superior to the 3D ion trap in terms of ion capacity, scan speed, and mass

resolving power. A linear trap quadrupole (LTQ) is an example of a linear ion trap and can

be found in modern hybrid instruments such as the LTQ Orbitrap XL (see below). Increased

resolving power can be attained by time-of-flight (TOF) analyzers with currently R ≈ 50 000.

They are often coupled to quadrupole analyzers, which serve as a mass filter during peptide

fragmentation. Both instruments also have a very high mass range, making them suitable for

large molecules [53]. The analyzers providing the highest resolution R are Fourier transform

ion cyclotron resonance (FTICR) instruments achieving R � 100 000 using a superconducting

magnet. A similar principle is used in Orbitrap analyzers where the magnet is replaced by purely

electric fields, offering resolutions up to 100 000. However, due to restricted loading capacity, the

elution profile shape of compounds can become distorted if the amount of overall eluting material

changes, which impedes peptide signal detection on the computational side. Data obtained by

FT instruments can suffer from the presence of noise signals known as shoulder peaks, which are

artifacts of the FT function. Shoulder peaks have an intensity usually below 5% of the main

peak [68].

High resolution naturally eases the task of centroiding, i.e., the conversion of a peak into

a single mass representation, since peaks are separated more clearly and become more narrow.

This aids in the analysis of highly complex samples with many interleaving isotope distributions,

but also allows to determine charge states of highly charged proteins since the distance between

isotopic peaks is 1/z and thus becomes closer the higher the charge. As a result, algorithms for

the basic pre-processing of data (such as peak centroiding) become conceptionally easier and

are usually much faster than their earlier counterparts which required advanced mathematical

modeling, e.g., compare a wavelet algorithm [69] against a simple local maxima spline fit.

Different instrument types can produce different peak shapes, which is important for peak

matching algorithms. The commonly accepted models in the literature are a Gaussian and

Lorentzian shape. A more detailed discussion on peak shapes can be found in Section 3.1.

Another important characteristic is resolution behavior across the m/z range. The most

desirable behavior can be seen in TOF instruments, which have a constant resolution, whereas

resolution in FTICR instruments decays linearly with m/z, which is problematic for high m/z.

Orbitraps show intermediate behavior (square root decay with m/z) [70]. See Figure 3.4 for an

illustration. This may pose a serious problem to a peak picking (i.e., centroiding) algorithm,

which is sensitive to the expected peak width as it changes with increasing m/z. With increas-

ing resolution and improved signal-to-noise behavior, one can argue that even naive algorithms

without knowledge of peak width are sufficient. However, especially for low-resolution instru-

ments, it is desirable to have a more detailed concept for a peak to filter out noise and increase

specificity.
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2.3.3 Detectors

Each instrument type uses its own detection system. For TOF and quadrupole instruments,

the common choice is the electron multiplier where ions are detected on impact. FTICR and

Orbitraps on the other hand use contact-free detection plates which record the ions passing

by, allowing multiple rounds of detection without destroying the ion, thus allowing increased

sensitivity.

2.3.4 Data Terminology

We now create a small nomenclature, which is identical to the one used within our software

library OpenMS and its documentation, in order to simplify the description of data and algo-

rithms.

The rawest type of data, which has not been preprocessed and is by far the most memory con-

suming, is referred to as raw data. Here, individual isotope species still have a Gaussian-like

shape, which we refer to as peak, i.e., one peak represents multiple datapoints.

Using a lossy signal compression process called centroiding or peak picking, one can represent a

peak as a single data point called a stick, which is usually close or identical to the peak’s apex.

This representation usually reduces the amount of data by one order of magnitude. Modern

instruments allow to retrieve the data directly in this format, though it might be advantageous

to request the raw data and perform centroiding using custom solutions as provided by OpenMS.

When the meaning is clear, we sometimes loosely refer to a centroided m/z value as peak even

though stick would be more appropriate.

A spectrum is a set of peaks or sticks covering a certain m/z range. It can have a certain

retention/migration time attached to it when recorded in an LC-MS setup. A spectrum can be

recorded in different MS modes (e.g., MS1 or MS2 – see Section 2.5).

An LC-MS map is a collection of spectra covering a certain RT range; thus, each datapoint can

be described by RT, m/z, and intensity.

A feature represents the average retention time, the monoisotopic m/z, and the integrated in-

tensity of a (peptide) signal in a certain charge state.

For an illustration of an LC-MS map with multiple peptide signals see Figure 2.2. The process

of identifying features in a (centroided) LC-MS map is called feature finding. A feature map is

a collection of features representing all features of a single LC-MS map. As retention time is

usually not 100% reproducible between different experiments, there is a need to superimpose

corresponding entities across maps in a process called map alignment, which is using either raw

LC-MS data or feature data (with or without peptide identifications) to identify landmarks

which are used to compute an RT transformation.

To represent a set of features, we use the consensus feature. The common property which

the features are grouped by is usually clear from the context. Groups may also represent charge

variants with similar RT but different m/z of a single peptide in one map during decharging,

or labeled pairs during feature finding. The most common scenario is groups in feature linking

where features with similar m/z, RT, and charge across multiple feature maps are grouped,

representing the (putatively) same peptide in different experiments. A consensus feature always

has a centroid which stands for all features it represents, e.g., in map alignment the centroid

would be the mean m/z and RT of the features.

Similarly, a consensus map is defined as a collection of consensus features.
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Figure 2.2: Example of an LC-MS map in 3D view with multiple peptide features, each with

an elution profile in retention time (RT) and an isotope pattern in m/z. One arbitrary peptide

feature is highlighted.

2.4 LC-MS for Biomolecules/Proteins/Peptides

2.4.1 Isotope Distribution

As this thesis revolves around algorithms for simulation and quantification of peptides and

proteins, we will explain some of the characteristic particularities of peptides and proteins in

contrast to other compounds.

In order to understand how quantification and, especially, identification work, an under-

standing of the nature of the data is required. For proteins and peptides, mass spectrometers

are usually operated in positive ionization mode, i.e., all compounds carry one or more positive

charges. In mass spectrometry, which measures mass over charge of a molecule, different no-

tions of the mass of a molecule and its isotope distribution are the most vital concepts. Every

chemical element has a number of different variants – so-called isotopes – which only differ by

the number of neutrons and thus by mass. The number of protons is by definition identical

for all isotopes of a chemical element, e.g., hydrogen always has one proton and may have zero

or one neutrons in its stable form. The average atomic mass of an element is the sum of all

its isotope masses weighted by their frequency of occurrence. An average mass of a peptide or

protein is simply the sum of the average atomic masses of all elements of a molecule. Thus, the

average mass needs not coincide with a mass from the isotope distribution, since it is weighted.

Note that, depending on the source, elemental isotope distributions may vary slightly; thus, the

average atomic mass of a certain element, e.g., carbon, might not be the same across different

geographical locations.

The isotope distribution of large molecules (such as proteins) is determined by their ele-



2.4. LC-MS FOR BIOMOLECULES/PROTEINS/PEPTIDES 29

mental composition. For the more general class of metabolites the number of possible sum

formulas, given an isotope distribution of an unknown molecule, is very high. However, due to

the regular architecture of peptides and proteins featuring a limited number of 20 amino acids as

building blocks, the isotope distribution is much more predictable – notwithstanding chemical

modifications, e.g., post-translational modifications (PTMs). Thus, for proteomics one usually

considers the elements carbon, hydrogen, nitrogen, oxygen and sulfur (short CHNOS). Given

any peptide sequence, one can compute the gross isotope distribution, i.e., the probability to

carry ni additional neutrons (i ∈ {0 . . . n}). By definition, the monoisotopic peak is always one

containing only the most abundant isotope of each element. For CHNOS this also coincides with

the lightest (stable) isotopes, i.e., 1H, 12C, 14N, 16O and 32S. As mass increases, the probability

of a peptide not to contain an extra neutron decreases, i.e., the monoisotopic peak vanishes. For

a heavy protein with 16.9 kDa like equine apomyoglobin, it contributes only 0.4% to the total

abundance.

The regular nature of peptides allows to approximate their atom composition just by knowing

their mass. This can be done by simply looking at a large protein database and count the

number of amino acids. From this, an average amino acid of mass 111.1254 – termed averagine

– can be derived, having an elemental composition (cavg) of C4.9384, H7.7583, N1.3577, O1.4773

and S0.0417 [71]. To estimate the isotope distribution given a mass X, one computes f(X) =

X/111.1254 × cavg to get the fractional sum formula. The latter is then rounded element-wise

to its nearest integer and filled with hydrogen to correct for the rounding error. See Figure 2.3

for an example of averagine isotopic gross distributions, i.e., with nominal masses only.

The fractional averagine model as an extension to the general averagine has also been pro-

posed [23], but its use seems limited as the results are very similar and the large portion of

uncertainty lies not in the truncation of the fractional sum formula but rather in the attempt

to describe the wide distribution of peptides (especially the ones containing sulfur) using one

average amino acid.

Given any sum formula, whether derived from the averagine model or from the actual peptide

sequence, the isotope distribution can be computed in a number of ways (see Valkenborg et al.

[72]). The mass defect is usually not considered as instruments typically do not resolve this

rather tiny mass difference and combinatorial explosion gives rather unfavorable computation

times. Thus, most algorithms only deal with computing the gross isotopic distribution, usually

by convolution of two isotope distributions.

However, not only the number of extra neutrons in a molecule are important but also the

fine isotope structure as different elements have different mass defects, i.e., the binding energy

for the extra neutron will result in subtle mass differences between 13C and 12C compared to
2H and 1H. E.g., consider the molecule CO with the gross structures 28, 29, 30 and 31, where

each number gives the summed nucleon number. The gross structure of 12C16O has only one

fine structure whereas within the gross structure of 29 are two fine structures, 13C16O and
12C17O [73]. With today’s instruments, fine structures can usually not be discerned, thus for

most practical applications the fine structure is not relevant yet. This will change, however,

when instrument resolution improves. See Figure 2.4 for an example. A very memory-efficient

algorithm for computing isotopic fine structure is described in [73].

Direct measurement of proteins is known as top-down mass spectrometry. It has the advan-

tage of being able to better locate chemical modification sites and a simpler sample handling,

as a digestion step can be omitted. Due to their size, proteins can carry many charges and

give rise to a broad isotopic envelope where the monoisotopic peak is hard to observe due to its

low abundance. Furthermore, the higher the charge the closer two isotopic peaks will be; thus,
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Figure 2.3: Isotope gross structure of the averagine model for three different masses. The

monoisotopic peak (i.e., leftmost peak) declines with increasing mass, and the distribution be-

comes wider and more Gaussian-like.
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Figure 2.4: Isotopic envelope of the TRP-Cage protein with only 20 amino acids (NLY-

IQWLKDGGPSSGRPPPS) with monoisotopic mass of 2 168.10145 Da. Displayed is the 2 172

gross isotope peak at ≈2 173.12 Th, consisting of multiple fine structures at different resolutions

(R = M/∆m50%). The masses were convolved with a Lorentzian peak shape to reflect the

limited mass precision of the MS instrument.
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high resolution is required. In contrast, bottom-up mass spectrometry deals with the analysis of

peptides which are cleaved from proteins by enzymatic digestion or created by synthesis. For

digestion, trypsin is the most widely used enzyme due to its high specificity to cleave after lysine

(Lys) and arginine (Arg), which under the optimized experimental conditions leads to two well-

defined charges for a tryptic peptide, i.e., one charge at the N-terminus and one charge at the

C-terminal Lys/Arg residue. Under normal experimental conditions most peptides will carry

two charges when trypsin is used for digestion. Additionally, tryptic peptides are on average

≈14 amino acids long, yielding ions in a desirable mass range [74].

2.5 Identification

Identification of peptides is feasible using two different approaches. The conceptually easier one

is called peptide mass fingerprinting in which a peptide is identified solely based on an accurate

mass measurement, which is compared against a list of known theoretical masses. However,

modifications, insufficient mass accuracy and incomplete databases usually make unambiguous

identification hard or impossible, especially in highly complex samples. A more sophisticated

version uses accurate mass and time (AMT) tags where a normalized retention time is incorpo-

rated in addition to an exact m/z value. See [75] for a good overview on uniqueness of mass

and other peptide parameters for different proteomes.

A more complex approach is identification by tandem mass spectrometry where all ions

within a certain m/z range are selected for fragmentation within a collision cell. The mass range

ideally contains only one peptide species which is also known as the precursor ion or parent ion.

Within the collision cell the precursor fragments along the backbone, yielding peptide fragments

(called product ions or fragment ions) which are re-introduced into a mass analyzer, yielding

typical ion ladders. Depending on the position within the backbone, ions are assigned different

names; see Figure 2.5 for an illustration. The dominant ion types depend on the fragmentation

technique used. The most prominent techniques are collision-induced dissociation (CID), higher-

energy collisional C-trap dissociation (HCD), and electron-transfer dissociation (ETD). CID and

HCD result in strong b and y ion ladders, whereas in ETD c and z ions are produced primarily.

The distance on these ion ladders can be used to infer (sub-)sequences of the parent peptide.

The resulting MS spectrum is also known as tandem MS or MS2 spectrum. When the search

space for the peptide sequence is unrestricted, the inference of the sequence is termed de novo

sequencing as no database with potential peptide sequences is provided or even known. If the

content of the sample can be narrowed down and a database can be used, the search strategy

can be adapted as now each database entry can be used to generate a theoretical spectrum

which is matched against the observed spectrum and scored using some measure of similarity.

As search space is much more restricted, database search is usually faster and more powerful,

yet not applicable if a database is unavailable. The most widely used algorithms for database

search are Mascot [76], Sequest [77], OMSSA [78], and X!Tandem [79]. For de novo, usually

PepNovo [80] is used. OpenMS includes a similarly performing algorithm named ANTILOPE

[81].

It is also possible to combine multiple search engines to improve either sensitivity, or speci-

ficity, or both at the same time. Details can be found in Nahnsen et al. [82].
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Figure 2.5: Example of a CID spectrum with b and y ion annotation. The inset shows the

naming convention for fragment ions, depending on the break point within the peptide. Ion

types a, b, and c denote an N-terminal fragment whereas z, y, and z ions denote C-terminal

fragments. The subscript indicates the number of amino acid residues.

2.6 Quantification

Varying susceptibility to efficient ionization for different peptides/proteins is one of the major

reasons why mass spectrometry is only semi-quantitative. Inferring the sample concentration of

certain peptide/protein species from the measurement is not possible without the use of internal

standards where concentration is known. Usually, these standards are heavy isotope versions

of the molecule of interest to ensure comparable ionization efficiency. If no internal standards

are used, quantitative statements are only valid to a certain extent for comparative purposes to

other samples, and no absolute concentration can be inferred.

For quantification in HPLC-based proteomics, two paradigms are prevalent. In label-free

quantification, each biological sample is measured separately, resulting in multiple maps con-

taining the signals of the eluting peptides. In order to compare the signals across samples,

they first have to be identified in the corresponding maps and then grouped together (applying

suitable data reduction, mapping, and normalization methods).

In labeled quantification, different biological samples are measured in a single map concur-

rently – a procedure also termed multiplexing. In order to distinguish the states, they can be

labeled with a fixed mass label, shifting the peptide along the m/z axis (see, for example, Fig-

ure 4.2a for measured data and Figure 4.2b for the respective features of two peptides in two

different labeling states – indicated by filled or empty symbols). Labeling can be done on either

the MS1 or the MS2 level, and solutions for up to eight channels are available. A channel is the

sample assigned to one labeled state (e.g., light) in a labeling experiment.

Today, there is a clear trend toward multiplexing [83], e.g., for time-resolved experiments or

multiple experimental conditions (see Chapter 5 for our own study).

In both paradigms, the ratio of the assigned pairs of signals can be used for subsequent data

analysis (e.g., for the detection of biomarkers). We will now discuss advantages and disadvan-

tages of the respective methods. See Figure 2.6 for a graphical overview.
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Figure 2.6: General scheme for quantification methods with respect to MS level and labeling

state. If applicable, the most widely known representatives are listed.

2.6.1 Labeled vs. Label-free

If experimental conditions and purification procedures can be properly controlled, label-free

quantification is an attractive strategy because it requires no additional sample preparation

steps.

Two types of labeling are discerned. One is in vitro chemical labeling after sample collection,

which is applicable to any sample, the is other metabolic labeling during cell growth, which can

be used only for cell cultures or small animals. Popular methods for in vitro chemical labeling

are isotope-coded affinity tagging (ICAT) and trypsin-catalyzed 18O labeling. Chemical labeling

techniques like isobaric tags for relative and absolute quantitation (iTRAQ) [27] or tandem mass

tags (TMT) [84] might be cost intensive and have the disadvantage of requiring yet another

biochemical step (the labeling itself). Metabolic labeling is also known as stable isotope labeling

with amino acids in cell culture (SILAC). For MS1 labeling, quantification with one label absent

is hard or even impossible as one can not determine if the light or heavy species is observed when

its partner is missing unless an identification is present or PMF is used. Labeling on the MS1

level will lead to increased signal congestion, which is especially problematic for high complex

samples as the amount of overlapping peptides increases. This complicates quantification as

signal contributions from different channels need to be disentangled.

For all labeling methods it holds that labeling efficiency might not be perfect, labeling might

be biased towards one type of label, or only applicable to certain peptide species. ICAT, for

example, can only be applied to peptides and proteins containing a cystein residue. SILAC

suffers from metabolic conversion of the stable isotope-labeled peptide [85].

Due to multiplexing, each sample can be measured in a fraction of the time (depending on

the number of channels) required for label-free measurements. For a long gradient (e.g., 5 hours

and more), this can be a critical advantage when measurement time is limited.

Some labeling techniques are more suited for certain instrument types; e.g., quadrupoles

and TOF instruments excel at measuring low m/z ions whereas for ion traps, the recovery of

fragment ions below 30% of the precursor ion mass is very poor, which makes them unusable

for iTRAQ or TMT. These two labeling techniques give rise to light reporter ions which are

used for quantification [83].

The advantage of labeling techniques is that they naturally control for instrument vari-

ability from the point of channel mixing onwards (e.g., column condition, instrument settings,

instrument performance) as each channel is affected simultaneously, whereas in label-free exper-

iments, instrument calibration might change in time (as shown in [86]), i.e., the earlier channels

are mixed, the smaller the experimental error component will be. The timepoint will differ be-

tween labeling methods, e.g., for bottom-up approaches, SILAC allows mixing before digestion
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whereas iTRAQ does not.

Noirel et al. [87] provide an insight into the popularity of different methods (label free,

iTRAQ, SILAC, and ICAT) in their recent paper [87] – see Fig. 1 therein. By this measure,

iTRAQ is clearly in the lead, followed by SILAC and label-free.

2.6.2 MS1 Quantification

Quantification in MS1 is achieved by finding peptide or protein signals, and using the signal

intensity to assign a quantitative value to the entity (which is not necessarily identified). It is

important to note that comparing intensities across multiple experiments usually requires some

kind of normalization. Even the intensity of different peptide species within one experiment

cannot be used to directly infer their abundance in the sample as peptides have different ion-

ization efficiency. On the software level quantification can be implemented on the raw data or

stick level, and the derivation of peptide abundance can be based on different schemes, e.g., by

summing all datapoints deemed to belong to the peptide, or by fitting a model and using its

theoretical area or maximum.

If a label-free strategy is adopted, quantification is usually done on the MS1 level (see Sub-

section 2.6.3 for alternatives in MS2).

Popular multiplexing techniques used for quantification on the MS1 level include SILAC and

isotope-coded affinity tagging (ICAT) or labeling with nicotinoyloxy succinimide (nicNHS).

2.6.3 MS2 Quantification

MS2 based methods obviously require MS2 acquisition. In the case of iTRAQ only higher-energy

collisional C-trap dissociation (HCD) and pulsed-Q dissociation (PQD) [83] are feasible. These

are usually marginally inferior to collision-induced dissociation (CID) in terms of identification

performance thus offsetting the multiplex advantage slightly by requiring longer gradients to

achieve the same coverage in terms of MS2 identifications.

Methods for label-free MS2 (pseudo) quantification are controversial in the community and

include Spectral Counting, exponentially modified protein abundance index (emPAI) [88], Ro-

bust Intensity Based Averaged Ratio (RIBAR), and Extended Robust Intensity Based Averaged

Ratio (xRIBAR) [89]. A benchmark can be found in [89].

Robust and sensitive quantification in MS2 can be achieved using multiple reaction moni-

toring (MRM). MRM in particular has the advantage of high dynamic range, combined with

reliable acquisition of the targeted species, for up to 100 proteins. MRM uses selected (and

specific) precursor and fragment ions of a peptide (a so-called transition) as it elutes off the

LC column. Quantification is performed on the chromatogram obtained from the fragment ion.

Transitions are designed to be very specific for certain (unique) peptides, thus allowing iden-

tification as well. MRM works for highly complex samples and is usually performed on triple

quadrupole mass spectrometers where the first quadrupole isolates the precursor, the second

quadrupole acts as collision cell, and the last quadrupole records the fragment ion(s).

Methods allowing multiplexing in MS2 include tandem mass tags (TMT) and isobaric tags

for relative and absolute quantitation (iTRAQ). The latter has become a popular multiplexing

technique, which we will now describe in more detail: iTRAQ is an in vitro chemical labeling

procedure, consisting of either four or eight isobaric (equal nominal mass) tags, each of which

can be used to label a specific peptide sample. Prior to labeling with iTRAQ reagent, protein

samples are digested proteolytically to allow labeling of the peptide’s N-terminus. After labeling,
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Figure 2.7: Structure of the 4-plex iTRAQ tag. Green) Reporter group, Blue) Balancer group,

Red) Reactive NHS ester group.

the samples are mixed and then subjected to (LC-)MS analysis. Identical peptides from each

sample will have identical masses in MS1, and quantification will only be possible in MS2. A tag

consists of a peptide reactive region, a reporter region, and a balance region (see Figure 2.7).

The intensity of the reporter ions reflects the relative amount of peptides in each channel.

The NHS ester of the peptide reactive region is designed to react with the N-terminus and

lysines of peptides after protease digestions, but might also attach to tyrosine. As usual in MS2,

fragmentation takes place along the peptide backbone, allowing for qualitative analysis while

simultaneously affecting the link between the reporter and balance region of the tag, resulting in

intense reporter ions in the tandem mass spectrum. For the 4-plex version, the reporter groups

appear in the MS2 spectrum at m/z 114.1, 115.1, 116.1, and 117.1. The attached balancer

group is designed to create tags of a total mass of 145 Da, requiring balancer group weights

of 31, 30, 29, and 28 Da, respectively. There is also an 8-plex iTRAQ kit where four more

reporter tags with masses at about 113, 118, 119 and 121 Da are available. The 8-plex tags

themselves are heavier though, having 305 Da instead of 145 Da as in the 4-plex case. Due to

the low-mass reporter ions, not all instrument types and fragmentation technique combinations

lend themselves equally well to iTRAQ analysis, e.g., due to the 1/3 rule (i.e., the lowest m/z

value recordable is about 1/3 of the precursor mass), an ion trap in CID mode cannot observe

reporter ions [90].

For some more study specific details, see Chapter 5.

2.7 Software for Analyzing MS Data

2.7.1 Widely-used Software Packages

The role of software for data analysis and processing is becoming more and more important. A

recent study [91] conducted by the Human Proteome Organization (HUPO) showed that, the

raw data quality obtained from the instrument is usually a very good basis to start from, but it

is the choice of the software and algorithms therein that determine the success of the analysis.

Every instrument is shipped with the vendor software which enables users to analyze their

data. Analysis options differ: Most vendors offer built-in support for search engines (like Mascot

or SEQUEST) and a software for visualization. However, the user is usually restricted to certain

scenarios as analysis pipelines are monolithic and not flexible. Also, implementation details of

the algorithms are rarely made public, and comparison against other algorithms is difficult

because of different data formats, e.g., it is not possible to benchmark most vendor software

when only an mzML file is available, as converters to mzML are usually available but not the

other way around.
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In addition to vendor software, a number of free and (usually) open source packages have

been developed, which allow data analysis across different platforms and flexible workflow con-

struction.

Each package has a slightly different focus, and not all operating systems (OS) platforms are

supported. We will briefly describe the most important packages.

One of the most comprehensive packages available for all major platforms is the Trans-

Proteomic Pipeline (TPP) [92], which focuses on the analysis of MS2 data sets. It includes a

web server, thus allowing the user to use the browser as a user interface, but can also be used from

the command line. The TPP includes widely known tools like PeptideProphet, ProteinProphet

and ASAPRatio which can be used to analyze labeled data sets.

MaxQuant [93] is a quantitative proteomics software package specifically aimed at high-

resolution MS data (e.g., Orbitrap). It supports several labeling techniques but is mostly known

for its SILAC pipeline. Recently, the search engine Andromeda was incorporated. MaxQuant is

freeware but closed source and requires a Windows PC.

MZMine [94] and MzMine2 [68] are Java-based, open source packages originally aimed at

analyzing metabolite data but with capabilities for peak picking, advanced visualization, and

map alignment.

VIPER (Visual Inspection of Peak/Elution Relationships) [95] includes a GUI and supports

feature detection, calibration, feature alignment, and identification mapping. Its main focus is

AMT processing. It is written in VB (version 6) and thus runs on Windows OS only. It can

read the outdated mzData and mzXML formats.

ProteoWizard [96] is a C++ open source, cross platform suite primarily known for its ability

to convert most vendor formats into HUPO-PSI mass spectrometry data formats like mzML

or mzXML. It also includes Skyline, an editor for creating and analyzing selected reaction

monitoring (SRM) experiments.

msInspect [97] uses Java and the R language and is thus platform-independent. As input

mzXML and pepXML are accepted, mzML support is available in the development version.

