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P. Deuflhard, M. Dellnitz*, O. Junget and Ch. Schu¨tte 

Abstract 

The paper presents the concept of a new type of algorithm for the numerical 
computation of what the authors call the essential dynamics of molecular sys
tems. Mathematically speaking, such systems are described by Hamiltonian 
differential equations. In the bulk of applications, individual trajectories are 
of no specific interest. Rather, time averages of physical observables or relax
ation times of conformational changes need to be actually computed. In the 
language of dynamical systems, such information is contained in the natural 
invariant measure (infinite relaxation time) or in almost invariant sets (”large” 
finite relaxation times). The paper suggests the direct computation of these 
objects via eigenmodes of the associated Frobenius-Perron operator by means 
of a multilevel subdivision algorithm. The advocated approach is different to 
both Monte-Carlo techniques on the one hand and long term trajectory sim
ulation on the other hand: in our setup long term trajectories are replaced 
by short term sub-trajectories, Monte-Carlo techniques are just structurally 
connected via the underlying Frobenius-Perron theory. Numerical experiments 
with a first version of our suggested algorithm are included to illustrate certain 
distinguishing properties. A more advanced version of the algorithm will be 
presented in a second part of this paper. 

Research partly supported by the Deutsche Forschungsgemeinschaft under Grant De 448/5-2 
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1 Introduction 
Reliable modelling and simulation of molecular processes is one of the really grand 
challenges of today. Computational answers to chemical and biochemical questions 
are as important for industry as they are hard to get. 
The classical microscopic description of molecular processes leads to a mathematical 
model in terms of Hamiltonian differential systems. Discretization of such systems 
allows, in principle, a simulation of the dynamics. However, both forward and back
ward analysis of numerical discretizations restrict such simulations to only short time 
spans and comparatively small discretization time steps. Fortunately, most questions 
of chemical relevance just require the computation of averages of physical observables. 
For the computation of such averages several algorithmic approaches are popular at 
present: 

(i) time averages computed by “large” discretization steps — physically motivated 
via the physical ergodicity hypothesis, 

(ii) ensemble averages via Monte Carlo methods — physically motivated by pre
scribed canonical ensembles which model a heat bath embedding of the molecule. 

In the present paper, we advocate a new computational approach on the basis of 
the mathematical theory of dynamical systems. We directly discretize the eigenvalue 
problem of the Frobenius–Perron operator, which is associated with any dynamical 
system. Without any physical a-priori assumptions we thus are able to compute: 

(i) the associated (natural) invariant measure (corresponding to the eigenvalue 
λ = 1), which determines the time averages of any physical observable, 

(ii) almost invariant sets (for eingenvalues λ 1), which correspond to the essential 
dynamics of the molecular system. 

In what follows, we first examine the problem of MD simulation from the points 
of view of Numerical Mathematics (Sec. 2.1), of Statistical Physics (Sec. 2.2), and 
of Dynamical Systems (Sec. 2.3). In Section 3 we work out that conformations of 
molecular systems mathematically correspond to almost invariant sets — which, in 
turn, are related to eigenmeasures of the Frobenius–Perron operator for λ 1. The 
discretization of the eigenvalue problem is a modification of techniques recently de
veloped for hyperbolic systems [7, 9, 8] — see Section 4. This discretization requires 
short term trajectory simulations only. Preliminary numerical experiments are pre
sented in Section 5. A more advanced version of the algorithm will be presented in a 
second part of this paper. 
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2 Time Averages versus Ensemble Averages 
In classical MD (cf. textbook [1]) a molecule is modelled as a collection of classical 
mass points with masses mk, positions q k e 3 , and momenta pk E 3, k = 1,..., N. 
The interaction of these mass points is characterized by a Hamiltonian function 

H(q,p) = -pTM-1p + V(q), 

where q = (q1
T, ...,qN

T),p = (pT
1, ...,pT

N),M = diag(m1,... , mN), and a differentiable 
potential V. The Hamiltonian H is defined on the phase space Γ C 6N. The 
corresponding canonical equations of motion 

(2.1) q̇  = M-1p 

ṗ  

= -g radV 

describe the dynamics of the molecule. The formal solution of (2.1) with initial state 
x0 = (q(0),p(0)) is given by x(t) = (q(t),p(t)) = Φtx0, where Φt denotes the flow. 

2.1 Long Term Trajectory Simulation 
Suppose we want to predict the motions of the molecular system by numerical inte
gration of (2.1). This means that we replace the exact trajectories x(t) = Φtx0 by 
discrete approximations. Thus, assuming one-step discretization for simplicity, the 
(exact) flow Φt is replaced by a discrete flow Ψτ, so that the discrete solution can be 
written as 

xk+1 = Ψ τxk ^ xk = (Ψτ)k x0, 

with τ being the applied stepsize (assumed to be constant for the time being) . An 
important feature of molecular processes is that long term predictions are required, 
which means predictions over periods much longer than the applied time steps. We are 
therefore led to discuss long term numerical integration of (2.1) in terms of accuracy 
and stability of the selected discretizations. 

Forward Analysis 

In this type of analysis, we are interested in the propagation of initial perturbations 
δx0 along the flow Φt of (2.1), i.e., in the growth of the perturbations δx(t;x0) = 
Φt(x0 + δx0) - Φtx0. The condition number κ(t) is defined as the maximal error 
propagation factor (cf. textbook [10]), so that, in first order perturbation analysis 
and with a suitable norm | • |, we have 

|δx(t;x0)| < κ(t)|δx0| for all x0. 

By definition, the number κ(t) characterizes the worst case analytical error amplifi
cation independent of any discretization. Long term accumulation of discretization 
errors is just a special case. 
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From this point of view, long term integration is only feasible as long as κ(T) is 
small enough for 0 < t < T. For integrable systems (such as the popular Kepler 
problem) it is known that κ(T) ~ T [22], which allows for quite long term simula
tions. Unfortunately, for real life MD problems, κ is exponentially increasing. As an 
illustration, test simulations for the Butane molecule are presented in Fig. 1. As can 
be seen, global error propagation totally spoils any initial information after a time 
span, which is significantly shorter than time spans of physical interest. 
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Figure 1: Comparison of two different MD simulations of the Butane molecule (Verlet discretization 
with stepsize τ = 0.005fs) starting from two nearly identical initial states (initial spatial deviation: 
10 - 4 A) . Left hand figure: Evolution of the length ( A) of the Butane molecule for the two cases. 
Right hand side: Spatial deviation ( A) of the two trajectories versus time. 

