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Abstract 

One of the important tasks in Data Mining is automated cluster analy­
sis. Self-Organizing Maps (SOMs) introduced by KOHONEN are, in princi­
ple, a powerful tool for this task. Up to now, however, its cluster identifi­
cation part is still open to personal bias. The present paper suggests a new 
approach towards automated cluster identification based on a combination 
of SOMs with an eigenmode analysis that has recently been developed by 
DEUFLHARD ET AL. in the context of molecular conformational dynamics 
Details of the algorithm are worked out. Numerical examples from Data 
Mining and Molecular Dynamics are included. 

K e y w o r d s . Self-Organizing Maps, cluster analysis, eigenmode analysis, 
vector quantization, projection methods, nearly uncoupled Markov chains, 
almost invariant aggregateschemical conformation dynamics, Da ta Mining. 

Introuction 
Self-Organizing Maps (SOMs) are a powerful tool to project mult idimensional 
da ta on two-dimensional grids [10, 5]. Compared with traditional vector quan­
tization methods and projection methods, such as Multi Dimensional Scaling 
(MDS) [2], SOM exhibits two major advantages: (a) it realizes some so-called 
topology approximation, which means tha t neighbouring objects in the multi­
dimensional da ta space are projected to neighbouring grid points; this allows 
an interpretation of SOMs as topographic maps of the multi-dimensional da ta 
space, (b) it permits to include additional data into the t rea tment during the 
course of computation [9]. An important field of application of SOMs is Da ta 
Mining, especially cluster analysis therein. By using the u-matrix [1] or any 
other visualization techniques [8], any well-trained analyst will easily identify 
clusters on a heuristic basis. Different experts will need different computation 
times and will come up with different results - which gives the whole method an 
undesirable flavour of personal bias. This is a real obstacle for the use of SOMs 
in Da ta Mining, where automated systems are definitely preferred [11] 



For this reason, the present paper aims at an automation of the clus 
identification process. This is done by a proper combination of SOMs with 
recently developed eigenmode analysis [4] for a stochastic matrix to be suitabl 
defined. In Section 2 we discuss and assess known approaches to find SOM 
clusters automatically. In Section 3 we introduce the new dynamically based 
approach to automatic cluster identification. In Section 4 we describe details 
of a first already rather efficient algorithm that serves the purpose. Finally, in 
Section 5, two illustrative examples are given, one from molecular dynamics (a 
moderate size RNA molecule) and one from Data Mining (a health insurance 
problem) 

Known Approaches for Atomat ic Clus 
Idntification 

In the following, we consider a «/-dimensional input space Q and a two-dimensional 
SOM formed by a n x m grid with hexagonal structure and k codebook vectors 
Wi G Q. For each codebook vector zt denotes the (x,y) position of the related 
neuron on the grid. For the computation of the map, we use a problem adopted 
distance function dist : Q x Q —>• R and a Gaussian neighbourhood function 
e x P (~ 2r(i) ) w l* n ^ n e eudidean norm || • || and a suitable timedependent 

radius function r(t) . 

A simple idea to identify the clusters on the given map automatically is to 
run a cluster analysis based on the codebook vectors and using the same distance 
function as for computing the SOM. However, this idea, which seems reasonable, 
because the codebook vectors are representatives of the original data, implies 
the following problem: One has to find a cluster algorithm that neither needs 
the—a priori unknown—number of clusters as an input (as e.g. the well known 
c-means-algorithm [7]) nor generates too much different suggestions for cluster 
ing the codebook vectors. We do not demand an algorithm that always gives a 
unique solution1, but an algorithm that generates only the important clustering 
possibilities, e.g. in contrast to a hierarchical cluster algorithm [3]. Both re 
quirements on the cluster algorithm are necessary for a really automatic cluster 
identification. 

Even if we suppose that we have such an algorithm, there is another problem 
We have not used the two-dimensional structure of the SOM at all. But if 
we neglect the structure, it makes no sense to use a two-step algorithm—first 
generating the SOM, afterwards clustering the codebook vectors—instead of 
clustering the original data directly. In this case, we ignore the power of the 
SOMs, mainly the topology approximation. Therefore we have to develop 
special approach, that not only matches the requirements we have described 
above, but also uses the information, given by the structure of the SOM 

Usually, i realworld problems, there exist no unique best cluster olution. 



Approch 
Motivation. The use of cluster analysis in natural and social sciences or in 
economics usually implies an a priori assumption: One is interested in finding a 
clustering, such that similar objects belong to the same cluster, while different 
objects belongs to different clusters, because one supposes that objects who are 
similar, still stay similar in the future. Without such an a priori assumption, 
a cluster analysis makes no or at least less sense. 

As a conclusion one can make the following assumption: The more two 
clustrs ar diffnt, the lss objts will inthan btwee the lustrs in 
the fre. 

