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4 ABSTRACT: The eigenvalues and eigenvectors of the molecular dynamics
5 propagator (or transfer operator) contain the essential information about the
6 molecular thermodynamics and kinetics. This includes the stationary distribution,
7 the metastable states, and state-to-state transition rates. Here, we present a
8 variational approach for computing these dominant eigenvalues and eigenvectors.
9 This approach is analogous the variational approach used for computing
10 stationary states in quantum mechanics. A corresponding method of linear
11 variation is formulated. It is shown that the matrices needed for the linear
12 variation method are correlation matrices that can be estimated from simple MD
13 simulations for a given basis set. The method proposed here is thus to first define
14 a basis set able to capture the relevant conformational transitions, then compute the
15 respective correlation matrices, and then to compute their dominant eigenvalues and
16 eigenvectors, thus obtaining the key ingredients of the slow kinetics.

1. INTRODUCTION

17 Biomolecules, in particular proteins, often act as small but
18 highly complex machines. Examples range from allosteric
19 changes1,2 to motor proteins, such as kinesin, which literally
20 walks along microtubules,1,3 and the ribosome, an enormous
21 complex of RNA molecules and proteins responsible for the
22 synthesis of proteins in the cell.1,4 To understand how these
23 biomolecular machines work, it does not suffice to know their
24 structure, that is, their three-dimensional shape. One needs to
25 understand how the structure gives rise to the particular
26 conformational dynamics by which the function of the molecule
27 is achieved. Protein folding is the second field of research in
28 which conformational dynamics plays a major role. Proteins are
29 long polymers of amino acids that fold into particular three-
30 dimensional structure. The astonishingly efficient search for this
31 native conformation in the vast conformational space of the
32 protein can be understood in terms of its conformational
33 dynamics. Besides time-resolved experiments, molecular dynamics
34 simulations are the main technique to investigate conformational
35 dynamics. To date, these simulations yield information on the
36 structure and dynamics of biomolecules at a spatial and temporal
37 resolution, which cannot be paralleled by any experimental
38 technique. However, the extraction of kinetic models from
39 simulation data is far from trivial, since kinetic information cannot
40 be inferred from structural similarity.5,6 Similar structures might be
41 separated by large kinetic barriers, and structures that are far apart
42 in some distance measure might be kinetically close.
43 A natural approach toward modeling the kinetics of molecules
44 involves the partitioning of conformation space into discrete
45 states.7−17 Subsequently, transition rates or probabilities between
46 states can be calculated, either based on rate theories,7,18,19 or
47 based on transitions observed in MD trajectories.6,13,15,16,20−22 The
48 resulting models are often called transition networks, Master
49 equation models, or Markov (state) models (MSM),23−25 where
50 “Markovianity” means that the kinetics are modeled by a

51memoryless jump process between states. In Markov state models,
52it is assumed that the molecular dynamics simulations used
53represent an ergodic, reversible, and metastable Markov process.25

54Ergodicity means that every possible state would be visited in an
55infinitely long trajectory and every initial probability distribution of
56the system converges to a Boltzmann distribution. Reversibility
57reflects the assumption that the system is in thermal equilibrium.
58Metastability means that there are parts of the state space in which
59the system remains over time scales much longer than the fastest
60fluctuations of the molecule. In order to construct an MSM,
61the conformational space of the molecule is discretized into
62nonoverlapping microstates, and the observed transitions between
63pairs of microstates are counted. One obtains a square matrix with
64transition probabilities, the so-called transition matrix, from which
65a wide range of kinetic and thermodynamic properties can be
66calculated. The equilibrium probability distribution (in the chosen
67state space) is obtained as the first eigenvector of the transition
68matrix. Directly from the matrix elements, one can infer kinetic
69networks and transition paths.26,27 The dominant eigenvectors of
70the transition matrix are used to identify metastable states.28−32

71Each dominant eigenvector can be interpreted as a kinetic process,
72and the associated eigenvalue is related to the time scale on which
73this process occurs.25 All this information can be combined to
74reconstruct the hierarchical structure of the energy landscape.31,33

75Finally, transition matrices represent a very useful framework to
76connect data from time-resolved experiments with simulation
77data.34,35 Over the past decade, extensive knowledge on which
78factors determine the quality of an MSM has been accumulated.
79For example, MSMs that are constructed using the internal
80degrees of freedom of the molecule tend to yield better results
81than those that were constructed using global descriptors of
82the structure (H-bond patterns, number of native contacts).31
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83 Also, degrees of freedom that are not included in the model should
84 decorrelate on short time scales from those that are included.36

85 Naturally, the sampling of the transitions limits the accuracy of an
86 MSM, and tools to account for this error have been
87 developed.37−39 On the whole, the research field has matured to
88 a point at which well-tested protocols for the construction of
89 MSMs from MD data have been established,25,40,41 and software
90 to construct and validate Markov state models from MD data is
91 freely available.42,43 MSMs have been applied to analyze the
92 conformational dynamics of peptides5,31,44 and of small protein
93 domains, such as Villin head piece,45 pin WW,46 FiP35 WW,45

94 Recently, it has become possible to analyze the folding
95 equilibria of full fast-folding proteins.47−49 MSMs have also
96 been used to investigate conformational changes, such as the
97 self-association step in the maturation of HIV-protease,50

98 ligand binding,51 or the oligomerization of peptide fragments
99 into amyloid structures.52

100 An important aspect that has limited the routine use of
101 MSMs is the difficulty to obtain a state space discretization that
102 will give rise to an MSM that precisely captures the slow
103 kinetics. The high-dimensional molecular space is usually first
104 discretized using clustering methods in some metric space. The
105 form and location of these clusters, sometimes called “MSM
106 microstates”, are crucial for determining the quality of the
107 estimated transition rates.53−55 Various metrics and clustering
108 methods have been attempted for different molecular systems.
109 Small peptides can be well described by a direct discretization
110 of their backbone dihedrals.31 It was suggested in ref 56 to use a
111 dihedral principal component analysis to reduce the dihedral
112 space to a low-dimensional subspace and subsequently cluster
113 this space using, for example, k-means. A rather general metric
114 is the pairwise minimal RMSD-metric in conjunction with some
115 clustering method, such as k-centers or k-medoids.25,30,41

116 Recently, the time-lagged independent component analysis
117 (TICA) method was put forward, a dimension reduction
118 approach in which a “slow” low-dimensional subspace is
119 identified, which has been shown to provide improved MSMs
120 over previously employed metrics.57,58

121 In recent years, it has been established that the precision of
122 an MSM depends on how well the discretization approximates
123 the shape of the eigenfunction of the underlying dynamical
124 operator (propagator or transfer operator) of the dynamics.55

125 When the dynamics are metastable, these eigenfunctions will be
126 almost constant on the metastable states, and change rapidly at
127 the transition states.59 Thus, methods that have sought to construct
128 a maximally metastable discretization30,60 have been relatively
129 successful for metastable dynamics. However, the MSM can be
130 improved by using a nonmetastable discretization, especially when
131 it finely discretizes the transition states, so as to trace the variation
132 of the eigenfunction in these regions.25,55 An alternative way of
133 achieving a good resolution at the transition state without using a
134 fine discretization is to use appropriately placed smooth basis
135 functions, such as the smooth partition-of-unity basis functions
136 suggested in refs 61−63. The core-based discretization method
137 proposed in ref 11 effectively employs a smooth partition-of-unity
138 basis defined by the committor functions between sets.64

139 All of the above methods have in common that they attempt
140 to construct an appropriate discretization based on the
141 simulation data. This has a two-fold disadvantage: (1) different
142 simulation runs will produce different discretizations, making
143 them hard to compare; (2) data-based clusters have no intrinsic
144 meaning. Interpretation in terms of structural transitions must
145 be recovered by analyzing the molecular configurations