Supported are basic signal processing, feature detection, label-free and labeled quantification,

MRM data analysis (via the MRMer tool), alignment, and identification mapping. It also

includes msInspect/AMT, a suite of tools for Accurate Mass and Time analysis.

OpenMS is an open source library written in C++ for label-free and labeled quantification

and identification, supporting all major platforms. The OpenMS Proteomics Pipeline (TOPP)

[98] is a set of executables, chainable in modular fashion for a wide set of analysis scenarios,

and covers common tasks like peak picking, map alignment, identification (via wrappers for

common identification engines like Mascot, X!Tandem and OMSSA), filtering, and quantification

of labeled and label-free data. It supports the HUPO-PSI standards mzML and mzIdentML

as well as the widely used pepXML and protXML formats, enabling data exchange between

collaborators based on open platform-independent formats.

2.7.2 OpenMS in Detail

As the algorithms presented in this thesis are integrated into OpenMS/TOPP, we devote some

pages to the library itself, its design principles, and to how it can be used by developers and

users. A description focusing on on library design and project management can be found in

Sturm [99].

OpenMS itself currently consists of a core OpenMS library and the OpenMS-GUI library.

The core library implements data structures for data points, spectra, LC-MS maps, features,
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Figure 2.8: OpenMS dependencies (bottom) and OpenMS library structure (center). Executa-

bles for the end user are shown at the top. Numbers in brackets give the number of tools in

each category as of OpenMS release 1.9.

consensus features, and a wide range of algorithms, e.g. for signal processing, file handling,

peptide identification and quantification.

The OpenMS-GUI library contains all graphical user interface (GUI) components, like spec-

trum widgets and dialogs, used by the GUI tools TOPPView [100], TOPPAS [101] and IN-

IFileEditor shipped with OpenMS. The split library reduces compile/link time overhead and

avoids linker restrictions on Windows OS with respect to library size.

OpenMS has dependencies on other libraries which enable parsing of XML files (via Xerces-

C), handling of GUI components (via Qt), numerical processing (via GSL), machine learning (via

libSVM), integer linear programming (ILP) solvers (via GLPK), sequence alignment (SeqAn)

and more. All support libraries except Qt are bundled in a contrib package provided by the

developers of OpenMS, which is essential for Windows platform support. On Linux and MacOS,

the native packages can be used as an alternative. This allows easy installation of OpenMS’

dependencies (on Windows) and contains patches for some packages which might otherwise lead

to fatal errors and incompatibilities. For an overview of the OpenMS dependencies and library

structure itself, see Figure 2.8.

Algorithm prototyping is a key feature of OpenMS as the developer has access to a powerful

toolbox for all kinds of data processing steps.

As the library itself is only of use for developers of C++ or programming languages capable

of wrapping C++ libraries, TOPP tools are provided to enable non-programmers to connect

algorithms in a flexible and comprehensive way. TOPP is meant to provide small building

blocks for a wide range of analysis pipelines, which can be chained together to fit custom needs.

Build System and Installers

The build system of OpenMS relies on CMake [102], an open source cross platform build system

using simple platform-independent and compiler-independent configuration files, e.g., CMake-
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Lists.txt. CMake generates native makefiles and workspaces via so-called generators for many

environments like Visual Studio, nmake, make, XCode, Eclipse and QtCreator. OpenMS also

makes use of CTest, a testing software tightly integrated into CMake, which allows to set up

automated testing. The results can be submitted to CDash, an open source, web-based software

testing server, which aggregates and displays the results of software testing processes submitted

from one more clients, usually running different compilers and/or platforms. Finally, binary

installers for two major platforms (MacOS, Linux) and architectures (32bit and/or 64bit) are

generated by CPack, a package creation tool, to ease installation of TOPP and GUI tools within

minutes. For Windows OS, we use the more powerful Nullsoft Installer System (NSIS)2. The

NSIS-based Windows installer features user account control (UAC) bridging, file extension reg-

istration (e.g., for files formats supported by OpenMS’ GUI tools), and PATH manipulation. It

also includes a release of ProteoWizard, enabling the user to convert many vendor formats into

the mzML format, which is supported by OpenMS.

Porting OpenMS to Windows OS

Supporting multiple platforms and thus giving the user the ability to use their favorite operating

system (OS), is a desirable property. Indeed, most users of OpenMS are most familiar with the

Windows OS, in part because Windows is favored by most vendor software and delivered with the

instrument hardware. Supporting Windows allows users to install OpenMS/TOPP on already

existing systems.

From a software development perspective, advantages of supporting multiple platforms for

a C++ application outweigh the disadvantages in the case of OpenMS and its dependencies.

Disadvantages include the need for more maintenance and testing code on multiple platforms.

Also, support libraries need to be available for all platforms supported by OpenMS or need to

be ported by the OpenMS developers. Platform-specific code is also unavoidable in some cases,

e.g. attributes for specifying storage-class information for Windows dynamic link libraries (dll)

(i.e., declspec(dllimport) and declspec(dllexport)), platform-specific API calls (e.g., locating

executable paths, process ids, time measurements, etc.). However, other cases can be abstracted

by use of other libraries, such as Qt. Compiler-specific extensions not covered by a C++ standard

(such as the round() function) can be used only conditionally or must be avoided, thus making

the code more standard-compliant. Advantages of multiple platforms go beyond using multiple

compilers on one platform. E.g., debugging and memory-leak checking tools differ for each

platform and have different strengths and usability advantages. Usually compilers are not cross-

platform and have complementary warning and error messages. Thus finding a bug is easier

when using multiple platforms. Bugs might go unnoticed entirely if the code is not tested on

multiple platforms. This is especially true for memory access violations. We collected some

of the most malicious cases that were detected during the Windows port and testing of clang

compiler in Table 2.1.

2http://nsis.sourceforge.net

http://nsis.sourceforge.net
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Own Contribution

We developed major parts of the current build system for OpenMS and OpenMS Contrib using

CMake, CTest and CDash, providing a platform-independent build system, testing, and nightly

regression tests.

Five new TOPP tools were written (MSSimulator, Decharger and ITRAQAnalyzer, EICEx-

tractor, GenericWrapper). MSSimulator, Decharger and ITRAQAnalyzer will be described in

the following chapters.

EICExtractor was developed for targeted metabolite feature finding and quantification (manuscript

in preparation).

The TOPP Pipeline Assistant (TOPPAS) was extended to allow more flexible workflows, error

checking, file list recycling, online download of workflow files, and more (see [101] for details).

The GenericWrapper tool was written to enable external program support via TOPP tool de-

scriptions (TTD) which describe parameter mappings, values and types from external third-party

tools to a TOPP-conformant format. This enables the usage of these tools within TOPPAS or

other workflow engines if the TOPP interface can be parsed (e.g., via KNIME [103]).

We ported OpenMS/TOPP to work on the Windows platform (i.e., Visual Studio 2005 to

2010) and wrote the binary packaging system which enables the creation of a full-grown installer

package.
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Chapter 3

Simulation of LC-MS Data

Synopsis: We introduce the most comprehensive simulation software for LC-MS data, provide

statistics on the realism of the generated data, and finally show its usefulness for algorithm

benchmarking and how parameters of the instrument influence the computational analysis.



44 CHAPTER 3. SIMULATION OF LC-MS DATA

This chapter subsumes and extends the work presented in Bielow et al. [34].

During the development of software for LC-MS data processing the algorithm should be

continuously evaluated against suitable benchmark data sets. This allows to refine the algo-

rithm (and its internal parameters) and to create a robust and sensitive solution. Ideally, the

benchmark data should be diverse in terms of instrument type, sample complexity, instrument

resolution, noise, and other key parameters in order to make the algorithm applicable to a wide

range of data. Obviously, each benchmark data set needs to be annotated according to a gold

standard (so-called ground truth). This annotation then represents the ideal solution, which the

algorithm should be able to reconstruct. Depending on the type of algorithm, different levels of

ground truth (GT) are required: feature detection, for example, requires the position, charge,

and intensity of peptide signals. Peak picking requires peak annotation and map alignment

the positions of corresponding points between two (or more) maps. Furthermore, knowledge of

ground truth allows a developer to find subtle errors in the program (i.e., when not all signals

contained in the data are identified) which are hard to trace otherwise.

One common solution to establish a ground truth is the use of standard protein mixtures,

which are commercially available and can be used to generate data sets with known protein

content. These mixtures, however, often lack the complexity inherent to real biological samples,

and the data quality (e.g., in terms of contaminants from sample handling) strongly depends on

the expertise of the laboratory. Inevitably, such controlled experiments cannot provide the lower

levels of a gold standard, e.g., for peak picking, whereas they are useful for peptide identification

and quantification problems. Of course, manual annotation can be employed for many levels of

ground truth. However, manual annotation is labor-intensive, and the quality of the annotation

strongly depends on the skill of the human expert. Some parts of the data may even be impossible

to annotate due to high levels of noise or other ambiguities. Public data sets with comprehensive

manual annotation are usually not available for many levels of ground truth.

An orthogonal solution to the problem of a benchmark data set is the use of extensive sim-

ulation of mass spectrometry data. The use of simulation in the mass spectrometry community

began more than 30 years ago. A popular software for ion optics simulation is SIMION [104],

which was used to provide the understanding required for the development of new instrument

generations. For software development, Morris et al. [20] used simulation to benchmark their

new approach for feature extraction and quantification. The Cromwell software, as presented by

Coombes et al. [105], was used to create a simulated data set which was then fed to the feature

extraction algorithm. Renard et al. [23] implemented a quite simple simulation approach to

validate the NITPICK feature finding algorithm. Ipsen and Ebbels [106] published a promising

statistical model specific to LC-MS data obtained from TOF instruments. Simulation was used

to validate the results. Unfortunately, no software was made available to the community. In

2009, Yang, He, and Yu [24] used a simulated data set from Morris et al. [20] to benchmark

different peak picking algorithms. However, simulation is usually given only marginal attention

when used to validate an algorithm [20, 23, 24]. The software employed is usually written for

this purpose alone and not extensively described. In 2008, Schulz-Trieglaff et al. [26] presented

a comprehensive approach to simulating LC-MS data and used it to benchmark different feature

detection approaches. Unfortunately, LC-MSsim is not maintained anymore, lacks some desir-

able functionality (e.g., simulation of fragment spectra and simulation of labeled LC-MS data),

and has a few undesirable properties. For example, the retention times of charge variants of

a single peptide (or protein) are determined for each feature separately. Since this calculation

includes an RT variance term, the charge variants have (significantly) different retention times.

This is not the case in real data and should thus be avoided.
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Figure 3.1: Overview of our simulator concept. Peptides/proteins with modification (optional)

serve as input, along with parameter settings and models. Result files cover multiple levels of

ground truth.

We developed MSSimulator, a simulation software for LC-MS and LC-MS2 experiments,

which is based on LC-MSsim [26] and extends it in many respects. The input for the simulator

is a list of proteins (or peptides) and optionally a list of contaminants. For a detailed description

of the contaminants file format, see Appendix 6.5. The simulator performs in silico digestion,

retention time prediction, ionization prediction, and raw signal simulation (including MS2) while

providing many options to change the properties of the resulting data, such as column conditions,

resolution, noise levels, and sampling rate. Protocols for SILAC, ICAT, 18O labeling, iTRAQ

or MSE are available in addition to the usual label-free approach, making MSSimulator the

most comprehensive simulator for LC-MS and LC-MS2 data. As output, the program provides

ground truth on multiple levels, which can be used for easy benchmarking and prototyping of

algorithms. These levels include raw MS data, centroided MS data, feature positions including

peptide sequence, feature relational data for labeled experiments, positions of contaminants, and

charge ladder groups. Compared to experimental data, simulation thus not only gives valuable

ground truth but is also much faster (usually completed within minutes). Simulation is also

unaffected by experimental errors. Since we make heavy use of random number generation, two

simulations using the same input data can be configured to yield slightly different results.

An overview of the simulation workflow is illustrated in 3.1.

In the following sections we will describe the basic steps which can be simulated using

MSSimulator and the underlying theoretical models. Then we give some examples of how

MSSimulator can be used to benchmark algorithms or conduct a large scale simulation on

experimental robustness and optimal setup. Parts of this chapter have been published in Bielow

et al. [34].
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3.1 Methods

MSSimulator is written in C++ as part of the OpenMS [29] framework and is integrated into

The OpenMS Proteomics Pipeline (TOPP) [98]. The simulator is configurable via a parameter

file, which can be edited using a dedicated GUI shipped with OpenMS. As input we use one

or more FASTA files. Optionally, a parameter file containing a (non-default) configuration and

a list of contaminants can be provided. A FASTA file contains protein or peptide sequences

including modifications1 and can also be used to provide protein/peptide-specific information

like the abundance or a specific retention time. For labeled experiments, one FASTA file for each

channel must be present. This allows to specify a different set of proteins and their concentrations

for each channel.

The simulation is divided into several submodules, which account for the different steps

carried out in a classical LC-MS experiment and will be explained in detail in the following

sections.

3.1.1 Digestion

Digestion can be performed in two modes or can be switched off. The first mode does a complete

in silico digest using regular expressions, also modeling missed cleavages2. To add another level

of realism, the second mode uses a model from Siepen et al. [108], which was reimplemented in

OpenMS to predict missed cleavages. The current model is based on trypsin data but can be

easily adapted, simply by substituting a text file containing the model parameters. To extend

the model to other enzymes, the log-likelihood ratio data matrix described in the original paper

needs to be computed.

3.1.2 Peptide Separation

As prefractionation techniques, two widely used approaches are available in MSSimulator: Cap-

illary Electrophoresis (CE) and High Performance Liquid Chromatography (HPLC). Both tech-

niques yield separation of peptides according to different properties therefore complementing

each other. In CE mode, MSSimulator will predict a migration time based on a theoretical

linear model described below whereas for HPLC simulation we use a machine learning approach

based on support vector regression.

3.1.3 A Model for Capillary Electrophoresis

In a strong electric field, molecules are separated based on their physicochemical properties which

determine their migration time (MT). A molecules’ MT is further dependent on the background

electrolyte and its properties, e.g., ionic strength, pH, type of ions.

Our migration time model concentrates on simulating the electrophoretic mobility (µep) of

analytes while electroosmotic flow (µeo), which is mainly governed by the viscosity of the buffer

and the capillary itself, is a parameter provided by the user.

Electrophoretic mobilities and separations are predicted from physicochemical properties of

the peptide species, namely net charge and mass. A common model for electrophoretic mobility

is

µep = q/MWα, (3.1)

1We support all modifications contained in UniMod [107].
2Note that when missed cleavages are used, the completely cleaved peptides will be contained in the sample

as well.
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Figure 3.2: Raw CE-MS map of 100 proteins using default CE settings.

where q is the net charge of the ion, MW is its molecular weight, and α is some constant. In a

vacuum, an ion’s speed is proportional to its net charge when an electric field is applied. In a

medium, however, we need to correct for frictional drag (MWα term). The choice of α has been

the topic of extensive discussion. The most common values include 1
3 , 1

2 , 2
3 , which all relate to

theoretical models. For details on choices of α and charge determination, see Appendix 6.4.

To determine the migration time we compute

t =
LdLt

(µep + µeo)V
, (3.2)

where Ld is the distance between injection site and detector, Lt is the total capillary length, and

V is the applied voltage (see McLaughlin et al. [109]). Peptides with negative migration times

are discarded (but mentioned in a summary statistic).

In contrast to HPLC where elution profiles remain constant across the RT dimension, in CE

the peak width increases as a function of migration time due to dispersion factors and decreased

mobility. We use a linear model to account for this effect. Figure 3.2 shows an exemplary

CE-MS map using our CE model. The typical charge bands can be observed easily.

Prediction of Retention Times in Liquid Chromatography: Schulz-Trieglaff et al. [26] already

applied the paired oligo-border kernel (POBK) presented by Pfeifer et al. [49] to accurately

predict the retention times for peptides in their simulation. We use the same approach in

MSSimulator. A trained model is provided with our software, but training a custom model

using MS2 identifications is easy using the RTModel tool, which is part of TOPP.

A Model for Elution Profile Shape: Peptides eluting from an HPLC- or CE column will

usually display an elution profile, which has a Gaussian-like shape. Asymmetric shapes due to

fronting or tailing (defined as the widening of the left or right tail of the Gaussian, respectively)

are commonly observed. Tailing is more common and has many possible causes [110]. The expo-
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nential Gaussian hybrid [111] (EGH) function allows to model asymmetric peaks conveniently.

fegh (t) =

H exp
(
−(t−tR)2

2σ2
g+τ(t−tR)

)
, 2σ2g + τ (t− tR) > 0

0, 2σ2g + τ (t− tR) ≤ 0
, (3.3)

where t is the retention time, tR the center of the chromatographic peak, H the peak height, σg
the standard deviation of the peak, and τ the time constant of the exponential decay.

MSSimulator comes with a set of default values for σg and τ as well as the possibility to vary

them using a Lorentzian distribution. For more details, see Bielow et al. [34].

To reflect poor chromatographic conditions, the user can also customize the quality of the

generated elution profiles by adding uniformly distributed noise.

3.1.4 Peptide Detectability Filter

Although detectability and ionization are closely coupled, we treat them as separate steps during

simulation. To account for the effect that not necessarily all peptides ionize with the same

efficiency, we include the peptide detectability filter presented by Schulz-Trieglaff et al. [26].

It uses a support vector machine combined with a paired oligo-border kernel to compute the

likelihood of each peptide to create a signal in a mass spectrum. The user can define a threshold

value – every peptide below the threshold will be discarded. MSSimulator is shipped with a

trained model. Customized models can be trained using TOPP’s PTModel.

3.1.5 Ionization

We support the two common ionization methods electrospray ionization (ESI) and matrix-

assisted laser desorption/ionization (MALDI). For ESI we sample charge states for each peptide

entity from a binomial distribution B(n, p) where n is equal to the number of basic residues, plus

one for the N-terminal charge, and p is set to 0.8 by default. We also support custom adducts

like Na+ or K+.

For MALDI we have chosen a discrete distribution of the charge states, with default prob-

ability values of P (q = 1) = 0.9 for charge 1 and P (q = 2) = 0.1 for charge 2. The user can

customize the charge probabilities according to their needs, specifying as many charge states as

desired.

3.1.6 Modeling Peptide Signals in the Mass Spectrum

At this point, a list of peptides annotated with charge, retention time and an elution profile

shape was generated. Based on this list, MSSimulator computes the signals for each peptide

ion. Each signal has two components, i.e., the shape in the retention time dimension, which

has been defined during the simulation of the chromatographic column, and the signal in m/z

dimension.

To compute the complete isotopic envelope, MSSimulator uses a fast algorithm [112] im-

plemented in OpenMS. The shape of each individual isotopic peak is a topic of discussion in

the literature [113] and can therefore be modeled during the simulation by either a truncated

Gaussian or Lorentzian distribution (see Figure 3.3).

The width of the peaks can be controlled by the user with regard to resolution. We addi-

tionally provide three models of resolution behavior, which are present in common instruments.

Resolution is usually specified at a fixed m/z position p, which we denote Rp, where p is usually

400 Th. Depending on instrument class, resolution might change for other m/z positions q.
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Figure 3.3: Comparison of Gaussian (blue) and Lorentzian (red) peak shape. Left) Theoretical

model, Right) A peptide signal at equal resolution, the Gaussian as vertical sticks, Lorentzian

as connected lines. Note that due to the broader tails of the Lorentzian, peak height is reduced.

Figure 3.4: Resolution behavior of three common MS instrument types. Left) at the same

resolution, Right) at typical resolutions.

Resolution is constant in time-of-flight (TOF) instruments (i.e., Rq = Rp); in Fourier transform

ion cyclotron resonance (FTICR) instruments it is known to degrade linearly with m/z (i.e.,

Rq = Rp · (p/q)); in Orbitrap mass spectrometers it degrades with the square root of m/z (i.e.,

Rq = Rp · (
√
p/
√
q)) [70].

See Figure 3.4 for an illustration. Note that at ≈1 500 Th, a TOF with R = 30 000 will create

peaks of similar FWHM to an FTICR with R = 100 000.

The estimation of peak width from real Orbitrap data confirms that a square root model

fits much better than a linear model (see Figure 3.5). The data was obtained from peak width

estimation of the high-resolution peak picker on an Orbitrap data set.

3.1.7 MS2 Sampling

MSSimulator supports three MS2 modes: The naive mode creates fixed-intensity peaks for

selected ion types (a, b, c, x, y, z), neutral losses, and immonium ions. The second mode uses
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Figure 3.5: Resolution behavior of an Orbitrap. The dashed red line represents the fit of a linear

model (as expected from an FTICR instrument), the green line shows a square root model (as

expected from an Orbitrap).
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a support vector machine-based classifier to predict if a primary ion type is present or not.

Neutral losses and charge variants are added using a trained Bayesian model. A support vector

regression (SVR) constitutes the third mode and additionally allows to predict the intensity of

primary ion types (within five intensity bins). We provide models (pre-trained on CID data)

for the two support vector machine-based modes which support precursor charges from one to

three. For more details, see [34].

MS2 precursor selection is based on data-dependent acquisition. A user-defined number of

high-intensity precursors are automatically selected from the preceding MS1 scan. Accepted

precursor charges and the width of the isolation window can be changed by the user.

Simulating MSE Data: Concurrent peptide fragmentation (i.e., MSE) is an emerging tech-

nique in proteomics which could revolutionize the way peptides are identified and quantified.

Currently there are very few algorithms capable of analyzing MSE data, e.g., Elution Time Ion

Sequencing (ETISEQ) [18]. This fragmentation technique has been proposed in the metabo-

nomics community several years ago [114], but manual analysis is still prevalent. By providing

simulated data we hope to facilitate algorithm development as the simulator provides an easy

means to benchmark the results. MSE data is generated by alternatively recording data in MS

and MS2 mode. The latter has no restriction on the precursor mass; thus, all ions are fragmented

simultaneously. This has the advantage that suboptimal precursor selection is no longer an issue,

but it also leads to congested MS2 spectra which need to be disentangled for proper peptide

identification. The simulator will create MS2 spectra for each peptide currently eluting from the

HPLC/CE column according to our fragmentation model. Spectra are scaled in intensity such

that MS and MS2 spectra will display proper elution profiles, which can be used to correlate

MS2 peaks with MS features. Subsequently, the single MS2 spectra are merged to form the final

MSE spectrum. An example can be seen in Figure 3.6. The peaks are color-coded by precursor.

3.1.8 Labeled Experiments

The simulator contains a framework which allows an easy and fast incorporation of any labeling

technique used in mass spectrometry. We currently provide four widely used techniques, namely

iTRAQ (isobaric tag for relative and absolute quantitation) [27], SILAC (stable isotope labeling

by amino acids in cell culture) [115], 18O labeling [116], and isotope-coded protein label (ICPL)

[117] in addition to the usual label-free setup. For each labeled channel a FASTA input file

must be given. This allows to model different protein/peptide sets. Optionally retention times,

abundances, and modification states can be provided for each channel.

iTRAQ Labeling: The software can be used to simulate iTRAQ MS2 spectra with arbitrary

channel allocation (using 4-plex or 8-plex) and customizable isotope correction matrices (the

default being the matrix provided by Applied Biosystems). The labeling efficiency of tyrosine

residues can be changed as desired and has a default efficiency of 30%. A peptide containing a

Y residue will be split into two sibling peptides with different masses, each with an abundance

reflecting labeling efficiency. N-terminus and lysine residues are assumed to be fully labeled. The

MS2 spectra generated in iTRAQ mode differ from normal MS2 spectra in that they contain

the reporter ions in the m/z range from 113-121 Th and that the fragment ions are 145 Da

heavier for every iTRAQ-modified amino acid they contain. Fragment ions with partially or

even completely cleaved iTRAQ tags seem to be missing from the iTRAQ spectra we examined.

Stable Isotope Labeling by Amino Acids in Cell Culture:

MSSimulator currently supports two- and three-channel SILAC labeling. In the following,

mass shifts will be shown in brackets. By default, the medium SILAC channel features a modified
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Figure 3.6: Color-coded detail of MSE spectra containing seven precursor species (black). In-

tensities are scaled to 100% for MS and MS2 spectra.

lysine (≈4.02 Da) and arginine (≈6.02 Da), the (optional) heavy SILAC channel an even heavier

modified lysine (≈8.01 Da) and arginine (≈10 Da). Complete incorporation of the label into the

labeled channel is assumed.

Isotope-coded Protein Label Labeling: ICPL labeling is usually performed on the protein level

and yields a mass shift visible on the MS1 level. Up to three channels are supported, in which all

lysine residues and the N-terminal are labeled. The mass shift is therefore sequence-dependent,

but upon tryptic digestion without missed cleavages, only one lysine should be present. The

protein’s N-terminal peptide carries an additional modification. We also allow ICPL labeling

after digestion such that all peptides carry an N-terminal modification.
18O Stable Isotope Labeling:

The 18O labeling protocol uses inexpensive, stable 18O isotopes, which are incorporated into

the C-terminal of a peptide during protein digestion in exchange for 16O. Complete labeling is

achieved when two heavy isotopes are incorporated, introducing a mass shift of 4 Da. Incomplete

labeling or back-exchange can lead to mono- (mass shift of 2 Da) or unlabeled peptides. Given

a labeling efficiency f , the concentration of unlabeled B0, mono- B1, and dilabeled B2 peptides

is computed from the total concentration B of the labeled channel using the kinetic model of

Ramos-Fernández, López-Ferrer, and Vázquez [118]:

B2 = Bf2 (3.4)

B0 = B(1− f)2 (3.5)

B1 = B2f(1− f) (3.6)
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Figure 3.7: Comparison of real and simulated data for FT and Q-TOF instruments. For clarity,

data is shown on zoomed regions of an LC-MS map. a) real FT data, b) simulated FT data, c)

real Q-TOF data, d) simulated Q-TOF data.

