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We propose a novel Galerkin discretization scheme for stochastic optimal
control problems on an indefinite time horizon. The control problems are
linear-quadratic in the controls, but possibly nonlinear in the state vari-
ables, and the discretization is based on the fact that problems of this kind
can be transformed into linear boundary value problems by a logarithmic
transformation. We show that the discretized linear problem is dual to a
Markov decision problem, the precise form of which depends on the cho-
sen Galerkin basis. We prove a strong error bound in L2 for the general
scheme and discuss two special cases: a variant of the known Markov chain
approximation obtained from a basis of characteristic functions of a box
discretization, and a sparse approximation that uses the basis of commit-
tor functions of metastable sets of the dynamics; the latter is particularly
suited for high-dimensional systems, e.g., control problems in molecular
dynamics. We illustrate the method with several numerical examples, one
being the optimal control of Alanine dipeptide to its helical conformation.
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1. Introduction

A large body of research is concerned with the question: How well can a continuous
diffusion in an energy landscape be approximated by a Markov jump process (MJP)
in the regime of low temperatures? Qualitatively, the approximation should be good
if the system under consideration is metastable, for metastability precisely means
that the diffusion process stays in the neighbourhood of the potential energy minima
for a long time, and occasionally makes rapid transitions (jumps) between the wells.
These metastable regions then become the states of the MJP, and the jump rates are
determined by the frequency of the transitions. A rigorous mathematical proof of
this fact, based on Gamma convergence, has recently been published for the special
case of a symmetric double-well potential and in the limit of zero temperature [PSV12,
AMP+12]. From a more practical point of view, Markov state models (e.g. see [PBB10,
PWS+11, SNL+11, DSS10]) that are popular in the molecular dynamics community
are approximations of metastable systems by MJPs that, in certain cases, can capture
the correct transition rates between the metastable sets [SNS10, DSS12].

The situation is more complicated for controlled diffusions, when the processes are
subject to external controls that are chosen so as to minimize a given cost criterion, in
which case one has to approximate the stochastic processes (in an appropriate sense)
as well as the corresponding cost functional and the resulting optimal control forces.
Available numerical methods for solving stochastic optimal control problems include
methods that solve the dynamic programming PDE or Hamilton-Jacobi-Bellman equa-
tion, such as Markov chain approximations [KD92], monotone schemes [BS91, BJ07]
or finite elements [BH01]. A common problem for these PDE-based methods is that
they become inefficient if the problems are high-dimensional. An alternative are direct
methods that iteratively minimize the cost functional using, e.g, entropy minimization
[Tod09], path integrals [Kap05] or policy iteration [BMZ09]. This class of methods
works in high dimensions, but has difficulties if the solvers get stuck in local minima
or if the search space is too large.
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In this article we propose a Galerkin scheme for discretizing the dynamic program-
ming equations that is meshless and hence can be applied to large-scale problems,
assuming that the Galerkin basis is chosen in a clever way. Galerkin or, more gen-
erally, reduced basis methods are well established in terms of theory and numeri-
cal algorithms for linear elliptic equations, but to our knowledge very few results
(e.g. [DD70, SWH12]) are available for the nonlinear dynamic programming equations
of stochastic control; cf. also [KV01]. To close this gap we confine ourselves to a class
of optimal control problem that are linear-quadratic (LQ) in the control variables, but
possibly nonlinear in the states; they have the feature that they can be transformed to a
linear problem by a suitable (logarithmic) transformation and are hence amenable to a
discretization using Galerkin methods. LQ-type optimal control problems of this kind
appear relevant in many applications, including molecular dynamics [SWH12, Sta04],
material science [Ste10, AK11], quantum computing [PK02, RdVRMK00], or queu-
ing networks [SR95, Hei95] to mention just a few; see also [DW04, DSW12] for an
application in statistics.

A simple paradigm As an introductory example consider the one-dimensional diffu-
sion process (Xt)t≥0 satisfying the Itô stochastic differential equation

dXt = b(Xt, t)dt+
√

2εdBt , t ≥ 0

where Bt is standard one-dimensional Brownian motion, ε > 0 is noise intensity, called
temperature in the following, and b(·, ·) is a smooth and Lipschitz continuous vector
field. Specifically, we assume that b is of the form

b(x, t) = ut −∇V (x) ,

with V : R→ R being a smooth potential energy function that is bounded from below,
and measurable control u, that will be chosen so as to minimize a certain cost criterion.
As an example consider the situation depicted in Figure 1 and suppose that the control
task is to force the particle in the left well to reach the right well in minimum time.
For u = 0 and in the limit of small noise, the average of the transition time from the
left to the right well is given by the Kramers-Arrhenius law [FW84, Ber11]

E[τ ] � exp(∆V/ε) , ε→ 0 ,

where τ is the first exit time from the left well, ∆V is the energy barrier between the
wells and E[·] is the expectation over all realizations of the process. We can speed
up the transitions by tilting the potential according to V (x) 7→ V (x) − ux, making
the barrier smaller. If were allowed to apply arbitrarily large forces, we could make τ
arbitrarily small, yet a real controller will seek to minimize the transition time without
controlling too much. A natural choice in many cases is a penalization of the energy
consumed by the controller, which leads to quadratic cost of the form [SWH12]

J(u) = E

[
τ +

1

4

∫ τ

0

|ut|2dt
]
.
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Figure 1: Two typical realization of the bistable system, with and without tilting (left
panel). The corresponding potential energies are shown in the right panel.

(The factor 1/4 is for convenience.) The showcase optimal control problem now reads:

min
u∈A

J(u) (1)

over a set A of admissible (e.g. adapted) strategies and subject to

dXu
t = (ut −∇V (Xu

t ))dt+
√

2εdBt . (2)

In this paper we deal with the question how to solve optimal control problems of the
form (1)–(2), beyond simple one-dimensional examples. The typical application that
we have in mind is molecular dynamics that is high-dimensional and displays vastly
different time scales. This defines the basic requirements of the numerical method
used to solve optimal control problems: it must handle problems with large state
space dimension and it must be able to capture the relevant processes of the dynamics,
typically the slowest degrees of freedom in the system.

For moderate controls, and if the temperature is small compared to the energy bar-
rier, the dynamics in the above example basically consists of rare jumps between the
potential wells, with the jump rate being controlled by u. Therefore an efficient dis-
cretization would be one that resolves only the jumps between the minima by a 2-state
Markov jump process with adjustable jump rates, according to the value of the control
variable. If the control ut is given, the approximation of (2) by a 2-state MJP essen-
tially boils down to an approximation of the dynamics by a time-inhomogeneous MSM,
which requires only minor generalizations of the homogeneous MSM framework (see,
e.g., [DSS12, SNS10]). When solving optimal control problems, however, the control
becomes a function of the dynamics, for (2) enters as a constraint in the minimization
problem (1), which makes the corresponding dynamic programming equations non-
linear and renders the discretization less straightforward. The discretization scheme
that we propose is based on the fact that the above control problem can be trans-
formed into linear boundary value problems by a logarithmic transformation. The
linear problem can then be discretized by standard means, including the discretization
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by an MSM if the dynamics is metastable. As we will show below the discretized
linear problem is dual to a Markov decision problem (i.e. a stochastic control problem
for a continuous-time finite-state Markov process), which thus represents the natural
Markovian discretization of the original stochastic control problem. The discretization
is meshless, in that the number of states of the Markov model does not scale exponen-
tially with the dimension of the continuous state space, hence our method avoids the
curse of dimensionality of typical grid based methods.

Organization of the article The rest of the paper is organised as follows: In section
2 we introduce the class of optimal control problems studied and state the duality
between optimal control and sampling for both continuous SDEs and MJPs. In sec-
tion 3, the Galerkin projection method is introduced, and some results about the
approximation error are discussed. We also give a stochastic interpretation of the
discretized linear equation in terms of Elber’s milestoning process [FE04] and discuss
special cases of the discretization, one of which being the known Markov chain approx-
imation. Finally, we construct sampling estimators. Section 3 is the core parts of the
paper and contains new results, including a strong L2 error estimate for the Galerkin
discretization. In section 4, we discuss numerical examples.

1.1. Elementary notation and assumptions

We implement the following notation and standing assumptions that will be used
throughout the paper and that generalize the above example. Our optimal control
problem has the following ingredients:

Dynamics Let S ⊂ Rd bounded with smooth (e.g. Lipschitz) boundary and consider
the potential energy function V : S → R, that we assume to be two times continuously
differentiable and bounded from below. We consider Xt ∈ S solving

dXu
t = (ut −∇V (Xu

t ))dt+
√

2εdBt , t ≥ 0 , (3)

where Bt ∈ Rd is d-dimensional Brownian motion under a probability measure P ,
and u : [0,∞) → U ⊂ Rd is a time dependent measurable and bounded function. We
further impose reflecting boundary conditions at the set boundary ∂S, so that the
process cannot leave the set S ⊂ Rd; see [Gar96] for algorithmic issues.

