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ABSTRACT: We have developed a hidden Markov model and
optimization procedure for photon-based single-molecule FRET
data, which takes into account the trace-dependent background
intensities. This analysis technique reveals an unprecedented
amount of detail in the folding kinetics of the Diels−Alderase
ribozyme. We find a multitude of extended (low-FRET) and
compact (high-FRET) states. Five states were consistently and
independently identified in two FRET constructs and at three Mg2+

concentrations. Structures generally tend to become more compact
upon addition of Mg2+. Some compact structures are observed to
significantly depend on Mg2+ concentration, suggesting a tertiary
fold stabilized by Mg2+ ions. One compact structure was observed to
be Mg2+-independent, consistent with stabilization by tertiary Watson−Crick base pairing found in the folded Diels−Alderase
structure. A hierarchy of time scales was discovered, including dynamics of 10 ms or faster, likely due to tertiary structure
fluctuations, and slow dynamics on the seconds time scale, presumably associated with significant changes in secondary structure.
The folding pathways proceed through a series of intermediate secondary structures. There exist both compact pathways and
more complex ones, which display tertiary unfolding, then secondary refolding, and, subsequently, again tertiary refolding.

1. INTRODUCTION

RNA molecules are not merely simple carriers of genetic
information but can assemble into complex tertiary structures
and even catalyze reactions. In fact, the existence of catalytic
RNA molecules (ribozymes) has led to the proposition of the
RNA world hypothesis.1 In modern cells, RNA molecules
catalyze just two classes of chemical reactions: modifications of
phosphodiester bonds (DNA and RNA cleavage, RNA splicing)
and peptide bond formation.2 Artificially designed ribozymes,
however, are known to catalyze a wide range of chemical
reactions.3

In some ribozymes, the slow opening and closing of tertiary
structure (RNA breathing) is believed to be essential for
product release.4 Therefore, catalysis may not be decoupled
from RNA folding. This latter process is hierarchical, first
proceeding on the secondary structure level via formation of
fairly stable Watson−Crick base pairs. Subsequently, secondary
structure elements fold into a compact, three-dimensional
structure.
The folding of RNA into the native tertiary fold may proceed

via a complex sequence of secondary structures.2,5 The
associated breaking of transiently formed (“misfolded”) base

pairs often involves typical time scales of seconds or longer.2,6

Any given secondary structure may be associated with a range
of tertiary structures.7 Formation of compact tertiary structures
may require the presence of counterions, particularly divalent
cations such as Mg2+, which screen the intrinsic negative
charges on the RNA phosphate groups and, thereby, stabilize
certain tertiary motifs.7−9 Even small modifications of single
nucleotides may result in different tertiary structures and hence
different energy landscapes.4,10,11 Indeed, RNA sequence,
structure, and function interact in a complex, not yet fully
understood fashion,2 and the characterization of RNA folding
kinetics, including the pathways of secondary and tertiary
structure changes, remains an intricate problem.6

In this work, we have investigated the conformational
equilibrium and the folding pathway of the 49mer single-
stranded RNA ribozyme Diels−Alderase (DAse)12 using a
novel hidden Markov model (HMM) analysis of single-
molecule FRET data. DAse catalyzes a Diels−Alder reaction,13
i.e., the [4 + 2] cycloaddition reaction between anthracene
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dienes and maleimide dienophiles. DAse is a true multiple-
turnover catalyst and shows remarkable enantioselectivity
(>95% enantiomeric excess).13 It has a well-defined folded
structure, as revealed by X-ray crystallography. The folded state
consists of three helices arranged around a pseudoknot region,
in which the catalytic pocket of the ribozyme is located (Figure
1b). A continuous sequence of stacking interactions runs from

the bottom of helix II to the top of helix III and has been
termed the “spine” of the folded structure.14 The tertiary fold is
held together by a pseudoknot, in which the 5′-G1-G2-A3-G4
segment bridges the unpaired strands of the asymmetric bulge
(Figure 1a). The precise hydrogen-bond pattern in the
pseudoknot region is known to be crucial both for thermal
stability of the overall fold as well as for the shape of the
catalytic pocket.4,8,14,15 The crystallographic structure contains
six Mg2+ cations.8 Recent experimental and computational
evidence showed that cations specifically bind to certain sites
that stabilize the tertiary fold, without interfering with the
catalytic reaction.4,15 Low Mg2+ concentrations were found to
destabilize the folded conformation4,9,15 and to dramatically
decrease the catalytic activity of the ribozyme.13

Single-molecule Förster resonance energy transfer
(smFRET) is a powerful tool to follow conformational
fluctuations of biomolecules on length scales of a few
nanometers in real time.16−21 smFRET measurements with
surface-immobilized molecules revealed that DAse is highly
dynamic and can exist in substantially different conformations,
which were found to interconvert on time scales of hundreds of
milliseconds.9 The concentration of Mg2+ influences the shape
or population of the accessible conformational states, as
indicated by the Mg2+ dependence of the FRET efficiency
histograms and the apparent folding rates.9 Consistent with
conformational fluctuations, a poor resolution of DAse spectra
was found in subsequent NMR studies.4 The Mg2+-dependent
FRET efficiency histograms revealed at least two conforma-
tional ensembles: (i) a high FRET state, attributed to the folded
conformation, whose population increases with increasing Mg2+

concentration, and (ii) a distribution of intermediate FRET

efficiencies, whose population decreases with increasing Mg2+

concentration. The intermediates were observed to spread out
over a wide range of FRET efficiency values and, presumably,
comprise multiple conformations with different secondary and
tertiary structures.9