3.1.9 Output

The user can specify one or multiple output files which provide different layers of ground truth.

One output file contains the raw MS data in mzML [119] format. A corresponding centroided

version of the raw MS data allows to benchmark peak picking algorithms. A feature map (in

featureXML format) containing all simulated peptides annotated with charge, charge adducts,

and sequence can also be generated. The featureXML file can easily be converted into an Excel

sheet or csv (comma-separated values) file. Also, a list of features describing the contaminants

in the data set can be requested by the user. Last but not least, MSSimulator can provide files

containing the correct associations between the different charge variants of a single peptide and

the correct associations between the labeled and label-free versions of the simulated peptides.

3.1.10 Our Contribution

We re-implemented major parts of the predecessor tool LC-MSsim and integrated it into the

OpenMS library. The simulation was extended to support more levels of ground truth (charge

groups, centroided data, contaminant features), a trained digestion model, a CE model, user-

defined retention times and intensities, ionization with adducts, different peak shapes (Gaussian

and Lorentzian), resolution and peak widening model (linear, square root, constant), iTRAQ

labeling, MSE fragmentation, simulation of contaminants, and detector sampling heuristics.

3.2 Results

Since MSSimulator is highly configurable, it can be adapted to mimic certain instrument types

(e.g., Q-TOF or FT instruments). To asses the level of realism of the simulated data we compare
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simulated data to data sets from the Standard Protein Mix Database [21] (Mix 3, low-res Q-

TOF and high-res Fourier Transform (FT) data). The simulation parameters were adapted to

closely resemble the experimental conditions of the real data (in terms of protein mix, instrument

settings, etc.). After applying the same analysis pipeline (centroiding, feature finding) to both

data sets, we find that the number of peptide signals, charge distribution and intensity range

are highly comparable. For a visual comparison, see Figure 3.7.

3.2.1 Algorithm Benchmarking

We display several examples of how simulation can be used to benchmark algorithms. The list of

applications is numerous, and some more scenarios, carried out by the co-authors, are provided

in the accompanying paper [34].

ETISEQ

We used MSSimulator in MSE mode to benchmark the ETISEQ software which to our knowledge

is the only software publicly available for the analysis of MSE data. Since MSE data has the

inherent property of containing a mixture of fragment ions of possibly hundreds of precursor

ions, an interesting criterion for any algorithm trying to reconstruct single-precursor spectra is

the number of precursors that can be successfully extracted, such that a search engine is capable

of identifying the peptide.

A very simple data set consisting of one protein (P02769, bovine serum albumin) was gen-

erated, yielding 114 peptide signals in different charge states (1-3). We disabled simulation of

contaminants to make the spectra as clean as possible. MS and MSE spectra were generated

alternatingly. Additionally, the simulator was configured to create “debug” MS2 spectra, which

can be used as a ground truth when assessing the disentangled ETISEQ spectra. All spectra

(MS1 and MSE) were generated as centroided data with no missing peaks. Elution profile distor-

tion was disabled, which ensures perfect elution profiles for all features in both MS1 and MSE.

The generation of neutral loss ions (water and ammonia), immonium ions, and precursor ions

was enabled during simulation of MS2 spectra in order to increase identification rates during

database search (using X!Tandem).

Initial tests using the ETISEQ web interface3 revealed faulty reconstruction of precursor

positions when the input spectra were not sorted by RT in addition to XML formatting issues of

the ETISEQ output file. Fortunately, the authors of ETISEQ provided a patched version of the

ETISEQ algorithm which fixes the aforementioned issues and allows access to more algorithm

parameters.

In order to assess the ability of ETISEQ to reconstruct MS2 spectra from complex MSE

spectra, the following parameters were modified: We disabled ion exclusion (i.e., x = 0) and

chose a high value of n = 15 (the maximum number of spectra to be reconstructed from a

single MSE spectrum). To allow for reconstruction of low intensity spectra, we set the minimum

relative intensity for parent and fragment ions to zero.

On our dataset ETISEQ successfully reconstructed precursor positions for every simulated

feature. Since ETISEQ has no knowledge about the true peptide sequence, usually multiple

putative monoisotopic peaks are reconstructed. Many of these spectra yield identical sequences

iff a wide precursor tolerance window is selected during spectra identification. It is not clear

if ETISEQ uses an averagine approach to match isotope pattern. The data suggests that the

3http://www.cancerresearch.unsw.edu.au/CRCWeb.nsf/page/Elution+time+ion+sequencing

http://www.cancerresearch.unsw.edu.au/CRCWeb.nsf/page/Elution+time+ion+sequencing
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Figure 3.8: Location of precursor positions as reconstructed by ETISEQ for a single feature of

charge two and weight of ≈2 434 Da. Projections in both RT and m/z are shown on top and

right side. Not only the true monoisotopic peak (lowest position) is chosen, but also the first,

second, and even third isotope peak. For this rather heavy peptide the deviation of all but the

true isotope pattern to an averagine model are rather large.

acceptance threshold for any isotope pattern is low, since many putative precursors are recon-

structed. See Figure 3.8 for an example of precursor positions.

To reduce the number of putative monoisotopic peaks in MS1 (and thus the number of redun-

dant reconstructed spectra) an improved algorithm could use a heuristic which searches for a

maximal pairing of b-y ions (or any other dominant ion types), or use an averagine model with

appropriate model fitting thresholds.

Even though we have simulated MS2 spectra available as ground truth, not all spectra are

identifiable by a search engine. Therefore, we compute an unbiased set of identifiable spectra

by submitting all debug spectra to the same search engine (X!Tandem) that is later used for the

spectra reconstructed by ETISEQ. For X!Tandem we chose a precursor mass tolerance window of

2.5 Da to allow for small errors in precursor reconstruction. All resulting spectra were searched

against a combined database containing 38 717 proteins, as described in the ETISEQ publication,

and filtered at 1% FDR using a decoy database approach. The overall identification rate of debug

spectra was 75% after 1% FDR filtering. This can serve as the optimal result obtainable by

ETISEQ if reconstruction is perfect. We report recall, defined as

recall =
true positives

true positives + false negatives
, (3.7)

and precision, defined as

precision =
true positives

true positives + false positives
. (3.8)
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(a) (b)

Figure 3.9: Number of concurrently eluting peptides over time. a) shows an overlay of ground

truth (grey), identifiable peptides (green), peptides identfied from spectra reconstructed by

ETISEQ (blue), and unique peptides in terms of sequence and charge of the latter (red). b)

shows the results using x = 1 for ETISEQ.

of the peptide sequences reconstructed by ETISEQ (while requiring charge to be correct as

well in order to be counted as true positive).

Figure 3.9a shows that the density of features in RT is highly heterogeneous, but never

exceeds our selection of n = 15. One can clearly see that some debug spectra cannot be identified

(especially in lower RT regions). Thus, computing an unbiased set of identifiable spectra is

clearly advisable. ETISEQ was not able to successfully reconstruct more than seven unique

peptide sequences from a single MSE spectrum (counting distinct charge states as separate

results). In most cases only three unique peptide sequences were reconstructed. The number of

reconstructed MS2 spectra is higher, though, since redundant spectra were generated which only

differ in the position of the precursor (see Figure 3.8). Overall recall of ETISEQ-reconstructed

spectra compared to ground truth was ≈32% (less than half of the identifiable spectra). Precision

was 100%, i.e., no wrong peptide sequences were reconstructed. As already shown, selecting a

global number n of precursors to reconstruct per MSE spectrum for the whole experiment is

not trivial, because feature density varies significantly with RT. To test if the ion exclusion

parameter x can improve performance, we set x = 1. The results are shown in Figure 3.9b.

Excluding ions in subsequent scans does not improve performance at any RT position. It rather

leads to zigzag patterns due to exclusion of previously successful candidates.

Investigating which spectra could not be reconstructed by ETISEQ, we found no dependency

on RT or peptide length (data not shown). Fragment ion intensity seemed to have a significant

influence iff many high and low abundant precursors were eluting at the same time. However, for

only few precursors with large intensity span ETISEQ is able to reconstruct all charge variants,

e.g., see Figure 3.9a (≈870 Th) for a single peptide (no other peptides in RT range) in multiple

charge states. In more dense regions low abundance features are not reconstructed, despite a

high n and no intensity thresholds. See Figure 3.10 for the intensity distribution of identified

and unidentified spectra. In dense regions most features’ apexes will inherently be close to each

other. For our dataset the fraction of features (disregarding charge variants) whose apex is at
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Figure 3.10: Intensity distribution of spectra whose reconstruction was successful (red) versus

all simulated spectra. A preference for high intensity spectra is clearly visible.

least 1 s from its closest neighbor is 82%, for 0.5 s this number rises to 97%. Thus, most features

should be distinguishable by apex alone. Additionally, the simulator uses random elution profile

shapes, which should enable the Pearson correlation analysis to distinguish features which are

close in RT. Nevertheless, changing the threshold for the Fourier transform lag to 0 and Pearson

correlation to 0.9 did not change the ETISEQ results (defaults are 3 and 0.7, respectively). This

is unfortunate, since the performance of the algorithm is critically dependent on its ability to

distinguish features which are close in RT, possibly with similar elution profile shapes.

To summarize, our data suggests that ETISEQ is currently limited in the number of peptides

that can be reconstructed from a single MSE spectrum. Also, high abundance precursors are

preferred over low abundance precursors in dense regions. Furthermore, the precursor selection

strategy has potential for improvement, since isotope peaks are often selected in addition to the

monoisotopic peak. According to the ETISEQ paradigm for peak assignment, all fragment ions

of a peptide with multiple precursors are copied to all precursors from other peptides. This

could introduce a serious amount of noise, therefore decreasing identification rates.

Map Alignment

In this study we aim to benchmark the ability of a map alignment strategy to correct for a

retention time distortion between two simulated data sets when the overlap of sample content

is varied. We used the simulator to create feature maps of decreasing overlap in terms of

protein content but constant number of features (≈4 000) and applied the TOPP MapAligner
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Figure 3.11: Quality of alignment when altering peptide overlap between the two data sets.

Red triangles indicate the reconstructed offset in comparison to the simulated offset (red dotted

line). Blue squares indicate the reconstructed scale in comparison to the simulated scale (blue

dashed line).

tool to reconstruct the affine retention time shift plus a local Gaussian distributed distortion.

We chose offset = 100, scale = 1.3, and a local Gaussian distortion with sd = 3 for each

feature. This scenario can provide insight on how many corresponding features (i.e., alignment

anchors) are needed to reconstruct the correct alignment. Inefficient feature finding and/or poor

chromatographic conditions may lead to poor overlap of (replicate) experiments, thus a robust

algorithm is required to reconstruct the RT shift. The results show that even a very small

overlap does allow for a reliable estimation of the true transformation (see Figure 3.11).

3.2.2 Experimental Settings Optimization

The exact conditions under which LC-MS experiments are performed, e.g., which gradient

length, column type, resolution, etc. are used, are important for the success of the scientific

endeavor. Simulation cannot only be used for algorithm debugging, optimization and perfor-

mance evaluation but also for predictive purposes, namely for the optimization of experimental

settings. Given a certain sample of known complexity, experimentalists choose LC and MS

settings based on previous experience. In this case simulation can help to determine if any

significant improvement can be gained by increasing resolution, LC time, or by using replicates

with exclusion list.

Starting from a default configuration for an analysis pipeline (see Figure 3.12), we are going

to change prominent parameters and evaluate their influence on precision and recall.

The list of parameters along with all tested values for simulation is shown in Table 3.1.

Values in bold show the default setting used for all dimensions except for the one dimension

that is used for iteration.

To speed up evaluation, one could opt to work on a subset of the map; however, this can

bias the results for two reasons. First, the feature spread in RT and m/z dimension is non-

homogeneous and secondly, evaluation software might depend on a map large enough to estimate
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Figure 3.12: Evaluation workflow allowing to test multiple simulation parameters and evaluate

their effect on precision and recall.

Table 3.1: Iteratable simulation parameters. Values in bold represent the default.

parameter values

protein count 10 50 100 500 1 000 3 000 10 000

dyn. range 0.1 0.2 0.5 1 1.5 3 6 9

resolution 5 000 7 500 10 000 20 000 40 000 60 000 100 000 200 000

RT (min) 5 30 60 90 120 240

shot noise 0 0.01 0.02 0.05 0.1 0.5 1 2 3

signal-to-noise ratios robustly. Thus the location and number of features found might differ (as

is the case for the OpenMS centroided FeatureFinder – data not shown).

We report recall (see Eq. 3.7) and precision (see Eq. 3.8), since only true positives, false

positives, and false negatives are available. The number of true negatives is infinite.

Figure 3.13 summarizes the results.

According to the simulation, dynamic range and noise levels do not negatively influence

precision and recall of the OpenMS FeatureFinder (centroided). The computation of signal

strength from peptide abundances uses a linear model during simulation. The dynamic range

is therefore linear as well. This indicates that the feature finding algorithm can identify weak

features amidst high-intensity features. However, higher spectral density where more overlapping

features occur will drastically decrease performance. One way to avoid overlapping features is to

increase the gradient length of the HPLC. Not surprisingly, the algorithm is then able to recover

more features and suffers less from false positives. Larger gradient lengths can balance higher

sample complexity. Interestingly, increasing resolution does not change precision but increases

recall due to more narrow raw peaks, which, once they are centroided, allow the algorithm to

disentangle interleaved features. If overlapping peaks cannot be resolved, the observed isotope

distribution will deviate strongly from the expected averagine distribution, leading to rejection

of the putative feature as peptide signal. This increases the false negative count; thus, recall is

decreasing.
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Figure 3.13: Recall and precision for multiple parameter sweeps.

3.3 Discussion

MSSimulator is the most extensive collection of algorithms and models for MS simulation and

allows for easy algorithm validation on a broad range of conditions, opening a wide range

of benchmarking scenarios that can easily be automated. The availability of a ground truth

reduces the need for expensive manual validation on real data sets. For each simulation step

the simulator has several models (e.g., CE and HPLC for separation, MALDI and ESI for

ionization, three resolution models for mass measurement), it allows for arbitrary modifications

and contaminants. In addition to the four labeling techniques which are currently supported,

future labeling techniques can be added quickly by implementing a powerful labeling interface.

We have shown that our simulated data is very similar to real data and allows easy validation

of existing algorithms. Compared to experimental data, simulation thus not only provides

valuable ground truth but is also much faster to generate and unaffected by experimental errors.

Simulation of different experimental conditions can be used to predict which parameters have

the largest influence on a subsequent computational analysis (e.g., feature finding). However, in

order to find the optimal experimental parameters a cost function is required (e.g., is increasing

the gradient from four to six hours worth a gain of 20% in feature count). This cost function is

most certainly subject to change for every laboratory or project. Missing support for ionization

efficiency, trapping capacity, etc., during simulation is currently the reason why the parameter

ranges will most likely not be comparable (i.e., under identical conditions a real dataset with

5 000 proteins will have a different amount of feature overlap than the corresponding simulated
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dataset). Another model trained on real data would be required to account for this during

simulation.

Future extensions might include, but are not limited to, automatic estimation of simulation

parameters (e.g., resolution, sampling rate, noise level) from real data allowing to quickly gener-

ate benchmark data for analysis software, quantitative prediction of ionizability, incorporation of

additional noise models and ion statistics and more instrument-specific properties (e.g., shoulder

peaks on FT instruments – see Subsection 2.3.2). Due to the broad support of different levels

of ground truth and a wide variety of models, the simulator could also be used to re-evaluate

published algorithms whose performance was assessed using a feature-limited and special pur-

pose simulation tool. A comparison might reveal significant differences in the performance of

the algorithm, pointing to violated model assumptions (e.g., shape models, data complexity).
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Chapter 4

Decharging of Charge Variants

Synopsis: A new algorithm for charge variant detection based on integer linear programming is

introduced and evaluated. We show that it outperforms existing methods and is robust to missing

data in simulated experiments.
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Figure 4.1: Schematic illustration of (simple) decharging problem. Two peptide species in different,

rather small charge states are shown. One peptide has an additional variant featuring a sodium adduct.

In addition, both peptides exist in a light and heavy state, i.e., peptides are labeled.

This chapter subsumes and extends the work presented in Bielow et al. [35].

In electrospray ionization mass spectrometry (ESI-MS), peptide and protein ions are usu-

ally observed in multiple charge states. Peptides and proteins are measured in positive mode,

making protonation the primary mechanism of charge acquisition. The number of charges de-

pends on experimental conditions and on the length of the amino acid sequence. Therefore,

peptides usually carry a small number of charges in ESI, usually two, whereas proteins can

reach charges above 50. Adduction with other ions such as sodium or potassium leads to further

partitioning and more complex signal patterns for a single species, adding to spectra density

and complicating the derivation of quantitative information from the mass spectra. Labeling

strategies targeting the MS1 level further aggravate this situation since multiple samples must

be represented simultaneously. For an example, see Figure 4.1.

We developed an integer linear programming (ILP) approach which can cluster signals be-

longing to the same peptide or protein. Our widely applicable and general approach models

all possible shifts of signals along the m/z axis, taking into account different charge states of

the compound, the presence of adducts (e.g., potassium or sodium), and/or a fixed mass label

(e.g., from ICAT or SILAC), or any combination of the above. We show that our approach

can be used to infer more features in labeled data sets, correct wrong charge assignments even

for high-resolution MS data, improve mass precision, compute intact protein masses from large

protein charge ladders in complex mixtures, cluster charged species with several adduct types,

and is robust against missing values in simulation studies.

Figure 4.2a shows the raw map of two peptides of similar mass but different retention time.

Usually, the raw data is subjected to algorithms for data reduction, and the measured signal is

reduced to a single data point – a feature (see Section 2.6).

The problem of multiply charged peptide species is usually only present in ESI whereas in

MALDI, peptides mostly receive one charge, rarely two. However, even in MALDI, experimental

conditions can be changed such that higher charges are observed [30]. Obviously, it is crucial to

find all signals originating from a peptide. Unfortunately, this task is more difficult in practice
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Figure 4.2: Schematic illustration of ESI spectral cluttering due to multiple charge states and

adduct formation in experiments involving light and heavy-labeled species. a) Two ideal peptide

signals (top and bottom) eluting from a chromatographic system, each showing a light and

heavy analog. b) Features identified from raw signal on the left with the resulting intensity ratio

between labeled and unlabeled compounds. c) The same peptides as in sub-figure A but spread

across several charge states. Even an adduct can be observed, which is related to the high-

intensity heavy peptide at higher retention time. d) Charge ladders and charge states indicated

at the feature level for sub-figure C.



66 CHAPTER 4. DECHARGING OF CHARGE VARIANTS

than implied in Figure 4.2 since samples are usually highly complex and ambiguities need to be

resolved. Figure 4.2c, for example, shows the (realistic) case of two and three charge variants

of each peptide with the addition of a sodium adduct. Figure 4.2d then shows the respective

feature map in which one feature is missing, which is also quite common in practice due to

noisy data or algorithms not being able to detect all signals correctly. While charge ladders of

peptides are usually rather small (a few charge variants), proteins give rise to a much broader

charge distribution due to their size and can easily reach charges of 30 and even above 50. As

for peptides, proteins can carry adducts such as sodium.

The problem of clustering differently charged species from the same compound in ESI spectra

is often referred to as deconvolution (although this is misleading – mathematically speaking),

decharging (although experimentalists usually interpret this as a reduction of the average charge

state [61, 65]), or simply disentanglement. Deconvolution is also sometimes used synonymously

for deisotoping [120] or resolving overlapping shapes [121]. We thus suggest the name decharging

for a reduction of multiple (deisotoped) species of the same analyte with different charge adducts

to a single zero-charge signal.

In labeling approaches (see Subsection 2.6.2), usually no decharging is applied. Instead,

signals of different labeling states with equal charge are grouped and compared directly, which

results in redundant information if multiple charge states are present. In both label and label-free

approaches, the quantification is further aggravated by the presence of adducts with ubiquitous

ions, such as sodium and potassium, whose occurrence depends on experimental conditions, e.g.,

usage of salts during HPLC or capillary electrophoresis (CE). Peptide signals incorporating such

adducts are usually low in abundance but will nevertheless reduce the ion count of proton-only

signals.

Inferring the correct mass of a peptide or protein from charge states and charge ladders has

been an active research topic from the onset of application of ESI-MS in proteomics. Early

approaches targeting undigested protein samples use “global” information, i.e., multiple signals

of different charge states, to infer the mass and are best suited for mass spectra containing

only a few analytes. With the emergence of high resolution instruments it became possible

to use “local” information, i.e., isotope patterns, to infer charge, which is sometimes the only

option to infer mass if an analyte is only present in a single charge species. For protein spectra,

Mann, Meng, and Fenn [31] proposed an algorithm to fold a spectrum into mass space, thus

eliminating charge ladders. Although this greatly improved mass precision, the algorithm can

only deal with few analytes in one spectrum and gives rise to artifact peaks. This algorithm

was further improved by Reinhold and Reinhold [122], who reduced artifact peaks by using an

entropy-based measure at the cost of requiring a model distribution of charge ladders which is

applied to all masses under investigation and a loss of the peak height-abundance relationship.

For broad-range MALDI spectra, a heuristic approach [30] working on single spectra was devised,

which can cluster multiple charge states considering only H+ but relies on MALDI-specific rules

not applicable to ESI. The widely known ZScore-Algorithm [32] features either local or global

decharging but not both simultaneously. It can deal with complex single (stick) spectra but

might also produce artifact peaks due to spectral noise. A similar algorithm along with a brief

review was published by Zheng et al. [123]. Du and Angeletti [120] infer charge from local isotope

peaks and cluster all species projecting onto the same mass. This approach, however, is prone to

incorrect charge assignment during charge estimation and requires a threshold parameter. One

algorithm that attempts to make use of global and local information was published by Wehofsky

in 2002 [33]. It rewards features with charge q when their sibling of charge q − 1 is also found.

Unfortunately, the algorithm has no notion of retention time, only considers adducts of type
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H+, and relies on identifying gapless charge ladders. Furthermore, if charge and thus mass are

estimated incorrectly, the decharged spectrum is neither likely to contain the wrong signal nor

the correct one, because wrong charges are not fed back into the input spectrum. MaxQuant [93]

creates charge pairs based on retention time correlation and a peptide mass estimate threshold

for SILAC-based experiments. ASAPRatio [124] also uses charge pairs in ICAT-type LC-ESI-

MS data to improve quantification results. In addition to the two algorithms above, another

tool capable of analyzing labeled data is VIPER [95]. It supports arbitrary mass differences

(e.g., from ICAT or 16O/18O labeling) and can deal with pairs in multiple charge states.

None of the algorithms mentioned above is able to model charge ladders with multiple adduct

combinations, e.g., a combination of pure proton adduct species with a proton/sodium species

from the same peptide or protein. And except for the more recent ones, they were all designed

for undigested analytes producing long charge ladders. In tryptic digests, however, one rarely

encounters species with a charge of five or higher. There is a solution to cluster undigested

protein degradation products based on an EM algorithm, which is not publicly available [125].

For metabolites an approach using database search accounting for different adducts was recently

devised [126]. Additionally, there is the CAMERA software package1, which groups metabolite

mass signals based on rules for mass differences and peak shape comparison [127].

In this work we propose a method for identifying groups of signals belonging to the same

compound in labeled or label-free MS data. The algorithm is general in that it models all possi-

ble shifts of signals along the m/z axis. These shifts can be induced by a different charge state

of the compound, the presence of adducts (e.g., potassium or sodium), the presence of a mass

shift due to isotope labeling, or any combination of the above. It allows for an iterative approach

(rerunning feature detection on missing charge states or missing pairs in labeled experiments)

and can deal with missing data (e.g., gapped charge ladders). We show that by applying our al-

gorithm, several types of errors can be corrected in a feature map, e.g., wrong charge assignment

or missing features. Additionally, we can achieve a reduction of data volume, improvements in

mass precision, and prevent manual annotation errors and incomplete annotation.

Parts of this chapter have been published in Bielow et al. [35].

4.1 Mathematical Preliminaries

Our approach uses a widely known optimization technique called integer linear programming

(ILP). To facilitate understanding, we now give a brief introduction to linear programming (LP),

its special form integer linear programming, and some standard notation. This section is mostly

based on Bertsimas and Tsitsiklis [128]. To ease reading we will use bold letters for vectors,

bold capital letters for matrices, and plain letters for scalars.

In linear programming we seek to minimize an objective function c′x =
∑n

i=1 cixi where c

is a given cost vector and x is an unknown vector of decision variables subject to a set of linear

equality and inequality constraints of the form a′x = b, a′x ≤ b or a′x ≥ b where b is a scalar.

We can write a set of constraints as Ax = b where b = (b1, ..., bm) is a vector of m constraint

bounds and A is a m×n matrix whose rows are row vectors a1, ...,am. Every LP can be brought

to standard form, i.e.,

1http://www.bioconductor.org/packages/bioc/html/CAMERA.html

http://www.bioconductor.org/packages/bioc/html/CAMERA.html
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Figure 4.3: Two conflicting edges inducing a constraint due to inconsistent annotation of feature

f2 (implicit H+ are shown as well).

minimize c′x

subject to Ax = b

x ≥ 0.