Reversibility and invariant measure For test functions ϕ : S → R that are two times
continuously differentiable, the infinitesimal generator of the uncontrolled processXt =
X0
t is defined as the second-order differential operator

Lϕ = ε∆ϕ−∇V · ∇ϕ .

Define
dµ(x) = exp(−ε−1V (x))dx
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to be the Boltzmann measure at temperature ε > 0. Without loss of generality, we
assume that µ is normalized, so that µ(S) = 1. For the subsequent analysis it will be
convenient to think of L as an operator acting on a suitable subspace of

L2(S, µ) =

{
φ : S → R :

∫
S
|φ(x)|2 dµ(x) <∞

}
,

that is a weighted Hilbert space equipped with the scalar product

〈v, w〉µ =

∫
S
v(x)w(x)dµ(x) .

It can be readily seen that L is symmetric with respect to the weighted scalar product,

〈Lv,w〉µ = 〈v, Lw〉µ ,

which implies that Xt is reversible with respect to the Boltzmann measure µ. Moreover
µ is the unique invariant measure of the process Xt and satisfies∫

S
(Lψ)dµ =

∫
S
ψ(L1)dµ = 0

for all test functions ψ ∈ L2(S, µ).

Quadratic cost criterion We now introduce the cost criterion that the controller
choosing u in (3) seeks to minimize. To this end let A ⊂ S be a bounded subset that
is fully contained in the interior of S and call τA <∞ the random stopping time

τA = inf{t > 0: Xt ∈ A} .

We define the cost functional

J(u) = E

[∫ τA

0

{
f(Xt) +

1

4
|ut|2

}
dt

]
, (4)

where f : S → R, called running cost, is any nonnegative function with bounded first
derivative; the factor 1/4 in the penalization term is merely conventional. Cost func-
tionals of this form are called indefinite time horizon cost, because the terminal time
τA is random. We will sometimes need the conditioned variant of the cost function,

J(u;x) = Ex

[∫ τA

0

{
f(Xt) +

1

4
|ut|2

}
dt

]
, (5)

where Ex[·] = E[·|X0 = x] is a shorthand for the expectation over all realizations of
Xt starting at X0 = x, i.e. the expectation with respect to P conditional on X0 = x.
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Admissible control strategies We call a control strategy u = (ut)t≥0 admissible if
it is adapted to the filtration generated by Bt, i.e., if ut depends only on the history
of the Brownian motion up to up to time t, and if the equation for Xu

t has a unique
strong solution. The set of admissible strategies is denoted by A.

Even though ut may depend on the entire past history of the process up to time t, it
turns out that optimal strategies are Markovian, i.e., they depend only on the current
state of the system at time t. In our case, in which the costs are accumulated up to a
random stopping time τA, the optimal strategies are of the form

ut = α(Xu
t )

for some function α : Rd → Rd. Hence the optimal controls are time-homogeneous
feedback policies, depending only on the current state Xu

t , but not on t.

2. Optimal control and logarithmic transformation

In this section we establish a connection between optimal control of continuous-time
Markov processes and certain path sampling problems, the latter are associated with
a linear boundary value partial differential equation (PDE) that can be discretized by
standard numerical techniques for PDEs or Monte-Carlo. The duality between optimal
control and path sampling goes back to Wendel Fleming and co-workers (e.g. [Fle77,
FM95, Jam92]) and is based on a logarithmic transformation of the function

W (x) = min
u∈A

J(u;x) . (6)

2.1. Duality between control and path sampling for diffusions

Our simple derivation of the duality between path sampling optimal control will be
based on the Hamilton-Jacobi-Bellman equations of optimal control. To this end, we
recall the dynamic programming principle for optimal control problems of the form
(3)–(4) that we state without proof; for details we refer to, e.g., [FS06, Secs. VI.2].

Theorem 1. Let W ∈ C2(S) ∩ C1(S̄) ∩ C(Ā) be the solution of

min
c∈Rd

{
(L+ c · ∇)W (x) + f +

1

4
|c|2
}

= 0 , x ∈ S \A

W (x) = 0 , x ∈ A
ν · ∇W (x) = 0 , x ∈ ∂S ,

(7)

where ν is the outward-pointing unit normal to ∂S at x. Then

W (x) = min
u∈A

J(u;x)

where the minimizer u∗ = argminJ(u) is unique and given by the feedback law

ut = −2∇W (Xu
t ) . (8)
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Before we proceed with the derivation of the dual sampling problem, we shall briefly
discuss some of the consequences of the dynamic programming approach. Equation
(7) is the Hamilton-Jacobi-Bellman (HJB) equation, also called dynamic programming
equation associated with the following optimal control task:

min
u∈A

J(u) s.t. dXu
t = (ut −∇V (Xu

t ))dt+
√

2εdBt .

The function W (x) is called value function or optimal cost-to-go. Existence and
uniqueness of classical (i.e. smooth) solutions follow from our assumptions on the
potential and the properties of S, using the results in [FS06, Secs. VI.3–5].

Given the value function, and using the fact that optimal control is the gradient of
two times the value function, the optimally controlled process X∗t solves the SDE

dX∗t = −∇U(X∗t ))dt+
√

2εdBt . (9)

with the new potential
U(x) = V (x) + 2W (x) .

Note that X∗t is reversible with respect to a tilted Boltzmann distribution having
the density ρ∗ = exp(−U/ε). The reversibility follows from the fact that the value
function does not depend on t, which would not be the case if the terminal time τA
were a deterministic stopping time rather than a first exit time.1

Logarithmic transformation and Feynman-Kac formula (part I) The approach that
is pursued in this article is to discretize the HJB equation by first removing the non-
linearity by a logarithmic transformation of the value function. Let

φ(x) = exp(−ε−1W (x)) . (10)

It follows by chain rule that

ε
Lφ

φ
= −LW + |∇W |2 , φ 6= 0 , (11)

which, together with the relation

−|∇W |2 = min
c∈Rm

{
c · ∇W +

1

4
|c|2
}
,

implies that (7) is equivalent to the linear boundary value problem(
L− ε−1f

)
φ(x) = 0 , x ∈ S \A
φ(x) = 1 , x ∈ A

ν · ∇φ(x) = 0 , x ∈ ∂S .
(12)

1For finite time-horizon control problems the value function depends on the time τA − t remaining
until the terminal time τA.
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By the above assumptions and the strong maximum principle for elliptic PDEs it
follows that (12) has a classical solution φε ∈ C2(S) ∩ C(S̄) ∩ C(Ā) that is uniformly
bounded. Further note that the value function is uniformly bounded on S, hence the
log transformation (10)–(11) is well defined.

Now, by the Feynman-Kac theorem [Øks03, Thm. 8.2.1], the linear boundary value
problem has an interpretation in terms of a sampling problem. The solution (12) can
be expressed as the conditional expectation

φ(x) = Ex

[
exp

(
−1

ε

∫ τA

0

f(Xt) ds

)]
(13)

over all realizations of the following SDE on S:

dXt = −∇V (Xt)dt+
√

2εdBt , X0 = x . (14)

Remark 1. The Neumann boundary condition in (7) and (12) amounts to the reflect-
ing boundary conditions for the processes Xu

t and Xt at ∂S.

Remark 2. In probabilistic terms, the logarithmic transformation amounts to a suit-
able change of measure of the underlying Markov process, by which the control variable
is eliminated [PMR96]; see also [HS12] and the references given there.

2.2. Duality between control and path sampling for jump processes

In the last section, we have established a connection between an optimal control prob-
lem and sampling of a continuous path observables φ(x). In this section, we will repeat
the same construction for Markov jump processes, however, in reverse order: starting
from a path observable for a Markov jump process, we derive the dual optimal control
using a logarithmic transformation.

Let (X̂t)t≥0 be a MJP on the discrete state space Ŝ = {1, . . . , n} with infinitesimal
generator G ∈ Rn×n. The entries of the generator matrix G satisfy

Gij ≥ 0 for i 6= j and Gii = −
∑
j 6=i

Gij ,

where the off-diagonal entries of G are the jump rates between the states i and j.

