Approximation Properties and Limits of the
Quantum-Classical Molecular Dynamics Model

Christof Schiitte!>? and Folkmar Bornemann'!

! Konrad-Zuse-Zentrum, Takustr. 7, 14195 Berlin, Germany

% Freie Universitit Berlin, Fachbereich Mathematik, Arnimallee 2-6,
14195 Berlin, Germany

Abstract. In molecular dynamics applications there is a growing interest in in-
cluding quantum effects for simulations of larger molecules. This paper is concerned
with mized quantum-classical models which are currently discussed: the so-called
QCMD model with variants and the time-dependent Born-Oppenheimer approxi-
mation. All these models are known to approximate the full quantum dynamical
evolution—under different assumptions, however. We review the meaning of these
assumptions and the scope of the approximation. In particular, we characterize
those typical problematic situations where a mixed model might largely deviate
from the full quantum evolution. One such situation of specific interest, a non-
adiabatic excitation at certain energy level crossings, can promisingly be dealt with
by a modification of the QCMD model that we suggest.

1 Introduction

In molecular dynamics applications there is a growing interest in mized
quantum-classical models various kinds of which have been proposed in the
current literature. We will concentrate on two of these models: the adiabatic
or time-dependent Born-Oppenheimer (BO) model, [8,13], and the so-called
QCMD model.! Both models describe most atoms of the molecular system
by the means of classical mechanics but an important, small portion of the
system by the means of a wavefunction. In the BO model this wavefunction
is adiabatically coupled to the classical motion while the QCMD model con-
sists of a singularly perturbed Schrédinger equation nonlinearly coupled to
classical Newtonian equations, §2.2.

This paper is meant as a contribution to systematize the quantum-classical
modeling of molecular dynamics. Hence, we are interested in an extended the-
oretical understanding of the models rather than to further contribute to the
bunch of numerical experiments which have been performed on certain mod-
els by applying them to particular molecular systems. Thus, we will carefully
review the assumptions under which our models are known to approximate
the full quantum dynamical (QD) evolution of the system. This knowledge

! The number of articles applying this model is so large that we only mention four
articles, [2][3][9][17], as the starting points to different lines of discussion.
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allows for a characterization of the typical problematic situations where the
mixed models might largely deviate from the QD evolution.

The present paper is organized as follows: In a first step, the derivation of
QCMD and related models is reviewed in the framework of the semiclassical
approach, §2. This approach, however, does not reveal the close connection
between the QCMD and BO models. For establishing this connection, the
BO model is shown to be the adiabatic limit of both, QD and QCMD, §3.
Since the BO model is well-known to fail at energy level crossings, we have
to discuss the influence of such crossings on QCMD-like models, too. This
is done by the means of a relatively simple test system for a specific type
of such a crossing where non-adiabatic excitations take place, §4. Here, all
models so far discussed fail. Finally, we suggest a modification of the QCMD
system to overcome this failure.

To simplify we restrict our study to the case of a system with just two
“particles” of significantly different masses, m and M, having coordinates x €
R™ and ¢ € R%. Thus, the time-dependent Schrédinger equation becomes

ino@ = (—f5 7 - T, + Viz,0) @

Here, the kinetic operators are typically given by the corresponding Lapla-
cians 7, = Ay and T, = A, or similar selfadjoint differential operators. The
corresponding solution ¥ = ¥(x,q,t) describes what we call the full QD
evolution of the system.

By assumption, the mass ratio €2 = m/M is a small parameter. Thus,
rescaling the Schrédinger equation properly in time and potential transforms?
it into the singularly perturbed equation

ie0® = (5T, = iz + V(z,0)) ¥ (1)

In many applications, x and ¢ will not necessarily be coordinates of “particles”
but other degrees of freedom of the system under consideration. Typically
however, a proper choice of the coordinate system allows the initial quantum
state to be approximated by a product state (cf. [11], §1Ib):

W(.Z’,q,t = 0) = ¢*(Q) ) ¢*($) (2)

We will throughout assume this initial condition to be given.