A vector x satisfying all constraints is called a feasible solution. If additionally some x

minimizes the objective function, x is called an optimal feasible solution. Depending on the

problem, there can be no, one or multiple optimal solutions. Maximizing c′x is obviously

equivalent to minimizing −c′x.

The first and most widely used algorithm described by Dantzig [129] to solve an LP is

called the simplex algorithm, which has exponential worst-case complexity but performs well in

practice.

ILP formulations are exactly the same as LP formulations with the additional constraint

that some variables are restricted to take integer values, i.e.,

minimize c′x

subject to Ax = b

x ≥ 0 , x integer.

In general ILP problems are NP-hard and can be solved using a number of algorithms, e.g.,

branch-and-bound or cutting-plane methods.

4.2 Methods

The input data set is a feature map F as generated by a feature finding algorithm, each feature

having at least a retention time and m/z (monoisotopic or average). In addition, it can be

advantageous to have an initial charge estimate and an intensity value.

We model our problem as a graph, which lends itself to an ILP formulation. The nodes

in the graph correspond to features at a certain RT and m/z and hence to a peptide with a

certain charge state, possibly with adducts and/or mass labels. Edges are inserted between pairs

of nodes if a certain combination of adducts and charge assignment of the nodes explain the

mass difference between the nodes. Each edge carries information on the potential charge of its

adjacent nodes and the adducts which are required to explain the resulting mass difference. In

Figure 4.3, for example, the edge between f1 and f2 is inserted because the mass difference can

be explained by the assumption that f1 has charge 6, f2 has charge 5, and f2 has a potassium

adduct. The inserted edge hence induces charge states on f1 and f2.

For building the graph, we only use the most commonly occurring adducts listed in Table 4.1.

Note that this table can be easily modified by the user if required. Simple protonation is the
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Figure 4.4: Histogram of pairwise mass differences showing evidence of presence of sodium and

potassium (obtained from the SPC data set used below).

most common effect (and desirable due to better fragmentation behavior and decreased signal

congestion [130]). Non-proton adducts are usually a result of prior prefractionation via CE or

HPLC.

Adduct frequencies can be estimated by looking at the histogram of pairwise mass differences

of all features (see Figure 4.4). At the masses of Na, K and NH4 (minus a proton mass each),

one can clearly observe clusters which indicate their presence (see Table 4.1 for adduct masses).

Constructing the graph in such a fashion obviously results in conflicting edge descrip-

tions. Each pair of edges adjacent to a node might induce a constraint due to a conflicting

charge/adduct combination. For example, Figure 4.3 shows two edges adjacent to f2 where the

left edge assigns four protons and a positively charged potassium ion to f2 while the right edge

assigns 5 protons to f2. Obviously, only one of these conflicting annotations can be fulfilled at

a time. Hence, our goal is to choose a subset of the edges with an overall maximal weight which

does not contain any pair of conflicting edges. We compute the optimal subset by solving an

ILP. In the following, the method is specified in further detail.

4.2.1 Generating the Adduct Transition Graph

Initially, our algorithm generates a table L of all feasible net adduct transitions, i.e., the subset

“lost” on one side and the subset “gained” on the other. Losing a proton and gaining a sodium

adduct, for example, can serve as an explanation for an edge between [M + 2H]2+ and [M +
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Table 4.1: Adducts commonly observed in ESI-MS. All adducts occur singly charged, i.e., they

are lacking one electron.

name formula monoisotopic mass (Da)

hydrogen H 1.0078250319

ammonium NH4 18.05

sodium Na 22.98976928

potassium K 38.96370668

Table 4.2: Example for adduct transition table L.

loss gain net charge mass

Na+ H+ 0 -21.9819

- H+ +1 1.0078

- Na+ +1 22.9892

H+ 2Na+ +1 44.9712

Na+ 3H+ +2 -19.9674

2Na+ 4H+ +2 -41.9493

- 2H+ +2 2.0146

- HNa+ +2 23.9965

H + Na]2+ ions. The table contains net mass and net charge differences. An example using

proton and sodium adducts can be found in Table 4.2. Note that we do not model redundant

transitions, i.e., elements that occur on both sides and would cancel each other out. Additionally,

each adduct is assigned an a priori probability (e.g., using Figure 4.4), which allows to compute

adduct transitions up to a probability threshold which can be chosen generously but avoids

adduct transitions which are unlikely to occur (e.g., all-sodium adducts in a charge 5 feature).

Furthermore, the list is bound by the charge difference qspan, which is the maximum number of

charge states that can be bridged by edges in the graph. By default, qspan is set to 4, which

allows bridging q3 (charge 3) and q6 (charge 6) but would not allow to join two nodes with q3
and q7. The size of L depends very much on the number of adducts allowed and qspan but rarely

exceeds 400 entries.

We now construct the adduct transition graph G = (V,E) where V is a set of nodes ni
corresponding to features fi from the set F . E is a set of undirected edges ej = {nk, nl}. To

generate edges between nodes, the algorithm enumerates all pairwise features within a small RT

delta deltaRT since charge ladders are a property of ESI and thus have similar RT. However, if

method-specific RT shifts are known (e.g., in ICAT pairs), this can easily be accounted for by

specifying an adduct’s intrinsic RT shift. During enumeration, mass differences are looked up in

L, and for all matches an edge containing the putative charge and adduct of the left and right

node is inserted as well as a score which serves as an edge weight. All charges not explicitly

explained by the adduct transition are implicitly modeled as H+ and stored in the edge as well.

Obviously, edges with adduct transitions that require a feature to take up more charges than

allocated are not realized. Edges are weighted by the product of probabilities of adducts which

are required to explain the mass difference (see Table 4.2). However, a more involved scoring

scheme can be easily implemented, which could, for example, account for mass and RT deltas,

feature quality, and violation of a feature’s local charge prediction.
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Figure 4.5: Example for edge inference. e5 is inferred by using the adducts induced by e2 and

e4. (Note that for clarity only edges important for edge inference are shown, e.g., e = {n1, n4}
is missing.)

To reduce the number of false positives in highly complex maps, an additional filter which

reduces the number of edges in the graph can be used. In case that ch(ek, ni) = ch(ek, nj), we

add an edge ek = {ni, nj} only if sign(int(ni) − int(nj)) = sign(pr(ek, ni) − pr(ek, nj)) where

ni and nj are the nodes connected by edge ek; int(n), pr(e, n) and ch(e, n) are the intensity,

probability, and charge of node n induced by edge e. In other words, we enforce that features

with lower probability also have a lower abundance. We only enable this constraint for equal

charge states since it is very hard to predict ionization behavior across multiple charges.

As table L only contains non-redundant adduct transitions, it is sometimes necessary to infer

sibling edges that contain explicit redundant adducts from already existing edges. An example is

given in Figure 4.5. As edge e3 induces purely protonated nodes n2, n4, it is in conflict with edges

e2 and e4, each inducing a sodium adduct at n2, n4 respectively. To enable the final solution to

contain a fully connected subgraph {n1, n2, n3, n4}, another edge e5 needs to be created. These

inferred edges are created between any two nodes ni, nj for any pair of edges ek, el with either

ek = {ni, nm} or ek = {no, ni} and el = {nj , np} or el = {nq, nj}, using the adducts induced for

ni, nj by ek and el.
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The graph construction algorithm can be summarized in pseudo code as follows, assuming

the input F is sorted by RT:

for fi in F [start : end] do

for fj in F [i+ 1 : index(rt(fi) + deltaRT )] do

for (q1, q2) in Q �Q do

adduct candidates = massDeltaLookup(fi · q1, fj · q2,mz tol)
for aci in adduct candidates do

if (not intensityFilter(fi, fj , aci)) then

continue

end if

insertEdge(E, aci, fi, fj)

end for

end for

end for

end for

edgeInference(E)

The for-loop enumerating all feature and charge combinations is optional. It is only used

when the algorithm is in “discovery” mode, i.e., when searching for edges without relying on the

annotated charge of the feature but instead enumerating all possible values.

4.2.2 Constructing the ILP

Having constructed the adduct transition graph for our problem, it is straightforward to define

the corresponding ILP. During this phase, all edges sharing one or more nodes are checked for

consistency, i.e., whether any pair of edges induces an inconsistent adduct annotation for the

shared feature. Consistency requires

1. identical charge,

2. identical adduct composition.

An example for two inconsistent edges can be found in Figure 4.3. Feature f2 is assigned

adducts K+4H+ by the left edge whereas the right edge induces 5H+, both of which cannot

be true simultaneously. We introduce xi to indicate the presence/absence of edge ei from the

solution and ci as the score of edge ei.

The ILP is defined as

max c′x

s.t. xi + xj ≤ 1

xi, xj ∈ {0, 1} for all pairs of inconsistent edges.

(4.1)

A more advanced formulation can be established when we model the configurations (charge,

adducts) of each feature i as a set yi with size mi and force one configuration to be chosen. The

configurations are induced by the adjacent edges of each feature. We thus arrive at the following

formulation:
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max
n∑
k=1

ckxk

s.t.

mi∑
j=1

yij = 1 ,∀i

xk ≤ yij , xk ∈ E(yij), ∀i, j
xk, yi ∈ {0, 1},

(4.2)

where E(yij) is the set of edges inducing configuration j of feature i. In other words, an

edge is chosen if and only if the two feature configurations induced by this edge are active. We

use Equation 4.2 to solve the decharging problem, as in practice it is much faster to solve than

Equation 4.1, especially for larger problem sizes. The reason for this is most likely due to the

large number of pairwise constraints induced by Equation 4.1.

The ILP’s output is a set of active edges. Thus, finding all connected components will

automatically cluster nodes (features) into groups representing charge ladders with adducts

and/or labeled pairs.

Due to the problem structure, the ILP solver employed (COIN-MP) achieves runtime im-

provements of ≈40% just by ordering the pairs as connected components when constructing the

ILP columns even though a clique heuristic is active within the solver. As a further optimization

we split the ILP into child ILPs by determining connected components in the graph and only

feeding the edges for one (or a few) connected components at a time. The overall result is not

affected by the concurrent amount of connected components fed to the ILP solver, but runtime

can improve about five-fold.

Also, the resulting child ILP’s lend themselves to parallelization in a very straightforward

manner. Thus, the algorithm has been parallelized by OpenMP [131] using dynamic thread

allocation. The resulting runtime improvements can vary considerably, depending on the hardest

sub-ILP. Usually improvements of another 40-60% can be observed with four threads.

4.2.3 Post-Processing

During post-processing clusters can be discarded using a filter which reduces spurious hits. The

“backbone” filter will only allow clusters which have at least one feature whose charge can be

explained by protons only, i.e., that is part of the backbone of a charge ladder. Otherwise wrong

or very unlikely clusters might be found, e.g., ([3K]3+, [5Na]5+). Without the backbone filter

(especially in complex maps) these spurious hits are common when all possible feature charges

are enumerated by our algorithm.

4.3 Results

The algorithm was applied to several real data sets. On all data sets analyzed here, the running

times for our algorithm were below five seconds (2.26 GHz Core2Duo), and memory requirements

did not exceed 500 Mb. Time and memory requirements can increase, however, if many adduct

types are allowed and the feature finder charge is not fixed.

We will now show some practical cases where decharging can help increase data quality. We

compare our approach to a commercially available tool (Xtract) and to a pair-finding algorithm

implemented in OpenMS. Comparison with other packages is difficult since they are partially

specialized for certain labeling methods like SILAC or ICAT. If not indicated otherwise, we used
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the OpenMS PeakPicker for centroiding raw data and the OpenMS FeatureFinder for generating

feature maps.

4.3.1 Increasing Mass Precision

We applied our decharging algorithm to one of the SPC data sets (Mix1, LTQ-FT, 20060502data08)

[21]. This data set stems from a tryptic digest of 18 proteins measured in an LTQ-FT mass

spectrometer and is available at http://regis-web.systemsbiology.net/Publicdatasets/. The in-

teresting region of 500-4 000 s and 400-1 400 Th was excised and only every second scan was

retained from the MS1 data, as only they contained the FT scans. The OpenMS PeakPicker

and FeatureFinder were applied to the raw data, resulting in 1 064 features. Subsequent internal

calibration using high-confidence MS2 identifications was applied to enable the calculation of

a standard deviation between monoisotopic feature position in m/z and MS2 identifications.

Decharging was applied to find clusters of corresponding features stemming from the same pep-

tide with different adducts. We found evidence for adducts (see Figure 4.4) and thus allowed

H+, Na+, K+, and NH4
+. With the data set being a high-resolution measurement, the charges

assigned by the FeatureFinder are mostly correct, nevertheless misassignments did occur (espe-

cially when the isotope pattern deviated strongly from the averagine model). Hence, we allowed

the decharging algorithm to alter the FeatureFinder charge. The adduct transition graph had

1 064 nodes, 344 edges, inducing 167 constraints. About 35% of all features (371) were grouped

into 155 clusters during decharging, and their monoisotopic m/z position was corrected using

the average mass predicted by all members of the cluster. For all other features (693), no partner

was identified. For 20 clusters, an MS2 identification was available. This allowed to calculate the

mass deviation between the predicted MS2 mass and the feature mass. The standard deviation

between the features’ monoisotopic m/z and the theoretical m/z position predicted by MS2

identifications prior to decharging was 1.044 ppm. In contrast, it was significantly reduced to

0.527 ppm after decharging due to the fact that feature masses are averaged over all members of

a cluster by our algorithm. The increase in mass precision by clustering obviously only applies

to features which are members of a cluster and can thus benefit from decharging. Furthermore,

we examined those features whose charge (as assigned by the feature finder) was altered in the

ILP solution. In total, the charge of eight features was changed by our algorithm, and, except

for one, these reassignments were found to be correct by manual verification of the raw data.

4.3.2 Finding Pairs in Labeled Data

We applied our algorithm to a centroided data set of MHC peptides [132] which contains 4 117

scans and 3 083 features. Nicotinic acid labeling was used to tag two samples with either a light

or heavy label (in which four hydrogen atoms were replaced by deuterium) prior to mixing and

LC-MS analysis. Our algorithm generally supports any kind of labeling as long as the mass

difference can be expressed as an empirical formula (see below).

As the charge estimation using the OpenMS FeatureFinder was very reliable for this data

set, feature charges were not altered. The set of possible adducts was set to +H and D4-4H, the

former being simply protonation, the latter being an uncharged adduct describing the net mass

gain of 4 Da for the heavy analog due to deuterium exchange. We allowed up to two uncharged

adducts for the computation of L. The adduct transition graph had 3 083 nodes, 653 edges,

inducing 349 constraints.

To compare our results we tested the labeled pair finder of OpenMS. It allows the user to

supply an arbitrary list of allowed masses and RT shifts. We found 293 pairs using this standard

http://regis-web.systemsbiology.net/Publicdatasets/
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Figure 4.6: Example of charge ladders spanning two charge states (including light and heavy

partners). Edges connect all features of the cluster as found during graph construction.

approach. Using the decharging algorithm we found 307 pairs, 16 of which have a partner pair

in a different charge state (see Figure 4.6 for an example). These 16 pairs can be condensed into

8, because they represent the same peptide. Moreover, it allows to compute the average of two

intensity ratios (see Figure 4.7).

Sixty-four clusters of size three were also found, 11 of which contained features of the same

charge state, thus indicating a potential conflict in uniquely identifying the light and heavy pair:

when ordered by m/z, it is possible that either feature 1 and 2 or feature 2 and 3 represent the

light and heavy peptide. Other pair-finding algorithms will most likely just pick one greedily.

Even the common precaution in standard pair finding algorithms requiring that any third feature

must lie x Da further away from a pair would not be beneficial here as x would need to be larger

than the pair mass difference in order to avoid ambiguous pairing. Choosing x that way would

result in many pairs remaining undiscovered in the data set. Our approach will detect these

ambiguities and allows to discard/mark those clusters. Another constellation for clusters of

size three occurred 53 times: one light/heavy pair is identified, and additionally, a third feature

(either light or heavy) of a different charge. The missing fourth feature was either not discovered

during feature finding or is simply not detected by the instrument. An example of the former

case is given in Figure 4.8. Without reference to another charge pair or MS2 identification it

is difficult to infer which of the two partners is present or if the identified feature even has a

partner. Manual inspection of the data set suggests that about 60% of the 53 clusters indeed

have a fourth feature, which was simply not detected by feature finding. Reiterating the feature

finding step using the 53 seeded positions suggested by our algorithm yielded 29 new features

(10% increase in pair count).
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Figure 4.7: Intensity ratios (light vs. heavy feature) from nicNHS pairs of different charge

states. Ratios are depicted as squares, averages as circles. Some pairs (e.g., #6) show very

similar intensity ratios in different charge states whereas other charge ladders (e.g., #7) show

a two-fold difference. These differences can aid in determining the confidence in the observed

ratios.
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Figure 4.8: By evidence from a triple (2x q2, 1x q1) we can infer the presence of the heavy

partner of the q1 feature #768. The top section shows the projection of the m/z dimension.

One can clearly see signals at 4 and 5 Da from the monoisotopic mass trace of feature #768. The

missing feature’s mass traces are indicated by dashed boxes in the map view (lower section).

The reason for not identifying this feature is probably the presence of feature #750.
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4.3.3 Calculating Intact Protein Masses

Hemoglobin

We analyzed a hemoglobin HPLC/ESI-MS raw data set consisting of ten scans containing HBA1

and HBB measured on an LTQ Orbitrap XL mass spectrometer with a resolution of 100 000. We

compared the results of our algorithm with the Xtract module of Thermo’s Proteome Discoverer

1.0. This module operates scanwise allows decharging at the raw data level. The maximum

charge was set to 30, and we enabled the reporting of monoisotopic masses only. Xtract finished

after 237 s of CPU time (2.26 GHz Core2Duo). Note that Xtract reports the monoisotopic

protein mass as singly charged.

We used Hardkloer (v1.22) [133] to identify features scanwise and the postprocessing tool

Kroenik (v1.3) to summarize features occurring in multiple scans. Minimum and maximum

charge were set to 4 and 30, union and intersection mode were enabled, and S/N was set to 1.

Decharging was set to consider sodium and potassium adducts and to correct for monoisotopic

shifts of up to one position to the left or right. Alteration of charge values was disabled. The

adduct transition graph had 104 nodes, 315 edges, inducing 2 590 constraints.

CPU time from raw data to features took 15 s, subsequent decharging one second (2.26

GHz Core2Duo). Our algorithm found 68 distinct masses (clusters). The two largest-sized

clusters represent the hemoglobin subunits – cluster A for HBA1 (size 14 ranging from charge

8-18 with 11 proton-only features, 2 potassium and 1 sodium adducted features, average mea-

sured monoisotopic mass was 15 116.92939 Da, molecular mass calculated from the sequence was

15 116.88510 Da), cluster B for HBB (size 14 ranging from charge 9-17 with 10 proton-only fea-

tures, charge 11 occurring split into two proton-only features with different RT, 2 sodium and

potassium adducted features each, average measured monoisotopic mass was 15 857.29186 Da,

molecular mass calculated from the sequence was 15 857.24969 Da).

As Xtract reports several masses (one per scan) for each hemoglobin subunit, we extracted

the relevant regions to obtain an overall of ten molecular mass values for each subunit. By

averaging these ten mass estimates we obtained masses 15 116.95 and 15 857.31 Da for HBA1

and HBB, respectively. Figure 4.9 and 4.10 show the relative mass deviations for both methods,

the horizontal lines indicating the relative mass deviation from the theoretical mass for our

approach and Xtract. Note that our approach is closer to the predicted theoretical mass (at

0 ppm) for both subunits. However, the instrument seems not to be optimally calibrated as

both methods’ standard deviation (0.4987 and 0.3858 ppm for our method with 2 and 1 outliers

removed, 0.3510 and 0.8808 ppm for Xtract with 1 and 0 outliers removed) is lower than the

gap to the theoretical mass of the protein. Outliers were removed using z-scores and a p-value

threshold of 0.95. Hence, our decharging algorithm can also be utilized to recalibrate the mass

spectrometer with signals of multiply charged ion species. Our approach can additionally group

all sodium and potassium peaks into the main cluster (if desired by the user), which further

disentangles the results. Furthermore, our approach also works with single spectra, allowing us

to estimate the mass error from multiple charges – an information not provided by Xtract.

Wheat Extract Protein Mass

Mohr et al. [134] analyzed a wheat extract containing intact protein masses using an LTQ

Orbitrap XL mass spectrometer. In order to obtain protein masses, the data was analyzed using

the Xtract tool supplied with the instrument software and ProMass [134]. In brief, multiple scans

of interesting regions as determined by manual data inspection where summed to increase the
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Figure 4.9: Deviation of observed masses for HBA1 (in ppm). Circles represent charged features

clustered into A, crosses are the mass estimate errors by Xtract from the ten scans. Dashed

(our) and dotted (Xtract) lines are the mean values.

Figure 4.10: Deviation of observed masses for HBB (in ppm). Circles represent charged features

clustered into B, crosses are the mass estimate errors by Xtract from the ten scans. Dashed

(our) and dotted (Xtract) lines are the mean values.
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Figure 4.11: Illustration of decharging workflow for highly charged protein data with unresolv-

able isotope patterns. The resulting protein list was compared to the manually annotated list

by matching protein masses and retention times.

signal-to-noise ratio and submitted to Xtract and ProMass. According to the authors, ProMass

was used for summed spectra where no isotopically resolved signals were available (thus inferring

protein mass by charge ladders only). Xtract uses the distance between isotopically resolved

peaks to infer charge. Subsequently an averagine model is fitted to the isotope pattern to infer

the average mass. Decharged spectra where then manually annotated to obtain protein masses.

The supplemental material if [134] contains a table listing 53 protein masses.

To show the automation and high-throughput capabilities of our approach, we designed a

robust and widely applicable pipeline to automatically extract protein masses from the whole

raw LC-MS map. As the data set contains large proteins which cannot be isotopically resolved,

we replace the feature finding step with data smoothing, peak picking and subsequent mass trace

finding, using the respective TOPP tools (see Figure 4.11). This yields features that represent

the protein in a certain (but unknown) charge state and its average mass.

Processing time for the complete pipeline, starting from raw data (≈4.7 GiB mzML file) to

a list of protein masses, was about 20 min on an Intel Xeon server using 8 GB of RAM at most.

Decharging itself takes only a few seconds.

Our algorithm yields 126 protein masses (after removing spurious hits with less than three

charge variants). We obtain a charge distribution as shown in Figure 4.12 with charges ranging

from 11 to 59.

Figure 4.13 shows the most dense section of the smoothed and peak-picked raw data, super-

imposed with the charge-annotated features. Features in red were assigned to a protein mass

and thus have a charge. Features in blue could not be annotated since no charge ladder was

identified.

To compare the results, we matched the manually created list of 53 protein masses with

associated retention times from Mohr et al. [134] using the FeatureLinkerUnlabeled TOPP tool,

allowing for mass tolerances up to 5 Da and RT shifts of 60 s. We were able to recover 30

proteins (57%) of the manually curated list. 23 protein masses were not found which were

manually annotated. Another 96 proteins were uniquely found by our approach.

In order to explain the missing matches, we manually compared the two protein mass lists.
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Figure 4.12: Charge distribution for all protein charge variants of the gliadin extract sample.

For the protein with manually annotated mass 31 543.54 Da at 38.03-38.63 min, we found a close

match in our list of 31 534.12 Da at 38.45 min. By inspecting the raw data (see Suppl. Mat. of

[134], p.38) we found the true mass to be 31 534.54 Da, which is very close to our result. The

mismatch was caused by a typing error in the manual list of [134].

Two masses in the manually curated list which were apparently computed using ProMass (in-

stead of Xtract) are found at 54 863 Da, 3.88-4.02 min (see p.13, Suppl. Mat.) and 54 977 Da,

4.51-4.68 min (see p.18, Suppl. Mat.). We find close matches at 54 837 Da, 3.96 min and

54 950.55 Da, 4.58 min respectively. In both cases, a mass shift of about 25 Da can be observed,

with the protein annotated by ProMass being heavier. Since we are already computing average

masses, the difference between monoisotopic and average mass cannot serve as an explanation.

When looking at the corresponding spectra computed by Xtract (compare p. 11 versus p. 13 for

the first protein, and p. 15 versus p. 16 for the second), we find the Xtract spectra to agree very

well with our estimated mass. Thus for ProMass spectra, there seems to be a mass calibration

procedure in place, making the protein masses incomparable. This not only prevents us from

finding a match in both cases but also leads to an inconsistent mass list in the Supplemental

Material of [134], since some masses are reported using ProMass and others using Xtract. Since

the sample is of high complexity and the identity of most proteins remains unknown, we cannot

assess if the mass correction of ProMass is meaningful.

To explain the excess of protein masses identified by our algorithm, we tried to find the

masses in the deconvoluted spectra supplied in the Supplemental Material of [134]. Multiple
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Figure 4.13: Dense section of the picked raw data, superimposed with charge-annotated features

(red) and unassigned features (blue).

matches were found, which can be identified from these spectra, but were not mentioned in the

final protein mass table; e.g., on p. 48, a protein of mass 31 112.48 Da was identified, which

our algorithm also found at 31 112.12 Da and RT 2 606.13 s. On the same slide covering 43.18-

44.15 min we found three other masses not mentioned in the table, but matching very well to

entries in our list, namely, mass 30 498.02 Da at 43.27 min (versus 30 499.16 Da), 30 615.08 Da at

43.14 min (versus 30 613.26 Da) and 31 296.43 Da at 43.33 min (versus 31 296.59 Da). Similarly,

this analysis could be done for other retention time windows (data not shown).