Logarithmic transformation and Feynman-Kac formula (part II) In accordance with

the previous subsection let f̂ : Ŝ → R be nonnegative and define the stopping time

τA = inf{t > 0: X̂t ∈ A}.

to be the first hitting time of a subset A ⊂ Ŝ. As before we introduce a function

φ̂(i) = Ei

[
exp

(
−1

ε

∫ τA

0

f̂(X̂s)ds

)]
,

with Ei[·] = E[·|X̂0 = i] being the conditional expectation over the realizations of X̂t

starting at X̂0 = i. We have the following Lemma that is the exact analogue of the
Feynman-Kac formula for diffusions for the case of an MJP (see [GS75]).
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Lemma 1. The function φ̂(i) solves the linear boundary value problem∑
j∈Ŝ

Gij φ̂(i)− ε−1f̂(i)φ̂(i) = 0 , i ∈ Ŝ \A

φ̂(i) = 1 , i ∈ A .
(15)

Now, in one-to-one correspondence with the log transformation procedure in the
diffusion case, the function

Ŵ = −ε log φ̂

can be interpreted as the value function of an optimal control problem for the MJP
(X̂t)t≥0. The derivation of the dual optimal control problem goes back to [She82,
She85], and we repeat it here in condensed form for the reader’s convenience (see also
[FS06, Sec. VI.9]): First of all note that Ŵ satisfies the equation

exp(Ŵ/ε)G exp(−Ŵ/ε)− ε−1f̂ = 0 , i ∈ Ac

Ŵ (i) = 0 , i ∈ A .

and define a new generator matrix by

Gv = (Gvij)i,j∈Ŝ , Gvij =
Gijv(j)

v(i)
,

with v(i) > 0 for all i ∈ Ŝ. The exponential term in above equation for Ŵ can be
recast as

(Gφ̂)(i)

φ̂(i)
= min

v>0
{−(GvŴ )(i) + kv(i)}

where we have introduced the shorthand

kv(i) = ε(Gv(log v))(i)− ε (Gv)(i)

v(i)
,

and used the identity

min
y∈R
{e−y + ay} = a− a log a , a > 0 .

As a consequence, (15) is equivalent (i.e. dual) to

min
v>0

{
(GvŴ )(i) + kv(i) + f̂(i)

}
= 0 , i ∈ Ac

Ŵ (i) = 0 , i ∈ A .
(16)

which is the dynamic programming equation of a Markov decision problem, i.e. an
optimal control problem for an MJP (e.g. see [FS06, Sec. VI.9]): Minimize

Ĵ(v) = E

[∫ τA

0

{
f̂(X̂v

s ) + kv(X̂v
s )
}
ds

]
(17)
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over all component-wise strictly positive controls v and subject to the constraint that
the process (X̂v

t )t≥0 is generated by Gv. It readily follows from the derivation of (16)
that the minimizer exists and is given by

v∗(i) = φ̂(i) .

The next lemma records some important properties of the controlled Markov jump
process with generator Gv and the corresponding cost functional (17).

Lemma 2. Let Gv and kv be defined as above.

(i) Let (X̂t)t≥0 with generator G have a unique stationary distribution π and let G
be reversible with respect to π. Then the tilted distribution πv(i) = Z−1

v v2(i)π(i),
with Zv an appropriate normalization constant, is the unique probability distri-
bution such that Gv is reversible and stationary with respect to πv.

(ii) Let P̂ denote the probability measure on the space of trajectories generated by X̂t

with initial condition X̂0 = i, and let Q̂ be the corresponding probability measure
generated by X̂v

t with the same initial condition X̂v
0 = i. Then Q̂ is absolutely

continuous with respect to P̂ and the expected value of the running cost kv is the
Kullback-Leibler (KL) divergence between Q̂ and P̂ , i.e.,

EQ̂

[∫ τA

0

kv(X̂v
s )ds

]
=

∫
log

dQ̂

dP̂
dQ̂

where EQ̂[. . .] denotes expectation over all realizations of X̂v
t starting at X̂v

0 = i.

Proof. We first show (i). By assumption we have π(i)Gij = π(j)Gji. Now, let πv be
such that πv(i)Gvij = πv(j)Gvji. We will show that πv has the proposed form:

πv(i)Gvij =
v(j)

v(i)

πv(i)

π(i)
π(i)Gij =

v(j)

v(i)

πv(i)

π(i)
π(j)Gji =

v2(j)

v2(i)

π(j)

π(i)

πv(i)

πv(j)
πv(j)Gvji

But since πv(i)Gvij = πv(j)Gvji, we must have

πv(j)

π(j)v2(j)
=

πv(i)

π(i)v2(i)
∀i 6= j.

This can only be true if the quantity Z−1
v = πv(i)

π(i)v2(i) is independent of i. This gives

πv(j) = Z−1
v v2(j)π(j) as desired. The constant Zv is uniquely determined by the

requirement that πv be normalized. Finally, from reversibility it follows directly that
πv is also a stationary distribution of Gv.

To show (ii), note that the running cost kv(i) can be written as

kv(i) = ε
∑
j 6=i

Gij

{
v(j)

v(i)

[
log

v(j)

v(i)
− 1

]
+ 1

}
, (18)

which is the KL divergence between Q̂ and P̂ (see [PMR96, Sec. 3.1.4]). The absolute
continuity between Q̂ and P̂ simply follows from the fact that v in the definition of
Gv was required to be component-wise strictly positive.
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Remark 3. To reveal further similarities between the stochastic control problem (3)–
(4) and the corresponding Markov decision problem, note that the quadratic penal-
ization term in (4) equals the KL divergence between the reference measure P of the
uncontrolled diffusion (14) and the corresponding probability measure Q that is induced
by replacing Bt in (14) by

But = Bt +

√
1

2ε

∫ t

0

usdt ,

as can be shown using Girsanov’s theorem [Øks03, Thm. 8.6.8]. In other words, it
holds that (cf. [HS12, HBS+13])

EQ

[
1

4

∫ τA

0

|us|2ds
]

= ε

∫
log

dQ

dP
dQ

3. Discretization: Galerkin projection point of view

In this section we will develop a discretization for optimal control problems of the type
discussed in Section 2. The discretization will approximate the continuous control
problem with a control problem for a Markov jump process on finite state space.

Because of the nonlinearity of the problem, a general theory for discretizing contin-
uous optimal control problems is unavailable. However, we saw in Section 2 that for
the control problems we are interested in, a logarithmic transform to a linear PDE
is available. For linear PDEs, discretization theory in terms of Galerkin projections
onto finite-dimensional subspaces of the PDE solution space exists. Our strategy will
therefore be the one indicated in Figure 2.

Optimal Control

Problem for SDE

Optimal Control 

Problem for MJP

continuous discrete

linear PDE
constrained

linear system

log trafo log trafo

Galerkin projection

?

Figure 2: Discretization of continuous control problems via a logarithmic transform.

In the first part of this section, we will develop the Galerkin projection for general
subspaces and obtain some control of the discretization error. To refine this control, we
specify the subspace D we project onto. Specifically, we develop two possible choices
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for D inspired by MSMs. The first choice specifies D as the space of step functions
on a full partition of state space, and if that full partition is chosen as a lattice with
spacing h, then, as expected, the discretization error vanishes for h → 0. The second
choice uses a core partition of state space, where the cores are the metastable regions of
the uncontrolled dynamics. We will prove a novel error bound which gives us detailed
control over the discretization error even if very few basis functions are used.

In the second part of this section, we will develop the stochastic interpretation of
the resulting matrix equation as the backward Kolmogorov equation of a MJP, which
enables us to identify the discrete control problem for the MJP, as it was developed in
Section 2. We will study the resulting discrete control problem for the two choices of D
specified earlier. In the full partition case, we will establish a connection to the finite
volume approximation discussed in [LMHS11], and we will show that to first order
in h, our discrete control problem coincides with the Markov chain approximation
constructed by Kushner [KD92], confirming that the control problem itself converges
to the continuous problem for h → 0. In the incomplete partition case, we will make
a connection to Transition Path Theory [VE06] and core set MSMs [SNL+11].

3.1. Galerkin projection of the Dirichlet problem

As discussed above, we consider the boundary value problem(
L− ε−1f

)
φ(x) = 0 , x ∈ Ac

φ(x) = 1 , x ∈ A
ν · ∇φ(x) = 0 , x ∈ ∂S ,

(19)

with L and f as given above and Ac = S \ A. Following standard references we
construct a Galerkin projection of (19), see e.g. [Bra12]. For this purpose, we introduce
the H1-norm ‖φ‖H1 = ‖∇u‖2µ + ‖u‖2µ, the Hilbert space V = {ψ ∈ L2(S, µ), ‖ψ‖H1 <
∞} and the symmetric and positive bilinear form

B : V × V → R, B(φ, ψ) = ε−1〈fφ, ψ〉µ + ε〈∇φ,∇ψ〉µ.