146contained in specific clusters. With all of the above methods,
147choosing an appropriate combination of the metric, the
148clustering method, and the number and the location of clusters
149or cores is still often a trial-and-error approach.
150Following the recently introduced variational principle for
151metastable stochastic processes,65 we propose a variational
152approach to molecular kinetics. Starting from the fact that
153the molecular dynamics propagator is a self-adoint operator,
154we can formulate a variational principle. Using the method of
155linear variation we derive a Roothaan−Hall-type generalized
156eigenvalue problem that yields an optimal representation of
157eigenvectors of the propagator in terms of an arbitrary basis
158set. Both ordinary MSMs using crisp clustering and MSMs
159with a smooth discretization can be understood as special
160cases of this variational approach. In contrast to previous
161MSMs using smooth discretization, our basis functions do not
162need to be a partition of unity, although this choice has
163some merits.
164Besides its theoretical attractiveness, the variational approach
165has some advantages over MSMs. First, the data-driven
166discretization is replaced by a user-selection of an appropriate
167basis set, typically of internal molecular coordinates. The
168chosen basis set may reflect chemical intuitionfor example,
169basis functions may be predefined to fit known transition states
170of backbone dihedral angles or formation/dissociation of
171tertiary contacts between hydrophobically or electrostatically
172interacting groups. As a result, one may obtain a precise model
173with fewer basis functions needed than discrete MSM states.
174Moreover, each basis function is associated with a chemical
175meaning, and thus, the interpretation of the estimated
176eigenfunctions becomes much more straightforward than for
177MSMs. When using the same basis set for different molecular
178systems of the same class, one obtains models that are directly
179comparable in contrast to conventional MSMs. The represen-
180tation of the propagator eigenfunctions can still be systemati-
181cally improved by adding more basis functions or by varying the
182basis set.
183Our method is analogous to the method of linear variation
184used in quantum chemistry.66 The major difference is that the
185propagator is self-adjoint with respect to a non-Euclidean scalar
186product, whereas the Hamiltonian is self-adjoint with respect to
187the Euclidean scalar product. The derivation of the method is
188detailed in section 2 and Appendices A−C.

2. THEORY
1892.1. Dynamical Propagator. Consider the conformational
190space X of an arbitrary molecule consisting of N atoms, that is,
191the 3N−6-dimensional space spanned by the internal degrees of
192freedom of the molecule. The conformational dynamics of the
193molecule in this space can be represented by a dynamical
194process {xt}, which samples at a given time t a particular point
195xt ∈ X. In this context, xt is often called a trajectory. This
196process is governed by the equations of motion, and it can be
197simulated using standard molecular-dynamics programs. We
198assume that an implementation of thermostatted molecular
199dynamics is employed, which ensures that xt is time-
200homogeneous, Markovian, ergodic, and reversible with respect
201to a unique stationary density (usually the Boltzmann
202distribution). We introduce a propagator formulation of these
203dynamics, following.65 Readers familiar with this approach might
204want to skip to section 2.2.
205Next, consider an infinite ensemble of molecules of the same
206type, distributed in the conformational space according to some
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207 initial probability density |ρ0(x)⟩. This initial probability density
208 evolves in time in a definite manner that is determined by the
209 aforementioned equations of motion for the individual
210 molecules. We assume that the time evolution is Markovian

τ = ∈ | =
= ∈ | =

τ

τ

+3

3

p x y y x y y x x

x y y x x

( , ; )d ( d ) (1)

( d ) (2)
t t

0

211 where τ is a finite time step, and p(x,y;τ) is the so-called
212 transition density, which is assumed to be independent of time
213 t (time-homogeneous). Figure 1 shows an example of the

214 time-evolution of a probability density in a one-dimensional
215 two-well potential. Equation 2 implies that the probability of
216 finding a molecule in conformation y dy at time t + τ depends
217 only on the conformation x it has occupied one time step
218 earlier, and not on the sequence of conformations is has visited
219 before t. The unconditional probability density of finding a
220 molecule in conformation y at time t + τ is obtained by
221 integrating over all starting conformations x

∫ρ τ ρ=τ+ y p x y x x( ) ( , ; ) ( )dt X t
222 (3)

223 This equation, in fact, defines an operator 7(τ) that propagates
224 the probability density by a finite time step τ

ρ τ ρ| ⟩ = | ⟩τ+ x x( ) ( ) ( )t t7
225 (4)

ρ τ ρ| ⟩ = ⟩τ+ x x( ) ( ) ( )t n
n

t7
226 (5)

7(τ) is called a propagator, and the time step τ is often called
227 the lag time of the propagator. One says the propagator is
228 parametrized with τ. Such as p(x,y;τ), the propagator 7(τ) in
229 eq 5 is time-homogeneous; that is, it does not depend on t. The
230 way it acts on a density |ρ(x,t)⟩ is not a function of the time t at
231 which this density occurs but only a function of the time step τ
232 by which the density is propagated (Figure 1).
233 The way the propagator acts on the density can be
234 understood in terms of its eigenfunctions {|lα(x)} and
235 associated eigenvalues {λα}, which are defined by the following
236 eigenvalue equation

τ λ⟩ = | ⟩α α αl x l x( ) ( ) ( )7237 (6)

238 For the class of processes which are discussed in this
239 publication, the eigenfunctions form a complete set of 5 N3 3N.
240 Hence, any probability density (in fact any function) in this

241space can be expressed as linear combination of {lα(x)}.
242Equation 5 can be rewritten as

∑

∑

ρ λ| ⟩ = ⟩

= | ⟩

τ
α

α α α

α
α

τ
α

+

− α

x c l x

c l x

( ) ( ) (7)

e ( ) (8)

t n
n

n t/

243where n is the number of discrete time steps τ. The
244eigenfunctions can be interpreted as kinetic processes that
245transport probability density from one part of the conforma-
246tional space to another and thus modulate the shape of the
247overall probability density. See ref 25 for a detailed explanation
248of the interpretation of eigenfunctions. The eigenvalues are
249linked to the time scales tα on which the associated kinetic
250processes take place by

τ
λ= −α

α
t

ln( ) 251(9)

252These time scales are of particular interest because they may
253be accessible using various kinetic experiments.35,67−69

254Given the aforementioned properties of the molecular
255dynamics implementation, 7(τ) is an operator with the
256following properties. A more detailed explanation can be
257found in Appendix A.
258• 7(τ) has a unique stationary density; that is, there is a
259unique solution |π(x)⟩ to the eigenvalue problem

7(τ)|π(x) = |π(x).
260• Its eigenvalue spectrum is bounded from above by λ1 = 1.
261Also, λ1 is the only eigenvalue of absolute value equal
262to one.
263• 7(τ) is self-adjoint with respect to the weighted scalar
264product ⟨f |g⟩π−1 = ∫ Ω f(x)g(x)π

−1(x)dx. Consequently,
265its eigenfunctions |lα(x) form an orthonormal basis of the
266Hilbert space of square-integrable functions with respect
267to this scalar product. Its eigenvalues are real and can be
268numbered in descending order:

λ λ λ= > ≥ ≥1 ...1 2 3 269(10)

2702.2. Variational Principle and the Method of Linear
271Variation. A variational principle can be derived for any
272operator whose eigenvalue spectrum is bound (either from
273above or from below) and whose eigenvectors form a complete
274basis set and are orthonormal with respect to a given scalar
275product. The variational principle for propagators was derived in.65

276The derivation is analogous to the derivation of the variational
277principle of the quantum-mechanical Hamilton operator.66 For
278convenience, we give a compact derivation in Appendix B.
279The variational principle can be summarized in three steps. First,
280for the exact eigenfunction |lα(x)⟩, the following equality holds:

τ λ τ⟨ | | ⟩ = =α α π α
τ− α−l l( ) ( ) e t/

17 281(11)

282The expression ⟨f |7(τ)|f⟩π−1 is the analogue of the quantum-
283mechanical expectation value and has the interpretation of a time-
284lagged autocorrelation (c.f. section 2.3). The autocorrelation of the
285α-th eigenfunction is identical to the α-th eigenvalue.
286Second, for any trial function |f⟩ that is normalized according
287to eq 64, the following inequality holds:

∫τ π τ

λ

⟨ | | ⟩ =

≤ =

π
−−f f f x x f x x( ) ( ) ( ) ( ) ( )d (12)

1 (13)
X

1

1

17 7

Figure 1. Illustration of two propagators acting on a probability
density |ρt(x)⟩. Gray surface: time evolution of |ρt(x)⟩. Black dotted
line: snap shots of |ρt(x)⟩. Cyan line: equilibrium density |π(x)⟩ to
which |ρt(x)⟩ eventually converges. Red, blue: propagators with
different lag times τ, which propagate an initial density by a time step τ
in time.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4009156 | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXC



288 where equality ⟨f |7(τ)|f x−1 = λ1 is achieved if and only if |f⟩ = |l1⟩.
289 This is at the heart of the variational principle.
290 Third, this inequality is applicable to other eigenfunctions:
291 When |f⟩ is orthogonal to the α − 1 first eigenfunctions, the
292 variational principle will apply to the α-th eigenfunction/
293 eigenvalue pair:

τ λ⟨ | | ⟩ ≤π α−f f( ) 17294 (14)

β α⟨ | ⟩ = ∀ = −β π−f l 0 1, ..., 11
295 (15)

296 This variational principle allows to formulate the method of
297 linear variation for the propagator. Again, the derivation
298 detailed in ref 65 is analogous to the derivation of the method
299 of linear variation in quantum chemistry.66 The trial function
300 |f⟩ is linearly expanded using a basis of n basis functions
301 {|φi⟩}i = 1

n

∑ φ= | ⟩
=

f a
i

n

i i
1302 (16)

303 where ai are the expansion coefficients. We only choose basis
304 sets consisting of real-valued functions because all eigenvectors
305 of 7(τ) are real-valued functions. Consequently, the expansion
306 coefficients ai are real numbers. However, the basis set does not
307 necessarily have to be orthonormal. In the method of linear
308 variation, the expansion coefficients ai are varied such that the
309 right-hand side of eq 13 becomes maximal, while the basis
310 functions are kept constant. The variation is carried out under
311 the constraint that |f⟩ remains normalized with respect to
312 eq 64 using the method of Lagrange multipliers. For details,
313 see Appendix C. The derivation leads to a matrix formulation
314 of eq 6:

λ=Ca Sa315 (17)

316 a is the vector of expansion coefficients ai, C is the (time-
317 lagged) correlation matrix with elements

φ τ φ= ⟨ | | ⟩π−C ( )ij i j 17
318 (18)

319 and S is the overlap matrix of the basis set, where the overlap
320 is calculated with respect to the weighted scalar product

φ φ= ⟨ | ⟩π−Sij i j 1
321 (19)

322 Solving the generalized eigenvalue problem in eq 17, one
323 obtains the first n eigenvectors of 7(τ) expressed in the basis
324 {|φi⟩}i = 1

n and the associated eigenvalues λα.
325 2.3. Estimating the Matrix Elements. To solve the
326 generalized eigenvalue equation (eq 17), we need to calculate
327 the matrix elements Cij. In the quantum chemical version of
328 the linear variation approach, the matrix elements Hij for the
329 Hamiltonian / (see Appendix A) are calculated directly with
330 respect to the chosen basis, either analytically or by solving
331 the integral Hij = ⟨φi|/ |φj⟩ numerically. Such a direct
332 treatment is not possible for the matrix elements of the
333 propagator. However, we can use a trajectory xt of a single
334 molecule, as it is generated for example by MD simulations, to
335 sample the matrix elements and thus obtain an estimate for
336 Cij. For this, we introduce a basis set {χi} consisting of the n
337 cofunctions of the original basis set {ϕi} by weighting the
338 original functions with π−1

χ π φ φ π χ= ⇔ =−x x x x x( ) ( ) ( ) ( ) ( )i i i i
1

339 (20)

340Inserting eq 20 into the definition of the matrix elements Cij
341(eq 18), we obtain

∫ ∫

φ τ φ

χ π τ πχ

χ τ π χ

= ⟨ | | ⟩

= ⟨ | | ⟩

=

π

π

−

−

C

z p y z y y y z

( )

( )

( ) ( , , ) ( ) ( )d d

ij i j

i j

X X i i

1

1

7

7

342(21)

343The last line of eq 21 has the interpretation of a time-lagged
344cross-correlation between the functions χi and χj

∫ ∫χ χ τ χ

χ

= = | =

× =

τ+3

3

z x z x y

y x y y z

cor( , , ): ( ) ( ) (22)

( ) ( )d d (23)

i j X X i t t

j t

345which can be estimated from a time-continuous time series xt of
346length T as

347or from a time-discretized time series xt as

348where NT = T/Δt, nτ = τ/Δt, and Δt is the time step of the
349time-discretized time series. In the limit of infinite sampling and
350for an ergodic process, the estimate approaches the true value

351Note that the second line in eq 21 can also be read as the
352matrix representation of an operator which acts on the space
353spanned by {χi}, the cofunctions of {φi} (eq 20). This is the so-
354called transfer operator 1 (τ).

τ χ π τ πχ

χ τ χ

= ⟨ | | ⟩

= ⟨ | | ⟩
π

π

−C ( ) ( ) (27)

( ) (28)

ij i j

i j

17

1

χ τ χ=⟨ | | ⟩π( )i j1
355(28)

356with

∫τ π τ π| ⟩ =f z
z

p y z y f y y( ) ( ) 1
( )

( , , ) ( ) ( )d
X

1
357(29)

358In particular, 1 (τ) has the same eigenvalues as the propagator,
359and its eigenfunctions are the cofunctions of the propagator
360eigenfunctions:

π=α α
−r x x l x( ) ( ) ( )1

361(30)

362We will sometimes refer to the functions rα as right
363eigenfunctions. For more details on the transfer operator the
364reader is referred to ref 59.
3652.4. Crisp Basis SetsConventional MSMs. Markov
366state models (MSMs), as they have been discussed up to now
367in the literature,23−25,28,30,31,40−43,55,70 arise as a special case of
368the proposed method. Namely, the choice of basis sets in
369conventional MSMs is restricted to indicator functions, that is,
370functions that have the value 1 on a particular set Si of the
371conformational space X and the value 0 otherwise

χ =
∈⎧⎨⎩x

x S
( )

1 if

0 otherwisei
iMSM

372(31)
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373 In effect, this is a discretization of the conformational space,
374 for which the estimation of the matrix C (eq 25) reduces to
375 counting the observed transitions zij between sets Si and Sj

∑ χ χ= −

= −

τ

τ

=

−

+
τ

τ
C

N n
x x

z
N n

1 ( ) ( ) (32)

(33)

ij
T t

N n

j t i t n

ij

T

1

MSM MSM
T

376 It is easy to verify,65 that the overlap matrix S is a diagonal
377 matrix, with entries πi equal to the stationary probabilities of the
378 sets:

∫ π π= =S x x( )d :ii
S

i
i379 (34)

380 Thus, the eigenvalue problem eq 17 becomes

λ= ΠCa a381 (35)

λ= aTa382 (36)

383 where C is the correlation matrix, ∏ = S = diag{π1,...,πn} is the
384 diagonal matrix of stationary probabilities, and T =∏−1C is the
385 MSM transition matrix. Thus, a is a right eigenvector of
386 the MSM transition matrix. As the equations above provide the
387 linear variation optimum, using MSMs and their eigenvectors
388 corresponds to finding an optimal step-function approximation
389 of the eigenfunctions. Moreover, we can use the weighted
390 functions

= Πα αb a391 (37)

392 and see that they are left eigenfunctions of T:

λΠ = Π− −T b b1 1
393 (38)

λΠ =−b C bT T1
394 (39)

λ=b T bT T
395 (40)