4.3.4 Benchmarking Using Simulated Data

In silico data lends itself very well to study algorithm performance under different conditions.

We use a set of proteins with varying complexity, modeling data sets ranging from simple protein

mixtures to complex samples, and apply the decharging algorithm. The feature list which serves

as input for our algorithm depends on a few preprocessing steps, which – if performed carelessly

– will prevent our algorithm from fully reconstructing the complete protein list (false negatives)

or even lead to wrong results (false positives). Thus, we vary the degree of missing data and

study its effect on precision and recall. This data reduction step can be done in multiple ways.

We argue that the most useful approach is random sampling from all features. In real data

sets, some charge ladders are affected more by undersampling than others, especially when peak
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Figure 4.14: Heapmap displaying sample complexity and missing data rate for recall (left) and

precision (right) for simulated protein charge ladders.

intensity is low. Thus, real data is always a mixture of varying degrees of missing data for each

protein. However, this mixture effect strongly depends on the data set and is hard to quantify.

The result is much more interpretable if we create a homogeneous data set.

We model a set of sample complexities, ranging from only a few proteins (10 proteins) to a

complex mixture (640 proteins) randomly sampled from the human proteome for proteins with

a weight up to 100 000 Da.

We report recall (see Equation 3.7) and precision (see Equation 3.8) as we only have true

positives, false positives and false negatives available. The number of true negatives is infinite.

We count true positives as entities which have the correct retention time and mass as well

as internally fully correct charge assignments. The charge ladder is not required to be com-

plete. False positives are proteins not found in the simulated ground truth (by a small RT and

m/z delta) but reported by the decharging algorithm. False negatives are proteins which were

expected but not reported by our algorithm (e.g., due to missing data).

Figure 4.14 summarizes the performance for varying sample complexity and missing data.

The data was averaged over multiple runs to smooth out outliers, especially in low complexity

mixtures. Not surprisingly, increasing complexity and the amount of missing data reduce the

precision and recall of our algorithm. Note that neither recall nor precision dropped below

75%. Recall shows a critical point at a thinning factor of about 0.4 where suddenly many

protein masses cannot be reconstructed. This happens when gaps in the charge ladders become

too big such that the algorithm cannot bridge them any longer. The largest bridgeable gap

in this experiment was two (which is the default), i.e., two intermediate charges are allowed

to be missing. Recall is not significantly affected by the number of proteins. Precision is

dependent on protein count and thinning factor simultaneously as precision improves when

protein count declines and there is less missing data. Intuitively, thinning out data might split

charge ladders into multiple sub ladders which cannot be bridged. As the scoring function

favors easy explanations over more complicated ones, singletons from one charge ladder might

be clustered with singletons from others when the required adduct annotation is simpler, e.g., a

charge difference of one instead of five.

Overall, we find the algorithm to be robust up to and even beyond 50% missing data and

capable of handling very complex protein mixtures.
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4.4 Discussion

We demonstrated that decharging is useful for many applications in quantitative proteomics.

The algorithm is not restricted to a specific instrument or resolution, and although it is intended

for ESI data, it should also be applicable to MALDI data when multiply charged ions are

observed (e.g., for whole protein measurements [30]). The algorithm was optimized by splitting

the ILP into subproblems, which can be solved more efficiently by the solver, but also lend

themselves to parallel processing. Both measures reduce running time significantly such that

for a complex data set with adducts, the runtime is only a few minutes. Without adducts, the

solution is usually obtained within seconds.

Decharging was able to improve mass precision on the SPC data set from 1.044 ppm to

0.527 ppm, as verified using MS2 identifications. On labeled data, the additional information

of charge ladders was used to resolve ambiguous pairs as well as to infer more pairs. In top

down mass spectrometry, decharging was found to be superior to the Xtract software on the

hemoglobin data set. The protein mass estimated by our software was closer to the theoretical

mass for both subunits (HBA1 and HBB). Furthermore, in case of the gliadin data set, we

showed that manual annotation is not only cumbersome and time-consuming, but also prone to

misannotation. Many protein masses which are readily available from the data were not added

to the manual protein list. This is also reflected by the fact that automatic annotation detected

twice as many protein masses. A few protein masses were missed by our automatic annotation,

usually because the mass traces were not detected due to irregular signal of the smoothed data,

and were thus lost for charge estimation. Using in silico data, we showed that decharging is

robust to missing features and can handle very complex samples. Recall was found be sensitive

to missing features, whereas precision is affected by the number of proteins in the sample and

the amount of missing features. Even in the worst case scenario with 70% missing features and

the most complex mixture neither recall nor precision dropped below 75%.

A desirable extension of our approach is the estimation of scoring function parameters from

the data. Also, missing features could be alleviated by a hypothesis-driven feature finding

heuristic which searches for a strong signal (e.g., using signal-to-noise ratio) at putative feature

positions to infer missing features or resolve ambiguous explanations.



Chapter 5

iTRAQ Biomarker Discovery

Synopsis: iTRAQ data from multiple studies within a large project is evaluated. We devise a

new approach to isotope correction, propose an experimental design, introduce new measures of

iTRAQ data quality and confirm known properties of iTRAQ data.
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5.1 Introduction

5.1.1 Predict-IV Project

This chapter describes our biomarker discovery approach using multiple LC-MS iTRAQ experi-

ments in the context of the Predict-IV (Predict-In Vitro) project, which aims at characterizing

the dynamics and kinetics of cellular responses to toxic effects in vitro. The project is titled

Profiling the toxicity of new drugs: a non animal-based approach integrating toxicodynamics

and biokinetics and is funded by the European Union (EU) as part of the Seventh Framework

Programme (FP7) and involves twenty international partners.

Undesired toxic effects of drugs are observed frequently in specific organs, namely liver and

kidney, leading to early termination of compounds and their derivatives during drug develop-

ment. Furthermore, the neuronal system is a frequent target of drug side effects. Thus, model

systems for kidney, liver and the central nervous system (CNS) are used in this project. The

project aims for an integrated test system/test strategy with specific and early markers to pre-

dict toxicity based on in vitro data before entering in vivo testing. The dynamics and kinetics of

cellular responses to toxic effects in vitro, specifically for kidney, liver and CNS were examined.

Improved dynamic and kinetic models for in vitro systems are expected to be delivered. The in

vitro system model is used as a predictor for in vivo systems. This is a common and effective

approach as in vitro systems based on human tissue might hold more predictive power for phar-

maceutical safety evaluation than animal-based models. Also sample collection from animals is

avoided (animal testing, ethic commission approvals). However, the approach has drawbacks

as usually only a single (cancer) cell line is optimized, which might not be representative of a

population of healthy cells. In addition the role of the microenvironment is neglected [51]. The

full list of 29 final compounds for each subgroup of toxicity (hepatotoxic, nephrotoxic and neu-

rotoxic) is currently restricted to project members only. Most compounds induce organ-specific

toxicity. Cyclosporin A was chosen as a control compound, as it affects all three systems.

Our focus is on proteomics experimental design and identification of potential biomarkers

specific for the induced toxic effect, including feature identification and differential display.

A biomarker can either be a single molecule (usually a protein) or a combination of sev-

eral traits. Several classes of biomarkers can be discerned, i.e., diagnostic, prognostic (risk for

a disease, no treatment) and predictive (in response to a treatment) biomarkers. The follow-

ing criteria provide a measure of the performance of a biomarker. (1) high specificity for a

given disease (few false positives); (2) high sensitivity (few false negatives); (3) ease of use; (4)

standardization; and (5) clarity and readability of the results for the clinicians [12].

The aim of this project is the identification of putative biomarkers; thus, exhaustive quanti-

tative protein data needs to be acquired in an untargeted approach. If putative biomarkers are

identified across multiple toxic compounds and cell systems, a targeted follow-up study can be

performed, which, however, is out of the scope of this project.

Multiple studies were conducted within the Predict-IV project. A study is defined as a set of

experiments using exactly one cell system and one toxic compound (in different concentrations).

Multiple biological replicates are usually generated, finally yielding a set of LC-MS data sets.

Parts of this chapter are being prepared for publication [36].

5.1.2 Labeling Preliminaries

In addition to the brief overview in Subsection 2.6.1, we focus on more specific details of iTRAQ

at this point, in order to motivate the analysis procedures described in Section 5.2.
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Figure 5.1: Exemplary iTRAQ signal at MS1 and corresponding MS2 level. a) peptide feature

at the MS1 level with isotopic envelope (blue) and pre-peaks (red) due to isotope impurity of

the iTRAQ 4-plex reagent. b) corresponding MS2 spectrum recorded in HCD mode. The inset

shows the four iTRAQ reporter ions in the 114-117 Th range.

MS1-based labeling techniques (such as SILAC) suffer from signal congestion (the amount of

signal approximately doubles for two-channel labeling) and signal overlap, which lead to biased

quantification results, usually towards higher intensities for heavy labeled peptides. The size of

this effect depends on the mass distance between the labeled channels, peptide mass (as isotope

distributions get wider – see Figure 5.1), and peptide intensity [135].

Isotope widening, i.e., additional isotopic peaks in front of the theoretical monoisotopic peak,

in survey spectra cannot only be observed in MS1 labeling techniques but also in MS2 based

methods like iTRAQ. These additional isotopic peaks are observable in MS1 as isotope impurities

lead to non-isobaric reagents, skewing the isotope distribution and causing isotope peaks below

the theoretical monoisotopic peak of the peptide. Empirically, we observed that about 85% of all

identified features have at least one pre-peak (data not shown). Not surprisingly, the intensity

of a pre-peak is correlated with the intensity of the feature (correlation of ≈0.68 – data not

shown).

In general, labeling techniques – independent of their MS level – tend to underestimate

the true ratio. This effect has been described in the literature and is also true for iTRAQ in

particular [83, 12]. Usually, this effect is attributed to background signal, especially in highly

complex samples. See Subsection 5.3.5 for results on our iTRAQ data. The effect is more

pronounced when the isolation window is widened. Thus, a tradeoff between signal intensity

and signal contamination is required. Karp et al. [136] suggested to globally correct for ratio

underestimation by a linear factor. Bantscheff et al. [83] showed that using wide isolation

windows (2-5 Th) results in increased background signal from coeluting peptides, thus biasing

the iTRAQ reporter ion counts – usually towards a ratio of one in a complex mixture when we

assume that most peptides are not differentially regulated. To minimize this effect, the isolation

window should be narrowed as much as possible, which comes at the cost of sensitivity as the

reporter ion intensity will decrease due to fewer reporter fragments.
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iTRAQ (and other MS2 based techniques) usually require isotope correction of MS2 reporter

ions as the labeling reagents are not 100% isotopically clean. Using a correction matrix, isotope

impurity is removed via inverse matrix multiplication or, in our case, via non-negative least

squares (see Subsection 5.2.4). Isotope impurity also affects the MS1 level; signal congestion is

much less pronounced than in MS1 multiplex techniques, though.

Multi-experiment designs have difficulties with missing values as a missing MS2 scan cannot

be reconstructed from the data; for purely MS1-based methods, however, this is feasible. To

minimize this problem, extensive fragmentation with long gradients or inclusion lists can be

used. The latter require stable column conditions to allow for reproducible retention times.

5.1.3 Experimental Design

The following subsection closely follows and subsumes the work of Oberg and Vitek [137].

An experimental design describes the protocol that selects and allocates individuals to treat-

ment/disease groups and arranges the experimental setup in space and time, e.g., allocation of

iTRAQ channels, number of biological replicates, inference across multiple samples when m > n

(m = |samples|, n = |channels|) and has been researched extensively (e.g., [137]). Limited re-

sources of laboratories for sample preparation, instrument acquisition time and material cost

must be taken into consideration as well.

Three important aspects need to be considered, namely replication, randomization and block-

ing. Replication is the use of (biological) replicates, which allows to assess if an observation is

purely by chance and can help to determine if a difference is significant. See Figure 5.2 for an

example.

Figure 5.2: Importance of replication exemplified by experiments yielding identical mean ex-

pression values for each group. a) Experimental design without replication. It is impossible

to determine if the difference is significant. b) Replication with small intra-group variation,

indicating group difference. c) Replication with large intra-group variation, indicating no group

difference. This figure is inspired by Fig. 2 in Oberg and Vitek [137].
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What fold change is detectable is dependent on multiple factors, such as biological variation,

number of replicates and experimental conditions. Thus, no general answer on the number

of required biological replicates can be given. According to Noirel et al. [87], the fraction of

published studies on iTRAQ suggests that using replicates is becoming more and more popular

since replication is required for sound statistical conclusions.

Randomization helps avoid undesirable artifacts, e.g., instrument drift in time. This bias

occurs if all samples from treatment control are prepared or measured prior to samples from the

treatment group. Additional bias might occur if the instrument was cleaned or the LC column

exchanged after one group was measured. A highly cited article written by Petricoin et al. [138],

where experimental artifacts led to wrong scientific conclusions, prompted scientific concerns

[139]. In general this is known as confounding effect: the observed difference between groups is

(in parts) attributable to experimental conditions or other factors, rather than biological state.

Complete randomization aims to remove this bias. However, especially for a small number

of measurements, random sampling of the order of acquisition can also lead to unbalanced

allocations, e.g., most control samples before treatment samples. In this case a manual allocation

schema can be devised.

Blocking refers to measuring a specific subset of samples concurrently (or at least consecu-

tively in label-free settings). Such a subset constitutes a block. The underlying assumption is

that differences between samples can be assessed more effectively within blocks than between

blocks. As one is usually interested in differences between control and treatment groups, these

samples are blocked rather than blocking replicates of a single group. The size of the block is

determined by the labeling technique, e.g., iTRAQ allows for block sizes up to four for 4-plex

kits and eight for 8-plex kits. In a complete block design, every treatment appears in each block

(i.e., one LC-MS run). If the number of channels is larger than the block size, only a subset

can be allocated, leading to an incomplete block design. Alternatively, a reference design can

be used, i.e., a common (pooled) reference is assigned to one channel in every block, which

can be used as reference for intra-block normalization and comparison between blocks. A loop

design is similar to a reference design, but groups are systematically shuffled through each block.

Blocking and randomization can be combined into a block-randomized design where a member

of each treatment group is part of one block and the channels are allocated randomly in labeled

scenarios, or the order of acquisition within the block is randomized for label-free scenarios. A

randomized complete block design is the most robust against run failures and requires the small-

est number of runs, in contrast to a reference design where the reference channel is measured

multiple times, or the loop design where a run failure destroys the link between the preceding

and following block.

Of particular importance is a balanced design, i.e., every treatment should appear equally often,

and within a block, each two treatments should appear about the same number of times [140,

137].

Pooling is an attractive strategy to reduce the number of samples and thus the number of

runs, but has severe drawbacks. If all samples from one group are pooled, biological variability

cannot be assessed, hence determining a statistical difference is impossible. Furthermore, pooling

is particularly vulnerable to contaminated/outlier samples as the pool will be affected too.

However, in a reference design a pool might be useful as it allows to collect enough sample by

mixing and is a stable reference which contains all proteins from all groups, thus circumventing

the problem of infinite ratios, i.e., if a protein is present in a treatment sample but not in the

reference, the log ratio will not be computable and usually be lost in most software solutions.
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5.1.4 Existing Software for iTRAQ Data Analysis

In order to be suitable for our purposes, an analysis tool needs to provide multiple features – most

importantly and integrated analysis of multiple iTRAQ experiments which follow a designated

experimental design. Furthermore, it must be able to deal with centroided high-resolution data

from an LTQ Orbitrap XL instrument. Obtaining raw data from the instrument would be a

major bottleneck for file transfer and storage as data generation and data analysis sites are

located in different countries.

Existing software solutions usually provide methods for the analysis of a single experiment

only. The most common approach for the analysis of iTRAQ data is to force a design that uses

at most four (or in some cases up to eight) conditions and replicates, which avoids the need

for combining multiple iTRAQ experiments [141], but usually limits the answers that can be

given. The experimental design described above (Subsection 5.2.1) necessitates the combination

of technical and, optionally, biological replicates. The most popular tools are described below.

i-Tracker [28] requires raw, i.e., uncentroided data since reporter ion intensity is computed

using the trapezoid method and is limited to peptide level quantification; no protein level anal-

ysis is provided.

iQuantitator [142] is based on a Monte-Carlo-Markov-Chain approach and allows for almost

arbitrary experimental designs. Accordingly, it is theoretically applicable to the Predict-IV

design. The software is freely available for download and runs on Linux OS. Unfortunately,

beyond a few experiments, runtime and memory requirements become unfeasible. For three

experiments, the computation was stopped after 24 hours while using 12 GB of RAM. A minor

problem is that isotope correction is assumed to be already complete.

Multi-Q [143] only supports Mascot search results, or PeptideProphet/ProteinProphet re-

sults, which complicates the use of multiple search engines. During our tests, search results

from Mascot 2.2.4 and Mascot 2.3 yielded a fatal exception, probably because the tools’ latest

version from 2008 does not support the format. Also, the isotope correction matrix described

in the paper (see Eq. 1 therein) seems to promote false diagonal values. Diagonal values should

be computed as 1−
∑

p∈{−2,−1,+1,+2} kch,p (see Subsection 5.2.4 for details) instead of just set-

ting the diagonal to one. If isotope correction is implemented as described, the results will be

incorrect.

ProteomeDiscoverer, the native solution provided by the instrument vendor for Thermo in-

struments, cannot combine runs and is only commercially available. Furthermore, it suffers from

wrong isotope correction, as explained in Subsection 5.2.4.

An analysis of variance (ANOVA) approach described in [140] is computationally infeasible

for a study of this size, and even the approach described in the paper requires the stage-wise

fitting of parameters, which somewhat offsets the advantage of ANOVA to simultaneously fit

all model parameters. ANOVA models cannot deal with data heteroscedasticity, i.e., noise is

essentially multiplicative and varies with signal intensity. Additionally, the software is based on

the commercial SAS package and not readily available.

The isobar package [144] accepts input as Mascot XML file, mzIdentML, tab-separated
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Figure 5.3: Differentiation and treatment scheme for cells from IMU studies. Treatment is either

low dose, high dose or none (as control).

formats or directly via an R interface, permitting easy integration into an existing pipeline.

isobar also features a flexible R interface, noise models to account for data heteroscedasticity, and

statistically sound significance estimation for protein over- or underexpression, circumventing

ad hoc thresholds for fold changes.

5.2 Methods

The amount of data expected during the course of the project necessitates the deployment of

an efficient, adaptable and fast analysis pipeline. We thus decided to use the capabilities of

OpenMS/TOPP/TOPPAS to build a custom iTRAQ analysis pipeline, covering identification

and quantification, coupled with statistical analysis in R [145], an open source statistical software

package.

Here, we will describe our experimental design and the analysis pipeline. The latter fea-

tures multiple peptide identification engines, isotope correction via non-negative least squares,

exclusion lists, and isobar for the estimation of protein fold changes and p-values to determine

significant protein over- or underexpression.

5.2.1 Experimental Design for Predict-IV

Within the Predict-IV project it was decided that for all cell systems to be analyzed by pro-

teomics, three dosage groups are collected. A control group, not treated with a toxic compound;

a low dose group, receiving a mild dose; and a high dose group. The dose depends on the cell sys-

tem and toxic compound and is determined separately for each. To observe a time effect, three

harvesting points were agreed on, namely days one, three and fourteen after daily treatment

with the respective toxin. See Figure 5.3 for an overview of cell differentiation and harvesting

times for each dose and biological replicate cell sample.

Thus, in combination, this results in 3 × 3 = 9 groups, and therefore, a block size of nine

would be desirable if all conditions were to be compared to every other. Unfortunately, iTRAQ

does not offer blocks beyond four, or eight for the 8-plex kit. The latter is reported to yield

similarly stable results as the 4-plex version with the added advantage of larger block size [146].

However, the probability of an experiment failure due to contaminated sample or experimental

error increases when eight channels are used instead of four.
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The number of biological replicates is bounded by laboratory capacity. For the studies at

hand, three replicates are available. Enough material was delivered to allow for another three

technical replicates.

As the number of groups (nine) exceeds the block size of four, we decided to block by

concentration only, i.e., control, low dose, high dose. This allows to easily track changes in dose

response but makes analysis of time effects hard as time is not blocked. Blocking of time would

have resulted in one third of the experiments only containing control samples (i.e., day one,

three and 14 samples from control in one block), which can at best answer how control samples

evolve in time; this information is of limited interest, though. What is more, cells were grown for

several weeks before being allocated to control or treatment groups, thus the 14 day harvesting

period should not result in a change of protein expression in control samples. Without biological

or technical replicates, this results in three LC-MS experiments, one for each harvest time point.

Since three biological replicates are available per sample, they are distributed randomly across

different blocks, resulting in nine LC-MS experiments. To increase the coverage of the proteome

under investigation, three “technical” replicates were run for each iTRAQ mix. For details, see

Subsection 5.2.3.

As one channel is still unallocated, we decided to add a pooled reference as a fallback option

for later analysis of time series in addition to concentration series. The pool is created from

the 27 real samples (three timepoints, three dosages, three biological replicates) to ensure that

it contains all proteins and infinite ratios can be avoided. The pooled sample will always be

assigned to channel 117 as the iTRAQ labeling procedure is another source of variation, and

using the exact same sample avoids unwanted side effects and decreases laboratory overhead.

For channels 114 to 116, our design incorporates random channel allocation, i.e., random

assignment of samples to iTRAQ channels and thus tags, as a safety measure. However, re-

cent literature indicates that the tag effect is negligible and the direction of the effect is not

reproducible [136, 147, 148]. Thus a tag effect needs not be accounted for during data analysis.

An illustration of the design can be found in Figure 5.4.

5.2.2 Cell Growth and Data Acquisition

All cell cultures (human and mouse) were grown under control (C), low dose (L), and/or high

dose (H) conditions. One study (URO001) additionally used hypoxia (h) conditions (low oxygen)

to simulate complications associated with pre-damaged and compromised tissue. Cell samples

were analyzed by partners in Salzburg using an LTQ Orbitrap XL instrument operated in par-

allel mode. Survey MS scans were acquired in the Orbitrap between 450 and 2 000m/z at a

resolution of 60 000. CID spectra were acquired using the LTQ for identification, and corre-

sponding HCD spectra with the same precursor were acquired in the Orbitrap for identification

and quantification via iTRAQ. Samples were analyzed in triplicates in which peptides identi-

fied in a previous run were excluded from MS2 triggering using the exclusion list option in the

instrument software.

The raw data files were transferred from Salzburg to Berlin via file transfer protocol (FTP)

and fed into our analysis pipeline as described in Section 5.2.3.

5.2.3 Analysis Pipeline

We will now describe the workflow used to convert the raw mzML files from the mass spectrom-

eter to Excel sheets containing protein names, expression values for conditions, and significance

estimates. An identification/quantification workflow was implemented in OpenMS/TOPPAS,
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Figure 5.4: Experimental design for the analysis of 27 samples using iTRAQ. a) For each analyzed

compound, nine conditions comprising three dosages (control, low and high dosage) and three

time points are compared. For each condition, three biological replicates are produced, resulting

in 27 samples per compound. The proteomes of these samples are analyzed in nine 4-plex iTRAQ

experiments as listed in (b). A pool of all 27 samples (P27) is used as reference and ensures

high comparability between ratios across runs.

statistical analysis was done using the isobar package [144] and custom R code. In short, quan-

tification is based on iTRAQ reporter ions extracted from HCD spectra. Reporter intensities

are isotope-corrected using a non-negative least squares procedure. Peptide identification uses

separate searches for CID and HCD spectra on multiple search engines (X!Tandem, OMSSA,

Mascot) and subsequent ConsensusID [82] scoring with FDR filtering at 5%, using a decoy

database approach. HCD and CID spectra are searched in separate runs to allow for optimized

search parameters in terms of mass tolerances, for HCD spectra are acquired in the Orbitrap

with high mass accuracy whereas CID spectra are acquired in the IonTrap at low accuracy. Split

searching reduces false positive hits in HCD spectra due to more restrictive mass tolerances, thus

increasing the number of identifications after FDR filtering (data not shown). However, too nar-

row precursor tolerances will lead to an increased FDR as the reliability of the scoring is reduced

due to fewer candidates [149, 150].

We use UniProtKB [151] as database because it is actively maintained and provides stable

identifiers [152]. Depending on the cell type, the corresponding species-specific database is used

and concatenated with the common Repository of Adventitious Proteins (cRAP)1 to ensure

common contaminant peptides are identified, thereby reducing false positives. To control the

false positive rate, we employ a decoy database which is created by reversing each sequence of

the above database. The search is done with target and decoy database concatenated.

Channel normalization is based on median-of-pairs normalization. Protein ratios are com-

puted from unique peptides after outlier elimination using a weighted average based on peptide

noise level. Using only unique peptides, i.e., peptides matching only a single protein, will avoid

skewed results from (homologous) proteins. Here, uniqueness is defined in the realm of the

database, i.e., the whole known proteome of the respective species (human or mouse), in ad-

1http://www.thegpm.org/crap/index.html

http://www.thegpm.org/crap/index.html
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Figure 5.5: TOPPAS workflow to process raw mzML files as acquired by the instrument, result-

ing in Excel spreadsheets containing lists of identified and quantified proteins with significance

values attached. Entrez gene IDs are queried via BioMart based on protein identifiers.

dition to common contaminants (see above). Significantly over-/underexpressed proteins are

reported using a p-value threshold of 0.05.

Entrez gene IDs are queried via a BioMart R package [153] based on protein identifiers in

order to ease downstream analysis for transcriptomics and proteomics data integration.

The workflow (see Figure 5.5) was modeled in TOPPAS and is executed with all 27 input

files from one study.