In practice, only two or three states with significantly
different FRET efficiencies can be distinguished in a histogram-
based analysis.9,11 The emission intensity from an individual
fluorophore is small. Consequently, stochastic fluctuations of
the number of photons within a time bin (shot noise)
significantly contribute to the widths of the FRET distributions
and prevent the separation of states with similar mean FRET
efficiencies.9 Of note, histogram analysis utilizes only FRET
efficiency information. It completely neglects the time sequence
of events in the single-molecule trajectories and, thus, discards a
substantial part of the available information. In contrast, hidden
Markov models22 can distinguish states in the data by using
both the differences in FRET efficiency and the time sequence
of events, and, thus, can decompose states with similar FRET
efficiencies but different kinetic properties. Recent studies on
single-molecule protein and RNA data sets23−26 have
demonstrated the power of HMMs to resolve a multitude of
states. HMM analysis has its intrinsic challenges, however,
because (i) the results depend on the number of states used,
(ii) the HMM optimization may get stuck in local minima, (iii)
models with many states are difficult to validate, and (iv) the
quality of the model depends crucially on the validity of the
underlying likelihood function (i.e., the stochastic model of the
measured process). Here, we present an HMM analysis scheme
that addresses these problems.
At the core of this scheme is the idea that the number of

states required to describe the kinetics in a hierarchical energy
landscape is not fixed but depends on the time scales of interest
(Figure 2).27,28 Directly estimating HMMs with a few states
often yields wrong kinetics,29,30 as they tend to prefer models
whose states have clearly different FRET efficiency. However,
in real data, distinct and slowly interconverting conformations
may have strongly overlapping FRET efficiency distributions,
which are difficult to separate. Therefore, we construct an initial
HMM with many states (corresponding to a fine discretization
of conformational space). The initial number of states is
determined by a validation scheme, which tests reproducibility
and consistency of the model with the underlying data set. The
initial states are subsequently coarse-grained on the basis of
their kinetics.31,32 This approach allows us to model (coarse)
states even when they strongly overlap in their FRET
efficiencies and have very irregular (e.g., non-Gaussian) FRET
distributions. Our HMM uses a Poissonian likelihood function
to model the physical process of photon emission.33−35 This
approach is preferable over using Gaussian likelihood functions
of the FRET efficiency.23−26 For a detailed discussion, see the
Supporting Information. In addition, we have developed an
approach to account for the trace-specific background noise.
Independent HMM analyses were carried out on two

differently labeled DAse constructs, referred to as constructs I
and II. Altogether, four different data sets were analyzed (DAse
construct I at Mg2+ concentrations of 0.0, 5.0, and 40.0 mM and
DAse construct II at Mg2+ concentration 5.0 mM), yielding
HMMs with seven to nine conformational states. These HMMs
provide comprehensive models of the dynamics on millisecond
time scales. We also determined relaxation times, identified the
associated conformational transitions by an eigenvector/
eigenvalue analysis of the transition matrix,30 and computed

Figure 1. Diels−Alderase ribozyme. (a) Secondary and tertiary
structure interactions in the folded state. Solid lines, secondary
structure base pairs; dotted lines, tertiary structure base pairs.
Attachment sites of the FRET labels are marked by green (donor
dye Cy3 at U6 in construct I and at the 5′ end in construct II) and
orange (acceptor dye Cy5 at U42 in construct I and at U30 in
construct II) arrows. (b) Three-dimensional structure of the folded
state. Color-coding of the secondary structure elements as in panel a.
Attachment sites of the FRET labels are indicated by green (Cy3,
donor) and red (Cy5, acceptor) spheres. (The figure has been adapted
from Figure 1 in ref 9.)
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the ensemble of RNA folding pathways.36 On the basis of their
kinetics, the original states were lumped together to effective
five-state (on time scales of tens of milliseconds) and three- or
four-state models (on time scales of hundreds of milliseconds).
Most notably, we identified consistent, characteristic features of
the kinetic network of DAse in all four data sets. To the best of
our knowledge, these results represent the most detailed RNA
folding models obtained from single-molecule measurements to
date. They confirm the hierarchical nature of the RNA folding
landscape. Furthermore, they reveal that the transition rates in
this landscape change substantially as the Mg2+ concentration is
varied, while the general topology of the landscape (position of
minima, relative height of energy barriers) is not affected. At all
Mg2+ concentrations, the observed kinetic processes can be
attributed to either secondary or tertiary structure rearrange-
ments.

2. MATERIALS AND METHODS
2.1. Single-Molecule FRET Experiments and Data Process-

ing. By using a combinatorial strategy, we had earlier synthesized a set
of nine DAse FRET constructs with dyes attached at different
nucleotide positions.9 Construct I was chosen for in-depth studies
because it showed the most pronounced changes in its FRET
histogram with varying Mg2+ concentration. Here we have also
performed surface-immobilized measurements on a second variant,

construct II, because (1) its FRET histogram was multimodal,
suggesting that multiple states could be distinguished by the HMM,
and (2) it was not too different from construct I and, therefore, could
serve for validation (see below).