Now if φ is a solution of (19), then it also solves the weak problem

B(φ, ψ) = 0 ∀ψ ∈ V . (20)

A Galerkin solution φ̂ is any function satisfying

B(φ̂, ψ̂) = 0 ∀ψ̂ ∈ D, (21)

with a predefined finite dimensional subspace D ⊂ V that is adapted to the bound-
ary conditions. In particular, we may choose basis functions χ1, . . . , χn+1 with the
following properties:

(S1) The χi form a partition of unity, that is
∑n+1
i=1 χi = 1.
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(S2) The χi are adapted to the boundary conditions in (19), that is ν · ∇χi|∂S = 0,
χn+1|A = 1 and χi|A = 0 for i ∈ {1, . . . , n}.

Then all elements of D := χn+1 ⊕ D0 with D0 = lin{χ1, . . . , χn} will satisfy the
boundary conditions in 19. Now define the matrices

Fij =
〈χi, fχj〉µ
〈χi,1〉µ

, Kij =
〈χi, Lχj〉µ
〈χi,1〉µ

.

Then (21) takes the form of a matrix equation for the coefficients φ̂ =
∑
i φ̂iχi:

n+1∑
j=1

(
Kij − ε−1Fij

)
φ̂j = 0 , i ∈ {1, . . . , n}

φ̂n+1 = 1 ,

(22)

which is the discretization of (19).

Discretization error In order control the discretization error of the Galerkin method,
we choose a norm ‖ · ‖ on V and introduce the two error measures:

1. The Galerkin error ε = ‖φ− φ̂‖, i.e. the difference between original and Galerkin
solution measured in ‖ · ‖.

2. The best approximation error ε0 = infψ̂∈D ‖φ − ψ̂‖, i.e. the minimal difference

between the solution φ and any element ψ̂ ∈ D.

In order to obtain full control over the discretization error, we need to obtain bounds
on ε, and we will do so by first obtaining a bound on the performance p := ε/ε0 and
then a bound on ε0. The latter will depend on the choice of subspace D. For the
former, standard estimates assume the following ‖ · ‖-dependent properties of A:

(i) Boundedness: B(φ, ψ) ≤ α1‖φ‖‖ψ‖ for some α1 > 0

(ii) Ellipticity: for all φ ∈ V holds B(φ, φ) ≥ α2‖φ‖ for some α2 > 0.

If both (i) and (ii) hold, Céa’s lemma states that p ≤ α1

α2
, see e.g. [Bra12]. For the

energy norm ‖φ‖2B := B(φ, φ) we have α1 = α2 = 1 and therefore p = 1, thus the

Galerkin solution φ̂ is the best-approximation to φ in the energy norm.
The next two Lemmas give a bound on p if errors are measured in the L2-norm

‖ · ‖µ. In this case, B(·, ·) is still elliptic but possibly unbounded. Later in this section,
we will give examples for the choice of D and obtain bounds on ε0.

Theorem 2. Let B be elliptic. If Q is the orthogonal projection (with respect to ‖ ·‖µ)
onto D0, we have

p2 =

(
ε

ε0

)2

≤ 1 +
1

α2
2

‖QBQ⊥‖2,
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where Q⊥ = 1−Q, B : V → V is the linear operator φ 7→ B(·, φ), and the operator
norm is defined as ‖B‖ = sup‖x‖µ=1 ‖Bx‖µ.

Proof. In Appendix A.
Note that ‖QBQ⊥‖ ≤ ‖QB‖ is always finite even though B is possibly unbounded

since Q is the projection onto a finite-dimensional subspace. The bottom line of
Theorem 2 is that if B leaves the subspace D almost invariant, then φ̂ is almost
the best-approximation of φ in ‖ · ‖µ. The following Lemma gives a more detailed
description. In the following, we will write ‖ · ‖ = ‖ · ‖µ for convenience.

Lemma 3. Let

δL := max
k
‖Q⊥Lχk‖, δf := max

k
‖Q⊥ε−1fχk‖

be the maximal projection error of the images of the χk’s under L and f respectively.
Then

‖QBQ⊥‖ = ‖Q⊥BQ‖ ≤ (δL + δf )

√
n

m
,

where m is the smallest eigenvalue of M̂ .

Proof. The first statement is true since A is essentially self-adjoint. For the second
statement, first of all

‖Q⊥BQ‖ = ‖Q⊥(ε−1f − L)Q‖ ≤ ‖Q⊥ε−1fQ‖+ ‖Q⊥LQ‖

holds from the triangle inequality. We now bound the term involving L. Notice that
for φ̂ =

∑
i φ̂iχi ∈ D:

‖Q⊥Lφ̂‖ = ‖
∑
i

φ̂iQ
⊥Lχi‖ ≤ δL

∑
i

|φ̂i| = δL‖φ̂‖1.

Then, with M̂ij := 〈χi, χj〉µ:

‖Q⊥LQ‖ = sup
φ=φ||+φ⊥∈V

‖Q⊥Lφ||‖
‖φ‖

≤ sup
φ||∈D

‖Q⊥Lφ||‖
‖φ||‖

≤ δL sup
φ̂∈Rn

‖φ̂‖1√
〈φ̂, φ̂〉M

A similar result holds for the term involving f . The statement now follows from a
standard equivalence between finite-dimensional norms, ‖φ̂‖1 ≤

√
n‖φ̂‖2, and the fact

that M̂ is symmetric, which implies that 〈φ̂, φ̂〉M = φ̂T M̂φ̂ ≥ mφ̂T φ̂ = m‖φ̂‖22.

To summarise, Theorem 2 and Lemma 3 give us a formula for the projection per-
formance p which states that

p2 ≤ 1 +
n

m

(δL + δf )2

α2
2

.
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How large or small δf is will depend on the behaviour of f , if i.e. f = const then
δf = 0. Both δf and δL are always finite even though L is possibly unbounded.

We comment on the best-approximation error ε0 for two choices for the subspace D
which will reappear again later in the paper.

Full partition Let S be fully partitioned into disjoint sets A1, . . . , An+1 with centres
x1, . . . , xn+1 and such that An+1 := A, and define χi := χAi . These χi satisfy the
assumptions (S1) and (S2) discussed in Section 3.1. By definition we can bound ε0 by
any interpolation Iφ ∈ D of the solution φ:

ε0 ≤ ‖φ− Iφ‖µ.

As interpolation, we choose Iφ(x) =
∑
i ciχi(x) where ci = 1

‖χi‖1

∫
Ai
φ(x)dµ. If the

Ai are cubes of length h and φ is twice continuous differentiable, then using standard
techniques one can show that ε0 is linear in h, see e.g. [Bra12].

Incomplete partition Suppose the potential V (x) has n+1 deep minima x1, . . . , xn+1.
Let C1, . . . , Cn+1 be convex ’core’ sets around x1, . . . , xn+1 and such that A = Cn+1.
We write C = ∪n+1

i=1 Ci and T = S \ C and introduce τC = inf{t ≥ 0 : Xt ∈ C}. We
take χi to be the committor function associated to the set Ci, that is

χi(x) = P(XτC ∈ Ci|X0 = x). (23)

These χi satisfy the assumptions (S1) and (S2). Since we do not have an order
parameter h controlling the resolution of the discretization, standard PDE techniques
for bounding ε0 fail. Indeed, typically we will have very few basis functions compared
to a grid-like discretization. The following Lemma gives a bound on ε0.

Theorem 3. Let Q be the orthogonal projection onto the subspace D spanned by the
committor functions (23), and let φ be the solution of (19). Then we have

ε0 = ‖Q⊥φ‖µ ≤ ‖P⊥φ‖µ + µ(T )1/2
[
κ‖f‖∞ + 2‖P⊥φ‖∞

]
where ‖ · ‖ = ‖ · ‖µ, κ = supx∈T Ex[τS\T ], and P is the orthogonal projection onto

the subspace Vc = {v ∈ L2(S, µ), v = const on every Ci} ⊂ L2(S, µ).

