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1 IntroductionIn molecular dynamics applications there is a growing interest in includingspeci�c quantum dynamical e�ects into the otherwise classical description ofsome large molecular system. Typical examples are proton transfer processesin the active site of an enzyme, electron di�usion in molten salts, or scatter-ing e�ects on the electronic structure of the target molecule. Unfortunately,full quantum dynamical calculations for the entire molecule are beyond thescope of simulations, today and in the next decades. In the mixed quantum-classical approach to this problem, most atoms of the molecular system aredescribed by the means of classical mechanics but important (and mostlysmall) portions of the system by the means of a wavefunction.A typical example of these models, the so-called QCMD model, con-sists of a singularly perturbed Schr�odinger equation nonlinearly coupled toclassical Newtonian equations, see x2. We will carefully review the assump-tions under which this model is known to approximate the full quantumdynamical (QD) evolution of the system. One important insight is thatboth, the QCMD model and the full QD evolution, in fact have the sameadiabatic limit system, the well-known time-dependent Born-Oppenheimer(BO) model, see x2.1.It is well-known that BO simulations are su�cient approximations ofthe full QD evolution in many important situations but lead to entirelywrong descriptions in as many other \non-adiabatic" cases. In contrast tothe BO model, the QCMD model includes non-adiabatic processes, e.g.,transitions between the energy levels of the quantum system or resonancee�ects near level crossings, x2.2. The literature on this topic contains asigni�cant number of speci�c examples in which QCMD simulations yieldbetter approximations of QD than the simple BO approximation. But theliterature also contains important examples in which QCMD fails entirelybecause it is a single-trajectory model while the full QD solution developsmulti-con�guration character [11]. In the present article, these observationswill be illustrated by means of a certain simple example, see x2.3.Subsequently, a speci�c surface hopping extension of QCMD will be in-troduced and compared with similar approaches, x3. The insights gainedin the example will then allow to understand the algorithmic strategy ofsuch QCMD-based surface hopping algorithms: to exploit the advantagesof the non-adiabatic e�ects in QCMD while preventing the algorithm frombehaving like QCMD in situations where multiply-branched classical pathsare required for an accurate description.For an e�cient realization of QCMD simulations numerical integratorsare required which allow to use time steps much larger than the fastest quan-tum time scales. Such long-step integrators have to reproduce correctly thehighly oscillatory phase e�ects in the quantum part of the system. The ba-sic problems related to this requirement are discussed with special emphasis1



on the particular aspects in the context of QCMD-based surface hoppingsimulations, see x4.2 QCMD ModelTo keep the notation simple we restrict our study to the case of a systemwith just two degrees of freedom x 2 Rd1 and q 2 Rd2 with signi�cantlydi�erent associated masses, m and M . We suppose that the mass ratio�2 = m=M is a small parameter. After an appropriate rescaling [21], thetime-dependent Schr�odinger equation of this systems becomesi� @t	 = �� �22 �q � 12�x + V (x; q)� 	: (1)The corresponding solution 	 = 	(x; q; t) describes what we call the fullQD evolution of the system. Typically, a proper choice of the coordinatesystem allows the initial quantum state to be approximated by a productstate (cf. [7], xIIb): 	(x; q; t = 0) = ��(q) �  �(x): (2)We will throughout assume this initial condition to be given.The equations of motion of the QCMD model are given byi�@t QC = H(q) QC and �qQC = �gradqh ; V  i(qQC); (3)where H = H(q) is the q-parametrized HamiltonianH(q) = �12�x + V (x; q):The QCMD solution can be understood as an approximation of the full QDevolution if the initial wavefunction �� is an approximate �-function, e.g.,��(q) = 1A� exp �� 14�(q � q�)2� exp � i� _q�q� : (4)If this is the case and some other conditions are satis�ed,1 the QD solution	 = 	(x; q; t) is approximately given by 	(x; q; t) � �(q; t) (x; t) with �remaining an approximate �-function moving along the classical part qQC =qQC(t) of the QCMD solution and  �  QC (for details compare [3]).This approach, however, does not reveal the close connection betweenthe QCMD and BO models. For establishing this connection, we will nowsummarize the approach of [4] showing that |under some non-resonanceconditions| the BO model is the adiabatic limit of both, QD and QCMD.1The main condition is the absence of caustics along the QCMD-solution, cf. [3].2