Single-molecule fluorescence time traces of surface-immobilized
DAse were obtained for construct I (Cy3 at U6 and Cy5 at U42) at
Mg2+ concentrations of 0, 5, and 40 mM and for construct II (Cy3 at
the 5′ end and Cy5 at U30) at a Mg2+ concentration of 5 mM. Details
on the data, the experimental procedures, and the effects of surface
immobilization are included in the Supporting Information, Tables S1
and S2 and Figures S2 and S3. For each trace, the rates of the
background noise, ka,bg an kd,bg, in the acceptor and donor channel,
respectively, as well as the amount of spectral crosstalk, χ, from the
donor into the acceptor channel were estimated, as described in the
Supporting Information.

2.2. HMM Workflow. We have developed an HMM analysis and
associated optimization algorithms for single-molecule FRET. The
HMM analysis scheme has the following features:

• The HMM works with discrete photon counts, which are
assumed to obey Poissonian statistics (Figure S4, Supporting
Information).

• Background noise levels of measured photon traces are taken
into account explicitly by employing an appropriate emission
probability.

• The reproducibility of the HMMs is tested.
• The number of states of the HMM is maximized under a

number of constraints, which ensures that the model
reproduces physically and chemically relevant quantities.

• The final HMM represents a fine discretization into states that,
depending on the time scale, are lumped into larger states
according to kinetic proximity.

A workflow diagram of the HMM analysis scheme is shown in
Figure 3. The algorithms are described in full detail in the Supporting
Information, and the salient characteristics of the workflow are
discussed in the following sections.

Figure 2. Conceptual illustration of a HMM-based FRET analysis. (a)
Hierarchical free energy landscape with various minima (conforma-
tions) interconverting on different time scales. (b) A FRET efficiency
versus distance curve, with the five conformations in panel a assigned
to certain FRET efficiencies (distances). Conformations with suitably
long lifetimes can be distinguished by HMM analysis of FRET traces
but may have overlapping FRET efficiencies even when they are
distinct. (c) Probability density function of finding the system at a
certain value of the distance parameter. (d) The states found in the
HMM analysis are depicted as disks located in a two-dimensional
space of efficiency (abcissa) and lifetime (ordinate). (e, f) Some states
kinetically merge on longer observation time scales indicated by the
blue and red areas in panels e (τ = 10 ms) and f (τ = 100 ms). For
example, state pairs (i, ii) and (iv, v) each merge into a single apparent
state for times longer than 10 ms.

Figure 3. Workflow diagram used for our HMM analysis of single-
molecule FRET data.
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2.3. Illustration of a HMM. Figure 2 illustrates the type of
information conveyed by HMM analyses. Consider the hypothetical
energy landscape with five minima in panel a in Figure 2. Each
minimum corresponds to a conformational state and is associated with
a mean FRET efficiency, Ei (Figure 2b), and a fractional population in
equilibrium, πi (Figure 2c), where i denotes the number of the state.
Using HMM analysis, these five states can be extracted from smFRET
traces of a molecule diffusing in this free energy landscape. We
represent the main characteristics of the states of the HMMs by scatter
plots (Figure 2d): Each state is marked by a disc, the position of which
encodes the mean FRET efficiency of the state and its lifetime, τi. The
area of the disc is proportional to the stationary probability πi of the
state, as computed from the HMM.
The HMM transition matrix has eigenvalues corresponding to time

scales of transitions and eigenvectors denoting states that interconvert
on these time scales. This information induces kinetic clustering. Here,
states i and ii interconvert on time scales of 10 ms (Figure 2a). Thus,
when computing a FRET histogram with an averaging window much
longer than 10 ms, these two states merge into a single apparent state.
Likewise, states iv and v kinetically merge for time scales longer than
10 ms, as depicted by the red and blue regions in Figure 2e. States i
and ii kinetically merge with state iii for time scales above 100 ms
(Figure 2f). Complete equilibration occurs for times longer than 1 s.
In a high-dimensional energy landscape, kinetic merging may not

necessarily involve only neighboring states along the FRET efficiency
axis. In fact, high FRET efficiency states can merge kinetically with low
FRET efficiency states even if there are states with intermediate FRET
efficiencies in between.
2.4. Hidden Markov Models for Single-Molecule FRET.

Hidden markov models (HMMs)22 are stochastic models, λ = (T,
e), of the observed (measured) trace, O = (o1, ..., oN), with oi = (na,i,
nd,i) containing the number of photons observed in the acceptor and
donor channels at each time step i. In the construction of HMMs, it is
assumed that the observation is generated by a hidden Markov chain
with transition matrix T, whose states represent regions in the
conformational space of the molecule. At every time step in the
Markov chain, an additional stochastic process, | o s( )i i , is invoked,
which represents the measurement. The emission probability, | o s( )i i ,
describes the conditional probability of observing the signal, oi, given
that the molecule is currently in conformation (hidden state) si. One
typically chooses the same functional form of | o s( )i i for all hidden
states but uses a parameter ej to adapt it to a specific hidden state. The
parameters ej form a vector e and are part of the model λ. The HMM
optimization problem maximizes the likelihood (i.e., the conditional
probability of observing the measured trace O, given that the molecule
is accurately described by the model λ = (T, e)):

