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fü r Informationstechnik Berlin 

Takustraße 7 
D-14195 Berlin-Dahlem 

Germany 

PETER NETTESHEIM AND SEBASTIAN REICH 

Symplectic Multiple-Time-Stepping Integrators 
for Quantum-Classical Molecular Dynamics 

Preprint SC 97-56 (December 1997) 



Symplectic Multiple-Time-Stepping Integrators for 
Quantum-Classical Molecular Dynamics 

Peter Nettesheim* Sebastian Reicht 

23rd January 1998 

Abs t r ac t 
The overall Hamiltonian structure of the Quantum-Classical Molecular Dynamics model 

makes - analogously to classical molecular dynamics - symplectic integration schemes the meth­
ods of choice for long-term simulations. This has already been demonstrated by the symplectic 
PICKABACK method [12]. However, this method requires a relatively small step-size due to 
the high-frequency quantum modes. Therefore, following related ideas from classical molecu­
lar dynamics, we investigate symplectic multiple-time-stepping methods and indicate various 
possibilities to overcome the step-size limitation of PICKABACK. 

Introduction 

In this paper, we consider the symplectic integration of the so-called Quantum-Classical Molecular 
Dynamics (QCMD) model. In the QCMD model (see [8, 7, 3, 5, 6] and references therein), most 
atoms are described by classical mechanics, but an important small portion of the system by quantum 
mechanics. This leads to a coupled system of Newtonian and Schrödinger equations. 

We focus on so-called symplectic methods [18] for the following reason: It has been shown that 
the preservation of the symplectic structure of phase space under a numerical integration scheme 
implies a number of very desirable properties. Namely, 

symplectic methods preserve the total energy over very (exponentially) long periods of time 
up to small fluctuations [2, 11, 14] and 

symplectic methods also conserve the adiabatic invariants of the problem under consideration 
[15] 

Note that the same results have not been shown for symmetric (time-reversible) integration 
methods, although symmetric methods seem to perform quite well in practice. For a discussion of 
symmetric methods in the context of the QCMD model see [16, 17, 13]. 

For ease of presentation, we consider the case of just one quantum degree of freedom with spatial 
coordinate x and mass m and N classical particles with coordinates q € 1Z3N and diagonal mass 
matrix M G 7̂ 3JVx37V_ U p 0 n denoting the interaction potential by V(x,q) we obtain the following 
equations of motion for the QCMD model: 
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with Uci a purely clasical p i a l e y f u t i o n a wit (q) t e q m Hamiltoia 
operator given by 

(q)=T + V(x,q) £-Ax. 

In the sequel, we assume that the quantum subsystem has been truncated to a finite-dimensional 
system by an appropriate spatial discretization and a corresponding representation of the wave 
function tp by a complex-valued vector tp g Cd. The discretized quantum operators T, V and H are 
denoted by T € Cdxd, V(q) € Cdxd and H(q) € Cdxd, respectively. In the following construction of 
the time-propagators we will exploit special matrix structures of some spatial discretizations: 

a) V(q) is diagonal, 

b) H{q) is realvalued, and 

c) all other cases 

Conservation Properties of the QCM odel 

For long-term simulations, it generally proves advantageous to consider numerical integrators which 
pass the structural properties of the model onto the calculated solutions. Hence, a careful analysis of 
the conservation properties of QCMD model is required. A particularly relevant constant of motion 
of the QCMD model is the total energy of the system 

pTM
2

 l r H ( q ) i U(q) (1) 

Here tp denotes the conjugate transpose of tp. Another conserved quantity is the norm of the vector 
tp, i.e, tp tp = const, due to the unitary propagation of the quantum part. 