396 Note that the crisp basis functions form a partition of unity,
397 meaning that their sum is the constant function with value one,
398 which is the first exact eigenfunction of the transfer operator 1
399 (τ). For this reason, any state space partition that is a partition
400 of unity solves the approximation problem of the first
401 eigenvalue/eigenvector pair exactly: the first eigenvalue is
402 exactly λ1 = 1, the expansion coefficients ai

l of the first
403 eigenvector |r1⟩ are all equal to one. The corresponding first left
404 eigenvector b1 = ∏a1 fulfills the stationarity condition:

=b b TT T
1 1405 (41)

406 and is, therefore, when normalized to an element sum of 1, the
407 stationary distribution π of T.
408 2.5. Stationary Probability Distribution in the Varia-
409 tional Approach. All previous MSM approachesincluding
410 the most common “crisp” cluster MSMs but also the smooth
411 basis function approaches used in refs 24, 61, and 64have
412 directly or indirectly used basis functions that are a partition of
413 unity. The reason for this is that using such a partition of unity,
414 one can recover the exact first eigenvector and, thus, a
415 meaningful stationary distribution.
416 In the present contribution, we give up the partition of unity
417 condition, in order to be able to fully exploit the variational
418 principle of the propagator with an arbitrary choice of basis sets.
419 Therefore, we must investigate whether this approach is still

420meaningful and can give us “something” like the stationary
421distribution.
422Revisiting the MSM case, the stationary probability numbers
423πi can be interpreted as stationary probabilities of the sets Si, or,
424in other words, they measure the contribution of these sets to
425the full partition function Z:

π = Z
Zi

i

426(42)

∫ ∫ χ= =− −Z xe dx ( )e dxi
S

v x

X i
v x( ) MSM ( )

i 427(43)

∑ ∑π = =Z
Z

1
i

i
i

i

428(44)

429where v(x) is a reduced potential.
430If we move on to a general basis, we can maintain a similar
431interpretation of the vector b1 = Sa1, as long as the first estimated
432eigenvalue λ1 remains equal to one. If we use the general definition
433of Zi as the local density of the basis function χi:

∫ χ= −Z x x( )e di
X i

v x( )

434(45)

435Then, we still have

=b
Z
Ci

i

436(46)

437for all i, where

∫ ∑ χ= −C x x( )e d
X i

i
v x( )

438(47)

439Interestingly, this relation also becomes approximately true if
440the estimated eigenvalue λ1 approaches one, as proved in
441Appendix D. As a result, the concept of the stationary
442distribution is still meaningful for basis sets that do not form
443a partition of unity. Moreover, it is completely consistent with
444the variational principle, because the vector b1 becomes a
445probability distribution in the optimum λ1 = 1.
4462.6. Estimation Method. We summarize by formulating a
447computational method to estimate the eigenvectors and
448eigenvalues of the associated propagator from a time series
449(trajectory) xt using an arbitrary basis set.
4501. Choose a basis set {χi}.
4512. Estimate the matrix elements of the correlation matrix C
452and of the overlap matrix S using eq 25 with lag times τ
453and 0, respectively.
4543. Solve the generalized eigenvalue problem in eq 17. This
455yields the α-th eigenvalue λα of the propagator (and the
456transfer operator) and the expansion coefficients ai

α of
457the associated eigenvector.
4584. The eigenvectors of the transfer operator are obtained
459directly from the expansion coefficients ai

α via

∑ χ= | ⟩α
α

=
r a

i

n

i i
1 460(48)

4615. If an estimate of the stationary density π is available, the
462eigenvectors of the propagator 7(τ) are obtained from

∑ ∑φ πχ= | ⟩ = | ⟩α
α α

= =
l a a

i

n

i i
i

n

i i
1 1 463(49)
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3. METHODS
464 3.1. One-Dimensional Diffusion Models. 3.1.1. Simu-
465 lations. We first consider two examples of one-dimensional
466 diffusion processes xt governed by Brownian dynamics. The
467 process is then described by the stochastic differential equation

= −∇ +x v x t D Bd ( )d 2 dt t t468 (50)

469 where v is the reduced potential energy (measured in units of
470 kBT, where kB is the Boltzmann constant and T is the
471 temperature), D is the diffusion constant, and dBt denotes the
472 differential of Brownian motion. For simplicity, we set all of the
473 above constants equal to one. The potential function is given by
474 the harmonic potential

= ∈ 5v x x x( ) 0.5 ,2
475 (51)

476 in the first case, and by the periodic double-well potential

π π= + ∈ −v x x x( ) 1 cos(2 ), [ , )477 (52)

478 in the second case. In order to apply our method, we first
479 produced finite simulation trajectories for both potentials. To
480 this end, we picked an (also artificial) time-step Δt = 10−3, and
481 then used the Euler−Maruyama method, where position xk+1 is
482 computed from position xk as

= − Δ ∇ + Δ+x x t v x D t y( ) 2k k k t1483 (53)

∼y (0, 1)t 5
484 (54)

485 In this way, we produced simulations of 5 × 106 time-steps
486 for the harmonic potential and 107 time-steps for the double-
487 well potential.
488 3.1.2. Gaussian Model. We apply our method with Gaussian
489 basis functions to both problems. To this end, n = 2,3,...,10
490 centers are chosen at uniform distance between x = −4 and x =
491 4 for the harmonic potential and between x = −π and x = π for
492 the double-well potential. In the latter case, the basis functions
493 are modified to be periodic on [−π,π). Subsequently, an
494 “optimal” width of the Gaussians is picked by simply trying out
495 several choices for the standard deviations between 0.4 and 1.0
496 and using the one which yields the highest second eigenvalue.
497 From this choice, the matrices C and S are estimated and the
498 eigenvalues, functions, and implied time scales are computed.
499 3.1.3. Markov Models. As a reference for our methods, we
500 also compute Markov state models for both processes. To this
501 end, the simulation data is clustered into n = 2,3,...,10 disjoint
502 clusters using the k-means algorithm. Subsequently, the EMMA
503 software package43 is used to estimate the MSM transition
504 matrices and to compute eigenvalues and time scales.
505 3.2. Alanine Dipeptide. 3.2.1. MD Simulations. We
506 performed 20 simulations of 200 ns of all-atom explicit solvent
507 molecular dynamics of alanine dipeptide using the AMBER
508 ff-99SB-ILDN force field.71 The detailed simulation setup is
509 found in Appendix E.
510 3.2.2. Gaussian Model. Similar to the previous example, we
511 use periodic Gaussian functions that only depend on one of the
512 two significant dihedral angles of the system (see section 4.2)
513 to apply our method. For both dihedrals, we separately perform
514 a preselection of the Gaussian trial functions. To this end, we
515 first project the data onto the coordinate, then we solve the
516 projected optimization problem for all possible choices of
517 centers and widths, and then pick the ones yielding the highest
518 eigenvalues. In every step of the optimization, we select three
519 out of four equidistributed centers between −π and π, and one