∑ ∏π| = | |
=

−
  O o s T o sT e( , ) ( ) ( )

S
s

t

t

s t t
all paths

1 1
2

t t1

max

1,
(1)

over all values of (T, e) and all possible hidden paths. For a given
number of states, N, the model λ consists of an N × N transition
matrix, T, and of a vector of observation parameters e, of length N.
HMM classes differ by the way that the hidden process and the
measurement process are modeled and by the way that the
corresponding parameters are optimized.
2.5. The Emission Probability for FRET Experiments

Including Background Correction. It is crucial to choose an
emission probability, | o s( )i i , that models the measurement process as
accurately as possible. The HMM scheme presented here works with
discrete photon counts. The arrival times of the photons are assumed
to obey Poissonian statistics, which is validated in Figure S4
(Supporting Information). The functional form of the emission
probability is hence

| = n n s k n k n( , ) Pois( ; ) Pois( ; )ia d a a d d (2)

Pois(k, n) is a Poisson distribution of variable n with rate coefficient k.
The acceptor and donor photon count rates, ka and kd, are given as

=

= −

k E k

k E k(1 )

i

i

a mol

d mol (3)

where Ei is the apparent FRET efficiency of the current hidden state si
and kmol is the detection rate of photons emitted by the labeled
molecule (through either the donor or the acceptor).33−35

A problem inherent in the experimental data is the presence of
trace-dependent background noise, which may cause identical
conformational states to display different apparent FRET efficiencies
in different time traces. The trace specific background rates, ka,bg and
kd,bg, can be estimated from the bleached phase of the measured
photon traces. Given these rates, we derive a likelihood of observing
(na, nd) photons during a time step, Δt, in the acceptor and donor
channels, respectively (see the Supporting Information). The emission
probability has the functional form given in eq 2, but the photon count
rates are now given as

= +

= − +

k e k k

k e k k(1 )

i

i

a mol a,bg

d mol d,bg (4)

We assume that background noise may vary from trace to trace but
that all other measurement errors, including spectral cross-talk and
differences in the quantum yield of the chromophores, depend on the
conformational state but are identical for different traces. Then, e
contains the apparent FRET efficiencies (without background noise)
of the hidden states. These apparent FRET efficiencies can be
corrected for spectral cross-talk a posteriori to obtain the true FRET
efficiencies (see the Supporting Information).

2.6. HMM Optimization and Number of Hidden States.
HMM optimization is done by using the expectation-maximization
algorithm, which finds a local maximum of | O T e( , ) from an initial
guess of the parameters (T, e). To facilitate finding the global
optimum, the HMMs presented here are obtained by first running 100
explorations that optimize random starting values of (T, e) for a few
steps only. Subsequently, the parameter set with the largest likelihood
is optimized to full convergence. Nonetheless, the HMM algorithm
might find different local maxima for different initial parameters.
Hence, for each Mg2+ concentration, we compute 10 HMMs in the
described way to test for reproducibility. Two HMMs are accepted as
identical if their log-likelihoods differ by less than 1.0. By a heuristic
criterion, an HMM optimization is reproducible if identical maximum
likelihood HMMs are found in at least 2 out of the 10 trials.

The number of states, N, is an input parameter for the HMM
optimization algorithm. As argued in the Supporting Information,
information-criteria-based choices of the number of states are
inadequate for the present data. To determine the number of hidden
states, we instead adopt a viewpoint for the construction of direct
Markov models that is well established in the community:30 Rather
than finding the “ideal” number of states to statistically classify the
data, we require the HMM to have sufficiently many states.
Consequently, the resulting discretization of state space will be fine
enough that the HMMs can reproduce the stationary and long-time
kinetic behavior of the data. The resulting states can subsequently be
grouped according to kinetic connectivity given by T, as described in
refs 31 and 32 and illustrated in Figure 2. Following this approach, we
build HMMs for a varying number of states, N = 2, 3, ..., and choose
the largest number of states for which HMMs can be constructed
reproducibly.

2.7. HMM Validation. Different tests were used to check whether
the HMMs are consistent with the data set from which they were
parametrized, and whether the hidden paths obtained from the HMMs
are consistent with Markovian dynamics. The consistency of the
HMM with the underlying data set was tested by comparing FRET
efficiency histograms obtained from the data with histograms
estimated from the HMMs. For this test, we used time windows
between 10 and 100 ms. As previously discussed,37 this approach tests
both the stationary and kinetic properties of the model. The
comparison was performed for background-corrected FRET efficiency
distributions. The data-based distributions were obtained using the
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likelihood from eq 2, as described in the Supporting Information. The
HMM-based distributions were obtained by sampling hidden
trajectories of the time window length from an equilibrium
distribution, and then generating artificial photon counts using
Poisson statistics with the appropriate output rates (Figure 4a and

Figures S6a, S7a, and S8a, Supporting Information). The Markovianity
of individual states was tested by inspecting their lifetime distributions,
which can be computed from the maximum-likelihood hidden paths,
s(̂t), of the HMM. A single exponential decay in these distributions is
consistent with Markovian dynamics (Figure 4b). States that failed this
test were split using a newly developed Bayesian model selection
algorithm (Supporting Information). The overall Markovianity of the
HMMs was tested using the implied time scales test38 that is
frequently used for simulation-based Markov state models. To this
end, the relaxation time scales, ti

HMM = −Δt/ln λi
HMM, were computed,

where λi
HMM are the eigenvalues of the HMM transition matrix T.