2 Semiclassical Approach to QCMD

The semiclassical approach to QCMD, as introduced in [10], derives the
QCMD equations within two steps. First, a separation step makes a tensor
ansatz for the full wavefunction separating the coordinates z and g:

y—/(m7q7t) a W@ = ¢(qvt) : "vb(mat)' (3)
2 Time is scaled according to fit/v/'mM — t, implying a new potential (m/A*)V.
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Second, a semiclassical, or WKB, ansatz approximates the “classical” wave-
function ¢ by

¢(q7t) ~ ¢QC = a(q7 t) exp (%S(qat)) i (4)
We will study the equations of motion that result from inserting all this in
the full Schrédinger equation, Eq. (1). However, we would like to remind the
reader that not the derivation of these equations of motion is the main topic
here but the question of the quality of the underlying approximations.

2.1 Separation and TDSCF

Inserting the separation ansatz, i.e., ¥g, results in two nonlinearly cou-
pled single particle Schrédinger equations, the so-called time dependent self-
consistent field (TDSCF) equations:3

i = (=55 + W,V0)) & iedp = (-3To + (6,V9) v, (5)

Here, (¢, V4¢) = Us denotes the 1-averaged potential as seen by ¢, still
depending on the coordinate g. Likewise, Uy = (¢, V¢) includes integration
with respect to ¢ and depends on z. In the following, (-, -) will similarly denote
integration with respect to z, ¢, or x and ¢, yielding expressions that depend
on the other coordinate.

Approximation property We assume that the “classical” wavefunction
¢ is an approximate §-function, i.e., for all times ¢ € [0,T] the probability
density |¢(t)|> = |¢(q,t)|? is concentrated near a location ¢(t) with “width,”
i.e., position uncertainty, §(¢). Then, the quality of the TDSCF approximation
can be characterized as follows:

Theorem 1 (Thm. 4.1. in [6]). For allt € [0,T], let ¢ have compact sup-
port* of width 6(t) < & . Then, the TDSCF wavefunction Ws, approzimates
the full QD solution ¥ of Eq. (1) up to an error of order §, i.e.,

Ty =0 + OF) in [0,T).

Thus, TDSCF is the better an approximation of full QD the sharper located
the probability density |¢|> remains in the course of the evolution.

2.2 Semiclassical Ansatz and QCMD

Inserting Wy into Eq. (1), or equivalently the WKB-ansatz for ¢ into the
TDSCF system Eq. (5), results in equations of motion for a and S (for details
cf. [6,10]) and an one-particle Schrédinger equation,

1€ ms = (=1T2 + [ V(z,q9) a*(g,t) dg) Y- (6)

% More precisely, Eq. (5) is only valid up to additional phase terms, cf. [6], §1Va,
or [11], §IIIa, for details.
* Tn this case, let § be the diameter of the support: 6(t) = diam supp|é(t)|?.
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Notice that the solution ... is not identical to the TDSCF solution ¢ but an
approximation of it. The evolution of ¢ and S in time may conveniently be
described via the following classical Newtonian equations of motion: Given
the initial values

(1((],0) = CL*((]) and S(q,O) = S*(CI), (7)

we denote by ¢(t) = g¢(t;q0,40) and ¢(t) = ¢(t;40,do) the solutions of the
initial value problem

g = _gradq (wens7 Vwen5>(q)7 q(O) = 4o, Q(O) =do = vs*(qO) (8)

The probability density a® at a point ¢ = q(t) = q(t;qo, o) is obtained by
transport of the initial probability, i.e.,

a*(q(t;q0,4o), t) = a2(go, do)- (9)

In addition, the action or phase S at ¢ = ¢(¢) is given by integrating the
corresponding Lagrangian along this trajectory, [1]:

S(q(t;90,40),t) = Sx(go) +

ST

(36(5) = (Wenss Vb (a(s))) ds.  (10)

Since Eq. (6) depends on the probability density |¢(q,t)|* = a®(q,t) only, we
may put the solution for S aside. Thus, we get a system that couples the
classical equation Eq. (8) for computing a® to the one-particle Schrédinger
equation, Eq. (6). A numerical simulation of the evolution as described by
Egs. (6), (8), and (9) has to compute a bundle of classical trajectories that
sample the probability distribution a* and are nonlinearly coupled via Eq. (6).