520of eleven standard deviations between 0.04π and 0.4π. In this
521way, we obtain three Gaussian trial functions per coordinate,
522resulting in a full basis set of six functions. Having determined
523the parameters for both angles, we use the resulting trial
524functions to apply our method as before. A bootstrapping
525procedure is used to estimate the statistical uncertainty of the
526implied time scales.
527Note that the variations of basis functions described here to
528find a “good” basis set could be conducted once for each amino
529acid (or short sequences of amino acids) for a given force field
530and then be reused.
5313.2.3. Markov Models. This time, we cluster the data into
532n = 5,6,10,15,20,30,50 clusters, again using the k-means
533algorithm. From these cluster-centers, we build Markov models
534and estimate the eigenvalues and eigenvectors using the EMMA
535software.
5363.3. Deca-alanine. 3.3.1. MD Simulations. We performed
537six 500 ns all-atom explicit solvent molecular-dynamics
538simulations of deca-alanine using the Amber03 force field.
539See Appendix E for the detailed simulation setup.
5403.3.2. Gaussian Model. As before, we use Gaussian basis
541functions that depend on the backbone dihedral angles of the
542peptide, which means that we now have a total of 18 internal
543coordinates. A preselection of the trial functions is performed
544for every coordinate independently, similar to the alanine
545dipeptide example. In order to keep the number of basis
546functions acceptably small, we select two trial functions per
547coordinate. As before, their centers are chosen from four
548equidistributed centers along the coordinate, and their standard
549deviations are chosen from eleven different values between
5500.04π and 0.4π. We also build a second Gaussian model using
551five functions per coordinate, with equidistributed centers and
552standard deviations optimized from the same values as in the
553first model. Having determined the trial functions, we estimate
554the matrices C and S and compute the eigenvalues and
555eigenvectors and again use bootstrapping to estimate
556uncertainties.
5573.3.3. Markov Models. We construct two different Markov
558models from the dihedral angle data. The first is built using
559kmeans clustering with 1000 cluster centers on the full data set,
560whereas for the second, we divide the ϕ−ψ plane of every
561dihedral pair along the chain into three regions corresponding
562to the α-helix, β-sheet, and left-handed α-helix conformation,
563see section 4.2. Thus, we have three discretization boxes for all
564dihedral pairs, which yields a total of 83 discrete states to which
565the trajectory points are assigned.

4. RESULTS
566We now turn to the results obtained for the four systems
567presented in the previous section.
5684.1. One-dimensional Potentials. The two one-dimensional
569systems are toy examples where all important properties are
570either analytically known or can be computed arbitrarily well
571from approximations. For the harmonic potential, the stationary
572distribution is just a Gaussian function

π π| ⟩ = | ⟩ = −
⎛
⎝⎜

⎞
⎠⎟x l x x( ) ( ) 1

2
exp

21

2

573(55)

574The exact eigenvalues λα(τ) are given by

λ τ α τ= − −α( ) exp( ( 1) ) 575(56)
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576 and the associated right eigenfunction rα is given by the
577 (α − 1)-th normalized Hermite polynomial

| ⟩ = | ⟩ ∼ − −α α
α

α

α−
−

−

−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟r x H x x

x
x( ) ( ) ( 1) exp

2
d

d
exp

21
1

2 1

1

2

578 (57)

579 The left halves of panels A and B in Figure 2 show the
580 harmonic potential and its stationary distribution, as well as the
581 second right and left eigenfunction. The sign change of |l2⟩
582 indicates the oscillation around the potential minimum, which
583 is the slowest equilibration process. Note, however, that there is
584 no energy barrier in the system; that is, this process is not
585 metastable. On the right-hand sides of parts A and B in Figure 2,
586 we see the same for the periodic double-well potential. The
587 invariant density is equal to the Boltzmann distribution, where the
588 normalization constant was computed numerically. The second
589 eigenfunction was computed by a very fine finite-element
590 approximation of the corresponding Fokker−Planck equation,
591 using 1000 linear elements. The slowest transition in the system is
592 the crossing of the barrier between the left and right minimum.
593 This is reflected in the characteristic sign change of the second
594 eigenfunction. Parts A and B of Figure 2 also show two choices of
595 basis sets that can be used to approximate these eigenfunctions: A
596 three element Gaussian basis set and a three state crisp set. The
597 resulting estimates of the right and left eigenfunctions are
598 displayed in Figure 2C. Already with these small basis sets, a
599 good approximation is achieved.
600 Let us analyze the approximation quality of both methods
601 in more detail. To this end, we first compute the
602 L2-approximation error between the estimated second

603 eigenfunction and the exact solution |r2⟩, that is, the
604 integral

605We expect this error to decay if the basis sets grow. Indeed,
606this is the case, as can be seen in the upper graphics of Figure
6073A and B, but the error produced by the Gaussian basis sets
608decays faster. Even for the 10-state MSM, we still have a
609significant approximation error. Another important indicator is
610the implied time scale tα(τ), associated to the eigenvalue λα(τ).
611It is the inverse rate of exponential decay of the eigenvalue,
612given by tα(τ) = −τ/λα(τ) and corresponds to the equilibration
613time of the associated slow transition. The exact value of tα is
614independent of the lag time τ. However, if we estimate the
615time scale from the approximate eigenvalues, the estimate
616will be too small due to the variational principle. However,
617with increasing lag time, the error is expected to decay, as
618the approximation error also decays with the lag time. The
619faster this decay occurs, the better the approximation will
620be. In the lower graphics of Figure 3A and B, we see the lag
621time dependence of the second time scale t2 for growing
622crisp and Gaussian basis sets. We observe that it takes only
623four to five Gaussian basis functions to achieve much faster
624convergence compared even to a 10-state Markov model.
625For seven or more Gaussian basis functions, we achieve
626precise estimates even for very short lag times, which cannot
627be achieved with Markov models with a reasonable number
628of states.
6294.2. Alanine Dipetide. Alanine dipeptide (Ac-Ala-NHMe,
630i.e. an alanine linked at either end to a protection group) is
631designed to mimic the dynamics of the amino acid alanine in a
632peptide chain. Unlike the previous examples, the eigenfunctions
633and eigenvalues of alanine dipeptide cannot be calculated
634directly from its potential energy function but have to be

Figure 2. Illustration of the method with two one-dimensional potentials, the harmonic potential in the left half and a periodic double-well potential
in the right half of the figure. (A) Potential v together with its invariant distribution π (shaded) next to two possible choices of basis functions: a
three-element crisp basis and a set of three Gaussian functions. (B) Exact right and left second eigenfunctions, |r2⟩ and |l2⟩. (C) Approximation
results for these second eigenfunctions obtained from the basis sets shown.
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635 estimated from simulations of its conformational dynamics.
636 However, alanine dipeptide is a thoroughly studied system;
637 many important properties are well-known, though their
638 estimated values depend on the precise potential energy
639 function (force field) used in the simulations. Most
640 importantly, it is known that the dynamical behavior can be
641 essentially understood in terms of the two backbone dihedral
642 angles ϕ and ψ: Figure 4A shows the free energy landscape
643 obtained from population inversion of the simulation, where
644 white regions correspond to nonpopulated states. We find the
645 three characteristic minima in the upper left, central left, and
646 central right part of the plane, which correspond to the β-sheet,
647 α-helix, and left-handed α-helix conformation of the amino
648 acid. The two slowest transitions occur between the left half
649 and the left handed α-helix, and from β-sheet to α-helix within
650 the main well on the left, respectively.
651 Figure 4B shows the weighted second and third eigenfunc-
652 tions. They are obtained from applying our method with a total
653 of six basis functions (three for each dihedral), and from an
654 MSM constructed from 30 cluster-centers. The resulting
655 estimates of |r2⟩ and |r3⟩ are then weighted with the population
656 estimated from the trajectory in order to emphasize the regions
657 of phase space which are related to the structural transitions.
658 Almost identical results are achieved, and the sign pattern of
659 both approximations clearly indicates the aforementioned
660 processes.
661 Lastly, in Figure 4C, we again investigate the convergence of
662 the slowest implied time scales. Different MSMs with a growing

Figure 3. Analysis of the discretization error for both 1D-potentials. In
the upper figure of both panels, we show the L2-approximation error of
the second eigenfunction from both crisp basis functions and Gaussian
basis functions, dependent on the size of the basis set. The lower
figures show the convergence of the second implied time scales t2(τ)
dependent on the lag time τ. Dotted lines represent the crips basis sets
and solid lines the Gaussian basis sets. The colors indicate the size of
the basis.