Transformation. On this background, it seems reasonable, if we transform 
the k x k distance matrix D, which is build by the inter-distances dist(Wj, Wj) 
between all k codebook vectors to a stochastic matrix S = (SJJ), such that each 
entry sij can be interpreted as the probability that an object with nearest code 
book vector Wi will belongs to codebook vector Wj in the future. 

To achieve this we first have to compute a similarity matrix A (O with 

max d 
j 

Note that the entries satisfy 0 < aij < 1. In a second step, we normalize the 
rows of the similarity matrix to 1 resulting in a stochastic matrix S 

j = j = 1 k ( l j 

with positive weights TVJ = ^ - Oj . Due to the above normalization, the en­
tries s may be interpreted as robabilit 

But until now, we have not considered the two-dimensional structural infor 
mation of the map. We can achieve this simply by the following approach3: 

( \\z- - z \ ( d 

For r we use the radius of the map r = min(n m)/2. So we have not introduced 
any additional parameter. 

It is easy to show that S is stochasti and reversible, ie. , 7TJSJ = WjSji for 
all i,j. Therefore the matrix S can now be used within the dynamical cluster 
algorithm that has recentl been introduced by DEUFLHARD ET AL 4] 

2 The meaning of future has always to be interpreted in the context of the given problem. 
The following simple example should illustrate the assumption: The reason for a company t 
compute a clustering of their customers is the hope, that a new customer behaves esentiall 
like the old customers, which belongs to the same cluster as the new one. 

3 By this, we use the following property of the SOM: The larger the distance of two codebook 
vector on the grid, the arger the distance of the related object in the multidimensional room. 



It has to be emphasized, that the application of the algorithm is independent 
of the previous interpretation. It only needs a reversible stochastic matrix S 
with respect to the weights m. In the next section we will describe details of 
the algorithm. 

l g o r i t c R i z a t i o n 

In this section we present a concept to identify clusters, which exploits special 
properties of eigenvectors corresponding to a so-called proximity matrix asso­
ciated with the problem. 

In order to introduce the identification method consider the following set 
ting: Given a set of codebook vectors {Wi,..., Wk} and a proximity function 
p(Wi,Wj) £ [0,1] measuring the degree of association between two codebook 
vectors. It is p(Wi, Wj) ~ 1 for strongly related data and p(Wi, Wj) « 0, if W 
and Wj are only weakly related. We further request the proximity function to 
be normalized in the sense that 

Y u W 

for alH = 1 , . . . , k. This is no restriction, since it can always be achieved by a 
suitable normalization of the proximity function (see Section 3). 

We are interested in decomposing the data into disjoint clusters C\,...,CC 

such that each cluster d groups together related elements, while elements of dif 
ferent cluster are mostly unrelated. Let p(Ci,Cj) denote the proximity between 
the two clusters C,Cj defined by an appropriate average value of pW, W) for 
W € Ci and W £ Cj. Then we ask for a decomposition into clusters C\,CC 

such that 

{CC)K\ and {CC)^Q i?j (2) 

In order to identify the clusters, the method now uses the proximity matrix 
= ((Wi,Wj)) defined in term of the proximity function. 
In view of Eq. 2 the clustering problem is equivalent to finding a permutation 

of the codebook vectors W±,., Ws such that the permuted proximity matrix 
P is as block-diagonal as possible, in the sense that the average value over off-
blockdiagonal entries is much less than the corresponding blockdiagonal value. 

For the identification process, we exploit the following two properties of the 
proximity matri (for more details see [4]): 

1. The matrix P is stochastic, i.e., its entries are non-negative and the sum of 
each row equals one. As a consequence, the constant vector ( 1 , . . . , 1) is an 
eigenvector corresponding to the eigenvalue Ai = 1; all other eigenvalues 
Ai are less or equal in modulus i.e., | Aj | < 1. Since P is reversible, it is self-
adjoint with respect to some weighted scalar product and consequently 
all eigenvalues are real 

2. The presence of clusters corresponds to a block structure of the proximity 
matrix (for a suitable permutation of the codebook vectors) and a splitting 



of the spectrum into a cluster of eigenvalues Ai , . . . , Ac near 1 and the 
remaining part of the spectrum. The spectral parts are separated by a gap. 
The number of clusters blocks in the proximity matrix and eigenvalues 
near 1 are equal 

It follows from perturbation analysis [4] that the eigenvectors X X cor 
responding to the cluster of eigenvalues near 1 are almost onstant on 
clustr, i.e., if Wi and Wj belong to the same cluster, then Xi(Wi) « Xi(Wj 
for / = 1 , . . . , Furthermore, the c-tuple of eigenvector components associated 
with each Wi 

Wi . ( X ) X ) ) 

is sufficient to identify the clusters in the case of weak coupling [4]. Each cluster 
is the collection of codebook vectors Wi with almost identical c-tuple. We have 
implemented an algorithm, which also copes with larger perturbations in the 
eigenvector components due to stronger coupling between the clusters, which is 
based on the sign-stru 