Labeling Efficiency

MS2 spectra without iTRAQ reporter ions cannot contribute to the final protein ratio compu-

tation. Those spectra are thus lost for quantification, even if they can be identified. Missing

reporter ions can have multiple causes, e.g., the amount of sample was not sufficient, wrong

precursor selection (e.g., noise peak), failed iTRAQ labeling, etc.

Therefore, labeling efficiency, i.e., the relative fraction of iTRAQ spectra in which a reporter

ion signal is present in any channel, can be used as a criterion for data quality.

If labeling efficiency is to be determined for a specific channel chx, the presence of reporter

ion signals should be evaluated after isotope correction, since isotope impurities can lead to

the presence of noise signals in neighboring channels. When truly no peptide is present in

channel chx, this noise must be accounted for, as chx would be counted as occupied otherwise.

In comparison to a complete identification run (usually with multiple search engines), labeling

efficiency can be computed very quickly because the algorithm solely needs to quantify the

iTRAQ signals.
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Exclusion List

With the current generation of instruments for LC-MS/MS employed in shotgun proteomics,

not all coeluting peptides at a given retention time are selected for MS2 during data-dependent

acquisition (DDA) as spectral acquisition is too slow and not sensitive enough for very low

abundant peptide species [154].

This leads to an undersampling problem that includes a random component as technical

replicates are not completely identical in terms of chromatography conditions, amount of sample,

and other confounding factors.

As shown in multiple publications, pure technical replicates lack reproducibility to varying

degrees, depending on the platform and sample complexity [9] in terms of peptide and protein

coverage as obtained from DDA in MS2. The degree a protein list varies is usually smaller

than the peptide list. Protein list overlap of 70-80% is common [57]. Nevertheless, technical

replicates can be used to increase the protein coverage by relying on semi-random DDA sampling

in high complex samples. However, many peptides, especially the highly abundant ones, are

typically sampled in all replicates, thus wasting acquisition time. Also, FDR on the protein

level will increase since false (random) identifications tend to be unique across runs whereas

true identifications target the same protein in multiple runs [57].

For achieving a wider coverage of the proteome, a common method is to employ exclusion

lists. Peptides identified in previous runs are not considered for acquisition in subsequent runs

under the same technical conditions. As shown by Wang and Li [154], different exclusion strate-

gies are possible. Adding retention time windows, for example, increases the number of identified

proteins.

The Thermo software supports exclusion lists with some restrictions. Precursor positions of

peptides identified in previous runs can be used to generate exclusion windows with a certain

RT range. The m/z position is taken directly from the precursor. We call this single-charge

exclusion.

However, using ESI, one peptide will have multiple charge variants (charge two and three are

the most common), which are likely to be targeted in subsequent runs but will not contribute

to identifying more peptides and proteins. See Figure 5.6 for a distribution of the number of

charges a peptide was observed in, i.e., was identified by MS2. Thus an overhead of up to

≈25% for targeting a charge variant of an already identified peptide can be expected when using

single-charge exclusion. This data was derived from single LC-MS runs without exclusion lists.

Thus, during ESI, no dynamic exclusion of charge variants is performed by the instrument. This

is unfortunate as it leads to overhead, but using multi-charge exclusion (i.e., excluding other

potential charge variants of the observed peptide), it is possible to avoid reacquisition in the

next run. Exclusion of charge variants can unfortunately not be incorporated into the Thermo

solution. We thus devised an OpenMS-based tool called InclusionExclusionListCreator, which

allows to increase coverage by using exclusion lists accounting for charge variants.

For every technical replicate run, exclusion lists derived from all previous runs are computed

and used during acquisition. We use the same identification pipeline that is used for the final

analysis, including multiple search engine identification via ConsensusID [82] and FDR filtering.

This strategy allows for a reacquisition of peptides with marginal scores as well as unidentified

spectra.

The tool was tuned for usage with LTQ Orbitrap devices, which have certain restrictions

on the exclusion data. For example, the exclusion windows are not allowed to overlap in m/z,

and only a certain number of windows are allowed to overlap in RT (over the whole m/z range)
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Figure 5.6: Distributions of the number of charges a peptide was identified in based on MS2

data of IMU006. Multiple empirical distributions are shown, each one from a single LC-MS

experiment where no exclusion list was used.

at any point in time. To resolve this issue, we use a hierachical clustering approach to merge

overlapping windows after generating the exclusion list.

5.2.4 The ITRAQAnalyzer Tool

We implemented a new TOPP tool named ITRAQAnalyzer, which is capable of quantifying

reporter ions in MS2 spectra for 4-plex and 8-plex iTRAQ experiments.

As input, an mzML file must be provided. The output format is the OpenMS format

consensusXML, which can be easily converted into a text file readable by statistics packages

and/or Excel using the TextExporter TOPP tool.

Quantification is achieved by summing ion intensities at the expected reporter positions (e.g.,

114.11123m/z (monoisotopic) for channel 114) while allowing for a user definable mass delta, as

reporter peak position depends on instrument precision and accuracy. Within this m/z interval,

all peak intensities are summed up. Due to the flexible design of TOPP it is also possible to use

a peak picker prior to ITRAQAnalyzer, but it is usually not necessary. Data for Predict-IV is

retrieved from the instrument in centroided format.

ITRAQAnalyzer also supports normalization of each channel by a factor using median of

ratios (see Subsection 5.2.5 for more details).

Isotope Correction via Non-Negative Least Squares

iTRAQ reagents cause the transfer of signal from one channel to neighboring channels on either

side due to reagent impurities affecting the mass of the iTRAQ tag (see Figure 5.1 for an



5.2. METHODS 97

Table 5.1: Default isotope correction table for 4-plex iTRAQ. The values at offset 0 were inferred

by computing 1 −
∑

p∈{−2,−1,+1,+2} kch,p. For simplicity we report values in percent instead of

relative frequencies.

mass offset

channel -2 -1 0 +1 +2

114 0.0 1.0 92.9 5.9 0.2

115 0.0 2.0 92.3 5.6 0.1

116 0.0 3.0 92.4 4.5 0.1

117 0.1 4.0 92.3 3.5 0.1

Table 5.2: Default isotope correction table for 8-plex iTRAQ. The values at offset 0 were inferred

by computing 1 −
∑

p∈{−2,−1,+1,+2} kch,p. For simplicity we report values in percent instead of

relative frequencies.

mass offset

channel -2 -1 0 +1 +2

113 0.00 0.00 92.89 6.89 0.22

114 0.00 0.94 93.00 5.90 0.16

115 0.00 1.88 93.12 4.90 0.10

116 0.00 2.82 93.21 3.90 0.07

117 0.06 3.77 93.29 2.99 0.00

118 0.09 4.71 93.32 1.88 0.00

119 0.14 5.66 93.33 0.87 0.00

121 0.27 7.44 92.11 0.18 0.00

example). A table can be constructed which lists the relative amount of signal that is lost to

the two immediate neighboring channels.

Default isotope correction tables for 4-plex and 8-plex kits are provided but can be changed

by the user. Table 5.1 and 5.2 give an overview of the defaults in ITRAQAnalyzer. kch,p denotes

the relative loss in channel ch to position p, p ∈ {−2,−1,+1,+2}. The 8-plex table was obtained

directly from AB Sciex2. The 4-plex table is taken from the Certificate of Analysis provided

with all 4-plex iTRAQ kits. Both matrices are stable (personal communication with AB Sciex

support); thus, modifying the defaults should not be required.

Isotope impurity will not lead to excessive loss of signal for the respective channel, i.e.,

loss < 8% (see Tables 5.1 and 5.2) but might cause severe signal gain in neighboring channels,

which should be corrected. Table 5.3 provides an example where failure to correct for isotope

impurity results in a peptide ratio of ≈1:24, whereas the true ratio is 1:100. As this can happen

for high reporter ion intensities, no noise model will be able to correct for this. Thus, isotope

correction should always be applied.

Almost all iTRAQ software packages available are capable of isotope impurity correction.

Some ignore the problem and expect isotopically corrected values, e.g., iQuantitator [142]. There

are two solutions for isotope correction we are aware of, which we will describe in the following.

To ease reading, we will use bold letters for vectors, bold capital letters for matrices, and plain

2http://www.absciex.com/Documents/Support/AB SCIEX Question and Answer.xls

http://www.absciex.com/Documents/Support/AB_SCIEX_Question_and_Answer.xls
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Table 5.3: Isotope impurity example resulting in skewed ratios.

channel 115/116

condition 114 115 116 117

real 0.00 100 10 000 0.00 1:100

observed 2 392 9 246 450 1:24

Table 5.4: Construction of the matrix A used for isotope impurity correction where f(ch) =∑
p∈{−2,−1,+1,+2} kch,p.

A =

1− f(114) k115,−1 k116,−2 0

k114,+1 1− f(115) k116,−1 k117,−2
k114,+2 k115,+1 1− f(116) k117,−1

0 k115,+2 k116,+1 1− f(117)

letters for scalars. The solution used by the majority of open source software packages is to

simply solve

Ax = b, (5.1)

where A is an n × n isotope correction matrix, b ∈ Rn is the vector of observed reporter

intensities (also called raw intensity values), and x ∈ Rn is the isotope-corrected solution. We

denote this method as the naive approach.

A can be computed from the isotope impurity table given in the Certificate of Analysis as

provided by the supplier AB Sciex. See Table 5.4 for its construction for 4-plex iTRAQ. The

procedure is similar for the 8-plex case.

As a negative peptide abundance is not possible, negative intensities in x are subsequently set

to zero, i.e., reporters are treated as “not observed” or “ignored”. Software packages which use

this strategy include IsobariQ [155]3, isobar [144]4, and Multi-Q [143]. In Mascot [76], negative

ratios are flagged and not used for quantification.

The second method used by Thermo in the ProteomeDiscover software (version 1.2) yields

rather different results. The algorithm employed is unknown, but we could reproduce consistent

underestimation (about 8%) of reporter intensities when compared to the non-negative least

squares (NNLS) and naive approach across all spectra we examined from one experiment. We

only have Thermo isotope correction data available where NNLS (see below) and naive solution

are identical. See Table 5.5 for an example.

The constant overestimation points to the fact that the algorithm used by Thermo is also

a matrix inversion, as described above, but with different matrix values. We implemented a

proper naive approach using diagonal values of 1 −
∑

p∈{−2,−1,+1,+2} kch,p to reflect the loss of

native ions of channel ch to neighboring channels. If we substitute the diagonal values from the

matrix of the naive approach with entries of 1, the solutions are exactly the same, i.e., the ratio

is one for all channels. Thus we conclude that the Proteome Discoverer software uses a wrong

correction matrix A.

We propose a third method, non-negative least squares (NNLS), to correct for isotope im-

purities. Our approach solves

3Treatment of negative intensities as zero is not explicitly mentioned in the paper [155], but can be found in

the source code (version 1.2) available from http://folk.uio.no/magnusar/isobariq/files/IsobariQ 1.2 source.zip
4Negative intensities are ignored altogether, excluding them from protein ratio computations.

http://folk.uio.no/magnusar/isobariq/files/IsobariQ_1.2_source.zip
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Table 5.5: Thermo isotope correction result of one arbitrary MS2 spectrum compared to the

NNLS/naive solution. The ratios between the Thermo solution and NNLS are stable for all

examined spectra.

channel
intensity

ratio
Thermo NNLS/naive

114 3 253 3 500 1.076751

115 5 456 5 904 1.080432

116 5 854 6 329 1.082083

117 4 292 4 651 1.084052

min ||Ax− b||2, (5.2)

with the constraint x ≥ 0. A and b are the correction matrix and the raw reporter intensities

as in Equation (5.1). If the solution to Equation (5.1) is positive the NNLS solution is identical;

if it yields negative values, the results will differ.

5.2.5 Protein Ratio Computation

Published papers on iTRAQ dedicate different amounts of effort to describing and carrying out

protein ratio computations and a statistical analyses to determine whether the observed changes

are significant. About 50% of all studies choose arbitrary thresholds like 1.5 as fold-change

cutoffs [87]. However, statistical modeling which provides a p-value is a desirable approach [148].

To properly analyze our data, we use a combination of in-house R code and the isobar

package [144], also implemented in R. Even though isobar cannot combine multiple iTRAQ ex-

periments, it offers the most flexible interface with a sound statistical for protein quantification

and significance estimation approach, allows for a very high degree of automation, and is suffi-

ciently fast, i.e., data from 27 experiments can be analyzed in about 15 min after identification

and quantification results from our TOPPAS pipeline are exported in a comma-separated values

(CSV) format readable by R.

Due to sampling bias of highly abundant peptide species in data-dependent LC-MS experi-

ments, simple global normalization is not advisable for MS1-based methods, as pointed out by

Wang et al. [156]. As abundance in MS is cumulative over all channels when using iTRAQ,

global normalization is feasible here. Normalization using matched pairs, which are available

at no cost in iTRAQ-type experiments, is a viable strategy as well. Both yield similar results

(data not shown), and we use median of ratios for normalization across channels to correct for

different amounts of sample loaded between channels. The rationale behind normalization is

the assumption that most proteins in a sample are not regulated [157], and that thus a global

offset should be corrected. The model is fairly simple, yet avoids overfitting of data as we do

not know the extent of proteomic changes induced by the toxic compounds. The laboratory

will usually ensure that protein concentration in each iTRAQ channel is equal by determining

protein concentration using a Bradford assay, but no mixture can be expected to be a precise

1:1 mix [157]. Hence normalization is advisable, in order to remove the systematic shift. We

use all iTRAQ spectra where reporter ions are present, even if no identification is available, as

this increases the number of pairs and allows for a more robust estimation. After normalization,

three technical replicates acquired using exclusion lists (as described in Subsection 5.2.3) are
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combined.

isobar is then used to compute protein ratios for control versus low dose and control versus

high dose conditions for each harvest time point. In detail, protein ratios are computed based

on all unique peptides (as filtered in TOPPAS pipeline) and weighted by signal strength, which

ensures that ratios from high-abundant peptides receive more weight as they are less influenced

by noise. Weighting is not only applied in iTRAQ workflows but also in other labeling techniques

such as SILAC [93]. The following formulas used by isobar to compute protein ratios and p-

values are taken from the paper by Breitwieser et al. [144] and its Supplemental Material with

minor notational modifications. A protein log ratio is computed as

c(pi) =
∑
j∈S′

i

αi,jc(si,j), (5.3)

where c(pi) is the protein log ratio for protein i; S
′

is the set of identified, non-outlier peptide

ratios for protein i; c(si,j) is the log ratio of peptide j belonging to protein i identified from

spectrum s, and αi,j = k ·βi,j with k as scaling factor such that
∑

j αi,j = 1. A peptide log ratio

is computed as

c(si,j) = log(Ich2,i,j/Ich1,i,j). (5.4)

Finally βi,j = 1/V ar(c(si,j)) = 1/(n(log(Ich1,i,j)) + n(log(Ich2,i,j))). ch1 and ch2 represent

the channels, i.e., ch1, ch2 ∈ {114, 115, 116, 117} (for 4-plex iTRAQ). Ich,i,j is the abundance of

a given channel ch, for protein i, with peptide j.

The noise function n() is computed as

n(x) = a+ re−λx, (5.5)

with x as the signal log intensity and a, r, λ as parameters estimated from a dedicated 1:1

experiment (see Subsection 5.2.5). The final noise model is an average over all noise models

from channel pairs deemed of high quality.

Weighting peptide ratios is important since low intensity ratios exhibit more variance due to

noise. High abundance ratios are thus more stable and should receive more weight [136, 144].

Protein ratio variance Var(c(pi)) is determined as

Var(c(pi)) = max(Varestim,i,Varspectrum,i), (5.6)

where

Varestim,i =
1∑
j βi,j

, (5.7)

and

Varspectrum,i =

∑
j βi,j

(
∑

j βi,j)
2 −

∑
j β

2
i,j

∑
j

βi,j(ci,j − c(pi))2. (5.8)

The reason for using max() in (5.6) is that Varestim,i can become very small if a pro-

tein has many peptides; thus, the overall sample variance is taken as fallback (see isobar

paper for details). Varspectrum,i is not computable if only one spectrum is available; thus,

Var′spectrum,i = (Varestim,i)
0.75 is used as heuristics. Likewise, for two spectra, Var′spectrum,i =

max(Varspectrum,i,Varestim,i)
0.75 is used.



5.2. METHODS 101

To determine if a protein is differentially expressed, a Cauchy distribution is fitted to the

global protein ratio distribution. Per default, a 5% cutoff is selected where proteins are deemed

significantly over-/underexpressed. This avoids the need for an arbitrary fold change cutoff as

the model adapts to the data naturally.

Additionally, we augment the results with an Entrez Gene ID mapped from the given Swiss-

Prot identifier to ease linking of transcriptomics results later on. We also determine the average

expression ratio from up to three biological replicate measurements and the number of times

a protein was deemed significantly over-/underexpressed by isobar in each dose versus control

scenario.

Noise Model

In isobar it is possible to compute a noise model which determines the weight of a peptide ratio

when computing the protein ratio. Ideally, the model is derived from a dedicated experiment with

1:1:1:1 channel allocation, measured on the same instrument as the real samples. Alternatively it

is possible to derive a model from study data if channel conditions are similar. All data is isotope-

corrected beforehand. We tested three different models, two from dedicated 1:1 experiments

and one derived from study data, and found them all to be very similar. See Figure 5.7 for a

comparison. They all yield almost exactly the same list of significantly expressed proteins (data

not shown). However, care has to be taken as experimental errors can severely alter the model

– see Figure 5.8 for an example.

In the published version of isobar, normalized reporter intensities are used for creating and

evaluating the noise model. As normalization can alter reporter intensities quite significantly, we

suggest to use raw reporter intensities instead of normalized intensities since noise is a property

of the instrument. We obtained and used a version of isobar which supports this strategy.

5.2.6 Our Contribution

In some areas it might not be explicitly clear where our contribution starts and ends. We use

this section to clarify the details. We conceptualized and implemented the ITRAQAnalyzer tool

as well as the custom R scripts (for combining multiple biological and technical replicates and

wrapping isobar), and extended/rewrote TOPPAS to support the workflow required for this

project (in terms of pipeline design restrictions, parallel execution, “dry run” functionality, and

input recycling). We constructed the analysis pipelines for the exclusion list workflow as well as

the iTRAQ identification and quantification workflow, including parameter tuning and fixing of

contributing TOPP tools (e.g., PeptideIndexer to deal with ambiguous amino acids). We helped

write the InclusionExlcusionListCreator and extended it to support restrictions on exclusion lists

of the Thermo instrument software. We had fruitful discussions with the developers of isobar,

who implemented the modified noise model scheme.
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Figure 5.7: Three noise models from 1:1 noise experiments with cells from NUI002 study (red)

and IMU006 (blue), and real data from IMU006 (green). All channels were used, except 117 in

NUI002.
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Figure 5.8: Noise model averaged over all channels from 1:1 experiment in NUI002 study, with

channel 117 only having 10% intensity of the others.
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Table 5.6: Overview of Predict-IV studies analyzed.

study name species (organ) toxic compound conditionsa spectrab qtfy. proteins

IMU002 human (kidney) cyclosporin A C, L, H 238 818 945

IMU006 human (kidney) cyclosporin A C, L, H 389 614 2 642

IMU007 human (kidney) ifosfamide C, L, H 519 822 3 656

NUI002-A human (kidney) adefovir C, L, H ?c 2 160

NUI002-Hyp-A human (kidney) adefovir C, hC, hL 258 222 2 210

NUI002-Hyp-Z human (kidney) zoledronate C, hC, hL 198 098 1 575

URO001 mouse (brain) cyclosporin A C, L, H 330 321 1 674

aC: control, L: low dose, H: high dose, h: hypoxia
btotal number of MS2 spectra of all 27 LC-MS maps, HCD and CID each contributing 50%
craw data not available

5.3 Results

We analyzed multiple studies from the Predict-IV project and demonstrated properties of iTRAQ

data, some of which have already been shown in the literature and some of which are novel. We

also use this data to show the performance of our algorithmic approach in order to maximize

information gain in terms of quantification and identification results.

An overview of the data analyzed can be found in Table 5.6. Identification and quantification

performance varied greatly between studies. Especially initial studies suffered from errors during

iTRAQ labeling. Also, insufficient amount of protein material occurred sporadically. Both

affected the number of identifiable/quantifiable proteins.

5.3.1 Labeling Efficiency

We evaluated labeling efficiency and compared it to the number of identified peptides. Data

from a preliminary study and third-party iTRAQ data (not shown) suggested that a labeling

efficiency of ≈80% is feasible.

IMU002 yielded a rather small result set due to errors during iTRAQ labeling (see Table 5.6).

Therefore, the entire analysis, starting from cell growth, was repeated as IMU006, yielding about

thrice as many quantifiable proteins.

To elucidate if labeling efficiency can serve as a quality control measure, we compare the

number of identified peptides (after FDR filtering) with labeling efficiency, which can be com-

puted very quickly (see Figure 5.9). In most cases, labeling efficiency is good at ≈80%, and

peptide count only slightly declines for subsequent replicate runs with exclusion list. When

labeling efficiency is very poor (< 50%), no peptides can be identified. This is the case for two

samples from IMU006, where protein content was not sufficient for a third technical replicate

run. Labeling efficiency of IMU002 is poor in general as already reflected by the number of

quantifiable proteins (cf. Table 5.6).

Thus, labeling efficiency can be used to exclude low quality data sets from further time-

consuming analysis. We note that the TIC on the MS level is not indicative of labeling efficiency

(data not shown).
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Figure 5.9: Labeling efficiency vs. the number of identified peptides uniquely matching a single

protein after FDR filtering. Each point represents one LC-MS experiment from either IMU002

(inside dashed rectangle) or IMU006 (outside dashed rectangle).

5.3.2 NNLS Isotope Impurity Correction

We now motivate why NNLS isotope impurity correction is superior to naive inverse matrix

multiplication. Theoretically, the absolute difference between Equation (5.1) and (5.2) can

become arbitrarily large, e.g., consider b = {1e5, 0, 1e3, 0} and A as in Table 5.4. Due to the

nature of A, we get

xnaive = {107 792,−6 932, 1 271,−54}
xNNLS = {107 209, 0, 626, 0}

for the naive and NNLS approach respectively. Note that we report the immediate results

of the inverse matrix multiplication directly. We do not set negative intensities to zero to show

the implicit error made by the naive approach.

The difference becomes more pronounced the more diverse we chose the entries for i114 and

i116. When b1 is large enough, x3 will become zero for NNLS, but will increase for the naive

approach. For example, for b = {1e7, 0, 1e3, 0} we get

xnaive = {10 779 110,−689 658, 19 557,−206}
xNNLS = {10 720 973, 0, 0, 0} .

A realistic input might be b = {100, 0, 1, 0}, giving

xnaive = {108,−7, 1.27,−0.05}
xNNLS = {107, 0, 0.63, 0} .
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Figure 5.10: Relative frequency of HCD MS2 spectra from all data sets from two studies which

have one or more intermediate negative reporter intensities during isotope correction.

As can be seen, in relative terms, the difference for i116 is about 2:1. Ratios between i114
and i116 would thus yield very unstable results. Fortunately, most software packages use outlier

filtering and/or take reporter intensity into account by using a noise model where low intensities

receive a low weight for the protein ratio computation.

Also note that any spectra with just one reporter channel present will result in the naive

approach predicting two non-zero channel intensities. One at the initial non-zero position chx,

the other at the next but one reporter position chy (|chx− chy| = 2), which we call a ghost peak.

NNLS will only report the initial position chx as non-zero. For example, take b = {0, 0, 1 000, 0},
giving

xnaive = {1,−35, 1 087,−53}
xNNLS = {0, 0, 1 079, 0} .

In terms of least squares, our solution is more appropriate and not ad hoc as negative values

need not be set to zero, and it does not suffer from ghost peaks.

The reason for obtaining negative intensities is most likely due to noise affecting the reporter

ions. As noise is not accounted for beforehand, the naive solution can yield negative results.

Figure 5.10 shows the relative frequency of all HCD MS2 spectra which have one or more

intermediate negative intensities when using the naive solution. This statistic is provided by

default by our ITRAQAnalyzer tool for each data set. Studies can be grouped very efficiently

by this measure alone (similarly to labeling efficiency – see above). Thus, for high quality data

as in IMU006, we can expect ≈20% of spectra to show this behavior (except for two outlier data

sets where injection volume was insufficient); for low quality spectra with poor iTRAQ labeling

as in IMU002, the values are between 30-68%.
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Figure 5.11: Median raw reporter abundance of spectra where at least one negative intermediate

reporter abundance occurred vs. all spectra, as observed in one IMU006 data set. Negative

intensities are prevalent in spectra where raw abundance is low.

This suggests that mostly low-abundance spectra and/or badly labeled spectra are affected.

We found that the total ion count (TIC) is not indicative of this behavior, as for both studies

of IMU002 and IMU006, the TICs are comparable. However, there is a big difference (approx-

imately ×5) in the median of reporter ion intensities between the studies, which points to an

error during iTRAQ labeling (data not shown).

For spectra with low reporter counts (e.g., due to bad labeling efficiency or simply low

abundance of the fragmented peptide), one can expect that some channels have zero as raw

intensity. This will inevitably lead to different results of the naive versus NNLS solution as

according to the isotope correction matrix for any channel i with abundance bi > 0, every

neighboring channel should have a positive intensity. If the neighboring channel has raw intensity

zero, inverse matrix multiplication will correct this to a negative value. Figure 5.11 confirms

this hypothesis. Data for other data sets are similar (not shown).