Figure 4. Illustration of the method using the 2D dihedral angle space
(ϕ,ψ) of alanine dipeptide trajectory data. (A) Free energy landscape
obtained by direct population inversion of the trajectory data. (B1 and
B2) Color-coded contour plots of the second and third eigenfunctions
of the propagator (|l2,⟩ |l3⟩), obtained by approximating the functions
|r2⟩ and |r3⟩ by a Gaussian basis set with six functions, cf eq 48, and
weighting the results with the estimated stationary distribution from
part A. (C1 and C2) Color-coded contour plots of the second and
third eigenfunctions of the propagator (|l2⟩, |l3⟩), obtained by
approximating the functions |r2⟩ and |r3⟩ by a Markov state model
with 30 cluster-centers, c.f. eq 48, and weighting the results with the
estimated stationary distribution from part A. (D1 and D2)
Convergence of implied time scales tα(τ) (in picoseconds)
corresponding to the second and third eigenfunction, as obtained
from Markov models using n = 5,6,10,15,20,30,50 cluster-centers (thin
lines), compared to the time scales obtained from the Gaussian model
with a total of six basis functions (thick green line). Thin vertical bars
indicate the error estimated by a bootstrapping procedure.
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663 number of crisp basis functions (cluster-centers) were used and
664 compared to the six basis function Gaussian model. The colors
665 indicate the number of basis functions used; the thinner lines
666 correspond to the Markov models, whereas the thick solid line
667 is obtained from the Gaussian model. In agreement with the
668 previous results, we find that 30 or more crisp basis functions
669 are needed to reproduce an approximation quality similar to
670 that of a six-Gaussian basis set.
671 4.3. Deca-alanine. As a third and last example, we study
672 deca-alanine, a small peptide that is about five times the size
673 of alanine dipeptide. A sketch of the peptide is displayed in
674 Figure 5A.
675 The slow structural processes of deca-alanine are less obvious
676 compared to alanine dipeptide. The Amber03 force field used
677 in our simulation produces a relatively fast transition between

678the elongated and the helical state of the system, with an
679associated time scale of 5−10 ns. As we can see in Figure 5B,
680we are able to recover this slowest time scale with our method,
681t2 converges to roughly 6.5 ns for both models. Comparing this
682to the two Markov models constructed from the same
683simulation data, we see that both yield slightly higher time
684scales: The k-means based MSM returns a value of about 8 ns
685and the finely discretized one ends up with 8.5 ns. Note that the
686underestimate of the present Gaussian basis set is systematic,
687likely due to the fact that all basis functions were constructed as
688a function of single dihedral angles only, thereby neglecting the
689coupling between multiple dihedrals.
690Despite this approximation, we are able to determine the
691correct structural transition. In order to analyze this, we
692evaluate the second eigenfunction |r2⟩, obtained from the
693smaller model, for all trajectory points, and plot a histogram of
694these values as displayed in Figure 5C. We then select all frames
695that are within close distance of the peaks of that histogram and
696produce overlays of these frames as shown underneath. Clearly,
697large negative values of the second eigenfunction indicate that
698the peptide is elongated, whereas large positive values indicate
699that the helical conformation is attained. This is in accord
700with a similar analysis of the second right Markov model
701eigenvector: In Figure 5D, we show overlays of structures taken
702from states with the most negative and most positive values of
703the second eigenvector, and we find that the same transition is
704indicated, although the most negative values correspond to a
705slightly more bent arrangement of the system.
706In summary, it is possible to use a comparatively small basis
707of 36 Gaussian functions to achieve results about the slowest
708structural transition which are comparable to those of MSMs
709constructed from about 1000 and 6500 discrete states,
710respectively. However, the differences in the time scales point
711to a weakness of the method: The fact that increasing the
712number of basis functions does not alter the computed time
713scale indicates that coordinate correlation cannot be appropri-
714ately captured using sums of one-coordinate basis functions. In
715order to use the method for larger systems, we will have to
716study ways to overcome this problem.

5. CONCLUSIONS
717We have presented a variational approach for computing the
718slow kinetics of biomolecules. This approach is analogous to
719the variational approach used for computing stationary states in
720quantum mechanics, but it uses the molecular dynamics
721propagator (or transfer operator) rather than the quantum-
722mechanical Hamiltonian. A corresponding method of linear
723variation is formulated. Since the MD propagator is not
724analytically tractable for practically relevant cases, the matrix
725elements cannot be directly computed. Fortunately, these
726matrix elements can be shown to be correlation functions that
727can be estimated from simple MD simulations. The method
728proposed here is thus, to first define a basis set able to capture
729the relevant conformational dynamics, then compute the
730respective correlation matrices, and then to compute their
731dominant eigenvalues and eigenvectors, thus obtaining the key
732ingredients of the slow kinetics.
733Markov state models (MSMs) are found to be a special case
734of the variational principle formulated here, namely for the case
735that indicator functions (also known as crisp sets or step
736functions) on the MSM clusters are used as a basis set.
737We have applied the variational approach using Gaussian
738basis functions on a number of model examples, including

Figure 5. Illustration of the method using dihedral angle coordinates
of the deca alanine molecule. (A) Graphical representation of the
system. (B) Convergence of the estimated second implied time scale
(in nanoseconds) depending on the lag time. We show the results of
both Gaussian models and of both the kmeans based MSM and the
adapted MSM. Thin vertical bars indicate the error estimated by a
bootstrapping procedure. (C) Assignment of representative structures
for the second slowest process: The histogram shows how the values
of the second estimated eigenfunction |r2⟩ of the smaller model are
distributed over all simulation trajectories. Underneath, we show an
overlay of structures taken at random from the vicinity of the peaks at
−2.7, −1.6, 0.7, and 1.3. (D) Overlays of structures corresponding to
the most negative (left) and most positive (right) values of the second
Markov model eigenvector, taken from the k-means MSM.
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739 one-dimensional diffusion systems and simulations of the alanine
740 dipeptide and deca-alanine in explicit solvent. Here, we have used
741 only one-dimensional basis sets that were constructed on single
742 coordinates (e.g., dihedral angles), but it is clear that multidimen-
743 sional basis functions could be straightforwardly used. Despite the
744 simplicity of our bases, we could recover, and in most cases
745 improve the results of n-state MSMs with much less than n basis
746 functions in the applications shown here.
747 Note that practically all MSM approaches presented thus far
748 use data-driven approaches to find the clusters on which these
749 indicator functions are defined. Such a data-driven approach
750 impairs the comparability of Markov state models of different
751 simulations of the same system, and even more so of Markov
752 state models of different systems. (Essentially, every Markov
753 state model that has been published so far has been
754 parametrized with respect to its own unique basis set). In
755 contrast, the method proposed here allows to define basis sets
756 that are, in principle, transferable between different molecular
757 systems. This improves the comparability of models made for
758 different molecular systems. The second―and possibly
759 decisive―advantage of the proposed method is that the
760 basis sets can be chosen such that they reflect knowledge about
761 the conformational dynamics or about the forcefield with which
762 xt has been simulated. It is thus conceivable that optimal basis
763 sets are constructed for certain classes of small molecules or
764 molecule fragments (e.g., amino acids or short amino acid
765 sequences) and then combined for computing the kinetics of
766 complex molecular systems.
767 As mentioned earlier, future work will have to focus on a
768 systematic basis set selection and on an efficient use of
769 multidimensional trial functions. Related to this is the question
770 of model validation and error estimation. Due to the use of
771 finite simulation data, use of a very fine basis set can lead to a
772 growing statistical uncertainty of the estimated eigenvalues and
773 eigenfunctions. In order to improve the basis set while
774 balancing the model error and the statistical noise, a procedure
775 to estimate this uncertainty is needed. While the special case of
776 a Markov model allows for a solid error-theory based on the
777 probabilistic interpretation of the model,72 this is an open topic
778 here and will have to be treated in the future.