These are compared to the implied time scales of a Markov model
T̂(τ) constructed from the maximum likelihood hidden paths, s(̂t), for
different lag times τ. If the overall dynamics is Markovian, these time
scales should be independent of the lag time τ used to compute them,
hence yielding constant functions in Figure 4c. As an additional test,
they should agree with the HMM time scales, ti

HMM. Figure S9
(Supporting Information) shows FRET traces colored according to
the hidden states in the final model.

3. RESULTS AND DISCUSSION

3.1. FRET Efficiency Histograms. We analyzed three sets
of smFRET traces of DAse construct I (chromophores attached
to residues 6 and 42, see Figure 1), measured at different Mg2+

concentrations, 0.0, 5.0, and 40.0 mM. Background-corrected
FRET efficiency distributions were calculated from these data
sets by using the likelihood (eq 2) and a bootstrapping
procedure to estimate the uncertainty in the data (dotted gray
lines and gray areas in Figure 4a). These distributions exhibit
features that have been described earlier.9 Two ensembles of
states can be visually distinguished: a broad intermediate state
in the FRET efficiency range 0.4−0.8 and a putative native state
at efficiency values of 0.9−1.0. With increasing Mg2+

concentration, the populations shift to states with high FRET
efficiency. In ref 9, it was already hypothesized that the broad
ensemble at intermediate FRET efficiencies may consist of
multiple conformational states with overlapping FRET
efficiency distributions.

3.2. HMM Construction, Validation, and Refinement.
HMMs were constructed for the smFRET data sets as
described in the Materials and Methods section. The largest
number of states for which HMMs could be reproducibly
obtained was eight (0 mM Mg2+), eight (5 mM Mg2+), and
seven (40 mM Mg2+) states, where we used the optimization
protocol described in the Materials and Methods section. The
eight-state models for 0 and 5 mM Mg2+ passed the validation
test (Figure 4). A single, weakly populated state with FRET
efficiency E ≈ 0, which was assigned to an acceptor blinking
state, was removed from these models a posteriori. The seven-
state model at 40 mM Mg2+ required an intermediate step, in
which non-Markovian states were split and regrouped
according to kinetic proximity, yielding a nine-state model.
(See the Supporting Information for a detailed description of
the protocol employed.)
To test whether the remaining nonexponentiality came from

an actual non-Markovianity of the discrete state dynamics or
just from spurious transitions generated from the estimation of
the maximum likelihood, we conducted the implied time scale
test as described in the Materials and Methods section. The
results shown in Figure 4c demonstrate that the maximum
likelihood hidden paths, s(̂t), are non-Markovian in all models
at short time scales but then converge to approximately
constant time scale estimates at lag times of 10−30 ms. The
time scales agree with the time scales estimated from the HMM
transition matrix, indicating that the kinetics of all three HMMs
are consistent with the data.
Note that the HMMs for the three different Mg2+

concentrations were constructed independently of each other.
Therefore, when similar or consistent features are found across
all three Mg2+ concentrations, this is a two-fold validation of an
observation.

3.3. Conformational States. The scatter plots in Figure 5a
(upper row) show the main characteristics of the (hidden)
states of the HMMs: Each state is represented by a disc whose
position indicates the mean FRET efficiency of the state and its
lifetime τi = −Δt/ln Tii, where Δt is the time step of the HMM
transition matrix and Tii are the diagonal elements of this
matrix. The area of the disc is proportional to the stationary
probability πi of the state as computed from the HMM. The
states that consistently appear in construct I at different Mg2+

concentrations are depicted in the same color (i.e., black, blue,
red, and green states). The purple state at 0.0 mM Mg2+ could

Figure 4. Validation of the hidden Markov models. (a) Dependence of
the FRET efficiency histograms on the lengths of the time windows
(10, 50, and 100 ms). Dashed colored lines, prediction from the
hidden Markov model; gray areas/dotted black lines, estimation from
the smFRET data set (bootstrapping mean/95% confidence interval).
(b) Lifetime distributions of the individual states calculated from the
maximum-likelihood paths. Line coloring corresponds to the coloring
of the states in Figure 5. (c) Implied time scales, indicating that the
long-time kinetics of the hidden paths is Markovian and converges to
time scales similar to those found in the HMM. The divergence of the
shortest time scales at larger lag times is expected and due to numerical
problems.48
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not be matched to any state at higher Mg2+ concentrations.
Likewise, the yellow state only appears at 40.0 mM Mg2+.
A feature found for all Mg2+ concentrations is the black high-