2.1 Adiabatic Theory and BO ModelSubsequently, we will study the limit equations governing the QCMD solu-tions for the adiabatic limit � ! 0, in which the motions in the degree offreedom x are in�nitely faster than the slow processes in the classical coor-dinate q. Therefore, we rewrite the QCMD system, Eqs. (3), by explicitlydenoting the dependence of its solution (q�; _q�;  �) on the parameter �:i�@t � = H(q�) �;  �jt=0 =  �;�q� = �gradqh �;H(q�) �i; q�(0) = q�; _q�(0) = _q�: (5)We restrict ourselves to �nite-dimensional Hilbert spaces,2 making H a Her-mitian matrix. We denote the eigenvalues of H(q) by Ek(q) and considerthe spectral decompositionH(q) = Pk Ek(q)Pk(q); (6)where Pk is the orthogonal projection onto the eigenspace associated withEk. With respect to a quantum state  , the number �k = h ;Pk i is thepopulation of the energy level Ek.2.1.1 Adiabatic Limit of QCMDThe limit equation governing lim�!0 q� can be motivated by referring tothe quantum adiabatic theorem which originates from work of Born andFock [1, 14]: The classical position q in
uences the Hamiltonian very slowlycompared to the time scale of oscillations of  �, in fact, \in�nitely slowly"in the limit � ! 0. Thus, in analogy to the quantum adiabatic theorem,one would expect that the populations of the energy levels remain invariantduring the evolution:lim�!0 ��k(t) = lim�!0h �; Pk(q�) �i = �0k = h �; Pk(q�) �i:The constant �0k is the initial population of level Ek and thus computablefrom the initial data, Eq. (5). All this turns out to be true: According to[4], the limit solution qBO = lim�!0 q� is given by:�qBO = �gradqPk �0k Ek(qBO); qBO(0) = q�; _qBO(0) = _q�: (7)whenever the following assumption on the eigenspaces and eigenenergies ofH(q) is satis�ed:2The reader may think of a �nite dimensional subspace of the original state space.This subspace may, e.g., be associated with a suitable discretization in space. For ageneralization of the results presented in this subsection to the in�nitely dimensional case,see [2]. 3



(A) The spectral decomposition Eq. (6) of H depends smoothly on q andthe transversality condition ddt (Ek(qBO)�El(qBO)) 6= 0 holds.We refer to equation (7) as to the time-dependent Born-Oppenheimer (BO)model of adiabatic motion. Notice that Assumption (A) does not excludeenergy level crossings (i.e., positions qc at which Ek(qc) = El(qc) for somek 6= l).For simplicity we will assume in the following that, for every position q,all the eigenspaces of H(q) are one-dimensional, i.e., for every energy levelEk(q) there exists a normalized eigenvector �k(q) such thatH(q)�k(q) = Ek(q)�k(q); and Pk(q) = �k(q)
 �k(q):Then, the population of the energy level Ek(q) with respect to the quantumstate  is given by �k(q) = jh�k(q);  ij2.2.1.2 Adiabatic Limit of QDThe time-dependent BO model describes the adiabatic limit of QCMD. IfQCMD is a valid approximation of full QD for su�ciently small �, the BOmodel has to be the adiabatic limit of QD itself. Exactly this questionhas been addressed in di�erent mathematical approaches, [5], [8], and [13].We will follow Hagedorn [8] whose results are based on the product stateassumption Eq. (2) for the initial state with �� assumed to be given by (4)and on the \no-crossings" assumption(B) Along the BO solution qBO, crossings between initially occupied energylevels are excluded, i.e., for all pairs (Ek; El) of energy levels with k 6= land �0k + �0l > 0, we have Ek(qBO(t)) 6= El(qBO(t)) for all t 2 [0; T ].Using these conditions and the BO solution qBO, a wavefunction 	BO isconstructed which comes out to be the limit of the sequence of QD solution	� for �! 0, [8]. In particular, for the position expectationhqiQD� = h	�; q	�i(t);the statement of Hagedorn is:Theorem 1 (Thm. 2.1 in [8]) Assume qBO = qBO(t) to be the solution ofthe BO equation, Eq. (7), in a �nite time interval [0; T ] and let assumption(B) be satis�ed. Then, we havelim�!0hqiQD� = qBO in [0; T ]:That is, in the limit, the center of the QD wavepacket 	� moves along theBO-solution. Summarizing, QD and QCMD have the same adiabatic limit4