Backward Analysis 

In this type of analysis, the discrete solution is regarded as an exact solution of a 
perturbed problem. In particular, backward analysis of symplectic discretizations of 
Hamiltonian systems has recently achieved a considerable amount of attention (see 
[33] and references therein). The most prominent symplectic discretization is the 
popular Verlet scheme. 
These discretizations give rise to the following nice feature: the corresponding discrete 
solution of a Hamiltonian system is “exponentially close” to the exact solution of a 
perturbed system that is again Hamiltonian. To be more precise, let xk = (Ψτ)kx0 be 
the discrete solution to (2.1) computed via a symplectic discretization Ψτ with order 
of consistency p and stepsize τ. Then, the perturbed Hamiltonian is [20, 2] 

N 

H = H + J2 
k=0 

p+k Hk (2.2) 

where the components Hk are composed of derivatives of H up to order k. A nice 
consequence is the fact that the discrete solution nearly conserves the Hamiltonian 
H and, thus, conserves H up to ö(τp). This is the reason for the superior long-term 
energy conservation property of symplectic integrators in MD applications. 
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Closer inspection reveals the following situation: If H is analytic, then the truncation 
index N in (2.2) is arbitrary. In general however, the series diverges as N - • oo. For 
the behavior of the solutions the following result holds: 

T h e o r e m 2.1 ( H a i r e r / L u b i c h [21]) Let H be analytic and x = x(t) the (exact) 
solution of the perturbed Hamiltonian system corresponding to H with x(0) = x0. 
There exists some τ > 0, so that for all τ < τ the numerical solution xk = (ΨT)kx0 
and the exact solution x of the perturbed system remain exponentially close in the 
sense that 

xk - x(kτ) = 0(e-^) 
over a time interval T = ö(| logτ| /τ) , i.e., for all kτ < T. 

Thus, closeness can only be guaranteed over finite time spans which decrease with 
increasing τ. Unfortunately, the theorem does not state how small τ might be for 
a given problem. In fact, as MD simulations show, the critical stepsize τ may be 
several orders of magnitude smaller than desirable stepsizes τ. This is illustrated in 
Fig. 2 via the time average of the length of a Butane molecule in an MD simulation 
over 200 picoseconds. We observe τ « 10-2fs as opposed to typical MD stepsizes of 
interest such as τ 
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Figure 2: Left hand figure: Dependence of the time average (time scale T = 200ps) of the length 
of a Butane molecule on the stepsize τ of the discretization (symplectic Verlet-discretization with 
order of consistency p = 2). Right hand figure: Zoom of the asymptotic domain (τ < 10 - 2 fs) and 
quadratic fit. 

Summarizing, both forward and backward analysis lead to the insight that trajectory 
simulation is appropriate only for short time intervals even with symplectic discretiza
tions. 

Essential Dynamics 

Fortunately, in most of the applications, details of individual MD trajectories of a 
molecular system are of only minor importance. We begin with an illustrative exam
ple due to Grubmu¨ l le r [18] documented in Figure 3. It describes the dynamics of a 
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polymer chain of 100 CH2 groups. The figure presents six different zoom levels, each 
of which scales up in time by a factor of 10. On the small time scales (upper lev
els) the dynamical behavior is characterized by nonlinear oscillations around certain 
“equilibrium positions”. On larger and larger time scales these oscillations become 
more and more unimportant. On the largest time scale (lowest level) we observe an 
“essential” dynamical behavior as a kind of flip–flop between two “conformations”. 
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Figure 3: MD simulation of a polymer chain of 100 CH2 groups. The picture is taken from [18]. It 
shows the dynamics of the distance between two CH2-groups ( # 12 and # 36). The series of plots 
illustrates the oscillations of the distance at time scales increasing by a zoom factor of 10 at each 
level. 

At this point it is visible that the essential dynamics of the molecular process could 
as well be modelled by probabilities describing the average durations of stay within 
the different conformations of the system. Possible stepsizes (τ < 10fs) for numerical 
integration are confined by the fast oscillations. Time scales of physical interest range 
between 103 and 105 picoseconds, which is a factor 105 - 107 larger. 
These observations explain why, in MD applications, interest mainly concentrates on 
computing statistical properties of the molecules under consideration such as in time 
averages of physical observables. Let A : Γ d denote a physical observable, then 
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its time average A is given in terms of the flow Φ as 
T 

1 A(x) = lim 1 A(Φ t x) dt. (2.3) 

Recall from Figure 2 that the actual evaluation of A will also require extremely short 
time steps which lead to extraordinarily long computing times for long term averages. 
More detailed information about the dynamics can be obtained by introducing run
ning averages over typical finite time scales. Techniques to eliminate the smallest 
time scales have recently been investigated by homogenization analysis (cf. [3, 34]) 
or by a statistical representation [31, 16]. In view of Figure 2 the whole MD problem 
can be seen to be of a multi-scale nature, so that mere elimination of the smallest 
time scales is not enough. In this situation, we herein aim at a different algorithmic 
approach to compute averages directly by means of well-conditioned subtrajectory 
simulations only. 

2.2 Ensemble Averages in Statistical Physics 
In many situations, the theory of “Statistical Mechanics” lights a way to avoid the 
problem of reliable statistical characterization of the essential dynamics: the statis
tical properties of the system are directly desribed in terms of the Hamiltonian H 
without explicit use of the flow Φ t . Time averages A are then replaced by ensemble 
averages of A. Ensembles are defined via given probability measures µ on the phase 
space Γ. The associated expectation values 

Ji 
(A)µ = A(x)dµ(x) (2.4) 

v 
describe the mean values of A over a statistical ensemble of identically prepared 
systems with Hamiltonian H. Probability measures on Γ, which are of particular 
physical importance, define certain statistical equilibrium densities. The correspond
ing ensemble averages are interpreted as thermodynamic equilibrium quantities. In 
what follows we discuss the canonical and the microcanonical ensembles. 

Canonical Ensemble Averages 

The canonical ensemble γT is shown to be connected to an equilibrium embedding of 
the molecule into a “heat bath” of temperature T, i.e., the expectation values with 
respect to γT include the statistics of a stationary interaction with a surrounding of 
constant temperature [26, 19]. Its density fγT is defined as 

fγT(x) = 1 exp(-βH(x)) with Q = fexp(-βH(x))dλ(x), 
r 

and β = 1/(kBT), where kB is Boltzmann’s constant. 
The evaluation of expectation values with respect to the canonical ensemble γT is 
mostly done via thermalization methods [29] or by means of various Monte Carlo 
techniques. 
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Monte Carlo (MC) methods (Metropolis algorithm) The recursive scheme 
of all MC algorithms is the construction of a sequence (xk)k& ⊂ Γ of states with two 
essential properties: 

• Numerically, the state xk+1 can be computed using its predecessor xk only and 
without any evaluation of the density fγT itself. 

• The subsequent mean values of the sequence converge to the expectation value 
desired, i.e., 

1 N 

lim — V A(xk) = ALT , (2.5) 
k=1 

for the observable A under consideration. 

The algorithmic realization of the step xk xk+1 consists of two parts: 

(i) The update step xk x̃  k = Q(xk): herein, the numerical operations necessary 
for realizing the “update operator” Q : Γ Γ should be computationally cheap, 
e.g., should exclude evaluation of fγT. There is a single theoretical restriction: 
Q must be irreducible [35]. 

(ii) The acceptance step: evaluate E = H(xk) - H(xk), set 

a = min{1,exp(-β E)}, (2.6) 

and compute r randomly equidistributed from [0,1]. The state xk is accepted 
as xk+1 if r ≤ a, otherwise xk+1 = xk is kept. 