FRET efficiency state. It has a relatively small stationary
probability but a long lifetime at all Mg2+ conditions. The
region of intermediate FRET efficiencies is populated mostly by
short-lived states (blue, red), and a few long-lived states with
low FRET efficiencies (green).
Remarkably, the states appearing at multiple Mg2+

concentrations show only rather subtle changes. There are
two cooperative effects upon Mg2+ increase: (i) all states shift
to slightly higher FRET efficiencies, indicating that Mg2+ causes
these conformations to become more compact, (ii) the
intermediate-efficiency purple state is depopulated with
increasing Mg2+, while some substates with higher FRET
efficiencies (light red state, which is split into an orange and a
dark red state at 40 mM Mg2+, as well as the dark blue state)
become more populated at high Mg2+ concentrations. The
populations of the other red and blue states, as well as the black
state, show surprisingly little dependence on the Mg2+

concentration, indicating that the associated conformations
do not experience stabilization by Mg2+ ions.
To better understand the nature of the conformational states

of the HMMs, we have investigated their kinetics. Detailed
information is presented by the networks plotted in Figures
S10−S13 (Supporting Information). Alternatively, an eigen-
vector/eigenvalue analysis of the transition matrix T allows
conformational states interconverting faster than the time scale
of interest to be grouped (Figures S10−S13, Supporting
Information).30,31 The second row of Figure 5a shows a striking
feature found independently for the HMMs at all Mg2+

concentrations: At a few tens of milliseconds, the substates of
the red subensemble as well as the substates of the blue
subensemble interconvert. We note that these substates have
very different FRET efficiencies. Consequently, kinetic
proximitiy and proximity on the FRET axis are, in general,

unrelated properties. This finding is emphasized by the FRET
efficiency histograms of the corresponding subsembles in
Figure 5b, which were constructed by partitioning the photon
traces according to the associated hidden states. The blue and
red subensembles are doubly peaked because they are
composed of multiple hidden states. In addition, these
subensembles overlap strongly, clearly showing why the present
single-molecule FRET data were difficult to model kinetically,
and emphasizing the usefulness of a detailed HMM analysis for
dissecting them.
For all Mg2+ concentrations, the high-efficiency peak in the

FRET histograms of the blue subensemble overlaps with the
high-efficiency black state, indicating that the high-FRET-
efficiency peak identified in ref 9 consists of two states, one of
which rapidly interconverts with a state of intermediate FRET
efficiency (blue) and is stabilized by Mg2+, and a long-lived
high-efficiency state (black), which is insensitive to Mg2+. In
Figure 5a, the third row shows that, on time scales of a few
hundred ms, the long-lived state (black) interconverts with the
blue subsemble. The mixing time for all subensembles is on the
order of seconds (see Figure 6). These results indicate the
presence of a hierarchical energy landscape, with different
processes occurring on very different time scales, ranging from
a few milliseconds to 1 s.
On the basis of the processes depicted in Figure 5, we find

fast interconversion between the “open” (E ≈ 0.5) and “closed”
(E > 0.7) states within the blue and red subensembles, while
the exchange dynamics between these subensembles happens
much slower. We propose that the states within each
subensemble (with a given color in Figure 5) have similar
secondary structures yet different tertiary structures, inter-
converting rapidly without breaking large strands of Watson−
Crick base pairs. This proposition is supported by the fact that,
at high Mg2+ concentrations, the compact parts of the red and
blue subensemble are stabilized. Different subensembles are
proposed to correspond to different secondary structures

Figure 5. Conformational states and subensembles found by the HMM analysis of construct I and construct II. (a) First row: State parameters of the
hidden Markov models which are for each state i: the FRET efficiency Ei (abcissa), the state lifetime τi (ordinate), and the equilibrium population πi
(disc size). Second and third rows: State decomposition for time scales of 10 and >100 ms. (b) FRET histograms of the subensembles of the states
shown in the second row of panel a.
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because they are long-lived, suggesting that the stable Watson−
Crick base pairs need to be broken in order to transit to
another subensemble.
3.4. Kinetic Analysis. Figure 6 shows a detailed kinetic

analysis and proposes the folding mechanism. The connectivity
between different subensembles (and, thus, presumably differ-
ent secondary structures) is similar at all Mg2+ concentrations.
The high-efficiency (black) state is connected to the blue
subensemble in the presence of Mg2+ (5 and 40 mM) directly
and, at 0 mM Mg2+, via the purple intermediate. The blue
subensemble is connected to the red subensemble. Finally, the

green states are connected to the red subensemble. Figure 6a
illustrates this connectivity, and the free energies of these
conformations as well as the transition states (see the Materials
and Methods section).
This connectivity suggests an ordering of subensembles from

the least compact (lowest FRET efficiencies) to the most
compact (highest FRET efficiencies) which can be found at all
Mg2+ concentrations: (1) green, (2) red, (3) blue, and (4)
black. The green states are long-lived but low-efficiency states.
The fact that they have high lifetimes and FRET efficiencies
that are much greater than zero suggests that they still have

Figure 6. Free energy landscape and folding pathways. States are indicated by bars or discs with the same colors used in Figure 5. (a) Free energy
landscape and hierarchy of the kinetic processes. Bars indicate the free energy of states. Gray bullets indicate transition states facilitating that states or
sets of states kinetically merge at longer time scales. The corresponding time scales are given in seconds. (b) The complete ensemble of folding
pathways from the least compact states (green/yellow) to the most compact state (black). The states are positioned depending on their mean FRET
efficiency (abcissa) and the probability of folding (committor, q+, ordinate). The thickness of an arrow is proportional to the probability that a green/
yellow state will fold along this pathway.
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some secondary structure, although probably not the native
one. They are therefore called “misfolded”.
This ordering suggests to study the transition pathways from