Proof. In Appendix B

In theorem 3, κ is the maximum expected time of hitting the metastable set from
outside (which is short). Note further that P⊥φ = 0 on T . The errors ‖P⊥φ‖µ and
‖P⊥φ‖∞ measure how constant the solution φ is on the core sets. Theorem 3 gives
us excellent control over ε0, and together with theorem 2 we have full control over
the discretization error ε for the case of incomplete partitions. These error bounds are
along the lines of MSM projection error bounds [SNS10], [DSS12], and to the best of
the authors’ knowledge they are new.
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Remark 4. It would be nice to have an error estimate also for the value function. In
general such an estimate is difficult to get, because of the nonlinear logarithmic trans-
formation W = −ε log φ involved. However we know that φ and its discrete approxima-
tion are both uniformly bounded and bounded away from zero. Hence the logarithmic
transformation is uniformly Lipschitz continuous on its domain, which implies that the
L2 error bounds holds for the value function with an additional prefactor given by the
Lipschitz constant squared; for a related argument see [ZLPH13]

3.2. Interpretation in terms of a Markov decision problem

We derive an interpretation of the discretized equation (22) in terms of a MJP. We
introduce the diagonal matrix Λ with entries Λii =

∑
j Fij (zero otherwise) and the

full matrix G = K − ε−1(F − Λ), and rearrange (22) as follows:

n+1∑
j=1

(
Gij − ε−1Λij

)
φ̂j = 0 , i ∈ {1, . . . , n}

φ̂n+1 = 1 ,

(24)

This equation can be given a stochastic interpretation. To this end let us introduce
the vector π ∈ Rn+1 with nonnegative entries πi = 〈χi,1〉 and notice that

∑
i πi = 1

follows immediately from the fact that the basis functions χi form a partition of unity,
i.e.

∑
i χi = 1. This implies that π is a probability distribution on the discrete state

space Ŝ = {1, . . . , n+ 1}. We summarise properties of the matrices K, F and G:

Lemma 4. Let K, G, F and π be as above.

(i) K is a generator matrix (i.e. K is a real-valued square matrix with row sum
zero and positive off-diagonal entries) with stationary distribution π that satisfies
detailed balance

πiKij = πjKji , i, j ∈ Ŝ

(ii) F ≥ 0 (entry-wise) with πiFij = πjFji for all i, j ∈ Ŝ.

(iii) G has row sum zero and satisfies πTG = 0 and πiGij = πjGji for all i, j ∈ Ŝ.

(iv) There exists a (possibly ε-dependent) constant 0 < C <∞ such that Gij ≥ 0 for
all i 6= j if ‖f‖∞ ≤ C. In this case equation (24) admits a unique and strictly

positive solution φ̂ > 0.

Proof. (i) follows from
∑
i χi(x) = 1 and reversibility of L: We have

∑
i π(i)Kij =∑

i〈χi, Lχj〉µ = 〈L1, χj〉µ = 0 and π(i)Kij = 〈χi, Lχj〉µ = 〈Lχi, χj〉µ = π(j)Kji. (ii)
follows from f(x) being real and positive for all x. As for (iii), G has row sum zero by
(i) and the definition of Λ. π(i)Gij = π(j)Gji follows from (i), (ii) and the fact that
Λ is diagonal, and πTG = 0 follows directly. For (iv), rewrite (24) as the n×n-system

Ḡλφ̄ = g where Ḡλ is the first n rows and columns of Gλ := −G+ ε−1Λ, φ̂ = (φ̄, 1)T

and −g is the vector of the first n entries of the (n+ 1)st row of Gλ. Choose C such
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that ε−1〈χi, fχj〉µ ≤ 〈χi, Lχj〉µ for all i 6= j. Then g > 0 and Ḡλ is a non-singular
M -matrix and thus inverse monotone [BP79], that is from Ḡλφ̄ = g and g > 0 follows
φ̄ > 0.

It follows that if the running costs f are such that (iv) in Lemma 4 holds, then G is
a generator matrix of a MJP that we shall denote by (X̂t)t≥0, and by lemma 1, (24)
has a unique and positive solution of the form

φ̂(i) = E

[
exp

(
−ε−1

∫ τA

0

f̂(X̂s)ds

)∣∣∣∣X̂0 = i

]
with f̂(i) = Λii and τA = inf{t ≥ 0|X̂t = i + 1}. In fact (24) can be interpreted as

the backward Kolmogorov equation for φ̂. Moreover, the logarithmic transformation
Ŵ = −ε log φ̂ is well-defined and can be interpreted as the value function of the Markov
decision problem (16)–(17), that is, we seek to minimize

Ĵ(v; i) = E

[∫ τA

0

(
f̂(X̂v

s ) + kv(X̂v
s )
)
ds

∣∣∣∣X̂v
0 = i

]
over Markov control strategies v : Ŝ → (0,∞) with the costs

f̂(i) = Λii , kv(i) = ε
∑
j 6=i

Gij

{
v(j)

v(i)

[
log

v(j)

v(i)
− 1

]
+ 1

}
.

This completes the construction of the discrete control problem. We now analyse it
in detail for the two choices of projection subspace D introduced before.

Full partitions We partition S into disjoint sets Ai that we take to be rectangular
with centres xi, we let Sij = Ai ∪Aj and hij be the line joining xi and xj , see Figure
3. Let m(Ai), m(Sij) and m(hij) be the Lebesgue volumes of the cells Ai, surfaces Sij
and lines hij respectively, and let x̄ij = Sij ∩ hij .

We show in Appendix C that the matrix Kij has then components

Kij ≈
1

∆ij
e−ε

−1(V (x̄ij)−V (xi)), ∆−1
ij = ε

m(Sij)

m(hij)m(Ai)
(25)

if i and j are neighbours (Kij = 0 otherwise). K is the generator of a MJP on the
cells Ai and coincides with the so-called finite volume approximation of L discussed
in [LMHS11]. The approximations we use in Appendix C to calculate the integrals
coincide with the ones used in [LMHS11]. The invariant distribution of K is

πi := ‖χi‖1 =

∫
Ai

dµ ≈ m(Ai)e
−βV (xi). (26)

Since χi ∩ χj = ∅ for i 6= j, F is diagonal, and we obtain the running costs

f̂(i) =
1

πi

∫
Ai

f(x)µ(x)dx = Eµ[f(Xt)|Xt ∈ Ai] (27)
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Figure 3: The mesh for the full partition.

by simply averaging f(x) over the cell Ai. (27) is also a sampling formula for f̂(i).
It follows directly that G = K, and in particular assumption (iv) of Lemma 4 holds
for any f .
K and π can be computed from the potential V and the geometry of the mesh. In

fact we can also derive a relation to standard Markov state modelling. Let P τ be the
MSM transition matrix with lag time τ associated to the partition {A1, . . . , An+1},
that is:

P τij =
1

‖χi‖1
〈χi, Tτχj〉µ, Tτ = exp(τL) .

Then, by bounded convergence,

lim
τ→0

1

τ

(
P τij − δij

)
= lim
τ→0

1

πi
〈χi,

1

τ
(Tτ − 1)χj〉 =

1

πi
〈χi, Lχj〉 = Kij , (28)

thus K is the generator of the semigroup of transition matrices P τ . For finite lag
time τ the transition matrices P τ can be sampled from long realizations of the original
dynamics. This introduces a sampling error which depends on details of the partition,
the available sampling data and the existence of rare transitions in the system. We do
not address the sampling error in this paper, see e.g. [PWS+11, Roe08]. In view of
(28) we could in principle sample K by sampling P τ for very small τ , this is difficult
however due to recrossing problems, see e.g. [CES+11].

Recovering Markov Chain approximations In Appendix D we show that, if S is
one-dimensional2 and the cells are intervals of length h, we can write the nonzero
off-diagonal components of the generator of the controlled MJP as

2These assumptions are mostly for notational convenience. The proof should be straightforward to
generalise.
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Gvi,i±1 =
1

h2

(
ε∓ h

2
(∇V (xi)− αv(i)) +O(h2)

)
,

αv(i) =
ε

h
(log v(i+ 1)− log v(i− 1)) (29)

where as usual Gvii = −
∑
j 6=iG

v
ij . We also show that the running costs of strategy

v can be written as

kv(i) =
1

4
α2
v(i) +O(h). (30)

This may be compared to a well-known discretization of continuous optimal control
problems known as the Markov chain approximation (MCA); see [KD92]. The MCA
discretization may be obtained by replacing derivatives with finite differences in the
continuous control problem (7). The result is

min
α̃(i)∈R

[
(G̃α̃W̃ )(i) +

1

4
α̃2(i) + f̃(i)

]
= 0 for i ∈ {1, . . . , n}, Ŵ (n+ 1) = 0 (31)

which is a Bellman equation for the MCA optimal cost W̃ with strategies α̃ ∈ Rn
and average running costs f̂(i). The nonzero components of the MCA generator3 G̃α̃

corresponding to the strategy vector α̃ are

G̃α̃i,i±1 =
1

h2

(
ε− h

2
(∇V (i)− α̃i)

)
, G̃ii = −

∑
j 6=i

G̃ij . (32)

To compare both control problems, we need to be able to compare strategies. For our
MJP control problem, strategies v were positive functions on Ŝ, but with w = log v
we can think of U as Rn+1. For the MCA approximation, Ũ = Rn. (29) gives a
mapping z : U → Ũ with z(v) = αv. It can be shown that z is onto and can therefore
be used to map strategies. Now, comparing (31) and (32) with (16) and (29) gives
Gv = G̃α̃

(
1 +O(h2)

)
if we set α̃ = z(v) = αv, and the Bellman equations are equal up

to first order in h if strategies are mapped accordingly. Moreover, optimal strategies
have the same functional dependence on optimal costs:

α̃∗ = − 1

h

(
W̃ (i+ 1)− W̃ (i− 1)

)
αv∗ =

ε

h
(log v∗(i+ 1)− log v∗(i− 1)) = − 1

h

(
Ŵ (i+ 1)− Ŵ (i− 1)

)
.