In the context of the theoretical justification of the Metropolis algorithm the sequence 
(xk) is discussed as a realization of a Markov chain [5]. The transition operator of 
this Markov chain proves to be an irreducible Frobenius-Perron operator, the largest 
eigenvalue of which is λ = 1. The corresponding eigenspace is one-dimensional 
and the normalized eigenfunction proves to be the canonical density fγT. Thus, 
the sequence (xk) is the result of a fixed point iteration, which converges to the 
dominant eigenfunction fγT, which, in turn, guarantees the convergence (2.5). In MC 
simulations, eigenvectors to smaller eigenvalues of the Frobenius-Perron operator are 
not taken into account (apart from the fact that the second largest eigenvalue may 
be considered to estimate the convergence rate [36]). 
As is widely known, MC simulations for ensemble averages may suffer from possible 
“critical slowing down” [27]. This phenomenon occurs when the iteration xk xk+1 
gets trapped near a local potential minimum so that a proper sampling of the phase 
space within reasonable computing times is prevented. In order to overcome such 
a trapping, large steps in the potential energy landscape (so-called global updates) 
would be required, which are extremely hard to construct. In [35] a multigrid ap
proach to MC has been advocated designed to treat this multiscale phenomenon on 
sufficiently coarse grids. The algorithm to be designed herein will have some flavor 
of multigrid methods as well, but within a rather different underlying mathematical 
concept. 
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Hybrid Monte Carlo ( H M C ) methods The basic idea of HMC is the real
ization of the update step via short discrete subtrajectories [14]. The update step 
starting with x = (q,p) E Γ is realized via a discretization Ψ τ of (2.1): first, new mo
menta p are determined randomly according to the canonical momentum distribution 

pTM~lp/2). Secondly, a trajectory is computed yielding the proposal e x p ( - β 

Q(x) =x= (Ψ τ ) m (q,p˜), 

for the next state, with m and τ being free parameters. Q is irreducible, iff Ψ τ is 
reversible and symplectic. The parameters m and τ have to be adjusted according 
to two requirements: On one hand, τ must be not too large, so that the energy 
variation is small enough to guarantee a sufficiently large rate of acceptance. On the 
other hand, m and τ have to be large enough, otherwise the update Q remains to act 
essentially locally with the undesirable consequences described above. It should be 
noted, that in HMC the discrete flow Ψ τ need not be a good approximation of the 
exact flow Φ τ . It is only used as a technique for proposing the next state and energy 
stability is the only requirement on τ . 
HMC is reported to be an appropriate approach for several problems concerning 
polymerization [23, 28, 15]. However, for most MD applications, the sampling of the 
phase space still remains to be local. 

Microcanonical Ensemble Averages 

For introducing the microcanonical ensemble, consider an energy cell defined by 

Γδ(E) = {x e Γ, \H(x) -E\<δ} 

for E e and δ > 0. This reduces to an energy surface for δ = 0. In the following, 
all energy cells are assumed to be bounded sets. Let m be the Lebesgue-measure on 
Γ. Then, the microcanonical ensemble µ E is defined as the limit of measures µE , δ 

with densities 
f 0, x i Γδ(E) 

fE,δ(x) = i 

for δ ^ 0 . Thus, µE corresponds to an equidistribution on Γ0(E). In statistical 
mechanics, the corresponding density fE is interpreted as the equilibrium density for 
the states of the molecule at energy E when the system is closed, i.e., without any 
interaction to an exterior, and when it is large enough (i.e., in the “thermodynamical 
limit” [26]). 
The microcanonical ensemble is intimately linked with the physical ergodicity hypoth
esis, which assumes that the expectation value of A with respect to this ensemble is 
equal to the time average A of each macro-observable A [1]: 

A(x0) = (A)µE = [ A(x) dµE, (2.7) (A)µE = 
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where E = H(x). Obviously, A is a function of E only and does not depend on the 
initial state x0 of the time average. “Macro-observables” are observables like total 
energy or entropy, which do not only measure local properties of molecules. 
On the basis of this hypothesis we are free to either compute A via (2.7) by sim
ply integrating A over the energy surface under consideration or to compute {A)ßE 

by an approximation of the time average A(x) via (2.3) starting with an arbitrary 
x E Γ0(E). Typically, the latter option is taken using symplectic discretizations 
(compare the discussion in Section 2.1) to generate a time series. Its mean value is 
then taken as an approximation to A . The stepsizes applied are as large as pos
sible - the only restriction being the stability of the discrete iteration and not any 
accuracy requirement with respect to an exact trajectory. As a justification of this 
procedure, it is claimed that the time series “samples” the phase space with respect 
to the equidistribution of the microcanonical measure. Frankly speaking, however, 
the present authors are not aware of any more rigorous justification. 
Finally, we want to emphasize that the “physical ergodicity hypothesis” should not 
be mixed up with the mathematical ergodic theory of dynamical systems (see Sec
tion 2.3). In fact, the underlying equidistribution hypothesis may even be wrong as 
will be exemplified in Section 5. 

2.3 Invariant Measures of Dynamical Systems 
We now turn to the question of how time averages A can be described in the theory 
of dynamical systems. For simplicity, we again restrict our attention to symplectic 
discretizations of (2.1). The discrete flow ΨT as an approximation of the continuous 
flow ΦT can meet any accuracy requirement by a suitable choice of the time steps. In 
view of Section 2.1, we will only consider well-conditioned short-term subtrajectories. 
These restrictions lead us to discrete dynamical systems of the form 

xj+1 = f(xj), j = 0 , 1 , 2 , . . . , (2.8) 

where f = ΨT : Γ -> Γ. 

Mathemat ica l Ergodicity 

The long term behavior of any system (2.8) is described by so-called invariant mea
sures: a probability measure µ is invariant iff µ(f~1(B)) = µ(B) for all measurable 
subsets B C Γ. In other words, invariant measures describe the recurrence behavior 
of the dynamical system: 

T h e o r e m 2.2 ( P o i n c a r ´ e R e c u r r e n c e T h e o r e m ) Let µ be an invariant mea
sure. Then for any measurable set B almost all points x e B (with respect to µ) 
return to B under some iterate. 

Obviously, invariant measures are deeply connected to invariant sets, i.e., subsets 
B C Γ with f~1(B) = B. An invariant measure is ergodic if µ(B) e {0,1} for 
every invariant set B cΓ. The following theorem implies that ergodic measures have 
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particularly nice recurrence properties. Roughly speaking, it will state that the time 
average is equal to the spatial average for µ-almost all initial conditions. 

T h e o r e m 2.3 ( B i r k h o f f E r g o d i c T h e o r e m ) Let µ be an ergodic measure. Then 
for µ almost all points xeΓ we have that 

lim 1YA(f(x))= Adµ 
3=0 

for each integrable function A. 

I 

This theorem is fundamental in mathematical Ergodic Theory. However, there is an 
essential drawback, which we are now going to illustrate by an example. 

E x a m p l e 2.4 Suppose that the dynamical system (2.8) has a stable fixed point p, 
that is f(p) = p, and there is a neighborhood U of p such that all points inside 
that neighborhood converge to p in the course of the iteration. The ergodic measure 
related to p is the Dirac measure µ = δP, and the Birkhoff Ergodic Theorem implies 
that for δP almost allxeΓ 

lim — V A(f(x)) = f Adµ = A(p) (2.9) 
i=0 

for each integrable function A. In particular, this theorem just provides information 
on the temporal behavior of the point p itself, since this is the only point where (2.9) 
can be applied to. On the other hand, since p is stable, (2.9) would be satisfied for 
all points inside the neighborhood U of p. 