In the context of this paper, the most important conservation property of QCMD is related to its 
canonical Hamiltonian structure which implies the symplecticness of the solution operator [1]. There 
are different ways to consider the QCMD model as a canonical Hamiltonian system with Hamiltonian 
(1). Here we follow the presentation given in 5, 16]: We decompose the complex-valued vector t 
into its real and imaginary part i e 

- ^ ( q . p , ) 

Then, after introducing generalized positions Q = (q^,q) £ TZd+3N and generalized momenta 
P ( p ^ T € 7£d+37V the equations of motion can be written as 

j X7PH(QP), 

j VQH(QP) 

These equations of motion are also time-reversible [13]. 
Finally, we like to mention that the QCMD model reduces to the Born-Oppenheimer approxima­

tion in case the ratio of the mass m of the quantum particles to the masses of the classical particles 
vanishes [6]. This implies that the populations |#i(£)|2, i = 1 , . . . k corresponding to the eigenvalues 
Ei(q(t))) of the operator H(q) become adiabatic invariants. 

Note that the conservation of total energy and the conservation of the adiabatic invariants asso­
ciated to the Born-Oppenheimer limit of the QCMD model provide a simple test for the behavior 
of a numerical integrator 



Construction of Symplecti Integrators 
Our aim is the construction of numerical integrators which reproduce the conserved quantities in 
long-term simulations. To this end, we focus on symplectic methods, i.e., methods that conserve the 
canonical structure of phase space [18]. A convenient way to derive symplectic methods for general 
Hamiltonian systems is based on an appropriate splitting of the Hamiltonian "H into a sum of sub-
Hamiltonians, e.g., the two-term decomposition "Hi +H2, each of which corresponds either to an 
explicitly solvable system or has a given symplectic integrator [18]. This procedure can be illustrated 
using a phase space representation of the Hamiltonian flow. The time-evolution over A units of 
time is then given by exp(AtL^) where L-^ is the Liouville operator of the whole system [18, 12] 
The Liouville operator exp(AtL^) can be approximated via the second order Strang splitting [18]: 

exp(tLn e x p ( ^ i W l ) e x p ( t i « 2 ) exp( -^L W l + 0 (2) 

The resulting numerical method is obviously symplectic since exp(^-L-n1) and exp(*L-H2) are 
symplectic maps and the composition of symplectic maps yields a symplectic map. 

The symplectic PICKABACK method [12] for instance uses the following selection: 

Ti and (<j# Uc{q) 

The corresponding differential equations can be solved explicitly provided the operator V(q) is 
diagonal 

PICKABACK conserves total energy up to small fluctuations and the norm of the vector ip 
exactly. Its main drawback is the step-size restriction which is of the order of the inverse of the 
largest eigenvalue of the quantum operator H(q). Thus, if the evaluation of the operator V(q 
and the gradients VqV(q) and VqUci{q) are expensive due to long-range interactions, then the 
PICKABACK scheme can become inefficient, i.e., the permitted step-size might be much smaller 
than required by the pure classical dynamics. To overcome this problem, symmetric integration 
schemes are considered in [16, 17] and [13] 

Symplectic ultiple-Time-Stepping ethods 

Here we suggest a different approach that propagates the system using multiple step-sizes i.e, few 
steps with step-size At are taken in the "slow" classical part whereas many smaller steps with step-
size 6t are taken in the highly oscillatory quantum subsystem (see, for example, [19, 4] for symplectic 
multiple-timestepping methods in the context of classical molecular dynamics). Therefore, we 
consider a splitting of the Hamiltonian 7 + 'H in the following way: 

2 and H{q) Ud{q) 

Let us write down the corresponding differential equations. First for T 

• 

in— 
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J 
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ih- H(q (3) 

I (4) 

A V , V ( 9 ) V , t / C ( g ) (5) 

The solution to ~H\ is just a translation of classical particles with constant momentum p. 
The intriguing point about the second set of equations is that q is now kept constant. Thus 

the vector tp evolves according to the time-dependent Schrödinger equation with time-independent 
Hamilton operator H(q) and the update of the classical momentum p is obtained by integrating 
the Hellmann-Feynman forces [5] acting on the classical particles along the computed tp() (plus a 
constant update due to the purely classical force field) 

Upon computing the eigenvalues of the operator H(q), the equations (3)-(5) can be solved 
exactly. However, this is, in general, an expensive undertaken. Therefore we proceed with the 
following multiple-timestepping approach: The first step is to consider the identity 

e x p ( t exp(tL • • • exp( tL exp(tLUcl), 

me 

where S t/j even, and 

il>*H(q) 