779 ■ APPENDIX A

780 Propagators of Reversible Processes
781 In the following, we explain in more detail the properties of the
782 dynamical propagator 7(τ), as introduced in section 2.
783 Stationary Density. For any time-homogeneous propagator,
784 there exists at least one stationary density |π(x)⟩, which does
785 not change under the action of the operator: 7(τ)|π(x)⟩ =
786 |π(x)⟩. Another way of looking at this equation is to say that
787 |π(x)⟩ is an eigenfunction of 7(τ) with eigenvalue λ1 = 1. It is
788 guaranteed that π(x) ≥ 0 everywhere as the transfer density is
789 normalized. We additionally assume that π(x) > 0. In molecular
790 systems, π(x) is a Boltzmann density and π(x) > 0 is obtained
791 when the temperature is nonzero and the energy is finite for all
792 molecular configurations.
793 Bound Eigenvalue Spectrum. The eigenvalue λ1 = 1 always
794 exists for any propagator. It is also the eigenvalue with the
795 largest absolute value |λi| ≤ 1; that is, the eigenvalue spectrum
796 of 7(τ) is bound from above by the value 1. This is due to the
797 fact that the transfer density is normalized

∫ τ =p x y y( , , )d 1
X798 (59)

799That is, the probability of going from state xt = x to anywhere
800in the state space (including x) during time τ has to be 1.73,74

801Ergodicity. If the dynamics of the molecule are ergodic, then
802λ1 is nondegenerate. As a consequence, there is only one
803unique stationary density π(x) associated to 7(τ).
804Reversibility. If the dynamics of the individual molecules in
805the ensemble occur under equilibrium conditions, they fulfill
806reversibility (also sometimes called “detailed balance” or “micro-
807reversibility”) with respect to the stationary distribution π

π τ π τ= ∀x p x y y p y x x y( ) ( , ; ) ( ) ( , ; ) , 808(60)

809Equation 60 implies that if the ensemble is in equilibrium, that is,
810its systems are distributed over the state space according to |π(x)⟩,
811the number of systems going from state x to state y during time τ
812is the same as the number of systems going from y to x. Or, the
813density flux from x to y is the same as in the opposite direction,
814and this is true for all state pairs {x,y}. For reversible processes, the
815stationary density becomes an equilibrium density and is equal to
816the Boltzmann distribution. In the following, we will only consider
817operators of reversible processes.
818A consequence of reversibility is that λ1 is the only eigenvalue
819with absolute value 1. Together with the previous properties,
820the eigenvalues can be sorted by their absolute value

λ λ λ| | = > | | ≥ | |1 ...1 2 3 821(61)

822Self-adjoint Operator. Another consequence of reversibility
823is self-adjointness of the propagator, that is,

τ τ⟨ | | ⟩ = ⟨ | | ⟩π π− −f g g f( ) ( )1 17 7 824(62)

825with respect to the weighted scalar product·⟨·|·⟩π−1

∫π π⟨ | ⟩ =− −f g g x x f x x( ) ( ) ( )d
X

1 1

826(63)

827and the norm

| | = ⟨ | ⟩π−f f f 1
828(64)

829where π−1(x) = 1/π(x) is the reciprocal function of π(x) and
830the bar denotes complex conjugation. This is verified directly:
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831In the second line, we have used reversibility (eq 60) to
832replace p(x,y,τ) by p(y,x,τ)π(y)/π(x). Note that we could omit
833the complex conjugate in eq 63 because f, 7(τ), and g are real-
834valued functions. Self-adjointness of 7(τ) implies that its
835eigenvalues are real-valued, and its eigenfunctions form a
836complete basis of

5 N3

837which is orthonormal with respect to the weighted scalar
838product ·⟨ | ⟩π−1

δ⟨ | ⟩ =α β π αβ−l l 1
839(70)

840Comparison to the QM Hamilton Operator. With these
841properties of the propagator, eq 6 can be compared to the
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842 stationary Schrödinger equation / |χ = E|χ⟩. Both equations
843 are eigenvalue equations of self-adjoint operators with a bound
844 eigenvalue spectrum. The equations differ in some mathemat-
845 ical aspects: 7(τ) is an integral operator, whereas / is a
846 differential operator; 7(τ) is self-adjoint with respect to a
847 weighted scalar product, whereas / is self-adjoint with respect
848 to the Euclidean scalar product. Also, they are not analogous in
849 their physical interpretation. In contrast to the quantum-
850 mechanical Hamilton operator, which acts on complex-valued
851 wave functions, 7(τ) propagates real-valued probability
852 densities. Moreover, the eigenfunctions of the propagator do
853 not represent quantum states, such as the ground and excited
854 states, they represent the stationary distribution and the
855 perturbations to the stationary distribution from kinetic
856 processes. Nonetheless, the mathematical structures of eq 6
857 and the stationary Schrödinger equation are similar enough that
858 some methods which are applied in quantum chemistry can be
859 reformulated for the propagator.

860 ■ APPENDIX B

861 Variational Principle
862 The variational principle for propagators is derived and
863 discussed in detail in ref 65. We expand a trial function in
864 terms of the eigenfunctions of 7(τ)

∑| ⟩ = | ⟩
α

α αf c l
865 (71)

866 where the αth expansion coefficients is given as

= ⟨ | ⟩α π−c l fa 1
867 (72)

868 The norm (eq 64) of the trial function |f⟩ is then given as

∑ ∑ ∑⟨ | ⟩ = ⟨ | ⟩ =π
α β

α β α β π
α

α− −f f c c l l c2
1 1

869 (73)

870 We therefore require that |f⟩ is normalized

⟨ | ⟩ =π−f f 11
871 (74)

872 With this, an upper bound for the following expression can be
873 found
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874 and hence

λ τ= ≥ ⟨ | | ⟩π−f f1 ( )1 17875 (79)

876 The above functional of any trial function is smaller than or
877 equal to one, where the equality only holds if and only if
878 |f⟩=|l1⟩.
879 Furthermore, from the equations above it directly follows
880 that for a function f i that is orthogonal to eigenfunctions
881 |l1⟩,...,|li−1⟩:

⟨ | ⟩ = ∀ = −π−f l j i0 1, ..., 1i j 1
882 (80)

883the variational principle results in

τ λ⟨ | | ⟩ ≤π−f f( ) i17 884(81)

885■ APPENDIX C

886Method of Linear Variation
887Given the variational principle for the transfer operator (eq 79),
888the function |f⟩ can be linearly expanded using a basis of n basis
889functions {|φi}i = 1

n

∑ φ= | ⟩
=

f a
i

n

i i
1 890(82)

891where ai are the expansion coefficients. All basis functions are
892real functions, but the basis set is not necessarily orthonormal.
893Hence, the expansion coefficients are real numbers. In the
894method of linear variation, the expansion coefficients ai are
895varied such that the right-hand side of eq 79 becomes maximal,
896while the basis functions are kept constant. The derivation leads
897to matrix formulation of eq 6. Solving the corresponding matrix
898diagonalization problem, one obtains the first n eigenvectors of

7(τ) expressed in the basis {|φi⟩}i = 1
n and the associated

899eigenvalues. Inserting eq 16 into eq 79 obtains

∑ ∑

∑

∑

φ φ

φ φ

φ φ

≥ ⟨ | | ⟩

= ⟨ | | ⟩

= ⟨ | | ⟩

π

π

π

= =

=

=

−

−

−

a a

a a

a a

1 (83)

(84)

(85)

i

n

i i
j

n

j j

i j

n

i j i j

i j

n

i j i j

1 1

, 1

, 1

1

1

1

7

7

7

900where we have introduced the matrix element of the correlation
901matrix C

φ φ= ⟨ | | ⟩π−Cij i j 17
902(86)

903The maximum of the expression of right-hand side in eq 79 is
904found by varying the coefficients ai, that is,

∑∂
∂ ⟨ | | ⟩ = ∂

∂

= ∀ =

π
=

−
a

f f
a

a a C

k n

(87)

0 1, 2, ... (88)

k k ij

n

i j ij
1

17

905under the constraint that |f⟩ is normalized

∑ ∑φ φ⟨ | ⟩ = ⟨ | ⟩ =

=

π π
= =

− −f f a a a a S (89)