The previous example illustrates that the stability property of an invariant set - in 
that case the stable fixed point p - is not taken into account in the notion of an 
ergodic measure. However, from the application point of view it would be much 
more satisfactory if the existence of an invariant measure were guaranteed which 
provides equality of the temporal and the spatial average for a “large” set of points. 
This observation leads naturally to the notion of an SBR-measure named after Sinai, 
Bowen and Ruelle (cf. [32, 4]). 

Def in i t ion 2.5 An ergodic measure µ is an SBR-measure if there exists a subset 
U C Γ with m(U) > 0 and such that for all x e U 

lim 1 y ^ A(f(x)) = Adµ (2.10) 
3=0 

for each continuous function A. Once again, m denotes Lebesgue measure. 
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Frobenius-Perron Operator 

The most important observation in connection with the numerical computation of 
invariant measures is the fact that it is equivalent to the solution of an eigenvalue 
problem. To make this relationship more precise, we introduce the Frobenius-Perron 
operator on the set M of probability measures on Γ. 

D e f i n i t i o n 2.6 The Frobenius-Perron operator P : M ^ M is defined by 

(Pµ)(B) = µ(f-(B)) for all measurable B C Γ and arbitrary µ E M. 

By the definition of the Frobenius-Perron operator, 

a probability measure µ e M is invariant if and only ifPµ = µ . 

Hence a promising strategy will be to discretize this operator equation in such a way 
that the matrix approximation Pd of P has an eigenvector vd with Pdvd = vd which is 
close to an invariant measure. More precisely, suppose that - by backward analysis 
- the numerical discretization is exact for a stochastic perturbation of the original 
system. Then it is reasonable to assume that an SBR-measure is approximated by 
our discretization, since these measures are robust with respect to stochastic pertur
bations. We will explain the discretization in more detail in Section 4.1 (see also 
Appendix 5.2). There, we will also see that the entries of the stochastic matrix Pd 

can indeed be evaluated by a collection of short-term subtrajectories — as desired 
by considerations in Section 2.1. 
Summarizing, we will aim at constructing an algorithm based on a multiscale dis
cretization of the eigenvalue problem for the Frobenius-Perron operator. In contrast 
to the Statistical Physics approach, where certain measures µ are prescribed on the 
basis of physical model considerations, the solution of the eigenvalue problem for 
λ = 1 will supply approximations of the invariant measure µ without any physical 
modelling assumptions. 

3 Conformational Changes 
From a chemist’s point of view, biomolecular systems are characterized by different 
“conformations”. This term simultaneously describes both distinguishable geomet
ric configurations and the associate chemical “functionality”. In a conformation the 
large-scale geometric structure of the molecule is understood to be conserved, while 
the system may well rotate, oscillate or fluctuate on small spatial scales. Fluctua
tions of a molecule are only of interest in the transient phase from one conformation 
to another (compare the flip-flops between conformations in Fig. 3). Typically the 
duration of stay within a conformation is long enough to make the conformation an 
object of chemical interest or, equivalently, to make a significant contribution to any 
(statistical) averages. Consequently, conformational changes are rare events, which 
normally can only be observed in long-term simulations. 
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Mathematically speaking, conformations are described as special subsets of phase 
space. Invariant sets of MD systems, which correspond to infinite relaxation times, 
typically consist of a number of different subsets describing different conformations. 
These conformation subsets, in turn, correspond to finite relaxation times and may 
therefore be denoted as “almost invariant” sets. Of course, the main interest focusses 
on those conformations with the largest relaxation times. 

3.1 Illustrative Example 
xample in order to illustrate the n 

∈ 

Let us introduce a suitably simple example in order to illustrate the notion of almost 
invariant sets for Hamiltonian systems. For p = (p1,p2),q = (q1,q2) e 2 consider 
the potential 

V4(q) = i-q 4 + -13 -3q1-4q1 + 3 - (2q2 - 4q2 + α) with α = 3. (3.1) 

As illustrated in Fig. 4, this potential comprises four local minima at the points 
( ±1 , ±1) (named A, B, C, D), which are separated by four saddlepoints. The energy 
barrier between A and B is significantly higher than the other three ones. The 
dynamical behavior of the system consists of oscillations around the local minima 
and, if the total energy is large enough for the system to cross the barriers, of motions 
from one minimum to the other. If the energy is not too large, there will be two kinds 
of “long term” dynamical behavior: 

(a) oscillations in the neighborhood of the four different minima, 

(b) back and forth oscillations between two different minima: A <-• D, B <-• C, and 

This is observed in simulations of the dynamics. Fig. 4 presents a solution which starts 
with an oscillation between A and D, followed by an oscillation around C, a long 
period of oscillations between A and D and so on. The similarity of the trajectories 
shown in Fig. 4 (right) and Fig. 3 illustrates that we are actually looking at the 
same kind of phenomena. Thus, for the case presented in Fig. 4, the neighborhoods 
of the different minima should turn out to be “almost invariant sets” as well as 
neighborhoods of the pairs of minima (A, D), (C, D) and (B, C) together with regions 
around the corresponding saddlepoints “between” them. In Section 5 we will see that 
this fact can indeed be justified. 

3.2 An Eigenvalue Approach to Almost Invariant Sets 
In Section 2.3, we have already seen that invariant measures correspond to fixed 
points of the Frobenius-Perron operator. Hence, eigenmeasures of the Frobenius-
Perron operator corresponding to (real) eigenvalues close (but not equal) to 1 should 
be related to almost invariant sets as described above. 
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Figure 4: The left hand side figure shows a contour plot of the potential energy landscape due to 
V4 with equipotential lines of the energies E = 1.5, 2, 3 (solid lines) and E = 7,8,12 (dashed lines). 
There are minima at the four points (±1,±1) (named A to D), a local maximum at (0,0), and 
saddlepoints in between the minima. The right hand figure illustrates a solution of the corresponding 
Hamiltonian system with total energy E = 4.5 (positions q1 and q2 versus time t). See Section 3 for 
more details. 

Let us illustrate this fact using the simple test system given by V4 in (3.1). First 
suppose that our system has two disjoint invariant sets B1 and B2 with correspond
ing invariant measures µ1 and µ2. For total energy E = 4.5 this is the case, if we 
choose α > 4.5 in (3.1). Then B1 may be chosen as the neighborhood of the pair 
of minima (B,C) and B2 as the neighborhood of (A, D) (cf. Fig. 4). The invariant 
measures µ1 and µ2 are two independent eigenmeasures of the Frobenius-Perron op
erator corresponding to the (at least) double eigenvalue 1. They may be chosen so 
that µk(Bj) = 0 for (k,j) = (1, 2) and (k,j) = (2,1). Assume that the corresponding 
eigenspace E1 is two-dimensional. Then, µ* = (µ1 + µ2)/2 and ν , = (µ2 - µ1)/2 are 
also a basis of E1 with the property that 

ν.(B1) = - 1 / 2 and ν*(B2) = 1/2. (3.2) 

This fact will be of importance in the following. 
Next suppose that we vary the control parameter α in (3.1) such that the two invariant 
sets B1 and B2 merge for a certain value of the parameter (α = 4.5) leading to a 
“confluent” invariant set B « B1 U B2. For α < 4.5 trajectories can move from B1 
to B2 and vice versa, but this will happen rarely and they will stay in each of these 
components for quite a long time. (In fact, this is precisely the flip-flop behavior 
between the almost invariant sets that we have observed in the previous examples 
— see the lowest level of Fig. 3.) In the merging process of the two invariant sets 
B1 and B2, one of the two eigenvalues 1 has to move away from 1 along the real 
line into the unit circle. We now show how to extract information on the “almost 
invariant components” from the magnitude of this eigenvalue and its corresponding 
eigenmeasure. 