In the limit h→ 0, our discretization therefore coincides with the MCA. Convergence
theory for MCAs [KD92] states that the discrete control problem (31) converges for

3In the literature, one usually considers the matrix I + G̃α̃ and interprets it as a transition matrix
for a Markov chain. To be able to compare with our approach, we instead interpret G̃α̃ as a
generator, which is equivalent.
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h → 0 to the continuous problem (7) and that W̃ → W and α̃ → α converge weakly
in V . Therefore we can deduce that Ŵ → W and α∗v → α converge weakly in V as
h→ 0.

Incomplete partitions We use a core set partition of S as introduced in Section 3.1.
The projection onto the committor basis χi also allows for a stochastic interpretation
in terms of the forward and backward milestoning process X̃±t , which we define in the
following way: X̃+

t = i if the process Xt visits the core set Ci next, and X̃−t = i if Xt

came from Ci last. With this definition, the discrete costs can be written as

f̂(i) =
1

πi
〈χi, f

∑
j

χj〉 =

∫
νi(x)f(x)dx = Eµ

[
f(Xt)

∣∣∣X̃−t = i
]

(33)

where νi(x) = π−1
i χi(x)µ(x) = P(Xt = x|X̃−t = i) is the probability density of

finding the system in state x given that it came last from i. Hence f̂(i) is the average
costs conditioned on the information X̃−t = i, i.e. Xt came last from Ai, which is the

natural extension to the full partition case where f̂(i) was the average costs conditioned
on the information that Xt ∈ Ai.

The matrix Kij = π−1
i 〈χi, Lχj〉 is reversible with stationary distribution

πi = 〈χi,1〉 = Pµ(X̃−t = i)

and is related to so called core MSMs. To see this, define the core MSM transition
matrix P τ with components P τij = P(X̃+

t+τ = j|X̃−t = i), and the mass matrix M

with components Mij = P(X̃+
t = j|X̃−t = i). Then, it is not hard to show that for

reversible processes we have P τij = π−1
i 〈χi, T τχj〉µ and Mij = π−1

i 〈χi, χj〉µ so that

K =
1

πi
〈χi, Lχj〉µ = lim

τ→0

1

τ
(P τ −M) .

Formally, K is the generator of the P τ , but these do not form a semigroup since
M 6= 1, and therefore we cannot interpret K directly as e.g. the generator of X̃−t .
Nevertheless, the entries of K are the transition rates between the core sets as defined
in transition path theory [VE06]. We can obtain P τ and M from sampling as in the
full partition case. The difference is that if the core sets are chosen as the metastable
states of the system, P τ can be sampled for all lag times τ , and K can be sampled
directly. See [SNS10], [DSS10] and [SNL+11] for more details on the construction and
sampling of core MSMs. In Appendix E we show that F can also be sampled using

Fij = Eµ

[
f(Xt)χ{X̃+

t =j}

∣∣∣X̃−t = i
]

(34)

Therefore, as in the construction of core MSMs, we do not need to compute com-
mittor functions explicitly. Note however that G 6= K, there is a reweighting due to
the overlap of the χi’s which causes F to be non-diagonal. This reweighting is the
surprising bit of this discretization. From Lemma 4 we see however that G and K are
both reversible with stationary distribution π. Finally, note that if the cost function
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f(x) doesn’t satisfy ‖f‖∞ ≤ C from (iv) in Lemma 4, G will not even be a generator

matrix. In this case (22) still has a solution φ̂ which is the best-approximation to

φ, but this solution may not be unique, it may not satisfy φ̂ > 0, and we have no
interpretation as a discrete control problem.

4. Numerical Results

We will present two examples to illustrate the approximation of LQ-type stochastic
control problems based on a sparse Galerkin approximation using MSMs.

4.1. 1D triple well potential

To begin with we study diffusion in the triple well potential which is presented in
Figure 4a. This potential has three minima at approximately x0/1 = ±3.4 and x2 = 0.
We choose the three core sets Ci = [xi − δ, xi + δ] around the minima with δ = 0.2.
We choose C0 = A as the target set and the running cost f = σ = const, such that
the control goal is to steer the particle into C0 in minimum time.

In Figure 4a the potential V and effective potential U are shown for ε = 0.5 and
σ = 0.08 (solid lines), cf. equation (9). One can observe that the optimal control
effectively lifts the second and third well up which means that the optimal control will
drive the system into C0 very quickly. The reference computations here have been
carried out using a full partition FEM discretization of (12) with a lattice spacing
of h = 0.01. Now we study the MJP approximation constructed via the committor
functions shown in Figure 4b. These span a three-dimensional subspace, but due to
the boundary conditions the subspace D0 of the method is actually two-dimensional.
The dashed line in Figure 4a gives the approximation to U calculated by solving (24).
We can observe extremely good approximation quality, even in the transition region.
In Figure 4c the optimal control u∗(x) (solid line) and its approximation û∗ = −2∇Ŵ
(dashed line) are shown. The core sets are shown in blue. We can observe jumps in
û∗ at the left boundaries of the core sets. This is to be expected and comes from the
fact that the committor functions are not smooth at the boundaries of the core sets,
but only continuous.

Next we construct a core MSM to sample the matrices K and F . 100 trajectories
of length T = 20000 were used to build the MSM. In Figure 4d, W and its estimate
using the core MSM is shown for ε = 0.5 and different values of σ. Each of the
100 trajectories has seen about four transitions. For comparison, a direct sampling
estimate of W using the same data is shown (green). The direct sampling estimate
suffers from a large bias and variance and is practically useless. In contrast, the MSM
estimator for W performs well for all considered values of σ. The constant C which
ensures φ̂ > 0 when σ ≤ C is approximately 0.2 in this case. This seems restrictive
but still allows to capture all interesting information about φ and W .
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Figure 4: Three well potential example for ε = 0.5 and σ = 0.08. (a) Potential V (x)
(blue), effective potential U = V +2W (green) and approximation of U with
committors (dashed red). (b) The three committors χ1(x), χ2(x) and χ3(x).
(c) The optimal control α∗(x) (solid line) and its approximation (dashed
line). Core sets are shown in blue. (d) Optimal cost W for ε = 0.5 as a
function of σ. Blue: Exact solution. Red: Core MSM estimate. Green:
Direct sampling estimate.
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4.2. Alanine dipeptide

As a second, non-trivial example we study the α-β conformational transition in Alanine
dipeptide (ADP), a well-studied test system for molecular dynamics applications. We
use a 1µs long molecular dynamics trajectory simulated in a box of 256 (explicit)
water molecules using the CHARMM27 force field. The conformational dynamics is
monitored as usual via the backbone dihedral angles φ and ψ. The data was first
presented in [SNL+11]. In Figure 5, a cartoon of the molecule is shown.

Figure 5: Alanine dipeptide.