solution which is given by the BO model if the initial conditions are ap-propriate and if we exclude energy level crossings and discontinuities of thespectral decomposition. Consequently, QCMD is justi�ed as an approxima-tion of QD if only � is small enough and these conditions are satis�ed.These are important results. However, the following question remains:Can QCMD describe anything beyond the correct adiabatic limit of QD?Can it describe non-adiabatic e�ects, i.e., deviations of the QD solution fromits adiabatic limit for realistically small � > 0?2.2 Non-Adiabaticity in QCMDOne can easily inspect the deviation of QCMD from its adiabatic limit ifwe reformulate its equation of motion in the coordinate system given bythe eigenstate of the one-particle Hamiltonian H. In terms of the notationintroduced above, we therefore make the following ansatz for the QCMD-wavepacket  �:  �(t) = Xk c�k(t)�k(q�(t)):Inserting this into the QCMD equations we �ndi�@tc�k = Ek(q�)c�k � i� _q� Pl dkl(q�) c�l ;�q� = �rqPk jc�kj2Ek(q�) � Pkl (c�k)�c�l �Ekl(q�) dkl(q�); (8)where the coupling matrix elements dkl and energy gaps �Ekl are given bydkl(q) = (djkl); djkl = h�k(q); @qj�l(q)i and �Ekl(q) = Ek(q)�El(q):Thus, the non-adiabatic coupling between the energy levels in QCMD isgoverned by the coupling matrix (dkl). Whenever assumption (B) fromabove is valid one can show [2] that the deviation from the adiabatic solutioninduced by this non-adiabatic coupling is of order O(�)!2.2.1 First Order CorrectionsAdditionally, we are able to construct explicit expressions for the �rst orderdeviation terms: To this end, the coe�cients c�k must be represented in polarcoordinates, i.e., c�k(t) = q��k(t) exp�� i�'�k(t)� ;and one introduces the BO angle 'BOk as the solution of _'BOk = Ek(qBO)along the BO solution qBO with 'BOk (0) = '�k(0). In addition, we have to5



exclude all symmetric resonances of order four, i.e., to assume that in someneighborhood of qBO = qBO(t):Ek(q) +El(q) 6= Ej(q) +Em(q) for k 6= j; k 6= m; l 6= j; l 6= m: (9)This condition allows to compute the non-adiabatic corrections to the adi-abatic limit up to the leading orders in � [2, 18]:q� = qBO + �2�q2;� + O(�3); _q� = _qBO + � � _q1;� + O(�2);��k = �0k + � ��1;�k + �2��2;�k + O(�3); '�k = 'BOk + O(�2):Under the assumption of (9), we have the following two theorems:Theorem 2 (Appendix C of [2]) The �rst order corrections are given by��k1;� = 2 0@�k1;0 � Xl 6=k;j _qjBOq�0l �0k�Ekl(qBO) sin ���1('BOk � 'BOl )� djkl(qBO)1A�k1;0 = Xl 6=k;j _qj�(0)q�0l �0k�Ekl(q�(0)) sin ���1('�k(0)� '�l (0))� djkl(q�(0))� _qk1;� = Xl;j q�0l �0k sin ���1('BOk � 'BOl )� djkl(qBO):This result implies c�k(t) = q�0k exp(� i�'BOk (t)) + O(�). Moreover, inthe particular case, that initially the wavepacket occupies only one of theeigenstates, say ��, this theorem states that the �rst order corrections vanishidentically. Then, the following is valid for the second order corrections:Theorem 3 ([18]) Whenever �0l = ��;l, the second order corrections for thepopulations in state l, l 6= �, are given by��l2;�(t) =  Bl�BO(t)�EBOl� (t)!2 +  Bl�BO(0)�EBOl� (0)!2� 2 Bl�BO(t)�EBOl� (t) Bl�BO(0)�EBOl� (0) cos���1 Z t0 �EBOl� (s)ds�+O(�) (10)with Bl�BO := �h�l(qBO);rq��(qBO)i � _qBO and �EBOkl = �Ekl(qBO).
6