1 
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Let us begin with a mathematically precise definition of an almost invariant set. Let 
ρ E M be a probability measure. We say that the set B is δ-almost invariant with 
respect to ρ if 

ρ(f-1(B)n_B) 
ρ(B) 

Thus, δ is the probability that points in B are mapped into B under f. In particular, 
if B is an invariant set, that is f-1(B) = B, then δ = 1 . The main purpose is to 
relate the magnitude of eigenvalues of the Frobenius-Perron operator P which are 
close to 1 to this probability δ. 
Once δ = δB has been computed for a given set B C Γ using the stepsize τ in the 
discrete dynamical system with f = Ψτ, the system’s probability of staying within B 
for time T can be estimated to be 

pB(T) = δB
TJT. (3.3) 

It is clear that this information is of utmost chemical importance. 
We assume that λ = 1 is an eigenvalue of P with corresponding real valued eigen-
measure ν E M, that is, 

Pν = λν, where ν is scaled so that \ν\ E M. 

(We denote by M the set of bounded complex valued measures.) Obviously, ν 
cannot be a probability measure - in fact, it is easy to see that ν(Γ) = 0, see Ap
pendix 5.2. However, if the eigenvalue λ is close to one it is reasonable to assume 
that the probability measure \ν\ is close to the invariant measure µ of the system. To 
see this observe that \ν\ « \ν \ = µ « µ when λ « 1. 
We return to our example from above to illustrate these facts. In Figure 5 we present 
the eigenmeasure ν for α = 3. Since B1 and B2 were taken to be the regions around 
(B, C) and (A, D), respectively, we observe ν(B1) < 0 and ν(B2) > 0 so that ν(Γ) = 
ν(B1 U B2) = 0. Obviously, we find ν(B2) = -ν(B1) = 1/2 since \ν\ is a probability 
measure. Thus, the perturbation via the variation of α conserves the property (3.2) 
for the two emerging almost invariant sets. Consequently, it is reasonable to look for 
the almost invariant sets B among the sets with the property ν(B) = ±1/2. 
We now state a result concerning the relationship between probabilities, by which 
sets are almost invariant, and the eigenvalue λ. A proof of the result in the context 
of small random perturbations can be found in [9]. 

P r o p o s i t i o n 3.1 Let B c Γ be a set with ν(B) = 1
2. If B is δ1-almost invariant 

andΓ -B is δ2-almost invariant with respect to \ν\, then 

δ1 + δ2 = λ + 1 . (3.4) 

If there are more than two almost invariant sets, then a set B as in Proposition 3.1 
may itself be the union of several almost invariant sets. In order to identify all these 
components one has to consider all the eigenmeasures corresponding to eigenvalues 
which are close to one. We will illustrate this in our numerical examples in Section 
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Figure 5: Eigenmeasure v of the Frobenius-Perron operator to the eigenvalue A = 0.9963 for the 
test system (3.1) with a. = 3. v was computed via our new subdivision algorithm (cf. Section 5.2). 

5. (An alternative numerical approach is presented in [8].) In that context also the 
following consideration will be useful. Suppose that we are given the probabilities δX 

and δY for two separate almost invariant sets X and Y. Then we will be interested 
in computing δX∪Y. This can be done by means of the following lemma. 

Lemma 3.2 Let ρ e M be a probability measure and let X and Y disjoint sets 
which are δX- resp. δY-almost invariant with respect to ρ. Moreover suppose that 
f-1(X) n Y = 0 and f-1(Y) n X = | . Then X U Y is δX∪Y-almost invariant with 
respect to ρ wh ere 

δ X∪Y = ρ(X)δX + ρ(Y)δY 

ρ(X)+ρ(Y) 
. (3.5) 

Proof: We calculate 

X∪Y = 

= 

ρ(f-1(X Y)n(XUY)) u_ 
ρ(X U Y) 

ρ((f-1(X)nX)u(f-1(Y)nY)) 
ρ(X)+ρ(Y) 

= ρ(X)δX + ρ(Y)δY 

ρ(X)+ρ(Y) . 

In (3.4), both δ1 and δ2 appear and in general there will be no relation between these 
constants. However, if the underlying system possesses an additional symmetry -
as in (3.1), since the Hamiltonian system is equivariant under the transformation 
(q2,p2) -> - (q 2 , p 2 ) - , then we can express one of these numbers in terms of the 
other one. To illustrate this fact, let us consider the simplest case where we have a 
symmetry transformation κ in the problem with κ2 = id. Then one can show (see 
again [9]): 

D 

1 

0 
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C o r o l l a r y 3.3 In addition to the assumptions in Proposition 3.1 suppose that 

(i) the set B satisfies κB = Γ-B, and 

(ii) the measure \ν\ is κ-symmetric, that is κ*\ν\ = \ν\. 

Then Γ - B is δ-almost invariant with respect to \ν\ if and only if B is δ-almost 
invariant. In particular 

δ = λ + 1 (3.6) 

E x a m p l e 3.4 Consider the Hamiltonian system discussed in Section 3.1 above. The 
symmetry κ is given by κ(q1, q2,p1,p2) = (q1, -q 2 ,p 1 , -p 2 ) . We define our phase space 
to be 4 without the fixed point space of κ, that is 

Γ = 4-{(q,p)e4: (q2,p2) = (0,0)}, 

and set 
B = {(q,p) G Γ : q2 > 0 and p2 > 0 if q2 = 0}. 

Obviously κB = Γ-B, and therefore condition (i) in Corollary 3.3 is satisfied. Now, 
consider the real valued eigenmeasure ν from Fig. 5 with corresponding eigenvalue 
λ « 0.9963. ν has the symmetric support B1 U κB1 = B1\J B2. Then Corollary 3.3 
supplies that B1 (the neighborhood of the pair of minima (B,C)) is δ-almost invariant 
with respect to \ν\ if and only if B2 = κB1 (the neighborhood of (κB, κC) = (A, D)) 
is δ-almost invariant. Moreover, δ is given by (3.6) which results in δ = (λ + 1)/2 « 
0.9981. For a detailed discussion see Section 5.2 below. 

4 Subdivision Algorithms 
Until now subdivision techniques have been used to analyze the long term dynamical 
behavior of hyperbolic dynamical systems. In particular, they turned out to be very 
useful in the computation of invariant measures and invariant manifolds [7, 9, 8]. In 
this section we describe how these techniques can be modified to apply to Hamiltonian 
dynamical systems. Both for completeness and in order to make the differences more 
transparent, we briefly review the techniques for hyperbolic systems in Sections 4.1. 