Validation of the MSM approximation We construct a full partition MSM with 250
clusters using k-means clustering. The cluster algorithm uses the Cartesian coordinates
of the ADP configurations as input data, ignoring the ADP velocities and the solvent
molecules. Our first test is study the effect of the approximation of the generator
matrix K by the sampled transition matrix P τ according to τ−1(P τ −1); see (28). To
obtain a robust estimate of K, we first focus on the mean first passage time (MFPT)
t(x) = Ex[τα] where τα is the first hitting time of the α conformation, which we define
as a ball Cα with radius r = 45 around the known minimum (φα, ψα) = (−80,−60) of
the free energy landscape in (φ, ψ). The MFPT satisfies the matrix equation

Kt̂ = −1 outside Cα, t̂ = 0 in Cα

which we study with K replaced by τ−1(P τ−1). In Figure 6a, the results are shown
for τ = 5ps, we can identify the β-structure as the red cloud of clusters where t(x) is
approximately constant. In 6b, t̂βα = E(t̂(i)|i ∈ β) is shown as a function of τ . We
observe a linear behaviour for large τ which is due to the linear error introduced in the
replacement of K with τ−1 (P τ − 1) and a nonlinear drop for small τ which is due to
non-Markovianity. Our best guess is therefore a linear interpolation to τ = 0, which is
indicated by the solid line. The result is t̂0βα = 35.5ps. As a comparison the reference

value t̂ref
βα = 36.1ps from [SNL+11] is shown as a dashed line, that was computed

therein as an inverse rate, using the slowest implied time scale (ITS) and information
about the equilibrium weights of the α and β structure. We see very good agreement,
which indicates that the strategy of linearly interpolating lag time dependent results
to τ = 0 is robust.
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Controlled transition to the α-helical structure Next we consider an optimal control
problem for steering the molecule into the α-structure. We choose as the target region
A = Cα and define running costs in the (φ, ψ) variables as f(φ, ψ) = f0 + f1‖ψ−ψα‖2
where f0 and f1 are constants and ‖ · ‖ is a simple metric on the torus. We choose
f0 = 0.01 and f1 = 0.001, which represents a mild penalty for being away from the
target region. We discretize this control problem using the same partition as for the
MSM construction above. The matrix K is again replaced by τ−1(P τ −1), the matrix
F is diagonal and can be sampled straightforwardly. The resulting generator matrix
Gv
∗

of the optimally controlled process can be used to compute the MFPT t̂(v
∗) of the

controlled process according to the matrix equation

Gv
∗
t̂(v
∗) = −1 outside Cα, t̂(v

∗) = 0 in Cα.

The results will again depend on the lag time τ . Figure 6c shows the results for
τ = 5ps, while 6d shows the MFPT for different lag times and a linear interpolation
to τ = 0. We observe that the control leads to a speedup of the MFPT by 1–2 orders
of magnitude. A larger speedup could easily be achieved by increasing the relative
weight of f , compared to the quadratic penalization of the force.

Figures 6e and 6f show the optimal cost Ŵ and optimal strategy v∗ for this problem.
The optimal control v∗ is best understood in terms of the jump rates

Gv
∗

ij =
Gijv

∗(j)

v∗(i)
.

If v∗(i) is low, the controller accelerates jumps out of state i while slowing down jumps
into state i, and vice versa if v∗(i) is high. The red cloud in Figure 6f actually has
value 1, in accordance with the boundary conditions for v∗.
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Figure 6: Top: (a) MFPT in ps from β to α in φ-ψ space for τ = 5ps.(b) MFPT as
a function of τ (dashed line) and linear interpolation to τ = 0 (solid line).
Green dashed line: Reference computed via slowest ITS. Middle: (c) and (d)
same as (a) and (b), but for the controlled process. Bottom: Optimal cost
(e) and optimal strategy (f) for the controlled process with lag time τ = 5ps.
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5. Conclusions

We have developed a Galerkin projection method that leads to an approximation of
certain optimal control problems for reversible diffusions by Markov decision problems.
The approach is based on the dual formulation of the optimal control problem in terms
of a linear boundary value problem that can be discretized in a straightforward way.
In this article we propose a discretization that preserves reversibility and the generator
form of the linear equations, i.e., the discretization of the infinitesimal generator of the
original diffusion process can be interpreted as the infinitesimal generator of a reversible
Markov jump process (MJP). The discretized linear boundary value problem admits
again a dual formulation in terms of a Markov decision problem.

Two special cases were discussed in detail: a Galerkin discretization based on a uni-
form box partition of state space and characteristic functions, that was found to agree
with the known Markov chain approximation to first order in the size of the boxes,
and a sparse approximation that uses the basis of committor functions of metastable
sets of the dynamics; the latter does not require that the metastable sets partition the
state space, hence the method can be applied to high-dimensional problems as they
appear, e.g., in molecular dynamics. The committor functions in this case need not
be known explicitly, as it is possible to sample the generator matrices and the discrete
cost functions by a Monte-Carlo method, similarly to what is done in the Markov
state modelling approach to protein folding. We could prove an L2 error estimate for
the Galerkin scheme, moreover the discretization was shown to preserve basic struc-
tural elements of the continuous problem, such as duality, reversibility or properties
of the invariant measure. Our numerical results showed very good performance of the
incomplete partition discretization on a simple toy example and a high-dimensional
molecular dynamics problem, even with only a few basis functions, which is in line
with the theoretical error bounds presented in this paper.

While we addressed the discretization error in this paper in great detail, we did
not address the sampling error. In particular, for large systems our construction
requires the coefficients of the MJP and therefore the transition rates between all
metastable states as an input. This is not fully satisfactory. We believe that the
optimal control framework presented here should be linked with Monte-Carlo methods
for rare events, e.g., [HS12, DSW12], that exploit the same duality between optimal
control and sampling to devise efficient importance sampling strategies as we did so
as to reduce the sampling error. Moreover it would be desirable to use the MJP
approach in a purely data-driven framework, e.g., for single molecule experiments or
other optimal control applications in which a detailed microscopic model may not be
feasible or may not be available. All this is ongoing work.
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Noé for providing the Alanine dipeptide data. The research was funded by the DFG
Research Centre Matheon. RB holds a scholarship of the Berlin Mathematical School.

27



A. Proof of Theorem 2

Here we give the proof of Theorem 2 from Section 3.1. For ease of notation, let
‖ · ‖ = ‖ · ‖µ.

Let φ be the solution to (20), and write φ = Qφ+φ⊥ = φ||+φ⊥ with φ⊥ ∈ D⊥. The
first step is to show that ‖φ−φ||‖ = infψ∈D ‖φ−ψ‖, i.e. the infimum in the definition
of ε0 is attained at φ||. But this is clear since for any ψ ∈ D, by orthogonality we have

‖φ− ψ||2 = ‖φ|| − ψ + φ⊥‖2 = ‖φ|| − ψ‖2 + ‖φ⊥‖2

which attains its minimum of ε2
0 = ‖φ⊥‖2 for ψ = φ||. By (20), φ|| solves the

equation

B(φ, ψ) = B(φ||, ψ) + B(φ⊥, ψ) = 0 ∀ψ ∈ D,

and if we write φ|| =
∑n
i=1 φ̂

∗
iχi + 1χn+1 with n unknown coefficients φ̂∗i (note that

a general element of D is of this form), this takes the matrix form

B̂φ̂∗ − c = F,

where in components we have B̂ij = B(χi, χj), ci = −B(φ⊥, χi) = −〈φ⊥, Bχi〉µ and

Fi = −〈χi, Bχn+1〉µ. On the other hand, the Galerkin solution φ̂ =
∑
i φ̂iχi satisfies

B̂φ̂ = F by 21, hence we obtain

B̂(φ̂∗ − φ̂) = c. (35)

Now we can write

ε2 = ‖φ|| + φ⊥ − φ̂‖2 = ‖φ|| − φ̂‖2 + ‖φ⊥‖2

=

〈∑
i

(φ̂∗i − φ̂i)χi,
∑
j

(φ̂∗j − φ̂j)χj

〉
µ

+ ε2
0

= (φ̂∗ − φ̂)T M̂(φ̂∗ − φ̂) + ε2
0

where M̂ij = 〈χi, χj〉µ. The scalar product 〈·, ·〉µ on D0 ⊂ V induces a natural

scalar product on Rn by the isomorphism φ̂ 7→
∑
i φiχ̂i:〈∑

i

φ̂iχi,
∑
j

φ̂′jχj

〉
µ

= φ̂T M̂φ̂′ =: 〈φ̂, φ̂′〉M

The error ε2 is exactly ε2
0 plus the distance between Galerkin solution and best

approximation measured in this scalar product. There is also a natural bilinear form
inherited from B on Rn:
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B

∑
i

φ̂iχi,
∑
j

φ̂′jχj

 = φ̂T B̂φ̂′ = 〈φ̂, M̂−1B̂φ̂′〉M

The Matrix M̂−1B̂ is symmetric since B(·, ·) is symmetric. Moreover, since B(·, ·) is
elliptic,

〈φ̂, M̂−1B̂φ̂〉M = A

∑
i

φ̂iχi,
∑
j

φ̂jχj

 ≥ α2

〈∑
i

φ̂iχi,
∑
j

φ̂jχj

〉
µ

= α2〈φ̂, φ̂〉M

(36)
In particular, M̂−1B̂ is positive, hence it has a positive and symmetric square root

Ŝ2 = M̂−1B̂. Now, for any φ̂ ∈ Rn it holds by virtue of (36),

〈φ̂, φ̂〉M ≤ 1

α2
〈φ̂, M̂−1B̂φ̂〉M =

1

α2
〈Ŝφ̂, Ŝφ̂〉M

≤ 1

α2
2

〈Ŝφ̂, M̂−1B̂Ŝφ̂〉M =
1

α2
2

〈M̂−1B̂φ̂, M̂−1B̂φ̂〉M . (37)

Now we apply the inequality (37) to φ̂∗ − φ̂ and use (35):

ε2 ≤ ε2
0 +

1

α2
2

〈M̂−1c, M̂−1c〉M . (38)

Now for some final simplifications, note that the orthogonal projection Q onto D0

can be written as

Qψ =

n∑
i,j=1

M̂−1
ij 〈χj , ψ〉µχi.