The second step is to use this identity in (2) which yields 

exp(tL exp(—) e x p ^ t • • • e x p ( t i exp(tLUcl) exp(— 
V ^  

me 

t3) 

The last step is to find a symplectic, second order approximation $g t to exp(StL^ ). In principle 
we can use any symplectic integrator suitable for time-dependent Schrödinger equations (see, for 
example, [9]). Here we focus on the following three different possibilities corresponding to special 
properties of the spatially truncated operators H(q) and V(q) 

a) Provided that V(q) is diagonal, an efficient method $$t is obtained by exploiting the natural 
splitting of the quantum operator H(q) = T + V(q) in a procedure similar to the one used in 
PICKABACK. This yields two exactly solvable subsystems [12] 

2, i>*Ti and -2,*V(q) 

Again, we use (2) to construct a symplectic, second order approximation $^t to exp(5tL^ ) 
The resulting integrator for QCMD is of second order explicit symplectic and conserves the 
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b) If the spatially discretized quantum Hamiltonian operator H(q) is realvalued i e 

n t e H a m i l t i a an be w r i t n a 

-^z%H{q)q —lH{q)pi 

i i 

and the e a t i o s of moion c r r s p i n g to e c h of the two terms in th Hamiltoia 
namely 

J 

Jp* {q)qi 

J 

J ^l^V(q)qi}, 

7 (q)p4 

Jp* 

T —^VqV(q)p^, 

an be soled a a l t i c l l y . Thus we def 

$ « exp ( y ^ . i ) e x P ( ^ 2 , ) exp ( y ^ J 

For stability reasons, the micro-step-size 5t has to be chosen smaller than the inverse of the 
largest eigenvalue of the (scaled) truncated quantum operator h~1H{q). This can imply 
very small value of 6t compared to the macro-step-size 



) The most straightforward b t also an expensive $st is obtained by discretizing the equatio 
of motion corresponding to Hi by the (symplectic) implicit midpoint rule which results in 

tPk i'(l)(<l/2)tp(-l/2 

Pk -l)Öti*-l/jV(q1/2)tp( 

k = 1 , . . . ,j, with ip(k-i/2)/j = i^k/j + "0(f_i)/j)/2. Note that each integration step requires 
the solution of a ddimensional linear system of equations in the unknown i 

Our multiple-time-stepping methods are close to methods suggested in [16, 17]. The method 
considered in [16] is time-reversible but not symplectic. More importantly the method updates the 
momenta p of all classical particles only once per macro-time-step At. As indicated in [10, 13] 
this might lead to a substantial phase drift in the discrete solution. In [10], an averaging procedure 
of the quantum-classical Hellmann-Feynman force field along tp(t) is suggested to overcome this 
problem. Note that, for the multiple-time-stepping schemes suggested here, this averaging is carried 
out automatically and is a direct consequence of proposed splitting of the Hamiltonian equations of 
motion. We finally like to mention that symplectic methods are also discussed in [17]. In particular 
the suggested methods are symplectic in the quantum part and the classical part if considered 
separately. However this does not imply that the overall method is symplectic 

Conclusions 

We have derived time-reversible, symplectic, and second-order multiple-time-stepping methods for 
the finite-dimensional QCMD model. Theoretical results for general symplectic methods imply 
that the methods conserve energy over exponentially long periods of time up to small fluctuations 
provided the step-size At is chosen small enough. Furthermore, in the limit m —> 0, the adiabatic 
invariants corresponding to the underlying Born-Oppenheimer approximation will be preserved as 
well. Finally, the phase shift observed for symmetric methods with a single update of the classical 
momenta p per macro-time-step At should be avoided by the suggested methods. The additional 
costs for this frequent update per micro-time-step St are relatively low. Note that the update only 
requires taking the inner product ip*X7qV(q)ip with respect to a constant gradient VqV(q) and 
only with respect to those classical particles that interact with the quantum degree of motion. 
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