4.1 Hyperbolic Systems 
The central mathematical object to be approximated by the subdivision algorithm 
due to [7] is the so-called relative global attractor, 

AQ=f)f(Q), (4.1) 
j>0 

where Q C n is a compact subset. Roughly speaking, the set AQ should be viewed 
as the union of unstable manifolds of invariant objects inside Q. In particular, AQ 
may contain subsets of Q which cannot be approximated by direct simulation. 
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Covering of the Relative Global Attractor 

diam(Bk) 

The numerical realization involves the discretization of the Frobenius-Perron opera
tor. For that purpose we first need to determine a sequence of box coverings Bk of the 
relevant dynamics in phase space. The subdivision algorithm for the approximation 
generates a sequence B0,B1,B2,... of finite collections of boxes with the property that 
for all integers k the set Qk = \JBeBk Bisa covering of the relative global attractor 
AQ under consideration. The sequence of coverings is constructed in such a way that 
the diameter of the boxes, 

= max diam(B) 

converges to zero for k - • oo. 
Given an initial collection B0, one recursively obtains Bk from Bk-1 for k = 1, 2 , . . . 
in two steps. 

(i) Subdivision: Construct a new collection Bk such that 

\JB= [J B and diam(Bk) ^θdiam(Bk -1) 

BeBˆk BeBk-! 

for some 0 < θ < 1. 

(ii) Selection: Define the new collection Bk by 

Bk = lBeBˆk:f-
1(B)nBˆ=® for some B e Bˆk\ . 

The following proposition establishes a general convergence property of this algo
rithm. 

P r o p o s i t i o n 4.1 ([7]) Let AQ be the global attractor relative to the compact set Q, 
and let B0 be a finite collection of closed subsets with Q0 = Q. Then 

lim h(AQ,Qk) = 0, 

where we denote by h(B, C) the usual Hausdorff distance between two compact subsets 
B,C c n . 

R e m a r k s 4.2 (a) Observe that for the convergence result in Proposition 4.1 it is 
not necessary to assume that the underlying system is hyperbolic. However, 
for estimates concerning the speed of convergence the existence of a hyperbolic 
structure is very useful (see [7]). 

(b) A drawback of the described subdivision technique is that at each level boxes 
of the same size are taken into account without any use of information about 
the underlying dynamical behavior. In particular, also those boxes are further 
subdivided that are dynamically irrelevant in the sense that their (natural) 
invariant measure is zero. For this reason, an adaptive version of the subdivi
sion algorithm has recently been developed in [8], which led to a considerable 
computational speed-up. 
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Discretization of the Frobenius-Perron Operator 

Following [12, 9] we use a Galerkin method to approximate the Frobenius-Perron 
operator. This treatment is theoretically justified in Appendix 5.2 where, roughly 
speaking, it is shown that the Frobenius-Perron operator becomes a compact operator 
on L2 if the system is stochastically perturbed. In this case, invariant measures have 
L°°-densities, and L2 is simply a nice choice for a corresponding function space. 
Having this in mind we describe the discretization of the Frobenius-Perron operator 
P viewed as an operator acting on densities in L2. 
Let Vd, d > 1, be a sequence of d-dimensional subspaces of L2 and let { i } , i = 
1, 2 , . . . , d, be a basis of Vd such that 

d 

^2 i(x) = 1 for all x e Γ . (4.2) 

For geL2 the Galerkin projection Qd : L2 -> Vd is defined by 

(Qdg, i) = (g, i) fori = 1,...,d, 

where (•, •) is the usual inner product in L2. Observe that Qd converges pointwise to 
the identity on L2. 
In most of the applications Vd consists of functions which are locally constant. More 
precisely, let Bi, i = 1 , . . . , d, denote the boxes contained in the covering Bk. Then 
we can choose 

i = χBi, i=1,2,...,d. 

With this choice the discretized Frobenius-Perron operator Pd = QdP is represented 
by the stochastic matrix 

v = Pdu, v(Bi) = J2 i = 1,...,d, (4.3) 
j = 1 m( j) 

where m denotes Lebesgue measure. Now a fixed point ud of Pd provides an approx
imation to the SBR-measure of f. 

R e m a r k 4.3 Until now it is theoretically not clear whether the fixed points ob
tained by the discretization described above indeed converge to an SBR-measure for 
d -> oo. Except for expanding maps (and other specific situations) this is not even 
known under the additional assumption of the existence of an SBR-measure. How
ever, convergence to SBR-measures can be proved in the context of small random 
perturbations of the underlying system. We will outline these results for systems 
with a hyperbolic structure in Appendix 5.2. 

18 



4.2 Hamiltonian Systems 
The above subdivision algorithm has proved to be well suited for hyperbolic dynami
cal systems where the long term dynamical behavior is confined to a low-dimensional 
object in phase space. In the Hamiltonian context, however, energy surfaces are 
dynamically invariant and it is of interest to derive information on the dynamical 
behavior of the system restricted to this manifold. Of course, the long term dynam
ics again may be confined to a lower-dimensional subset of the energy surface under 
consideration. Consequently, the main algorithmic steps for the approximation of the 
dynamical behavior of a Hamiltonian system are as follows: 

(i) Construction of an approximate covering of the energy surface; 

(ii) extraction of the subset containing the long-term dynamics; 

(iii) setting up the Frobenius-Perron operator with respect to this subset. 

We now describe each of these steps in more detail. 

Covering of the Energy Surface 

Given a compact energy surface Γ0(E) C Γ we want to construct a collection B of 
compact subsets of Γ such that Γ0(E) is contained in the union Q of these subsets. 
We require B to be a good approximation in the sense that the Hausdorff-distance 
between Q and Γ0(E) is smaller than a prescribed accuracy δ. 
The algorithm, by which this collection B is constructed, is very similar to the stan
dard subdivision algorithm except for one modification. The selection-step must be 
replaced by the following rule: define the new collection Bk by 

Bk = {BeBk:BC\ Γ0(E) = 0}. (4.4) 

One easily verifies that , if Γ0(E) C Q0, then the union Qk of the boxes of the collec
tion Bk covers the energy surface Γ0(E) under consideration for every k = 1, 2 , . . . . 
Furthermore the Hausdorff-distance between Qk and Γ0(E) can be seen to approach 
zero for k -> oo. 
Equation (4.4) is difficult to check in practice. Therefore, in the actual implementa
tion, we employ a somewhat different procedure: instead of an energy surface we aim 
at covering an energy cell Γδk(E) in the k-th step of the algorithm. The sequence 
(δk) is chosen to decrease with increasing k. With this modification, (4.4) can be 
checked by calculating the energy for a heuristically determined (fixed) number of 
points within each box. In each subdivision step k, the parameter δk is adapted to 
the size of the boxes. 

Extract ion of the Location of the Long-Term Dynamics 

Once we have constructed a covering B of the energy surface Γ0(E) under considera
tion, this collection may be used as the initial collection for the standard subdivision 
algorithm. Note, however, that still one modification has to be taken into account: 
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since we are interested in the dynamics on Γ0(E) we just have to map those points 
in the boxes of the current collection that lie on Γ0(E). Hence the selection-step 
becomes: define the new collection Bk by 

f 

Bk=lBeBˆk:f(BnΓ0(E))nB=fH for some B e Bˆk\ . (4.5) 

Again, we encounter the same problem for the realization of (4.5) as for (4.4) before. 
But since we are approximating energy cells (as described above), we just need to 
check additionally whether a given point is contained in the energy cell or not. 