We assume now, that the initial probability distribution |¢|?| o = @2
is an approximate d-function at gg. In this case, Eq. (9) makes it obvious,
a® remains to be an approximate d-function as long as the approximation is
valid. Thus, the single trajectory ¢(t) = q(%; go, do) is an appropriate sampling
of the probability density and a?(q,t) = 6(q — ¢(t)) simplifies the integral in
Eq. (6) so that the final QCMD equations of motion read

Z.6815'¢QC = (_%7; + V(.’137q(t))) 7#QCJ
4= _gradq<¢Qc; Vipao)(q)-

(11)

Caustics The above formulae can only be valid as long as Eq. (9) describes a
unique map in position space. Indeed, the underlying Hamilton-Jacobi theory
is only valid for the time interval [0,T] if at all instances ¢ € [0,7] the map
(g0,d0) — 4(t;q0,do) is one-to-one, [6,19,1], i.e., as long as trajectories with
different initial data do not cross each other in position space (cf. Fig. 1).
Consequently, the detection of any caustics in a numerical simulation is only
possible if we propagate a trajectory bundle with different initial values. Thus,
in pure QCMD, Eqg. (11), caustics cannot be detected.
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Fig. 1. Tllustration of a caustic. Different trajectories sample the probability dis-
tribution. If they cross each other in position space, the transport or probability
density is not longer unique and the approximation might break down.

Approximation property Excluding caustics we can exploit the results
of semiclassical approximation theory [19]. This leads to the following state-
ment:

Theorem 2 (Thm. 4.2. in [6]). Let ¢ initially® have width §(0) < § and
let € be small enough. Moreover, assume that caustics do not appear in time
interval [0,T]. Then, the semiclassical wavefunctions ¢.,.. and Yqoc approzi-
mate the TDSCF wavefunction ¢ up to an error of order 6% + ¢, i.e.,

Yoo = + OF* +€)  and oo = ¢ + O +¢) in [0,T).

The QCMD solution q approximates expectation value of the classical posi-
tion, (@)oo = (Wan, q¥an), of the full QD solution Yo as:

a(t) = {@ao + O +¢) in [0,T7].

Referring to Thm. 1 we can conclude that—excluding caustics—QCMD (and
QCMD bundles) approximates full QD up to an error of order O(d+¢). These
approximation result extends to cases in which certain types of caustics (focal
points) are present by including phase shifts; cf. [19]. However, this cannot
fully explain the bunch of numerical observations in which the presence of
caustics does not influence the quality of the approximation at all. Thus, we
might be interested in a justification of QCMD which avoids the problem of
caustics. We will achieve this via studying the adiabatic limit of QCMD in
§3.

2.3 Deunsity Formulation of Semiclassical QCMD Bundles

A particularly convenient notation for trajectory bundle system can be intro-
duced by using the classical Liouville equation which describes an ensemble of

® Because of Eq, (9), the condition from Thm. 1 concerning the small width can
herein be restricted to the initial condition.
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Hamiltonian trajectories by a phase space density f = f(g,4,t). In textbooks
of classical mechanics, e.g. [12], it is shown that Liouville’s equation

o f =LIVIf,  LIV]I=(VV(@T Vi +¢7 - V), (12)
describes the transport of an initial probability density f(g,,0) = f. along
the trajectories of the classical equation of motion § = —grad, V' in the sense
that

fla(t),q(t),t) = fi(qo,do)- (13)

Here, we denote by (g(¢), ¢(t)) the trajectory starting at (go,do). Thus, the
transport of the semiclassical probability density a? according to Eq. (9)
is just given by the Liouville equation with the potential (¥ am., V)en.) and

a*(g,t) = [ f(g, 4, t)dg:
ieat¢ens = (_%7; + f f(qa (L t)V(mJ q) dq dq) ¢ensa
Ocf = L[(ene, Vibera)] f-
We will refer to this model as to the semiclassical QCMD bundle. Eqs. (7)
and (8) would suggest certain initial conditions for f.. However, those would
not include any momentum uncertainty, resulting in a wrong disintegration
of the probability distribution in ¢ as compared to the full QD. For including

an initial momentum uncertainty, a Gaussian distribution in position space
is used

F@,4,0) = fo(0,d) = £ exp (= (g - ¢.)?) exp(-Z (4 - ¢.)%),  (15)

with a normalizing constant « and an initial momentum expectation gy.