The missing peak (with low expected raw abundance) can be explained by the lack of sen-

sitivity of the instrument or too stringent internal noise filtering algorithms. Given that the

isotope correction table is correct, the solution of NNLS is thus more realistic since it implicitly

takes the missing values into account.

We found unusually high ratios in iTRAQ data, which was corrected using the naive method.

For the 1:1 mix used as part of the noise model estimation, we obtain more extreme ratio

distributions using the naive method than with NNLS. In the naive method, ratios go up to

1:8 914, whereas for NNLS, the maximum ratio is 1:312. For an overview of ratios, see Figure 5.12

with dependence on abundance. The outlier ratios for the naive approach are clearly visible. Due

to the nature of the naive approach, certain ratios occur more frequently, visible as horizontal
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Figure 5.12: Zoomed view of reporter abundance (maximum of two values used for ratio) vs.

the resulting ratio after isotope correction. For convenience, if the ratio x:y is below one, we

show the ratio y:x such that only ratios larger than one are plotted. Left) Correction via naive

method. Right) Correction via NNLS method.

traces in Figure 5.12.

NNLS yields a different solution for about 20-68% of the spectra (see Figure 5.10), depending

on data quality. Differing solutions are predominantly observed in low-intensity spectra. Similar

to labeling efficiency, the fraction of conflicting solutions between naive and NNLS approach can

be used as a data quality criterion, i.e., a spectrum with diverse solutions to isotope correction

is most likely suffering from lack of instrument sensitivity. Fortunately, low intensity reporter

ions are usually weighted down when protein abundance ratios are determined, for example, by

using a noise model. However, to our knowledge, all noise models published to date estimate

their parameters after isotope correction has been performed [158, 159, 144]. If the instrument

was truly sensitive in the low-intensity range, however, we would expect small intensity values

(due to isotope impurities) in the raw data instead of zero intensity values. Reasons for the

absence of the peak are unknown, but as the data was acquired on an Orbitrap, limited trap

capacity or acquisition time could play a role.

To summarize, in contrast to the naive method, NNLS does not create ghost peaks and

reduces the need for outlier detection since no extreme ratios are generated; ratios where zero-

intensities are involved are usually handled by all quantification approaches correctly by being

excluded from further computations.
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Figure 5.13: MA plots of three random experiments from the IMU006 study. The upper plots (a,

c, e) show MA plots of intensity values before normalization, the bottom plots (b, d, f) show the

intensity values after normalization. Channel 114 was used as reference channel. Color-coded

ratios of channel 115 (blue) and channel 116 (red) shown.

5.3.3 Normalization

We used median-of-ratios normalization to correct for global bias in protein amount. To check

the result visually, we use an MA plot (minus versus average plot) where M = log2(Ich1)) −
log2(Ich2) and A = (log2(Ich1))+log2(Ich2))×0.5. For normalized data we expect the majority of

points on the y-axis to be located at 0 (= log(1)) with no noticeable dependency on the intensity

(x-axis). Results for three random experiments from IMU006 are shown in Figure 5.13.

The distribution of normalization factors for IMU006 is shown in Figure 5.14. The most

extreme factor was 2.64, which shows that normalization is absolutely critical to avoid wrong

protein quantification values. Reasons for deviation from the expected 1:1 mixture are manifold

and include pipetting errors, lack of sensitivity of Bradford assay and incomplete labeling.

As a consistency check, we compared the normalization factors of all three technical replicates

as the sample mixture is identical for all three data sets. The normalization factors are almost

identical for all data sets we examined (data not shown).

5.3.4 Proteome Coverage

Exclusion List

We compare the number of proteins identified from a list of FDR-filtered, unique peptides for two

data sets, namely IMU002 and IMU006. The former was acquired using the built-in exclusion

functionality of the Thermo software, the latter using our exclusion list approach as described

in Subsection 5.2.3.
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Figure 5.14: Histogram of normalization factors for IMU006. The most extreme factor is 2.64.

Figure 5.15 shows the gain in the number of identified proteins in the second and third repli-

cate measurement with cumulative exclusion list. The first measurement is always performed in

DDA mode without exclusion. For both methods the gain is about 27% for the second replicate

and 44% for the third, when compared to the first initial measurement. Unfortunately, there is

no common data set where both approaches were applied; thus, it is very hard to assess which

performs better.

With the data at hand, it is possible to compute the gain in the number of proteins for bio-

logical replicates without exclusion lists from the first technical replicates, which were acquired

using pure DDA. Note that the exclusion list approach uses technical replicates and thus has no

biological variation. Using biological replicates without exclusion will most likely trigger DDA

acquisition to focus on different proteins as expression values vary between biological replicates.

Using only the first technical replicate from each of the nine iTRAQ samples, we obtain three

groups with three LC-MS experiments each. As the order of evaluation can play a significant

role, we use the mean of all permutations of the group in order to estimate the gain in protein

numbers. Results are superimposed in Figure 5.15 for studies IMU002 and IMU006. Perfor-

mance of this pure-DDA approach is comparable to both exclusion list approaches. Even though

biological replicates should favor a deeper sampling of the proteome compared to technical repli-

cates, the gain (if any) of exclusion lists is much smaller than expected.

We investigated the overlap of identical peptide identifications between subsequent runs using

exclusion lists. The results are shown in Figure 5.16.

Evidently, masses and retentions times which were present on the exclusion list were never-

theless selected for fragmentation. We conclude that the instrument software was either miscon-

figured during acquisition and/or ignored the provided exclusion list. This phenomenon is not
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Figure 5.15: Gain in protein count for Thermo exclusion lists (without charge exclusion) and

OpenMS exclusion lists (with charge exclusion). Performance without usage of exclusion list

(circles) computes the gain in the number of proteins from three pure-DDA experiments of the

same data set.
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Figure 5.16: Offset in RT of identical peptides between replicate measurements for IMU002

(left) and IMU006 (right) for all replicates. IMU002 uses native Thermo exclusion lists whereas

IMU006 uses our approach. The red boundaries mark the RT window which is (theoretically)

excluded from fragmentation, i.e., in the area between the boundaries no points are expected if

exclusion were perfect. Nevertheless, within the red boundaries multiple traces can be identified

in both studies, each trace representing one replicate experiment.
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Figure 5.17: Euler diagram of the identified protein sets of six Predict-IV studies, each compris-

ing 27 LC-MS experiments. The total number of unique proteins per study is reported in yellow

labels. The size of overlapping regions is proportional to number of proteins common to the

respective studies. The intersection of all studies contains 369 proteins (yellow striped region).

In total, 6 549 unique proteins were identified.

restricted to the exclusion list we generated for IMU006, but is also apparent in IMU002 where

native Thermo exclusion lists were used.

Based on this data we cannot prove our method to be superior as there is no common data

set where precursor exclusion was successfully carried out. However, based on the statistics

shown in Figure 5.6, our approach should reduce redundancy by about 20% compared to the

native approach.

Studywide Overlap

In addition to investigating the gain in protein identifications due to technical/biological repli-

cates, we looked at the overlap of protein lists between studies in order to assess the coverage

of the whole proteome of the respective cell systems. Results from literature indicate a possible

range of approximately 20 300 to approximately 83 800 proteins resembling the human proteome,

but this figure does neither take into account the unknown extent of pseudogenes, nor alternative

splicing or cell type specific expression [160]. The UniProt database has a size of 35 230 proteins

(including predicted).

See Figure 5.17 for an Euler diagram of six human renal proximal tubular cell (RPTEC-

TERT1) studies. The intersection of protein lists from all studies contains 369 proteins, the

union contains 6 549 unique proteins. This number is far below the most modest estimate of

proteome size and illustrates that full proteome coverage is not easily achievable due to various

reasons, such as limited acquisition speed and dynamic range of instruments [161].

The overlap can be expected to further decrease with increasing numbers of studies – a

common property of the stochastic data-dependent acquisition strategy that was used. Once

candidate proteins with expression values indicative of the condition have been identified, tar-

geted proteomics methods, e.g., multiple reaction monitoring (MRM), can be employed for

validation.
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Figure 5.18: Histogram of protein masses from IMU007 study vs. the entire human UniProt

database.

Protein Length Bias

We compared the weight of proteins identified in the IMU007 study to all proteins in the UniProt

database (35 230 proteins). IMU007 was chosen because this study features the highest number

of proteins identified. Results (cf. Figure 5.18) show a small trend towards the identification of

lighter proteins. A preference of heavier proteins cannot be observed (as reported in [148]), but

as our sampling strategy favors highly expressed proteins, the expression pattern is probably

the determining factor for the observed distribution.

5.3.5 Ratio Underestimation

Global ratio underestimation is a known problem in iTRAQ experiments and has been observed

in a number of publications. One possible explanation is contamination of the precursor selection

window [136, 83] due to overlapping MS1 features, which all carry the iTRAQ label [12, 83]. This

assumption is reasonable since a tryptic digest contains a large number of (non-tryptic/partly-

tryptic) peptides, which give rise to a dense proteolytic background [162]. Assuming that most

peptides are not differentially expressed, a tendency towards the null hypothesis (i.e., log ratio

equals zero) will be observed for a differentially expressed peptide in case the MS2 isolation

window includes a non-/adversely-regulated peptide. Thus, the ratio underestimation affects

accuracy since ratios are compressed towards zero (on log scale) [136], even though the overall

trend of over-/underexpression is preserved.

For iTRAQ quantification we acquired HCD spectra using an isolation window of ±1 or

±2 Th (depending on the data set). The Thermo software for Orbitraps will always select the

monoisotopic peak as precursor m/z and extend the isolation window equally to left and right.



5.3. RESULTS 115

Figure 5.19: Density plot of the fraction of intensity that can be explained by peaks that

belong to the precursor ion, compared to the total intensity observed in the precursor isolation

window. Values for each interval represent data from 27 data sets from the IMU006 study. The

rightmost bar (black) represents the set of precursors with no background signal at all (≈5% of

all precursors).

On the left side, however, nothing is to be gained; only the chances of background inclusion

increase.

Within the precursor isolation window (2-4 Th) we computed (on the MS1 level) the fraction

of signal, that can be attributed to the isotope pattern of the identified peptide compared to

the overall signal. Isotope peaks below the monoisotopic peak resulting from iTRAQ impurities

were also included. All other “rogue” peaks with m/z values between isotope peaks (outside

of mass tolerance of 0.02 Da) were classified as background noise. An example can be seen in

Figure 5.1a: peaks colored in blue or red are counted towards the foreground peptide signal,

peaks colored in black are classified as rogue peaks. To our knowledge, this is the first work

using this approach. See Figure 5.19 for the results from IMU006. Data for other studies look

similar (not shown). Thus, only a small subset of precursors (≈5%) have no other background

signal within the precursor window. Most precursors have background noise, contributing about

20% to the total intensity in the isolation window. Very few precursors are more severely

affected. This could explain the slight underestimation of iTRAQ ratios when assuming that

most overlapping background signals are peptides which are not differentially expressed and

carry an iTRAQ label, thus causing a trend towards ratio underestimation.

We also investigated in what way overlap in MS1 influences the probability of a peptide ratio

as being tagged as an outlier during protein quantification. We found that outliers do not show

a different overlap behavior from non-outliers (see Figure 5.20). It is important to note here
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Figure 5.20: MS signal purity in each abundance bucket for non-outlier ratios (blue) and outlier

ratios (red). No dependency of intensity on overlap is present for outliers.

that we used the reporter ion signal as a reference for abundance. Karp et al. [136] found that

fragmentation efficiency of the iTRAQ tag is peptide-dependent by looking at the 145 Da peak

in MS2 for different peptides and comparing it to the reporter peak intensity. Thus, reporter

ion abundance does not necessarily correlate with feature abundance. This is also backed by

our data (not shown).

Finally, we looked at the distribution of outlier peptides (as tagged by isobar) depending on

their MS2 reporter abundance. Outliers are predominant for low abundance reporters. This is

not surprising as ratios of low reporter ions are less stable (see Figure 5.21).

5.3.6 Detection of Potential Biomarkers

For a powerful biomarker analysis, proteome coverage should be as high as possible while es-

pecially considering the low intensity regions since current results indicate that established

biomarkers are usually in the low abundance domain [15]. Our analysis of proteome coverage

(see Subsection 5.3.4) indicated that only a rather small subset of the proteome was covered,

most likely biased towards more high abundance proteins, as DDA (with exclusion lists) was

used, where preferentially highly abundant precursors are selected for fragmentation. For ex-

ploratory studies where the goal is to find a list of potential biomarkers, the field currently

lacks a more powerful alternative which is feasible for our purposes in terms of time constraints

and proteome coverage [163]. However, the approach could be modified to achieve even higher
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Figure 5.21: Relative fraction of outliers per reporter ion abundance bucket in IMU006. Outliers

appear more often in spectra with low iTRAQ reporter abundance.
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Table 5.7: Number of proteins classified as significantly expressed per study.

study # significant proteins

IMU002 20

IMU006 218

IMU007 112

NUI002-Adefovir 164

NUI002-Hyp-06ADEFVR 156

NUI002-Hyp-09ZOLACD 114

URO001 128

proteome coverage, e.g., by using extensive prefractionation at the cost of acquisition and anal-

ysis time, and/or using the latest instrument generation which allows for acquisition of more

precursor ions.

Biologically interpreted and confirmed results are not readily available for all but one study.

For IMU006, extensive data analysis and interpretation is currently carried out and prepared

for publication in Wilmes et al. [36]. In brief, IMU006 investigates the effect of the immunosup-

pressive compound cyclosporin A (CsA) on the proteome, transcriptome and metabolome level.

CsA at high dosage (15µM) caused significant alterations on all omics platforms. The protein

ubiquitination pathway and Nrf2-mediated oxidative stress response were significantly altered

in proteomics and transcriptomics analysis, thus supporting each other. Results were validated

using western blots. At low dosage (5µM), no major cellular perturbations are observed. A

more detailed evaluation will be reported elsewhere [36].

As one of the main goals of Predict-IV is to find common markers of toxicity across com-

pounds and cell systems, we will now report on the results of an integrated analysis using all

available proteomics data.

Comparative Approach

Table 5.7 provides an overview of the number of proteins classified as significantly expressed per

study. Our goal is to find candidate proteins which are consistently over- or underexpressed in

all studies and can be used as predictive markers for toxicity.

We compared protein expression ratios for control versus high dose samples from day 14 of

IMU002 with the values from IMU006, which is a repetition of IMU002. Results are shown in

Figure 5.22. The Pearson correlation of all common protein log ratios is 0.69 and rises to 0.77 for

proteins which have been deemed significantly expressed in either study. As data from IMU002

was confirmed to be of low quality in terms of proteome coverage and iTRAQ reporter intensity,

results might be overly pessimistic.

Looking at all studies combined, computing a simple intersection of significant proteins across

studies is not advisable since proteome coverage varies greatly between studies; thus, a protein

(whether significant or not) is not likely to be observable in all studies and the probability of

excluding a promising candidate is increasing rapidly with every additional study that is added.

Not surprisingly, the intersection of significant proteins of all six studies with human tissue is

empty.

We thus use an approach on the pathway level which allows for missing values (i.e., pro-

tein quantifications) while still being robust. We submitted the protein lists for each study to
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Figure 5.22: Comparison of protein expression ratios (C vs. H, day 14) between IMU002 and

IMU006 (repetition of IMU002). The Pearson correlation of all common protein log ratios

(black and red circles) is 0.69 and rises to 0.77 for proteins which have been deemed significantly

expressed in either study (red circles only). A dashed regression line is shown for each case.

ConsensusPathDB [164] (release 22), an online tool which allows to identify enriched networks

using a paired Wilcoxon signed-rank test for each pathway based on the provided expression

values. Currently, ConsensusPathDB aggregates pathway information from twelve databases.

We provide expression values for every observed protein in two different phenotypes, i.e., control

versus high-dose samples at day 14. ConsensusPathDB returns a p-value for each functional

set, based on the probability that the combined expression differences of genes in the functional

set between the phenotypes have appeared by chance. Also, q-values (p-values corrected for

multiple testing) are returned.

The q-values of IMU002 and IMU006 give a Pearson correlation of 0.79, whereas q-values of

IMU006 and IMU007 have no correlation (0.03).

There is again a missing values problem since not all studies hit every pathway due to semi-

random protein sampling. Only pathways with quantified proteins are shown in the result list

of ConsensusPathDB for any p-value threshold. We use the median of all available q-values per

pathway to determine a list of pathways with consistently low q-values. Note that the median is

a very conservative statistic here since we allow almost half of the data to be outliers. The top

result (lowest median q-value) is > 0.145 (activation of DNA fragmentation factor; three hits);

thus, according to this method no pathway is consistently enriched across studies.
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5.4 Discussion

We have described an approach to designing and evaluating iTRAQ-based proteomics exper-

iments in the Predict-IV project. We successfully formulated an experimental design which

allowed analysis of dose effects for all studies. The design is flexible enough for analysis in the

time domain by using a pooled channel as reference between experiments. We developed software

as part of OpenMS/TOPP to enable analysis of iTRAQ-labeled LC-MS data sets, and adapted

and integrated the isobar package into a comprehensive TOPPAS-driven analysis pipeline which

allows for highly automated analysis of large data sets.

We devised new measures of data quality for iTRAQ spectra, namely labeling efficiency

and proportion of negative reporter ion counts after naive isotope correction. In general, a

low reporter ion signal strength will decrease the number of confident peptide ratios used for

protein ratio computation or will prevent quantification altogether. For certain data sets based

on iTRAQ reporter strength alone, we can determine that the MS2 search need not be carried

out as we cannot expect to identify (or quantify) any peptides.

Isotope correction via NNLS was shown to be superior to the established naive inverse matrix

multiplication and subsequent elimination of negative reporter ion intensities. NNLS avoids this

ad hoc procedure, does not produce ghost peaks, and avoids extreme ratios as demonstrated for

the naive approach.

We showed that normalization using median of ratios results in MA plots with no visible

intensity bias. The normalization factors were usually between 0.6 and 1.6, but reached up to

2.64 in extreme cases, showing that normalization is absolutely critical.

iTRAQ is known to suffer in terms of accuracy because of ratio underestimation for complex

samples due to precursor overlap, and precision issues due to variance heterogeneity, as low sig-

nal data have higher relative variability. A global correction for lack of accuracy as suggested by

Karp et al. [136] seems only necessary when comparing proteomics results with other technolo-

gies, but is not necessary for biomarker discovery within a sample since the compression affects

all ratios (this picture is somewhat simplistic as ratio compression depends on the actual amount

of overlap for each precursor). For the first time, we have investigated the influence of ions which

will be concurrently fragmented with the selected precursor peptide due to overlapping signals.

We found that about 95% of all precursors are affected by overlapping signals, which contribute

about 20% to the abundance within the isolation window. This again supports the theory of

ratio underestimation by overlapping peptides.

Peptide ratios tagged as outlier are predominantly found in iTRAQ spectra with low reporter

ion counts, which is not surprising since other studies have found variance in low-abundance

spectra to be larger than in high-abundance spectra.

The extended exclusion list approach developed for this project and implemented into OpenMS

can only be theoretically motivated as the data suggests that, while exclusion lists were success-

fully generated, the instrument software nevertheless allowed for precursor acquisition at the

exact same position, indicating an instrument error or false parameter settings on the instru-

ment.

The detection of common potential biomarkers indicative of toxic adverse effects across all

studies was expected to be difficult due to limited and partly diverse proteome coverage of each

study. As there is no significantly over-/underexpressed potential biomarker across all studies,

a network approach was chosen to alleviate the missing values problem. Unfortunately, the

method employed yielded no common enriched network across all studies. If such a panel of

biomarkers is biologically feasible remains an open question.



Chapter 6

Summary and Future Directions

Synopsis: We summarize the results of this thesis and provide an overview of possible future

extensions.
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6.1 Novel Contributions of this Thesis

This thesis has made novel contributions in three areas, namely simulation, decharging, and

iTRAQ-based differential protein expression.

We have presented MSSimulator [34], an extensive collection of algorithms and models for

MS simulation supporting multiple levels of ground truth, which reduces the need for expensive

manual validation on real data sets. Most notably, the simulator supports multiple models of

chromatography (CE and HPLC), enzymatic digestion (regular expression and linear model),

peak shapes (Gaussian and Lorentzian), label-free and labeled experiments (via a modular la-

beling framework), resolution (constant, linear, square root), amongst other features such as

MS2 and MSE simulation. We illustrated that simulation is invaluable to assess algorithm per-

formance (e.g., ETISEQ for MSE data and map alignment using the OpenMS MapAligner).

Furthermore, we used simulation in a pilot study as a means to optimize experimental settings,

e.g., to answer the question of what is the gain in label-free feature identification, if resolution

is doubled when measuring a complex mixture data set.

Our second contribution is the decharging [35] of peptide or protein charge ladders while

allowing for multiplexing and different adduct compositions. The problem is modeled as an

ILP and allows for a fast and robust solution. We demonstrated that decharging is useful for

many applications in quantitative proteomics. The algorithm is not restricted to a specific

instrument or resolution, and although it is intended for ESI data, it should also be applicable

to MALDI data when multiply-charged ions are observed (e.g., for whole protein measurements

[30]). The algorithm was optimized by splitting the ILP into subproblems, which, as a result,

can be solved more efficiently. The split also allows for parallel processing on multiple CPU

cores. Both measures reduce running time significantly such that for a complex data set with

adducts the runtime is only a few minutes. Without adducts, the solution is usually obtained

within seconds.

Decharging was able to improve mass precision on an 18 protein mix data (tryptic digest).

On a whole protein measurement of hemoglobin, our algorithm showed better mass precision

when compared to the Xtract software, which is shipped with the instrument. Decharging is

also applicable to labeled data. Ambiguous pairs can be resolved by the additional information

provided by charge ladders. Also, missing partners of singletons can be inferred, which is

not possible with other pair finders. For the gliadin data set, our reanalysis revealed some

misannotation, introduced by manual analysis. We also found more protein masses which are

readily available in the data but were missed by manual annotation. Using our simulator, we

could show that our decharging algorithm maintains high levels of recall and precision (above

75%) even when the input data is complex or contains many missing values (even beyond 50%).

Our third contribution is a novel, highly automatable analysis workflow in TOPPAS for

iTRAQ-based proteomics experiments. The workflow was adapted to the experimental design

which we proposed for the Predict-IV project. A new isotope correction procedure based on

non-negative least squares was introduced. We showed that NNLS avoids ghost peaks and ex-

treme ratios and is therefore superior to the commonly used inverse matrix multiplication with

subsequent elimination of negative reporter ion intensities. Labeling efficiency was introduced

as a new metric for iTRAQ data quality. The metric can be computed very fast, is easy to im-

plement, and provides a powerful means to assess prospects for high-quality quantification and

identification results. NNLS and the labeling efficiency metric are available in our ITRAQAn-

alyzer tool, which is part of OpenMS/TOPP. Normalization of iTRAQ channels using median

of ratios was shown to be essential to avoid biased quantification results. Normalization factors
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usually ranged between 0.6 and 1.6, but reached up to 2.64 in extreme cases. The extended

exclusion list approach that was developed for this project can only be theoretically motivated.

Despite the fact that exclusion lists were successfully generated, the instrument software never-

theless allowed for precursor acquisition at the exact same position. For the first time, we have

investigated the influence of background ions which will be concurrently fragmented with the

selected precursor peptide. We found that about 95% of all precursors are affected by overlap-

ping signals. The latter contribute about 20% to the abundance within the isolation window.

This supports the theory of ratio underestimation by overlapping peptides as already reported

in the literature [12, 83, 136].

All algorithms presented in this thesis were implemented in OpenMS/TOPP and are part of

the current stable release of OpenMS 1.9.

6.2 Future Extensions

Even though all algorithms presented in this thesis have reached a mature state, have been

published (or are being prepared for publication), and are part of OpenMS/TOPP, there are

extensions to each algorithm, which can be beneficial to extend their applicability.

Our simulation software would benefit from an automatic estimation of simulation param-

eters (e.g., resolution, sampling rate, noise level) from real data, which is currently a manual

process and thus time-consuming. Furthermore, the current model of proteotypicity is not quan-

titative. By using machine learning, it should be possible to create a quantitative model that

could be easily integrated into the current framework. Current approaches (including MSSim-

ulator) only classify peptides as either proteotypic or not proteotypic [165, 166]. Incorporation

of ion statistics, detectors, and instrument specific properties (e.g., “shoulder peaks” on FT

instruments – see Subsection 2.3.2) should also increase the level of realism. Due to the broad

support of different levels of ground truth and a wide variety of models, the simulator could also

be used to re-evaluate published algorithms whose performances were assessed using a feature-

limited and special purpose simulation tool. A comparison might reveal significant differences

in performance of the algorithm, pointing to violated model assumptions (e.g., shape models,

data complexity). Last but not least, to estimate the performance of peak picking or feature

finding algorithms on existing data, one could embed simulated signals into real data and use

the recovered proportion as a proxy for sensitivity.

Decharging has been shown to be robust towards high-complex data sets and missing values

up to 50% and even beyond. If the amount of missing features is higher, missing features

could be attenuated by coupling decharging to a hypothesis-driven feature finding heuristic

(already implemented in OpenMS) which searches for a strong signal (e.g., using signal-to-noise

ratio) at putative feature positions to infer missing features or resolve ambiguous explanations.