Discretization of the Frobenius-Perron Operator 

The previous two steps led to a collection B = {B1,...,Bd} covering the global 
attractor relative to a certain energy surface. We may now use this covering for the 
computation of a discretized Frobenius-Perron operator as described in Section 4.1. 
As an example consider again the case of locally constant basis functions 

i = χGi, i=1,2,...,d, 

where we have set Gi = Bi n Γ0(E). Then, as in (4.3), the discretized Frobenius-
Perron operator v = Pdu can be written componentwise as 

v(Gi) = ^piju(Gj), pij = m(f 1( ( G ) n G j ) , i = 1,...,d. (4.6) 
j=1 m j 

In the implementation we are faced with the calculation of the transition probabilities 
pij for Gi = Bi n Γδ k(E). This is done via a Monte-Carlo approximation, 

N 

pij = ( G ) I χGi(f(x))dx « — ^ χGi(f(xn)), 

where the xn are chosen randomly and uniformly distributed in Gj. 
After the assembling of the stochastic matrix Pd we have to solve the associated non-
selfadjoint eigenvalue problem. In order to catch the multiscale flavor of the whole 
problem, the new adaptive multigrid algorithm due to F r i e s e [17] is most appropri
ate. This algorithm is an extension of the adaptive multigrid methods for selfadjoint 
eigenvalue problems as published in [11]. Up to now, apart from first tests, our pre
liminary numerical results presented in Section 5 have been computed with speig 
(by Radke and Sørensen) in M a t l a b . An important feature of all these algorithms 
is that they allow for a simultaneous subspace iteration to compute eigenmodes as
sociated with eigenvalue clusters. (Here we are, of course, interested in the cluster 
around λ = 1.) 
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5 Il lustrative Numerical Experiments 
In this section we want to illustrate certain features of a first version of our subdivision 
algorithm SubMD. As derived above, the objects of interest will be invariant measures 
and almost invariant sets. 

5.1 Invariant Measures 
Recall that invariant measures are approximated by the eigenvectors of the discretized 
Frobenius-Perron operator according to the eigenvalue λ = 1. 

Counterexample to the Physical Ergodicity Hypothesis 

For x = (q,p) ∈ 2 consider the “double-well” potential 

V(q) = (q 2 - 1 ) 2 . 

All solutions are periodic (cf. Fig. 6). The periodicity allows a reliable evaluation of 
the invariant measure via direct simulation. 
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As can be seen in Fig. 7, both our subdivision algorithm and direct simulation yield 
comparable approximations of the invariant measure. Note that the measure is not 
equidistributed on the energy cell in clear contradiction to the physical ergodicity 
hypothesis. Instead, there is a significant maximum of the probability density near 
the point (0,0). This is caused by the fact that the energy chosen is nearly critical 
and the mass particle is creeping slowly near the turning point. 

Inefficiency of Direct Simulation 

Recall example (3.1) from Section 3.1. We want to compute the corresponding in
variant measure µ4. A direct analytical solution does not exists. Direct long term 
simulation by symplectic discretization of (2.1) yields the discrete solution (xk)1,...,N. 
For N large enough and a box B C Γ one takes 

p = 
1 N 

N \B\ j J2 χB(xj) 
=1 

as an approximation of the density f4\B. If the system were ergodic, the convergence 
of this algorithm would be guaranteed. Even in this case the convergence could be 
arbitrarily slow, when the iteration gets trapped within an almost invariant set of the 
system - compare the sequence of results obtained by direct simulation in Fig. 9. 
Our global subdivision approach is not sensitive to such a situation. Over sufficiently 
long run times of direct simulation both methods eventually yield roughly the same 
results, see Fig. 8. 
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5.2 Almost Invariant Sets 
« 1 with Recall that the relevant almost invariant sets correspond to eigenvalues λ 

|λ| < 1 of the associated Frobenius-Perron operator. 
Again we consider the example of Section 3. Based on observations concerning the 
dynamical behavior we already conjectured that there exist seven almost invariant 
sets - a conjecture that we now want to check numerically We employ the subdivision 
algorithm for stepsize τ = 0.1. The final box-collection corresponding to the total 
energy E = 4.5 after 18 subdivision steps consists of 18963 boxes. 
A simultaneous computation of the four largest eigenvalues λ1, . . . , λ4 leads to the 
following table: 

Number Eigenvalue 
1 
2 
3 
4 

1.0000 
0.9963 
0.9891 
0.9782 

The invariant measure ν 1 corresponding to λ1 = 1 has already been shown in Fig. 
8. Next, we discuss the information provided by the eigenmeasure ν2 corresponding 
to λ2. The box coverings in the two parts of Fig. 10 approximate two sets, where 
the discrete density of ν2 is positive resp. negative. In other words each of these 
sets is a candidate for a set B mentioned in the assumptions of Corollary 3.3. Thus, 
by this result, both of these sets are almost invariant with probability δ = (λ2 + 
1)/2 = (0.9963 + 1)/2 = 0.9981. Observe that these almost invariant sets confirm the 
observation made in Section 3 that dynamically there exist “long term” oscillations 
between the minima A <-• D and B <-• C. 
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Figure 10: 
Illustration of two almost invariant sets with respect to the probability measure |ν2|. 

The coloring is done according to the magnitude of the discrete density. 

The third eigenmeasure ν3 corresponding to λ3 provides information about three 
additional almost invariant sets: on the left hand side in Fig. 11 we have the set 

0 1 2 0 1 2 
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corresponding to the oscillation C <-• D, whereas on the right hand side the two 
almost invariant sets around the equilibria A and B are identified. Again the boxes 
shown in the two parts of Fig. 11 approximate two sets where the discrete density of 
ν3 is positive resp. negative. In this case we can use Proposition 3.1 and the fact that 
A and B are symmetrically related to conclude that for all these almost invariant sets 
δ > λ3 = 0.9891. 
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Figure 11: Illustration of three almost invariant sets with respect to the probability measure |u3|. 
The coloring is done according to the magnitude of the discrete density. 

Finally, the information on the remaining almost invariant sets in the neighborhood 
of the equilibria C and D can be extracted using the eigenvalue λ4 with the eigen-
measure ν4 (see Fig. 12). In the two parts of Fig. 12 we show again the boxes, which 
approximate two sets, where the discrete density of ν4 is positive resp. negative. Let 
us denote by Y the union of the boxes around equilibrium B in the first part of 
the figure and by X the boxes around D. (We ignore the isolated box in the left 
lower corner, which we regard as a numerical artefact.) We now use Lemma 3.2 to 
derive a lower bound for δX. Numerically we obtain the values |ν4(X)| = 0.3492 and 
|ν 4(Y) | = 0.1508. Note that |ν4(X l)Y)| = 0.5 and λ4 + 1 = 2δX∪Y (using again the 
symmetry and Corollary 3.3) which leads to the estimate 

δ X = 
0.5δX∪Y - ρ(Y)δY = λ4 + 1 

ρ(X) 4ρ(X) 
4ρ(Y)δY λ4 + 1 4ρ(Y) 

4ρ(X) 
= 0.9844 

In all calculations done so far a fixed stepsize τ = 0.1 has been used. Hence an appli
cation of formula (3.3) leads to the following table concerning flip-flop probabilities 
between different conformations. 

conformation 

C 
D,B 

->D,A, 
C,D 

B 

probability to stay within for 
0.1 sec. 1 sec. 10 sec. 100 sec. 
0.9981 
0.9891 
0.9844 

0.9812 
0.8962 
0.8545 

0.8268 
0.3342 
0.2076 

0.1493 
< 0.0002 
< 10-6 
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Figure 12: 
Illustration of four almost invariant sets with respect to the probability measure |ν4|. 