1 (90)

ij

n

i j i j
ij

n

i j ij
1 1

1 1

906Sij is the matrix element of the overlap matrix S defined as

φ φ φ φ= ⟨ | ⟩ = ⟨ | ⟩π π− −Sij i j j i1 1
907(91)

908To incorporate the constraint in the optimization problem,
909we make use of the method of Lagrange multipliers
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∑
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∑ ∑
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910 The variational problem then is

∑ ∑

∑ ∑

∑ ∑

λ
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(95)

1
2

[ ] (96)

(97)
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j ij
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i ij
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i ij
i

n

i ij

1 1

1 1
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911 where, in the third line, we have used that Cij = Cji and Sij = Sji
912 (eqs 62 and 91). Equation 95 can be rewritten as a matrix
913 equation

λ=Ca Sa914 (100)

915 which is a generalized eigenvalue problem, and identical to

λ=−S Ca a1
916 (101)

917 where a is a vector which contains the coefficients ai. The
918 solutions of eq 101 are orthonormal with respect to an inner
919 product which is weighted by the overlap matrix S:

δ⟨ | | ⟩ =Sa af g
fg920 (102)

921 where δfg is the Kronecker delta. Then, any two functions f =
922 ∑iai

f |φi⟩ and g = ∑iai
f |φi⟩ are orthonormal with respect to the

923 π−1-weighted inner product, as it is expected for the
924 eigenfunctions of the transfer operator

∑ ∑φ φ

δ

⟨ | ⟩ = ⟨ | ⟩

= ⟨ | | ⟩
=

π π− −f g a a

Sa a

(103)

(104)

(105)

i
i
f

i j j
g

j

f g

fg

1 1

925 ■ APPENDIX D

926 Left Eigenvectors and Stationary Properties
927 We want to show that the first “left” eigenvector b1=Sa1
928 approximates the stationary distribution even for basis sets
929 that do not form a partition of unity.
930 Let us assume we have a sequence of basis sets {χi}j, such
931 that the corresponding first eigenvalue λ1j converges to 1. Let us
932 denote the local densities of basis set j by Zi

j, the total density
933 from eq 47 by Cj, and the entries of the normalized first left
934 eigenvector of basis set j by bi

j. We show

− →b
Z
C

0i
j i

j

j
935 (106)

936as j → ∞, or in other words,

− →b C Z 0i
j j

i
j

937(107)

938To do so, we multiply by the inverse partition function 1/Z
939and rewrite this expression as

∫ ∫∑

∑

χ χ

χ χ
χ χ

χ χ

− =
∑
∑

−

=
∑ |
∑ |
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b C Z
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a s
a s Z
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1 ( ) 1
( )

e 1 e (108)

1 1 (109)
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l k k
j

lj kj l
lj ij

1

,
1

( ) ( )
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,
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940We can use eq 48 to pull the summation over k into the second
941argument of the brackets:

∑χ
χ χ χ− =

⟨ | ⟩
⟨∑ | ⟩ ⟨ | ⟩ − ⟨ | ⟩π π

π
π πZ

b C Z
r1 ( )

1
1 1i

j j
i
j ij j

l lj l
lj ij

1

942(110)

943From the convergence of the eigenvalue λ1j toward 1, it
944follows that the approximate first eigenfunction |r1j⟩ converges
945to the true first eigenfunction, the constant function with value
946one, in the scace Lπ

2. This can be shown using an orthonormal
947basis expansion. Consequently, we can use the Cauchy−
948Schwarz inequality to estimate the expression

χ χ χ|⟨ | ⟩ − ⟨ | ⟩ | = |⟨ | − ⟩ |π π πr r1 1ij j ij ij j1 1 949(111)

χ≤ −r 1ij j1
950(112)

951As the second term tends to zero by the L2-convergence, the
952complete expression likewise decays to zero, provided that the
953L2-norms of the basis functions remain bounded, which is
954reasonable to assume. By a similar argument, we can show that
955the remaining fraction

χ
χ

⟨∑ | ⟩
⟨∑ | ⟩

π

πr

1l lj

l lj j1 956(113)

957converges to 1, provided that the L2-norm of the sum of all
958basis functions also remains bounded. Combining these two
959observations, we can conclude that eq 110 tends to 0, which
960was to be shown.

961■ APPENDIX E

962Simulation Setups
963Alanine dipeptide. We performed all-atom molecular
964dynamics simulations of acetyl-alanine-methylamide (Ac-Ala-
965NHMe), referred to as alanine dipeptide in the text, in explicit
966water using the GROMACS 4.5.575 simulation package, the
967AMBER ff-99SB-ILDN force field,71 and the TIP3P water
968model.76 The simulations were performed in the canonical
969ensemble at a temperature of 300 K. The energy-minimized
970starting structure of Ac-Ala-NHMe was solvated into a cubic
971box with a minimum distance between solvent and box wall of
9721 nm, corresponding to a box volume of 2.72 nm3 and 651 water
973molecules. After an initial equilibration of 100 ps, 20 production
974runs of 200 ns each were performed, yielding a total simulation
975time of 4 μs. Covalent bonds to hydrogen atoms were constrained
976using the LINCS algorithm77 (lincs_iter = 1, lincs_order = 4),
977allowing for an integration time step of 2 fs. The leapfrog
978integrator was used. The temperature was maintained by the
979velocity-rescale thermostat78 with a time constant of 0.01 ps.
980Lennard-Jones interactions were cut off at 1 nm. Electrostatic
981interactions were treated by the Particle−Mesh Ewald (PME)
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982 algorithm79 with a real space cutoff of 1 nm, a grid spacing of
983 0.15 nm, and an interpolation order of 4. Periodic boundary
984 conditions were applied in the x-, y-, and z-direction. The
985 trajectory data was stored every 1 ps.
986 Deca-alanine. We performed all-atom molecular dynamics
987 simulations of deca alanine, which is protonated at the amino
988 terminus and deprotonated at the carboxy terminus, using the
989 GROMACS 4.5.5 simulation package,75 the Amber03 force
990 field, and the TIP3P water model. A completely elongated
991 conformation was chosen as an initial structure.
992 The structure was solvated in a cubic box of volume V =
993 232.6 nm3, with 7647 pre-equilibrated TIP3P water molecules.
994 First, an equilibration run of 500 ps in the NVT ensemble with
995 full position restraints, using the velocity-rescale thermostat,
996 was carried out. This was followed by a 500 ps NPT
997 equilibration run. The temperature was set to T = 300 K.
998 The equilibration run was followed by a 500 ns production run,
999 again at T = 300 K. Two temperature coupling groups were
1000 used with a velocity-rescale thermostat and a time constant of
1001 0.01 ps.78 Periodic boundary conditions were applied in the x-,
1002 y-, and z-direction. For the long-range electrostatic interaction
1003 PME was used with a pme-order of 4 and a Fourier grid spacing
1004 of 0.15 nm. Covalent bonds to hydrogen bonds were
1005 constrained using the LINCS algorithm,77 allowing for a 2 fs
1006 time step. A leapfrog integrator was used. Data was saved every
1007 1 ps, resulting in 5 × 105 data frames. Six independent
1008 simulations from the same equilibrated configuration were
1009 carried out resulting in 3 μs total data.
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1145 Sauer, M.; Smith, J. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 4822−4827.
(68)1146 Lindner, B.; Yi, Z.; Prinz, J.-H.; Smith, J.; Noe,́ F. J. Chem. Phys.

1147 2013, 139, 175101.
(69)1148 Zheng, Y.; Lindner, B.; Prinz, J.-H.; Noe,́ F.; Smith, J. J. Chem.

1149 Phys. 2013, 139, 175102.
(70)1150 Vanden-Eijnden, E.; Venturoli, M. J. Chem. Phys. 2009, 130,

1151 194101.
(71)1152 Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis,

1153 J. L.; Dror, R. O.; Shaw, D. E. Proteins 2010, 78, 1950−1958.
(72)1154 Prinz, J.-H.; Wu, H.; Sarich, M.; Keller, B.; Senne, M.; Held, M.;
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