(14)

3 Adiabatic Limit Approach to QCMD

If the parameter € is very small, we are in the case of M being much larger
than m. Thus, the limit € — 0 is the limit of infinite mass M, i.e., the adiabatic
limit of fast quantum motion of small particles around (infinitely) slowly
changing positions of increasingly heavy “nuclei.” We will study the limit
eguations governing the QCMD solutions for this adiabatic limit. Therefore,
we rewrite the QCMD system, Eq. (11), by explicitly denoting the dependence
of its solution (ge, ge, ¥) on the parameter €:5

Ge = _gradq(¢e7H(QG)we>7 2¢(0) = qx, Gc(0) = ¢u

_ (16)
7'66157»[}6 = H(qe) e, ¢e|t:0 = ..
where H = H(q) is the ¢g-parametrized one-particle Hamiltonian
H(g) = —3T: + V(z,9). (17)

5 We will often add an index ¢ in order to refer to a family of solutions.
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We restrict ourselves to finite-dimensional Hilbert spaces,” making H a Her-
mitian matrix. We denote the eigenvalues of H{q) by Ex(¢) and consider the
spectral decomposition

H(g) = 221 Bul(a) Pr(9); (18)

where P is the orthogonal projection onto the eigenspace associated with
Ey.. With respect to a quantum state ¢, the number 8, = (¢, Pp) is the
population of the energy level Ej,.% The surfaces Ey, = Ex(q) are called energy
levels. Those positions g. at which energy level crossings oceur, i.e.,

Ex(¢.) = Ei(ge) for some k # 1,

will be the points of special interest in this section.

3.1 Adiabatic Limit of QCMD

The limit equation governing lim._,o g. can be motivated by referring to the
quantum adiabatic theorem which originates from work of BORN and FoCk
[4,20]: The classical position ¢ influences the Hamiltonian very slowly com-
pared to the time scale of oscillations of ., in fact, “infinitely slowly” in the
limit € — 0. Thus, in analogy to the quantum adiabatic theorem, one would
expect that the population of the energy levels remain invariant during the
evolution:

lime0 05 (t) = limeo (e, Pe(ge)ibe) = 63 = (s, Prl(g)yn).  (19)

The constant 69 is the initial population of level Ey and thus computable
from the initial data, Eq. (16). All this turns out to be true if the following
assumption on the eigenspaces and eigenenergies of H(q) is fulfilled:

(A) The spectral decomposition Eq. (18) of H depends smoothly on gq.

This assumption allows to prove that the limit solution ggo = lim,_,0 ¢, is
given by:

Gro = —gradq Zk 02 Ey (qBO)J Jso (O) = Gx; Gno (0) = G- (20)

We refer to this equation as to the time-dependent Born-Oppenheimer (BO)
model of adiabatic motion. Notice that Assumption (A) does not exclude
energy level crossings along the limit solution ¢so. Using a density matrix
formulation of QCMD and the technique of weak convergence one can prove
the following theorem about the connection between the QCMD and the BO
model:

7 The reader may think of a finite dimensional subspace of the original state space.
This subspace may, e.g., be associated with a suitable discretization in space. For
a generalization of Thm. 3 to the infinitely dimensional case, see [5].

8 If the eigenspace to Ep, is one-dimensional and &, is a corresponding normalized
eigenvector, then we have P, = &} ® &3, and the population is 8, = [{$y, ¥)|>.
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Theorem 3 (Thm. IIL.1 in [5], Thm. 2.1 in [7]). Let ¢gso = qso(t) be
the solution of the BO equation, Eq. (20), and assumption (A) be given.
Any energy level crossing ot quo(t.) with t. € [0,T] fulfills the transversality
condition

4 (Belgmo (1) ~ Brlauo(®))],,_#0.

Then, the adiabatic invariance Eq. (19) holds and the limit of the sequence
ge of QCMD solutions is ¢uo.