the misfolded states (green) to the most compact state (black).
Transition path theory39,40 provides the basis for calculating the
pathways between two subensembles. We use the protocol and
equations described in ref 36 employing the implementation in
the EMMA software.41 A transition pathway is defined as a
series of transitions that lead from the misfolded to the native
state without returning to the misfolded state. Figure 6b locates
the states by their FRET efficiency, and by the committor value
(vertical axis), i.e., the probability of the system, when being in
this state, to move “forward” and fold toward the black state,
rather than misfold back to the green state. The committor
value q+ = 0.5 designates states in which the molecule is equally
likely to go either way. These states effectively act as transition
states in the folding pathway. Note that there is a continuous
shift of these transition states with increasing Mg2+

concentration. At 0 mM Mg2+, the transition state lies between
the green and red subensembles. Once a molecule has reached
the red subensemble, it is likely to continue folding to the black
state. With increasing Mg2+ concentration, the red and blue
subensembles become more and more kinetic intermediates,
and lie at committor values around 0.5 for 40 mM Mg2+.
Figure 6b shows the probability fluxes of transition pathways

from misfolded states to the folded state. The size of the arrows
indicates the probability flux, which is related to the folding
rate. Without Mg2+, the folding rate kAB is about 0.09 s−1, and
increases to 0.28 s−1 for 5 mM and 0.17 s−1 for 40 mM Mg2+.
The strong increase in folding rate from 0 to 5 mM Mg2+ is
mainly due to a lowering of the transition state energy, while
the decrease in folding rate from 5 to 40 mM Mg2+ is mainly
due to an increased stability of the dark blue intermediate state
(compare Figure 6a and b). Moreover, it is apparent that
addition of Mg2+ increases the number of accessible pathways,
making the folding process more parallel. Two main
mechanisms are observed at all Mg2+ concentrations: a compact
folding mechanism, in which the green misfolded state refolds
via the higher FRET efficiency substates of red and blue toward
the black state, and an “close−open−close” mechanism, in
which the green state folds via the open substates, or via
successive closing, opening, and closing, i.e., involving tertiary
unfolded states. Both types of pathways have similar weights,
with some preference for close−open−close pathways at low
Mg2+ concentrations and a slight preference for compact
pathways at high Mg2+ concentrations.
3.5. Validation by a Second Construct. To further

confirm our findings, we performed a fourth independent
measurement on a DAse (construct II) with a different set of
label positions. The changed label positions should mainly
affect the FRET efficiencies of states. If they do not introduce
major energetic conflicts, the state probabilities, time scales, and
the kinetic connectivity should remain comparable.
Single-molecule FRET data were recorded, and an HMM

was computed using the same approach as above. A seven-state
model was found to pass the validation test (see Figure S14a
and S14b, Supporting Information). Like construct I, construct
II exhibits low-FRET, “open” states at efficiencies of 0.4−0.6
and high-FRET, “closed” states at efficiencies above 0.8. As for
construct I, two pairs of rapidly interconverting states, each
with a low- and a high-FRET state, were found. Additionally, a
single stable state with high efficiency was also identified.
Consequently, the red, blue, and black subensembles of

construct II match the corresponding subensembles in
construct I and, thus, can be identified in all experimental
data with high confidence (see Figure 5a).
Moreover, the time scales found in constructs I and II are in

qualitative agreement (see Figure S14c in the Supporting
Information). Open and closed states of the red and blue
subensembles interconvert at time scales of a few milliseconds
(≤10 ms in construct I, 3 ms in construct II). At time scales of
100 ms to seconds, (i) the blue ensemble merges with the black
state and (ii) the red and blue ensembles kinetically merge. At
low Mg2+ concentrations, the blue−black interconversion is
several 100 ms faster than the blue−red interconversion, while,
at 40 mM Mg2+, the two processes happen at about the same
time scales (Figure S14c, Supporting Information).
The gray states in construct II and the green/yellow states in

construct I do not have clear corresponding states in the other
construct. These states may be affected by the labeling. For
example, the presence of a label in a particular position may
prevent certain structures from forming. In the following
discussion, we will thus concentrate on those states that can be
safely matched across all data sets (red, blue, and black).
Note that, due to the reduced state lifetimes in construct II,

the partitioning of the photon traces resulted in subtraces which
were too short for a histogram analysis. Hence, the
subensemble FRET histograms could not be generated (see
Figure 5b).

4. DISCUSSION
A kinetic pattern is found consistently for different Mg2+ ion
concentrations and for different attachment points of the
chromophores: (i) a long-lived, high-FRET-efficiency state
(black), (ii) two ensembles of states (red, blue) comprising
rapidly interconverting open and closed states, the ratio of
which depends on Mg2+, and (iii) a linear connection between
the three subensembles (red, blue, black). The long
interconversion times along this linear connection suggest
that these transitions involve breaking and reforming of
Watson−Crick base pairs.
To investigate whether there are secondary structures

consistent with this pattern, minimum energy secondary
structures of the DAse were calculated using the Vienna RNA
WebServer5,42 (see the Supporting Information). The algo-
rithm correctly identified the secondary structure of the known
folded state (excluding the pseudoknot connectivity) as the
lowest free-energy structure. Two alternative secondary
structures with low free energies (ΔG < 1.4 kJ/mol above
native, i.e., accessible at room temperature) were also identified.
These structures (labeled 2 and 3) are shown along with the
secondary structure of the folded state (labeled 1) in Figure 7.
Although they are very close in energy and structurally very
similar to each other, structures 2 and 3 differ from structure 1
in that helix II is broken and helix I is prolonged by two base
pairs. All other secondary structures identified by the algorithm
had estimated free energy differences of ΔG > 9.5 kJ/mol with
respect to structure 1.
In the absence of stabilizing tertiary interactions, secondary