The coloring is done according to the magnitude of the discrete density. 

These numbers indicate that i t is very unlikely for the system to stay in C and D for 
more than 100 seconds, whereas for an oscillation A D or B C this may well be 
the case. In particular, these results are in nice agreement with Fig. 4 (right): there 
we observe an oscillation A D for about 200 seconds, whereas the longest stay in 
the neighborhood of the minimum C only lasts about 60 seconds. 

0 1 2 0 1 2 
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Appendix A: Theoretical Background 
Theoretically it is known that in the hyperbolic case the discretization of the Frobe-
nius-Perron operator by the Galerkin method as outlined in this article indeed leads 
to an approximation of an underlying SBR-measure - if it exists. In this appendix 
we briefly summarize the related results from [9]. 

A.1 Stochastic Transition Functions 
The theoretical results rely on the concept of small random perturbations of dynamical 
systems. Hence we begin by recalling some basic notions and results on Markov 
processes that will be needed later on. For a detailed introduction the reader is 
referred to [13]. 

Invariant Measures 

First we describe the notion of an invariant measure in the stochastic framework. We 
assume that Γ is compact equipped with a σ-algebra A 

Def in i t ion A.1 A function p:Γx A^ is a stochastic transition function, if 

(i) p(x, •) is a probability measure for every x e Γ, 

(ii) p(-,B) is Lebesgue-measurable for every measurable B. 

E x a m p l e A.2 Let δy denote the Dirac measure supported on the point y e Γ. Then 
p(x, B) = δh{x)(B) is a stochastic transition function for every m-measurable function 
h. Moreover, the specific choice h = f represents the deterministic situation in this 
more general set up. 

Def in i t ion A.3 Let p be a stochastic transition function. If µ e M satisfies 

µ(B) = fp(x,B)dµ(x) 

for all measurable B, then µ is an invariant measure of p. 

Absolutely Continuous Stochastic Transition Functions 

Now we assume that for every x e Γ the probability measure p(x,-) is absolutely 
continuous with respect to the Lebesgue measure m. Hence we may write p(x, •) as 

p(x,B)= k(x,y)dm(y) for all measurable B, 
B 
I 
B 

with an appropriate transition density function k : Γ x Γ -> . Obviously, 

k(x,-)eLl(Γ,m) and k(x,y)>0. 
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In this case we also call the stochastic transition function p absolutely continuous. 
Note that 

f k(x, y) dm(y) = p(x, Γ) = 1 for all x ∈ Γ. 

The Frobenius-Perron Operator 

Def in i t ion A.4 Let p be a stochastic transition function. Then the Frobenius-
Perron operator P : M M is defined by 

Pµ(B)= p(x,B)dµ(x), I 

where M is the space of bounded complex valued measures. If p is absolutely 
continuous with density function k then we may define the Frobenius-Perron operator 
P on L1 by 

Pg(y) = ! k(x, y)g(x) dm(x) for all g ∈ L1. 

Remark A.5 By definition a measure µ ∈ Mis invariant if and only if it is a fixed 
point of P. In other words, as in the deterministic case invariant measures correspond 
to eigenmeasures of P for the eigenvalue one. 
Moreover, let λ ∈ be an eigenvalue of P with corresponding eigenmeasure ν, that 
is, Pν = λν. Then in particular 

λν(Γ) = Pν(Γ) = fp(x,Γ) dν(x) = ν(Γ) 

since p(x, Γ) = 1 for all x∈Γ.It follows that ν(Γ) = 0 if λ = 1. 

A.2 Convergence to SBR-measures in the Hyperbolic Case 
Small Random Perturbations 

Recall that the purpose is to approximate the Frobenius-Perron operator of a deter
ministic dynamical system represented by a diffeomorphism f. Hence the approx
imating stochastic system that we consider should be a small perturbation of the 
original deterministic system. 
For ε > 0 we set 

kε(x,y)= n 1 (D)χD (-(y-x)) , x,y∈Γ. (A.1) 

Here D = D0(1) denotes the open ball in n of radius one and χD is the characteristic 
function of D. Obviously kε(f(x), y) is a transition density function and we may define 
a stochastic transition function pε by 

/ 
B 

pε(x,B)= kε(f(x),y)dm(y). (A.2) 
B 
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R e m a r k A.6 Note that pε(x,-) -»• δf{x) for ε ^ 0 uniformly in x in a weak*-
sense. Hence the Markov process defined by any initial probability measure µ and 
the transition function pε is a small random perturbation of the deterministic system 
f in the sense of Yu. Kifer ([24]). 

Now observe that 

I! \kε(f(x),y)\2 dm(x)dm(y) < ( ε n m ( D ) Y < oo, 

and therefore the corresponding Frobenius-Perron operator Pε : L2 - • L2 is compact. 
Since the invariant densities are not just in Ll but even in L°° the restriction of Pε 
to L2 is perfectly reasonable. 

Approximation of SBR-Measures 

The idea is to combine classical convergence results for compact operators with results 
from Ergodic Theory on the convergence of invariant measures of small random per
turbations to SBR-measures with decreasing magnitude of the perturbation. Let us 
be more precise. Suppose that the diffeomorphism f possesses a hyperbolic attractor 
Λ with an SBR-measure µSBR, and let pε be a small random perturbation of f. Then, 
under certain hypotheses on pε, it is shown in [24] that the invariant measures of pε 
converge in a weak*-sense to µSBR as ε -> 0. On the other hand standard results 
on compact operators (see [30]) guarantee that the relevant eigenmeasures of Pε are 
approximated by our Galerkin projection, and this leads to the desired convergence 
result. 

T h e o r e m A.7 ([9]) Suppose that the diffeomorphism f has a hyperbolic attractor 
Λ, and that there exists an open set UA D Λ such that 

kε(x,y) = 0 ifxef(UÄ) andy£UA. 

Then the transition function pε in (A.2) has a unique invariant measure πε with 
support on Λ and the approximating measures 

A 
µε

d(A) = gε
ddm 

A 

obtained by the Galerkin method described in Section 4.1 converge in a weak*-sense 
to the SBR-measure µSBR of f as ε -> 0 and d -> 00, 

lim d im µε
d = µSBR. (A.3) 

R e m a r k A.8 Recently Yu. Kifer [25] has obtained a similar convergence result by a 
discretized version of his methods and results on stochastic perturbations of dynam
ical systems. 
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