3.2 Adiabatic Limit of QD

Thus, the time-dependent BO model describes the adiabatic limit of QCMD.
If QCMD is a valid approximation of full QD for sufficiently small €, the
BO model has to be the adiabatic limit of QD itself. Exactly this question
has been addressed in different mathematical approaches, [8], [13], and [18].
We will follow HAGEDORN [13] whose results are based on the product state
assumption Eq. (2) for the initial state with a special choice concerning the
dependence of ¢, on €:

¢ (q) = A exp (= (7 — ¢)?) exp (4uq) , (21)
with the initial momentum expectation ¢, and a normalization constant A..
This scaling guarantees that the wavefunction ¢ behaves uniformly classi-
cally.? Using this initial condition and the BO solution gs, a wavefunction
¥y, is constructed which approximates the full QD solution ¥, up to an error
O(\/e), [13].19 For simplicity, let us discuss the position expectation

(@ = (Te, q¥e) ().

instead of the wavefunctions. Here, the statement of HAGEDORN is:

Theorem 4 (Thm. 2.1 in [13]). Assume ¢so = gso(t) to be the solution
of the BO equation, Eq. (20), in o finite time interval [0,T]. Moreover, let
there be no energy level crossings along gso. Then, for € small enough, we
have

(@)% = guo + O(Ve) n[0,T).

Altogether, the three different models discussed so far are interconnected as
sketched in Fig. 2. Now, we can by-pass the problems connected to caus-
tics: For € being small enough QCMD is justified as an approximation of
QD if we exclude energy level crossings and discontinuities of the spectral
decomposition.

However, there remains one major question:

9 Let be V = 0. Then, ¢ describes a free particle. With Eq. (21), the disintegration
of the wavepaket makes its width increase likey/ey/1 +¢2/4 in the limit ¢ — 0.
Thus, the velocity of its disintegration is classical and independent from e.

10 @ is the family of solutions of Eq. (1) with initial states due to Eq. (2) and
Eq. (21). The initial quantum state 1. is assumed to be independent from ¢ with
only finitely many energy levels E, k =1, ..., n being initially excited.
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QD

no caustics

no crossings QCMD

H smoothl
diagonizable

BO

Fig. 2. The BO model is the adiabatic limit of full QD if energy level crossings
do not appear. QCMD is connected to QD by the semiclassical approach if no
caustics are present. Tts adiabatic limit is again the BO solution, this time if the
Hamiltonian H is smoothly diagonalizable. Thus, QCMD may be justified indirectly
by the adiabatic limit excluding energy level crossings and other discontinuities of
the spectral decomposition.

Can QCMD describe non-adiabatic processes; is there any situation in
which BO fails but QCMD or its bundle variants are still useful?

By what we have seen before such a situation can only occur if there is an
energy level crossing where Assumption (A) of Thm. 3 is hurt. In the next
section, we will present a test example of this situation.

3.3 Energy Level Crossings with Non-Adiabatic Excitations

In his book [16], HAGEDORN classifies all energy level crossings that can occur
generically with an electronic Hamiltonian according to the associated sym-
metries. Each symmetry yields a finite number of typical, generic energy level
crossings. These generic situations are mathematically described by a normal
form which reduces the general problem Eq. (1) to a simple low dimensional
test problem. For time-reversible Hamiltonians there is just one normal form
of an energy level crossing which moreover hurts the Assumption (A).

This normal form reduces the Schidinger equation, Eq. (1), to a specific
form where ¢ € IR? remains a particle’s position but = becomes a spin-like
coordinate:

el = (—§7; + H(q)) z. (22)

Herein, H = H(g) and 7, denote 2 x 2 Hermitian matrices, the entries of H
being potential operators and 7, being diagonal

(4,0 )
= (0a) X

Thus, ¥ € L?(IR?) x L?(IR?) consists of two components ¥ = (¥;,%)7, each
of which a function in the usual Hilbert space. The Hamiltonian is specified
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by the particular matrix

12
9 4q

H(q) = . 24

(Q) <q2 —q1> ( )

The eigenvalues of H are E (¢) = —|g| and Ex(q) = |g|. Excluding the

crossing at the origin ¢ = 0 and using polar coordinates ¢' = rcosy and
g® = rsin ¢, yields the corresponding eigenvectors in the form

2= (Tonrn): 2= (il

The occurrence of the argument ¢/2 shows that these eigenvectors are defined
up to a sign only. For a unique representation we have to cut the plane along a
half-axis. By this, &; and @3 become smooth vector fields uniquely defined on
the cut plane. They cannot, however, be continued over the cut, but change
their roles there instead. Thus, we have the situation of a crossing at which
the eigenvector field is discontinuous and Assumption (A) of Thm. 3 is hurt.