structures 1, 2, and 3 facilitate transitions between open and
compact states, associated with large fluctuations in the donor−
acceptor distance in both constructs. Therefore, they have
properties matching those found for the blue and red
subensembles in the HMM analysis. The black state displays
exclusively high FRET efficiencies in all constructs under all
conditions and is thus likely a compact state with a well-defined
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tertiary structure. Its long lifetime and the fact that its
population does not vary strongly with the Mg2+ concentration
suggest that it is stabilized by base-pairing rather than Mg2+

ions. Therefore, we propose that the black state represents the
tertiary folded structure including the pseudoknot topology.
The pseudoknot base pairs (G1−C26, G2−C25, A3−U45,
G4−C44; see Figure 1) are consistent with stable interactions
that do not depend on Mg2+. Their formation stabilizes an
already compact structure with the correct secondary fold so as
to acquire a well-defined tertiary structure. This proposal is
supported by computer simulations which show that the active
site of DAse is distorted if Mg2+ is removed (explaining the loss
in catalytic activity) but the overall lambda-shaped tertiary
structure stays intact.15

Since the blue subensemble acts as a precursor to the black
tertiary folded structure (linearly connected folding path,
Figure 6), it is only logical to match the blue state with the
secondary structure of the folded state (structure 1). The native
secondary structure still facilitates extended and compact states.
Like the fully native black state, the high-efficiency blue states
are compact and possess the correct native secondary structure,
but in contrast to the black state, they lack the pseudoknot base

pairs, which stabilize the native tertiary fold. Consistently, the
probability of extended versus compact blue states depends on
the concentration of Mg2+ ions that are required to stabilize the
compact state in the absence of tertiary base pairs.
Consequently, the red ensemble contains structures 2 and/or

3, i.e., extended and compact states with non-native secondary
structure. This assignment leads to a putative folding
mechanism summarized in Figure 7.
The proposed assignment is consistent not only with the

kinetic connectivity and the Mg2+-dependent equilibrium
populations but also with the observed time scales. The
fluctuation between open and compact conformations within
the blue and red ensembles involves no or little secondary
structure change, consistent with relatively short transition time
scales (Figures 5 and 6). In contrast, a transition from the red
to the blue subensemble involves rupture of Watson−Crick
pairs, which is consistent with slower transition time scales of
hundreds of milliseconds (Figures 5 and 6). Likewise, the
change of tertiary base-pairing is consistent with long transition
time scales between the blue and black states and the long
lifetime of the black native state.
The kinetic model found here and our proposed folding

mechanism exhibits a number of features consistent with
previous findings or hypotheses for other RNA systems. In
particular, secondary and tertiary structure formation has been
proposed to be kinetically decoupled, such that secondary
structure elements can exist without further stabilization by
specific tertiary interactions.53 For the Tetrahymena thermophila
ribosome, metastable structures with a partially misfolded
secondary structure have been described, lending credibility to
the present assignment of the red subensemble to structures 2
and/or 3.49−51 In addition, other RNAs have been proposed to
fold via multiple parallel pathways.49,50,52

To the best of our knowledge, we have presented the most
detailed experimentally derived model of an RNA folding
mechanism, providing a kinetic model connecting different
secondary and tertiary stabilized structures, and showing how
they are orchestrated during the folding pathways. The
multitude of time scales found in the data provide direct
evidence that the RNA folding landscape is hierarchical and
that secondary and tertiary structure formation occur on
different time scales. The techniques described here also
facilitate detailed kinetic models to be derived for other
macromolecular systems.
As yet, the field is still lacking an experiment that could

simultaneously resolve kinetics and the structures of the
individual states in detail. Unfortunately, computational
approaches cannot step in here. With folding times on the
order of seconds, the dynamics are as yet out of reach for direct
molecular dynamics (MD) simulation. Over time, however,
enhanced sampling strategies may help access these pro-
cesses.43 However, molecular modeling and MD simulation
may be useful for exploring the local dynamics within individual
states, and by using new biophysical techniques, the
distribution of measurable FRET values can be computed and
compared to the subensemble distributions shown in Figure
5b.44,45 On the experimental side, using multicolor-FRET46 or
the systematic reconciliation of multiple dual-color-FRET
experiments47 may provide distance constraints to resolve the
structures in more detail. Finally, the combination of FRET and
site-specific fluorescence quenching may also be employed to
disentangle the tertiary dynamics from secondary structure
formation.

Figure 7. Proposed folding mechanism. Secondary structures were
predicted by the Vienna RNA server.5,42 The red set of states has a
non-native secondary structure but includes both open (low-FRET)
tertiary structures and compact (high-FRET) tertiary structures. The
blue set of states has the native secondary structure but also includes
both open and compact tertiary structures. Compact structures in the
red and blue sets are stabilized by Mg2+. The black state has the native
secondary and tertiary fold. In contrast to the compact blue state, it is
additionally stabilized by the tertiary Watson−Crick pairs that form
the pseudoknot.
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