Furthermore, automatic estimation of putative adducts from the data would remove the need

for their manual specification. This should be possible by searching for edges with a restricted

set of adducts and selecting those which significantly increase the number of edges.

iTRAQ-based quantification can be re-evaluated on the biological modeling level. Currently,

only proteins with fold changes in the tails of the Cauchy distribution are tagged as significant,

which is the default behavior of the isobar package. This is a conservative measure in the sense

that a lower fold change can be very stable and consistent across conditions but would never

be tagged as significant, which will decrease the number of candidate biomarkers in exploratory

studies. Furthermore, in order to avoid extreme normalization ratios in iTRAQ-based quantifi-

cation it should be possible to measure an aliquot of the sample in the wet lab to determine a
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preliminary normalization ratio. On strong deviation from a ratio of one the mixture can be

adjusted before a full measurement is performed. Also, inclusion lists are a reliable method to

increase protein overlap across studies, but they require additional effort during acquisition. In-

creased overlap would also aid in establishing ratio comparisons across iTRAQ experiments via

a pooled reference (which already exists), thus allowing to track not only changes with dosage

but also with time more reliably.

To sum up, we have introduced a comprehensive simulation framework and have shown its

applicability to algorithm benchmarking and validation. Our decharging algorithm is capable

of handling an arbitrary set of adducts, is suitable for peptide- as well as protein data sets,

and can handle labeled data. It achieves mass precision that is superior to other decharging

algorithms. Its robustness towards missing values and complex data sets was validated using

simulation. Last but not least, our iTRAQ analysis pipeline allows for a fast computation of

lists of differentially expressed proteins. The pipeline incorporates a non-negative least squares

procedure for isotope correction which outperforms inverse matrix multiplication. We have in-

troduced labeling efficiency as a new measure for iTRAQ data quality and also found supporting

evidence for iTRAQ ratio underestimation by overlapping signals.



Appendix

6.3 Availability and Implementation

The TOPP tools and UTILS developed as part of this thesis are available free of charge in

the current release of OpenMS/TOPP, available from http://www.OpenMS.de, running on all

major operating systems (Windows, Linux, MacOSX). The classes on which the TOPP tools

are based are implemented in the OpenMS library and have accompanying regression tests.

6.4 Simulation: Capillary Electrophoresis

6.4.1 Explanations for Choices of α

• α = 1
3 : Based on Strokes’ law for frictional drag in non-conducting media. The model

predicts the mobility to be proportional to the radius of a sphere (volume of sphere:
4
3 · pi · r

3). As volume is proportional to mass (MW ) and a peptide’s shape can arguably

be approximated as a sphere, the radius of the sphere is proportional to the cube root of

the peptide’s mass.

• α = 1
2 : Classical polymer model. Assuming that frictional drag is proportional to the

average radius of gyration, it has been shown (for synthetic polymers) that mobility is

proportional to the square root of the number of polymers times the length of a unit [167].

This translates to the number of AA, which is approximately the peptide mass.

• α = 2
3 : Offord model [168], which is similar to Strokes’ law, but assumes the mobility of

an ion in conducting media to be inversely proportional to the surface of of a sphere which

is proportional to the square of the radius (surface = 4 · pi · r2).

However, all these models are only approximations and neglect certain properties of CE and

the analytes (e.g., peptide shapes, electrostatical interactions with separation buffer and other

peptides). See Rickard [169] for a more elaborate discussion. Authors report different empirical

values of α, e.g., 0.52 [44] or 0.46 [170] to produce the best correlation with observed migration

times; others use the theoretical values α = 1
2 or α = 2

2 [169]. As several different values for α

have been found adequate, depending on the researched peptides, the software allows manual

adjustment for α. The default, however, is set to 1
2 , which is the exact value for the classical

polymer model and also close to the empirical findings by Williams, Russell, and Russell [44]

and Kim, Zand, and Lubman [170].
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6.4.2 Charge Determination

The net charge value q for a peptide depends on the buffer pH and its amino acid composition.

Depending on the pH and other factors, an amino acid will become positively or negatively

charged (or might even be neutral) if its pI equals the buffer pH. According to Benavente [171],

q can be estimated reliably from average AA pKa values from Rickard [169]. This leads us to

employ the widely used Rickard’s pKa values and the charge equation given by Winzor [172]

and Benavente [171]:

q =

4∑
n=1

Pn

1 + 10pH−pK(Pn)
−

5∑
n=1

Nn

1 + 10pK(Nn)−pH
, (6.1)

where Pn are the number of basic residues (P1 = terminal NH2 = 1; P2 = #His; P3 = #Arg;

P4 = #Lys) and Nn are the number of acidic residues (N1 = terminal COOH = 1; N2 = #Asp;

N3 = #Glu; N4 = #Cys; N5 = #Tyr).

The equation allows the user to provide a pH value (which is typically rather low at about

pH 2-3). The model assumes that each amino acid’s charge is independent of the other groups in

the peptide. However, real pKa values are additionally governed by peptide bonds and ionizing

groups in the neighborhood, and are further shifted due to secondary and tertiary structural

elements [169, 171]. Net-charge-based “trends” in CE-MS data have been observed, seemingly

dependent on the number of lysine [44], arginine, and histidine [173].

6.4.3 Migration Time Computation

For practical purposes we allow an automatic scaling where the 95th MT percentile is projected

to 95% of a given gradient time. The reason for not scaling the whole MT range to the given

gradient is that outliers (with large MT) will otherwise compress the rest of the features into a

small MT range.

6.5 Simulation: Contaminants Input Format

MSSimulator ships with a default text file containing a list of contaminations. The user can

easily modify or extend this list. The file is in comma separated value format with the following

columns:

• Name of the contaminant (this will be included into the generated featureXML file to help

the user identify the simulated contaminant).

• Elemental composition of the contaminant (e.g. CH3OH for Methanol).

• Retention time at which the contaminant starts to elute.

• Retention time at which the contaminant stops to elute.

• The intensity of the contaminant.

• The charge of the contaminant.

• The shape of the elution profile of the contaminant. Valid choices are gauss, which gives a

Gaussian-like elution profile, and rec, which gives a rectangular elution profile (immediate

start and end of elution).
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• The ion source which can ionize the contaminant. Valid choices are ESI, MALDI, and ALL.

The contaminant will be visible if the respective ion source is used during simulation.

Listing 6.1 shows an example of a typical contaminants file.

Listing 6.1: Contaminants example (shortened).

”Methanol” , CH3OH, 1622.67007796 , 1636 .41953782 , 9 .2213957831 , 1 , rec , ESI

”ACN” , CH3CN, 124.649458627 , 214 .635926495 , 2 .16273553493 , 1 , gauss , ESI

”ACN” , CH3CN, 1898.59871684 , 1907.43645208 , 5 .83229369713 , 1 , gauss , ESI

”PEG” , C2H4OH2O, 248.114284788 , 408 .870937779 , 26 .5073181419 , 1 , gauss , ESI

”ACN” , CH3CN, 1315.05880119 , 1323.44605547 , 3 .58052185195 , 1 , gauss , ESI

”Methanol” , CH3OH, 335.244027089 , 363 .211414194 , 13 .7931809344 , 1 , gauss , ESI

”DMSO” , C2H6OS, 1033.09825892 , 1047.95569948 , 7 .10154401272 , 1 , gauss , ESI

”PPG” , C3H6OH2O, 1416.76207731 , 1424.20882302 , 1 .75685771789 , 1 , gauss , ESI

” A c e t o n i t r i l e ” , CH3CN, 1427.9342627 , 1471.10917918 , 3 .03404557045 , 1 , rec , ESI

”PEG” , C2H4OH2O, 841.010029756 , 844 .145059911 , 2 .08297782253 , 1 , rec , ESI

”d6−DMSO” , C2(2)H6OS, 1040.65301474 , 1050 .06202825 , 9 .47611582171 , 1 , gauss , ESI

”Tween” , C22H42O6C2H4O, 1291.34392383 , 1345.04027583 , 5 .6043075182 , 1 , rec , ALL

”Tween” , C24H44O6C2H4O, 1138.92462328 , 1170.23236234 , 11 .4304013533 , 1 , gauss , ALL

”Tween” , C24H46O6C2H4O, 815.201065785 , 906 .178998869 , 7 .02337746262 , 1 , gauss , ALL

”Tween” , C22H42O6C2H4O, 592.070179209 , 615 .839682222 , 8 .38995498978 , 1 , rec , ALL

”Tween” , C24H44O6C2H4O, 420.416093615 , 429 .92926345 , 8 .65663328873 , 1 , gauss , ALL

”Tween” , C24H46O6C2H4O, 506.491681671 , 590 .456315632 , 4 .04299987225 , 1 , gauss , ALL
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Glossary

Accuracy

Accuracy is the difference between the measured mass of an ion and its theoretical mass,

typically given in parts per million (ppm), which can be computed as

Acc =
mmeasured −mtheoretical

mtheoretical
· 106 ppm.

Biomarker

A characteristic allowing to discern normal from pathogenic biological processes, or a

pharmacological response to therapeutic treatment or an in vivo molecule whose altered

abundance is connected to a specific condition of health [12].

Bottom-up Mass Spectrometry

Analysis of digested proteins, i.e., peptides. Requires a smaller m/z range and creates a

narrow charge distribution. Protein quantification and identification values are inferred

from the detected peptides. Not all peptides may be viable for quantification/identification

of proteins if they are shared between multiple proteins (non-unique).

Capillary electrophoresis (CE)

The term CE refers to a family of separation techniques that use narrow-bore fused-silica

capillaries to separate a complex mixture of large and small charged molecules. In a high

electric field, molecules are separated based on their physical-chemical properties which

determine their migration time, which is further dependent on the background electrolyte

and its properties, e.g., ionic strength, pH, or type of ions.

Centroiding

See peak picking.

DDA

Data-dependent acquisition, also known as IDA (intensity-dependent acquisition) is an

operation mode available in MS2-capable mass spectrometers for selecting precursor ions

for MS2 fragmentation. The approach is untargeted (thus no prior knowledge of peptide

content is required) and usually intensity dependent, i.e., the most intense precursor ions

from a preceding survey scan will be selected as precursors.

Exclusion list

In subsequent LC-MS runs of the same (or similar) analytes with reproducible chromatog-

raphy conditions, exclusion lists can be used to exclude certain precursor ions from being

selected for MS2 fragmentation in DDA mode. Usually, the list will be populated based

on previous runs and contains positions in RT and m/z where a peptide has already been

129
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identified, thus avoiding redundant identification and allowing for a deeper proteome cov-

erage.

FDA

The Food and Drug Administration (FDA) is an agency within the U.S. Department of

Health and Human Services instantiated to protect public health and approve safe and

effective medicines and drugs.

FWHM

Full width at half maximum (FWHM) is a metric used to describe the width of a peak,

which is measured from its left to right flank at half the maximum peak intensity.

Ghost peak

Artefactual peak which is erroneously reconstructed from a zero-intensity peak by the

naive inverse matrix multiplication procedure during isotope correction of raw iTRAQ

reporter ions.

High-performance liquid chromatography (HPLC)

HPLC is a chromatographic technique to separate a (complex) mixture for eased down-

stream analysis. HPLC instrumentation includes a pump, injector, column, detector, and

data system. The analyte mixture is forced through a stationary phase by the flow of a

mobile phase at high pressure, separating the mixture into its components. The stationary

phase is defined as the immobile packing material in the column, whereas the mobile phase

is the solvent added to promote elution and whose composition can be changed in time to

change the interaction of the solute with mobile and stationary phase.

Sacred Birman

Admirable cat breed with blue eyes, native to central Asia and German rental apartments.

Most individuals prefer cozy roosts such as human interface devices (HID), keyboards in

particular, especially when the aforementioned HID is currently in use.

iTRAQ

The isobaric tag for relative and absolute quantitation (iTRAQ) is an MS2-based labeling

technique allowing for multiplexing with up to eight isobaric tags. Reporter ions allowing

to quantify individual sample contributions show in the MS2 spectrum in the 113-121 Th

range for the 8-plex kit, and 114-117 Th for the 4-plex kit.

isobar

The isobar package [144] is a statistical software package written in R [145] for the analysis

of iTRAQ data. It features a flexible R interface, noise models to account for data het-

eroscedasticity, and statistical significance estimation for protein over- or underexpression,

circumventing ad hoc thresholds for fold changes.

Labeling efficiency

Labeling efficiency denotes the relative fraction of iTRAQ spectra where a reporter ion

signal is present in any channel and can be used as a criterion of data quality. Optionally,

when stated explicitly, the term can also refer to the relative fraction of reporter ion

presence in a single iTRAQ channel only.

Multiple reaction monitoring (MRM)

MRM, also called selected reaction monitoring (SRM), is a targeted quantification strategy
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which uses selected (and specific) precursor and product ions of a peptide (a so-called

transition) as it elutes off the LC column. MRM works for highly complex samples and

requires an instrument with MS2 capabilities, usually a Q-TOF or a Triple-Q. MRM has

the advantage of high sensitivity and dynamic range combined with reliable acquisition of

the targeted species, but with a limited amount of peptides/proteins that can be quantified

in one experiment.

Multiplexing

Multiplexing via labeling allows to discern identical peptides (in terms of sequence and

post-translational modifications) from different samples within one LC-MS experiment by

using chemical or metabolic labeling of some kind to introduce a systematic mass shift.

This allows to discern and finally quantify peptides from different samples concurrently.

Non-negative Least Squares (NNLS)

Non-negative Least Squares solves the problem min ||Ax−b||2, subject to x ≥ 0. The NNLS

problem is solved iteratively, and it can be shown that the iteration always converges and

terminates.

OpenMS

OpenMS is a C++-based open-source library for label-free and labeled quantification and

identification, supporting all major platforms. It supports the HUPO-PSI standards mzML

and mzIdentML as well as the widely used pepXML and protXML formats, enabling data

exchange between collaborators based on open platform-independent formats. TOPP is a

set of application based on OpenMS.

TOPP

The OpenMS Proteomics Pipeline (TOPP) [98] is a set of executables, chainable in modu-

lar fashion for a wide set of analysis scenarios and covers common tasks like peak picking,

map alignment, identification (via wrappers for common identification engines like Mascot,

X!Tandem and OMSSA), filtering, and quantification of labeled and label-free data.

Peak

A peak is the signal produced by a single ion species with a fixed number of neutrons and

a fixed charge. The shape of a peak is usually Gaussian- or Lorentzian-like. Its width

depends on the resolution of the mass spectrometer at the designated m/z position. The

width is usually measured as FWHM.

Peak picking

One of the first data reduction steps for processing raw LC-MS data. Peak picking aims

at representing a true peak by single datapoint (the centroid), describing its m/z (usually

somewhere close to the center of the peak or its apex) and cumulative or apex intensity,

while discarding single noise data points.

Precision

Precision is an intrinsic property of the instrument and describes the reproducibility of a

repeated mass measurement as determined by its physical limits.

Precursor ion

In shotgun proteomics, a precursor ion (or parent ion) describes an unfragmented peptide

species which, when selected for fragmentation, will give rise to multiple product ions

which allow peptide identification.
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Predict-IV

Predict-InVitro (Predict-IV) is a project funded by the European Union within its Seventh

Framework Programme. The project aims at characterizing the dynamics and kinetics of

cellular responses to toxic effects in vitro.

Product ion

See Precursor ion.

Reporter ion

An ion observed in MS2 iTRAQ spectra at designated m/z positions (114, 115, 116, 117

Th for 4-plex iTRAQ and 113, 114, 115, 116, 117, 118, 119, 121 Th for 8-plex iTRAQ). We

use the term raw abundance or raw intensity to denote reporter ion intensities as observed

in the data, i.e., prior to isotope correction.

Resolution

Resolution is defined as R = m/∆m50% where m is the mass to be measured and ∆m50%

is the minimal distance to the next theoretical mass which can be resolved. The distance

is defined in terms of the full width at half maximum (FWHM).

Study

In the realm of the Predict-IV project, a study designates a set of experiments involving

exactly one cell type and one toxic compound, but with different dosages and collection

time points. This results in a set of iTRAQ LC-MS data sets according to the experimental

design.

Top-down Mass Spectrometry

Analysis of whole proteins, without prior digestion. Not feasible with all mass spectrome-

ters. Allows easier localization of modification sites but usually creates large charge ladders

and congested mass spectra. Depending on protein size, only high-resolution instruments

are capable of resolving isotopic envelopes.
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for differential expression proteomics using trypsin-catalyzed 18O labeling with a cor-

rection for labeling efficiency.” In: Molecular & Cellular Proteomics 6.7 (July 2007),

pp. 1274–86.

[119] Lennart Martens et al. “mzML - a Community Standard for Mass Spectrometry Data.”

In: Molecular & Cellular Proteomics (Aug. 2010), R110.000133–.

[120] Peicheng Du and Ruth H. Angeletti. “Automatic deconvolution of isotope-resolved mass

spectra using variable selection and quantized peptide mass distribution.” In: Analytical

Chemistry 78.10 (May 2006), pp. 3385–92.

[121] David M. Horn, Roman A. Zubarev, and Fred W. McLafferty. “Automated reduction

and interpretation of”. In: Journal of the American Society for Mass Spectrometry 11.4

(Apr. 2000), pp. 320–332.

[122] Bruce B. Reinhold and Vernon N. Reinhold. “Electrospray ionization mass spectrometry:

Deconvolution by an Entropy-Based algorithm”. In: Journal of the American Society for

Mass Spectrometry 3.3 (Mar. 1992), pp. 207–215.

[123] Huiru Zheng et al. “Heuristic charge assignment for deconvolution of electrospray ioniza-

tion mass spectra.” In: Rapid Communications in Mass Spectrometry 17.5 (Jan. 2003),

pp. 429–36.

[124] Xiao-Jun Li et al. “Automated statistical analysis of protein abundance ratios from

data generated by stable-isotope dilution and tandem mass spectrometry.” In: Analytical

Chemistry 75.23 (Dec. 2003), pp. 6648–57.

[125] Stefan Wittke, Thorsten Kaiser, and Harald Mischak. “Differential polypeptide display:

the search for the elusive target.” In: Journal of chromatography. B, Analytical technolo-

gies in the biomedical and life sciences 803.1 (Apr. 2004), pp. 17–26.

[126] John Draper et al. “Metabolite signal identification in accurate mass metabolomics data

with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour

’rules’.” In: BMC Bioinformatics 10.1 (Jan. 2009), p. 227.



[127] Ralf Tautenhahn. “Bioinformatics Research and Development”. In: Annotation of

LC/ESI-MS Mass Signals. Ed. by S. Hochreiter and R. Wagner. Vol. 4414. Lecture Notes

in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 371–380.

[128] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization. Athena

Scientific, 1997, p. 608.

[129] George B. Dantzig. “Programming of Interdependent Activities. II. Mathematical

Model.” In: Econometrica 17 (1949), pp. 200–211.

[130] Bernd O. Keller et al. “Interferences and contaminants encountered in modern mass

spectrometry.” In: Analytica Chimica Acta 627.1 (Oct. 2008), pp. 71–81.

[131] Leonardo Dagum and Ramesh Menon. “OpenMP: an industry standard API for shared-

memory programming”. In: IEEE Computational Science and Engineering 5.1 (1998),

pp. 46–55.

[132] Claudia Lemmel et al. “Differential quantitative analysis of MHC ligands by mass spec-

trometry using stable isotope labeling.” In: Nature Biotechnology 22.4 (Apr. 2004),

pp. 450–4.

[133] Michael R. Hoopmann, Gregory L. Finney, and Michael J. MacCoss. “High-speed data

reduction, feature detection, and MS/MS spectrum quality assessment of shotgun pro-

teomics data sets using high-resolution mass spectrometry.” In: Analytical Chemistry

79.15 (Aug. 2007), pp. 5620–32.

[134] Jens Mohr et al. “High-efficiency nano- and micro-HPLC–high-resolution Orbitrap-MS

platform for top-down proteomics.” In: Proteomics 10.20 (Oct. 2010), pp. 3598–609.

[135] Salvatore Cappadona et al. “Deconvolution of overlapping isotopic clusters improves

quantification of stable isotope-labeled peptides.” In: Journal of Proteomics 74.10 (Sept.

2011), pp. 2204–9.

[136] Natasha A. Karp et al. “Addressing accuracy and precision issues in iTRAQ quantita-

tion.” In: Molecular & Cellular Proteomics 9.9 (Sept. 2010), pp. 1885–97.

[137] Ann L. Oberg and Olga Vitek. “Statistical design of quantitative mass spectrometry-

based proteomic experiments.” In: Journal of Proteome Research 8.5 (2009), pp. 2144–

56.

[138] Emanuel F. Petricoin et al. “Use of proteomic patterns in serum to identify ovarian

cancer.” In: Lancet 359.9306 (Feb. 2002), pp. 572–7.

[139] Keith A. Baggerly, Jeffrey S. Morris, and Kevin R. Coombes. “Reproducibility of SELDI-

TOF protein patterns in serum: comparing datasets from different experiments.” In:

Bioinformatics (Oxford, England) 20.5 (Mar. 2004), pp. 777–85.

[140] Ann L. Oberg et al. “Statistical analysis of relative labeled mass spectrometry data from

complex samples using ANOVA.” In: Journal of Proteome Research 7.1 (Jan. 2008),

pp. 225–33.

[141] Dipanjana Ghosh et al. “Identification of key players for colorectal cancer metastasis by

iTRAQ quantitative proteomics profiling of isogenic SW480 and SW620 cell lines.” In:

Journal of Proteome Research (Aug. 2011).

[142] John H. Schwacke et al. “iQuantitator: a tool for protein expression inference using

iTRAQ.” In: BMC Bioinformatics 10 (Jan. 2009), p. 342.



[143] Wen-Ting Lin et al. “Multi-Q: a fully automated tool for multiplexed protein quantita-

tion.” In: Journal of Proteome Research 5.9 (Sept. 2006), pp. 2328–38.

[144] Florian P. Breitwieser et al. “General statistical modeling of data from protein relative

expression isobaric tags.” In: Journal of Proteome Research 10.6 (June 2011), pp. 2758–

66.

[145] R Development Core Team. “R: A Language and Environment for Statistical Comput-

ing”. In: Vienna Austria R Foundation for Statistical Computing 1.09/18/2009 (2008),

ISBN 3–900051–07–0.

[146] Saw Yen Ow et al. “Quantitative shotgun proteomics of enriched heterocysts from Nostoc

sp. PCC 7120 using 8-plex isobaric peptide tags.” In: Journal of Proteome Research 7.4

(Apr. 2008), pp. 1615–28.

[147] Elizabeth G. Hill et al. “A statistical model for iTRAQ data analysis.” In: Journal of

Proteome Research 7.8 (Aug. 2008), pp. 3091–101.

[148] Douglas W. Mahoney et al. “Relative Quantification: Characterization of bias, variability

and fold changes in mass spectrometry data from iTRAQ labeled peptides.” In: Journal

of Proteome Research (July 2011).

[149] John S. Cottrell and David M. Creasy. “Response to: The Problem with Peptide Pre-

sumption and Low Mascot Scoring.” In: Journal of Proteome Research (Sept. 2011).

[150] Markus Brosch et al. “Comparison of Mascot and X!Tandem performance for low and

high accuracy mass spectrometry and the development of an adjusted Mascot threshold.”

In: Molecular & Cellular Proteomics 7.5 (May 2008), pp. 962–70.

[151] Cathy H. Wu et al. “The Universal Protein Resource (UniProt): an expanding uni-

verse of protein information.” In: Nucleic Acids Research 34.Database issue (Jan. 2006),

pp. D187–91.

[152] Johannes Griss et al. “Published and Perished? the influence of the searched protein

database on the long-term storage of proteomics data.” In: Molecular & Cellular Pro-

teomics (June 2011).

[153] Steffen Durinck et al. “BioMart and Bioconductor: a powerful link between biological

databases and microarray data analysis.” In: Bioinformatics (Oxford, England) 21.16

(Aug. 2005), pp. 3439–40.

[154] Nan Wang and Liang Li. “Exploring the precursor ion exclusion feature of liquid

chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry for

improving protein identification in shotgun proteome analysis.” In: Analytical Chemistry

80.12 (June 2008), pp. 4696–710.

[155] Magnus Ø Arntzen et al. “IsobariQ: software for isobaric quantitative proteomics using

IPTL, iTRAQ, and TMT.” In: Journal of Proteome Research 10.2 (Feb. 2011), pp. 913–

20.

[156] Pei Wang et al. “Normalization regarding non-random missing values in high-throughput

mass spectrometry data.” In: Pacific Symposium on Biocomputing. Pacific Symposium

on Biocomputing (Jan. 2006), pp. 315–26.

[157] Andreas M. Boehm et al. “Precise protein quantification based on peptide quantification

using iTRAQ.” In: BMC Bioinformatics 8 (Jan. 2007), p. 214.



[158] Claudia Hundertmark et al. “MS-specific noise model reveals the potential of iTRAQ

in quantitative proteomics.” In: Bioinformatics (Oxford, England) 25.8 (Apr. 2009),

pp. 1004–11.

[159] Yi Zhang et al. “A robust error model for iTRAQ quantification reveals divergent sig-

naling between oncogenic FLT3 mutants in acute myeloid leukemia.” In: Molecular &

Cellular Proteomics 9.5 (May 2010), pp. 780–90.

[160] Paul M. Harrison et al. “A question of size: the eukaryotic proteome and the problems

in defining it.” In: Nucleic Acids Research 30.5 (Mar. 2002), pp. 1083–90.

[161] Linfeng Wu and David K. Han. “Overcoming the dynamic range problem in mass

spectrometry-based shotgun proteomics.” In: Expert Review of Proteomics 3.6 (Dec.

2006), pp. 611–9.

[162] Paola Picotti, Ruedi Aebersold, and Bruno Domon. “The implications of proteolytic

background for shotgun proteomics.” In: Molecular & Cellular Proteomics 6.9 (Sept.

2007), pp. 1589–98.
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