In the pure BO model, this discontinuity will be ignored. Let the initial
values be given by

&= (0,0,  &=(3,0, ¢ =(107, (25)
with ¢! > 0 and ¢} < 0 so that the initial motion is towards the crossing. In
this case, the pure BO equations read §* = —1 and ¢ = 0, i.e., the solution
is

Qéo(t) = _%tz + qit + qi? qgo(t) = 07

moving through the crossing at t. = \/(¢%)% + 2¢% + ¢2.

As long as we have not passed the crossing, i.e., for t < t., Thm. 4
describes the limit € — 0. Thus, the populations will be constant in [0,%.) in
the limit € — 0: 83 = 1,605 = 0. The crossing itself induces a true excitation
of the second energy level, [14,16]:!!

—1

05(t) = 6F + o(1), for ¢ = t. + 0, with 6F = [1 + %&—t)} . (26)
Thus, passing the crossing induces a deeply non-adiabatic process. Directly
behind the crossing Thm. 4 applies again, so that the information concerning
the redistribution of population at the crossing is sufficient to denote the limit
solution ¢y, for € — 0: While the second component remains zero ( g2, = 0)
we now have

Loy [ aho®) Pt
() = {(29;——1)(t—tc)2+q'éo(tc)(t_tC) ez @

' For the connection of this result to the well-known Landau-Zener formula [23]
see [15].
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With initial conditions Eq. (25), the QCMD solution can be determined ex-
plicitly. Surprisingly, there is for all e:

G = goo, VL) =exp (1 [y qt(r)dr), 2 =0. (28)

Thus, neither BO nor QCMD can describe the non-adiabatic excitation at
the crossing. However, as studied in [7], there is yet another feature of the
QCMD model that could turn out to be useful here and might help to include
the non-adiabatic process. After the crossing the adiabatic limit of QCMD
is, in a sense, not uniquely determined:

Theorem 5 (§4 in [7]). Let g, . be the QCMD solution to the initial con-
ditions
9 = (Qi70)7 g = ((Llnﬂ)a Yy = (170)T

with p > 0. Then, the limit process €, 4 — 0 is not unique, specifically
lime_,o 9p=0,e = o and limuw lim,_,o (Iu,e(t) = QBo(t) + (t270) = (iBo(t)-

Actually all points § between the two curves gL, and G-, can be obtained as
a limit solutions belonging to a particular pair of sequences €, — 0.

In a way, the limit set is thus the entire funnel between the two extreme
cases ¢i, and G, Fig. 5. This effect is called Takens-chaos, [21,5,7]. As a
consequence of this theorem each momentum uncertainty effects a kind of
“disintegration” process at the crossing. Thus, one can reasonably expect to
reproduce the true excitation process by using QCMD trajectory bundles for
“sampling the funnel.” To realize this idea, we have to study the full quantum
solution and compare it to suitable QCMD trajectory bundles.

4 Energy Level Crossings and QCMD Bundles

To illustrate the effect of the crossing on a QD solution ¥, Fig. 3 shows the
projection of the probability density |¥|?> onto the ¢'-plane for ¢ = 1/100.
We observe that the density disintegrates after passing the crossing. Its two
main arms propagate along the curves ¢go and g, described above, i.e., the
funnel of Thm. 5 reappears in the QD solution, however, this time, with
an internal statistical structure. Fig. 4 shows the corresponding picture for
a suitable QCMD trajectory bundle computation that clearly reflects the
properties of the full QD solution. The following paragraphs explain how this
QCMD bundle has been constructed.

4.1 Different Trajectory Bundles

Unfortunately, the semiclassical QCMD bundles, Eq. (14) in §2.3, are only
of limited use here. To understand this, let us consider the g-expectation [g]
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10.16
10.14

1012

-0.1

0 0.2 0.4 0.6 08 t 1

Fig. 3. Quantum solution ¥ of the test system of §3.3 for ¢ = 1/100. %, computed
numerically using Fourier pseudospectral methods in space and a symplectic dis-
cretization in time. Reduced ¢'-density f | (¢*, 4%, 1)|’dg® versus t and ¢*. Tnitial
data due to (21) and (25) with ¢; = 0.2 and gL = —0.8.

of its solution (Y., f). Recall that the expectation of a classical observable
A = A(q,q) with respect to the phase-space density f is given by

[Al(t) = [ Alq,4) f(q,q,t) dgdq.
Integration of Eq. (14) directly yields
Lla = ~[ene, grad,V (@)¢ns)].