Wi . (sign (X sign ( X ) ) , 

associated with each Wi rather than on the c-tuple itself detailed description 
of this part of the algorithm is given in [4] 

For identifying SOM clusters, we now use this algorithm with the stochastic 
matrix S defined in (1) as the proximity matri P. As shown in the preious 
section, S satisfies the necessary properties 

By this we generate a descending sorted sequence of eigenvalues. We now 
search for large gaps4 in this sequence. Each of this large gaps separates the 
group of eigenvalues between the gap and the dominant eigenvalue 1 from the 
remaining part of the spectrum. This group then allows to identify one possi 
ble clustering. Usually there are only a few large gaps, so that our algorithm 
proposes only few different clusterings 

r i l E x l e s 

To order to show, how our approach works in practice, we shortly present two 
applications: the first one from the field of molecular dynamics, the second one 
from insurance business 

Example 1: R N A molecule In this example, the task is to cluster 3 -
dimensional structures of a molecule, a small triribonucleotide. Here, clusters 
correspond to groups of similar structures, so-called geometrical conformations 
Each of the 32.000 molecular structures is roughly described by 37 torsion an­
gles For more details, see 6] 

4 The minimum ize of a large gap depends on the c o n c r e p r o b l m . N e v e r h e l s we have 
used the value 0.08 uccesfully i different applications. 



Since this size has been used sucessfully in the past, we use a 11 x 9 grid 
for the SOM5. For the computation of the map, we use a log-inverse radius 
function and the following special distance function between vectors V (v) 
and V vi), that considers the cyclical nature of torsion-angles: 

37 

st(V, V) (sin(vi) - sin(vi2 + co(vi) - cos{vi)))) 

The «-matrix visualization of the resulting map is shown in Figure 1 (left 
hand side) 

Figure 1: Example 1: R N A molecules . Left hand side: u-matrix visualization of the 
SOM for the molecular example. Right hand side: viualization of the cluster borders ( e e 
text) 

After computing the stochastic matrix, an implementation of the dynamical 
approach generates the following eigenvalues (the ve large gaps are marked in 
the table): 

As 0. 0. 0. 0. 0. 0.45 0. 0. 0.37 

Beyond eignvalue numbe 6, t h e e a e only small gaps Figur 2 shows a 
plot of all eigenvalues 

Figure 2: Example 1: R N A m o l u l . Plot of all eigenvalues 

As a result, the algorithm generates four possible clusterings, with at least 
two clusters. If we look at the last large gap between eigenvalue number 6 and 
number 7, we get the clustering that is shown in Figure 1 (right hand side) 

5Several tests have shown, that our algorithm is quite robust: If we use grid izes that 
differs no more than 30 -0%, we get the same clustering of the input space. 



Example 2: Health Insurance In the next example, we have a clustering 
of customers of an German insurance company. Each of the 32000 customers 
used for the computation of the map, is described by 181 attributes (e.g. age, 
sex, occupation). After suitable transformations, all attributes are ordinal or 
metric and normalized. 

Again, we use a 11 x 9 grid and a log-inverse radius function. For the 
distance function, we use the euclidean distance. The «-matrix isualization of 
the resulting map is shown in Figure 3 (left hand side) 

• ^B • • ^H. • • ^ B • • • • • • • • ^ B • • ^H • 

Figure 3: Example 2: Heal th Insurance. Left hand side: «-matrix visualization of the 
SOM for the insurance example. Right hand side: viualization of the cluster borders ( e e 
text) 

We compute the stochastic matrix and use again our dynamical algorithm, 
getting the following eigenvalues (the two large gaps are marked in the table): 

Af 0. 0. 0. 0. 0. 0.67 0.61 0. 0. 0.42 

Beyond eigenvalue number 10, t h e e are only small gaps Figur 4 shows a 
plot of all eigenvalues 

Figur 4: Example 2: H a l t h I n u r a n e . Plot of all eigenvalues 

If we look at the last large gap between eigenvalue number 9 and number 
10, we get the clustering that is shown in Figure 3 (left hand side) 

For the sake of comparison, we want to report that the same clustering has 
been found in the past by using a non-automated, visualization based method. 
That method, however, has required one week of interacti work. 



Summarizing, in both applications the obtained clusterings are not only rea­
sonable, if one looks at the w-matrix visualization, but can also be justified 
by expertknowledge and statistical classification methods, e.g. a discriminant 
analysis [2]. The time needed to compute the stochastic matrix and to identify 
the clusters by our dynamical algorithm is negligible in comparison with the 
computing time spent for the SOM 

onclusion 

The paper presents a powerful, generally applicable approach to automatic clus 
ter identification in the setting of Self-Organizing Maps. The described first al­
gorithm already speeds up the cluster identification process considerably. Thus 
the door has been opened for further applications of SOMs in the field of Data 
Mining. Future work will focus on further improvements of the suggested algo­
rithm and its use in extended fields of application. 
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