2.3 An Avoided Crossing ExampleIn the subsequent, let us consider the particularly simple test case wherethe quantum subsystem can be described as a two state system and theclassical subsystem is one-dimensional. Thus, q 2 R1 and the full Sch�odingerequation has the form: i� _	 = �� �22 Tq + H(q)� 	; (11)with H = H(q) and Tq denoting 2� 2 hermitian matrices:Tq =  �q 00 �q ! and H(q) = � V1(q) cc V2(q) � :The wavefunction 	 2 L2(R) � L2(R) consists of two components 	 =(	1;	2)T , each of which a function in q and t.Herein, we choose the potentials to be V1(q) = q2 and V2(q) = 1=q.The interpretation is the following: V1 describes a harmonic bond, V2 arepulsive potential, and c a weak coupling between these two (electronic)con�gurations. We choose � = 0:01 which is a suitable scaling for electrons.In the following we set c = 0:1. For the choices made, Fig. 1 shows theenergy eigenvalues E1 = E1(q) and E2 = E2(q) < E1(q) of H(q) and thecorresponding o�-diagonal entry of the non-adiabatic coupling matrix d12.Notice that there is some \transition zone" around q = 1 where the gap
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Figure 1: (a) Potentials V1 and V2 (solid lines) and energy levels E1 and E2 (dashedlines) versus q. (b) Non-Adiabatic coupling matrix element d12 versus qbetween the two energy levels is minimal and the coupling matrix entrysigni�cantly large.We are interested in the following initial condition: Let �1 = �1(q) bethe eigenvector to E1, q0 = 0:4 and p0 = 1. Then the initial wavefunctionis centered at q0 with momentum expectation p0 and the energy level E1 is7



occupied only, i.e.,	(q; t = 0) = 1A exp �� 14�(q � q0)2 � i�p0q� � �1(q0):Figure 2 illustrates the true quantum dynamical solution of (11) for the ini-tial condition given. We observe that the centers of the two components 	1and 	2 of the wavefunction diverge when crossing the transition zone. Themotion of each of these two centers is governed by the Born-Oppenheimersolutions on the corresponding3 energy levels E1 and E2 (cf. Fig. 3 (b)).We can conclude that the non-adiabatic e�ect of the transition zone inducessome signi�cant population of the initially unoccupied energy level whereasthe motion outside of the transition zone is governed by classical dynam-ics on the energy levels and induces the observed divergence. Obviously, asingle QCMD trajectory { even when representing the correct populationdynamics { cannot reproduce this divergence. Thus, we follow the idea ofsplitting QCMD trajectories leading to a speci�c variant of so-called surfacehopping.
0

0.5

1

0.5 1 1.5 2 2.5

0

1

2

3

q

t

|Ψ
1
|

0

0.5

1

0.5 1 1.5 2 2.5 3 3.5

0

1

2

3

q

t

|Ψ
2
|

Figure 2: Avoided Crossing Example: Evolution of the full QD wavepacket in q and tfor parameter � = 0:01. Absolute value of (a) 	1 and (b) 	23 QCMD-based Surface HoppingDue to the previous section, a single QCMD trajectory may reproduce theQD evolution if � is small enough, resonances (level crossings) are avoided,and the initial QD wavepacket 	(�; �; t = 0) is an approximate �-functionin the q-direction (cf. eqs. (2) and (4)). Since the full Schr�odinger equa-tion is linear, we may drop this last condition by decomposing the actual	(�; �; t = 0) into �nitely many approximate �-functions at appropriatelydistributed locations qj0 and momenta _qj0. Thus, we have to simulate the3Away from the transition zone, the eigenvectors of H are approximately given by thetwo unit vectors. 8
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one stochastically decides whether or not to switch the energy level (\make ahop or not"). This algorithm should be constructed so that, at any instancein time for a large ensemble of particles, the fraction of trajectories assignedto any energy surface is approximately equal to the relative population ofthis energy level.This idea leads to the following QCMD-based surface hopping variant ofTully's surface hopping algorithm:1. Start with a large ensemble of N independent QCMD-trajectories withstates (qj0; _qj0;  j0), j = 1; : : : ; N , where every  j0 belongs to a certainenergy level kj , that is, satis�es  j0 = �kj (qj0). This trajectory bundlehas to represent the initial QD wavepacket 	(�; �; t = 0) in the ensemblesense.2. For every single trajectory j = 1; : : : ; N repeat the following propaga-tion:(a) Propagate the trajectory along the QCMD solution(qjm+1; _qjm+1;  jm+1) = QCMD(�t j qjm; _qjm;  jm)for some large time span �t.(b) Compute the transition zone indicator � for the trajectory onlevel kj : � = Pl 6=kj ���� h�l(qjm+1);rq�kj (qjm+1)i _qjm+1�Elkj (qjm+1) ����(c) If the indicator � exceeds a preset threshold value �0, decidewhether to make a hop or not (Step 2d). Otherwise continuewith the propagation (Step 2a).(d) Compute the level populations �l = jcjl j2 with cjl = h�l(qjm+1);  jm+1i.In the last step the trajectory j started on the energy level Ekj ;the energy level for the next step is selected via the hoppingprobabilities P (kj ! l) = jcjl j2, k = 1; : : : ; n. If due to thisrandom decision a hop onto the lth level is carried out, then setthe wavefunction on energy level El and accordingly modify themomentum: jm+1 = �l(qjm+1); _qjm+1 = �(kj ! l; qjm+1; _qjm+1); and kj = lOtherwise { if the random decision is to stay on level kj { donothing.(e) Continue the propagation with Step 2a.10