Because the Hamiltonian H = V depends linearly on g, the last expectation
value is actually independent of f:

[(Gene, 8184, V() ¢ena)] = [(Pene, grad, V(@) ¢ona) F(4, 4, 1) dgdg
= (’@benugra’dqv(q)wensz ) J‘f(q7 (ja t)dqd(i

-

independent from f =l

Thus, [¢] and ¢... obey the following single trajectory QCMD system

i = V(A ers  azld] = = (enss rad, V ([@)e)-

Hence, we just have proven the following proposition:

Proposition 6. Let (¢..., f) be the solution of the bundle equation, Eq. (14),
and [q] be the corresponding q-expectation. If the potential V' depends linearly
on q, [q] is identical with the solution q of the single trajectory QCMD model
with tnitial values ¢(0) = [¢](0), ¢(0) = [¢](0), and ¥(0) = 1ena(0).
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Since QCMD reproduces the BO solution, we again have [¢] = gso ignoring
the non-adiabatic excitation process at the crossing. Consequently, we have
to modify the very concept of QCMD bundles.

Remark: The statement of Prop. 6 is also valid for the g-expectation {g} =
{(Pg, q¥g) of the TDSCF solution. Consequently, TDSCF fails near the cross-
ing, a fact, which emphasizes that the reason for this failure is connected to
the separation step.

10.16
10.14

10.12

401

0 02 0.4 06 08 t 1

Fig. 4. ¢'-density p, Eq. (30), of a simulation for ¢ = 1/100 using the uncoupled
QCMD bundle. Same situation as in Fig. 3.

Actually, Fig. 4 has been obtained using the following modification of the
QCMD bundle: one propagates an ensemble of independent, single QCMD
trajectories (gg, Gk, ¥r), k=1,...,N:

i€dpr = (3T + Viz, g (1)) ¥r, Ge = —grad (Yr, Vioe)(ge).  (29)

Initially, all the ¢ are identical: ¢ (t = 0) = 4, and the classical states
(qx,qx) sample the density |¢.(t = 0)]* according Eq. (15),'? i.e., there is
a weight factor wy, for each trajectory k. Consequently, for each time ¢ the
probability distribution p(q') in ¢! can be approximated on any sufficiently
large interval [¢',q' + Aq'] by adding the weights of all trajectories passing
this interval at time ¢:

p(t)|[q1,q1+Aq1] = Z W (30)
0, (D €lgt,qr +Aq]

12 For Hagedorn’s initial condition Eq. (21), we have to choose 8 = 2/¢ in Eq. (15).
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A comparison of Fig. 4 and Fig. 3 shows that this uncoupled QCMD bundle
reproduces the disintegration of the full QD solution. However, there are
minor quantitative differences of the statistical distribution. Fig. 5 depicts
the corresponding g¢'-expectation values together with HAGEDORN’s limit
q'-expectation g, of QD for € — 0. We observe that for ¢ = 1/100 and
€ = 1/500 the ¢'-expectation of the uncoupled QCMD bundle approximates
the ¢'-expectation of the corresponding QD solution which lie close to gy,.

0 0

{@)ep [¢]ens

-0.2 -0.2

-0.4 -0.4
0 01 02 034 0 01 02 03y
0

{@)ep

-0.05

-0.1

-0.15

0 005 01,015 0 005 01 ;015

Fig. 5. Comparison of the ¢; expectation value of the uncoupled QCMD bundle
([g]ens) and full QD ({g)qp) for the test system for ¢ = 1/100 (pictures on top)
and € = 1/500 (below). Initial data as in Fig. 3. The shaded domain indicates the
funnel between the two curves ¢so and gso (cf. Thm. 5). The light dashed line
shows Hagedorn’s limit solution gu. and the dense lines (g)qn (left hand pictures)
and [¢]ens (right hand pictures).
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