The reader might have noticed that the transition zone indicator � is de-duced from the second order correction (10) of the populations. In contrastto indicators used in other approaches, it is not highly oscillatory.The momentum adjustment is standardly realized in form of a correctionin the direction of the non-adiabatic coupling vector [12]:pnew = �(kj ! l; q; pold) = pold + �kdkj l(q)k2 dkj l(q);where the scalar coe�cient � is chosen such that energy conservation isachieved, i.e., such that12 �jpnewj2 � jpoldj2� = P� jcj�j2E�(q) � El(q):The above version of the scheme can be improved by removing the popu-lations on the energy levels El, l 6= kj , of trajectories initially on the kjthlevel when leaving the transition zone, i.e., the region where the indicator� exceeds the threshold �0. This ensures a Born-Oppenheimer-like motionoutside of the transition zone.Surface hopping algorithms vary mainly in the realization of the hoppingprocedure. In several aspects, the above proposed QCMD-based variant dif-fers from typical realizations; the interested reader may compare the abovealgorithmic scheme with the detailed description of typical algorithmic stepsin [12] or with the derivation of the standard realization [23].3.2 Numerical ExampleIn this section, the performance of the proposed surface hopping algorithmis presented in application to the avoided crossing example from x2.3. Forcomparison, we solved the full Schr�odinger equation (1) of the problem. Us-ing N = 2000 trajectories with randomly distributed initial values samplingthe initial wavefunction, we found an astonishingly good agreement betweenthe purely quantum solution and the result of our surface hopping algorithm.The populations of the wavefunction components seem to be in accordanceto the "exact" solution (cf., Figs. 4 and 5). But notice, just the absolutevalue of the components can be obtained by the surface hopping algorithm.The corresponding phase of 	1(q; t) and 	2(q; t) cannot be reconstructed.Unfortunately, the results of our algorithm strongly depend on the pa-rameters. Obviously, the number of sampling trajectories has a major in
u-ence on the accuracy of the computation. The algorithm reacts comparablysensitively on modi�cations of the transition zone threshold �0 and the sizeof the time interval �t. The present authors think that only some carefulmathematical analysis of the approximation properties may be able to copewith these di�culties { which are a common problem of surface hoppingmethods. 11
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Figure 6: QCMD-based surface hopping algorithm for � = 0:01: Statistical weightsk	1k22 (solid line) and k	2k22 (dashed dotted) of the two components of the reconstructedwavefunction versus ttegrators that circumvent the pointwise resolution of the highly oscillatoryquantum phases, but allow for O(1) time steps (adapted to the classicalmotion) while still propagating the quantum motion correctly. In order tosummarize the present state of the discussion concerning such long-stepsizeintegration schemes, we have to distinguish between two di�erent cases: (a)essentially non-adiabatic quantum processes for which the value of � is signif-icantly di�erent from 0, and (b) almost adiabatic quantum processes where� is close to 0 and the asymptotic scaling � ! 0 is of real interest. For theessentially non-adiabatic case, it is in fact possible to construct long-stepsizeintegration schemes by means of applying appropriate exponential integra-tors to the almost harmonic quantum phase oscillation, compare [17, 9, 10].For almost adiabatic situations, however, it seems to be impossible to real-ize any exact reproduction of the quantal phases (in any pointwise sense).Thus, we have to ask whether it might at least be possible to reproducecorrectly the \essential" dynamics of the QCMD system, i.e., the classicallocation and momentum as well as the quantum state population dynam-ics, while taking (arbitrary) errors in the quantal phases into account. Forsurface-hopping-like algorithmic schemes such \essential" QCMD simula-tions would be su�cient. But notice that any error in the phase might havea devastating e�ect on the other degrees of freedom because of the nonlin-ear coupling. However, a precise asymptotic analysis [19] reveals that undercertain conditions so-called averaging integration schemes allow to correctlyapproximate the dynamics up to a given order in � thus preventing an ��1error growth. Due to the highly oscillatory character of the analytic solu-tion \correct" is now meant with respect to an averaging norm but not toa \pointwise" evaluation in time. Consequently, a mathematical justi�ca-tion of the QCMD-based surface hopping as an approximation of the fullquantum evolution should reveal whether some pointwise reproduction ofthe quantal phase is necessary or not.13
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