Using this we can write

〈M̂−1c, M̂−1c〉M =
∑
ij

ciM̂
−1
ij cj =

∑
ij

〈χi, Bφ⊥〉µM−1
ij 〈χj , Bφ⊥〉µ

=

〈∑
ij

M−1
ij 〈χj , Bφ⊥〉µχi, Bφ⊥

〉
µ

= 〈QBφ⊥, Bφ⊥〉µ

= 〈QBφ⊥, QBφ⊥〉µ

To arrive at the final result, notice that
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〈QBφ⊥, QBφ⊥〉µ ≤

(
sup

φ′⊥∈D⊥

〈QBφ′⊥, QBφ′⊥〉µ
〈φ′⊥, φ′⊥〉µ

)
· 〈φ⊥, φ⊥〉µ

=

(
sup

φ′⊥∈D⊥

〈QBQ⊥φ′⊥, QBQ⊥φ′⊥〉µ
〈φ′⊥, φ′⊥〉µ

)
· 〈φ⊥, φ⊥〉µ

≤

(
sup
φ′∈V

〈QBQ⊥φ′, QBQ⊥φ′〉µ
〈φ′, φ′〉µ

)
· 〈φ⊥, φ⊥〉µ

= ‖QBQ⊥‖2〈φ⊥, φ⊥〉µ

Plugging these inequalities into (38) and dividing by ε2
0 completes the proof. �

B. Best-approximation error bound

In this appendix, we prove lemma 3:

ε0 = ‖Q⊥φ‖µ ≤ ‖P⊥φ‖µ + µ(T )1/2
[
κ‖f‖∞ + 2‖P⊥φ‖∞

]
.

Recall that κ = supx∈T Ex[τS\T ] and P is the orthogonal projection onto the sub-

space Vc = {v ∈ L2(S, µ), v = const on every Ci} ⊂ L2(S, µ). Note that P⊥φ = 0 on
C. The errors ‖P⊥φ‖ and ‖P⊥φ‖∞ measure how constant the solution φ is on the
core sets. We write ‖ · ‖ = ‖ · ‖µ throughout the proof for convenience.

Proof. The proof closely follows the proof of theorem (12) in [Sar11]. The first step
of the proof is to realize that the committor subspace D where Q projects onto can
be written as D = {v ∈ L2(S, µ), v = const on every Ci, Lv = 0 on C}. To see
this, note that the values v takes on the Ci can be used as boundary values for the
Dirichlet problem Lv = 0 on T . A linear combination of committor functions is
obviously a solution to this problem. But the solution to the Dirichlet problem must be
unique, otherwise one can construct a contradiction to the uniqueness of the invariant
distribution, see [Sar11].

By definition we have ‖Q⊥φ‖ ≤ ‖φ− Iφ‖ for every interpolation Iφ ∈ D of φ. With
the definition of P from above, we will take q = Iφ such that

Lq = 0 on T, q = Pφ on S \ T. (39)

Now D ⊂ V , therefore q ∈ Vc and Pq = q. Therefore (39) is equivalent to

PLPq = 0 on T, q = Pφ on S \ T. (40)

Now define e := Pφ− q. Then we have

PLPe = PLP (Pφ− q) = PLPφ− PLPq = PLφ− PLP⊥φ− PLPq

and by (40) and since Lφ = fφ on S \A ⊃ T , we have
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PLPe = Pfφ− PLP⊥φ on T, e = 0 on S \ T. (41)

Therefore, e ∈ EΘ = {v ∈ L2(S, µ), v = 0 on S\T} and with Θ being the orthogonal
projection onto EΘ, e has to fulfil

ΘPLPΘe = ΘPfφ−ΘPLP⊥φ.

Since ΘP = PΘ = Θ, this can be written as

Re := ΘLΘe = Θfφ−ΘLP⊥φ.

The operator R = ΘLΘ is invertible on EΘ: If this wasn’t the case, there would be
a nontrivial solution v to

Lv = 0 on T, v = 0 on S \ T.

But the solution to this boundary value problem is again unique, and hence there
is only the trivial solution. This gives

e = R−1Θfφ−R−1ΘLP⊥φ, (42)

and ‖R−1‖ = 1
|λ0| where λ0 is the principal eigenvalue of R. Due to an estimate by

Varadhan we have

1

|λ0|
≤ sup
x∈T

Ex[τS\T ] =: κ,

see e.g. [Bov09]. To complete the derivation we need to focus on the second term
in (42). Since R−1 is an operator on EΘ, we can write it as R−1ΘLP⊥φ =: Θg, where
the function Θg solves

ΘLΘg = RΘg = ΘLP⊥φ⇔ ΘL[Θg − P⊥φ] = 0

by the definition of R and Θg. Therefore w := Θg−P⊥φ solves the boundary value
problem

Lw = 0 on T, w = −P⊥φ on S \ T (43)

which implies that ‖w‖∞ ≤ ‖P⊥φ‖∞, this follows from Dynkin’s formula or Lemma
3 in [Sar11]. Finally,

‖Θg‖ ≤ µ(T )1/2‖Θg‖∞ ≤ µ(T )1/2(‖P⊥φ‖∞ + ‖w‖∞) ≤ 2µ(T )1/2‖P⊥φ‖∞

holds by the triangle inequality and the above considerations. Now focus on the
first term in (42). Note that by the maximum principle, φ achieves its maximum of 1
on the boundary of Ac ⊃ T , therefore maxx∈T |φ(x)| ≤ 1. Then we have

‖Θfφ‖ ≤ µ(T )1/2‖f‖∞max
x∈T
|φ(x)| ≤ µ(T )1/2‖f‖∞.
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Now putting everything together, we arrive at

‖e‖ ≤ ‖R−1‖‖Θfφ‖+ ‖R−1ΘLP⊥φ‖
≤ κ‖Θfφ‖+ ‖Θg‖
≤ µ(T )1/2

[
κ‖f‖∞ + 2‖P⊥φ‖∞

]
.

Finally, note that by the triangle inequality

‖Q⊥φ‖ ≤ ‖φ− q‖ ≤ ‖φ− Pφ‖+ ‖Pφ− q‖ = ‖P⊥φ‖+ ‖e‖

which completes the proof.

C. Finite-volume approximation

In this section we show (25), confirming that the Galerkin projection of L onto step
functions gives the finite volume approximation discussed in [LMHS11]. Recall the
definitions of Sij , hij and Ai given in figure (3). We use the divergence representation
Lφ = eβV∇ · (e−βV∇φ) with β = ε−1 and calculate

〈χi, Lχj〉µ = β−1

∫
S
χi e

βV∇ ·
(
e−βV∇χj

)
e−βV dx

= β−1

∫
Ai

∇ ·
(
e−βV∇χj

)
dx

= β−1

∫
∂Ai

e−βV (∇χj) · νds

where ν is the surface normal vector field of ∂Ai. We write the integral over ∂Ai as
a sum over surface integrals over Sij′ where j′ ranges over the set {il} of neighbours
of i and approximate the surface integrals by a point evaluation of the integrand at
the midpoint x̄ij′ times the area of Sij′ . That gives

〈χi, Lχj〉µ ≈ β−1
∑

j′∈{il}

m(Sij′)e
−βV (x̄ij′ ) (∇χj · ν) |x=x̄ij′

Now we can approximate the directional derivative of χj using a two-sided finite
difference:

∇χj · ν
∣∣∣
x=x̄ij′

=
∇χj · hi,j′
m(hi,j′)

∣∣∣
x=x̄ij′

≈ χj(xj′)− χj(xi)
m(hij′)

=
δjj′ − 0

m(hij′)
.

Hence in the sum over neighbours of i, only j survives. Now we put everything
together:

〈χi, Lχj〉µ ≈ β−1m(Sij)

m(hij)
e−βV (x̄ij).
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Finally, we divide by πi using (26):

Kij =
1

πi
〈χi, Lχj〉µ ≈

1

∆ij
e−β(V (x̄ij)−V (xi)), ∆−1

ij = β−1 m(Sij)

m(hij)m(Ai)
.

which confirms (25).

D. Markov chain approximations

We now show (29). Let i and j be nearest neighbours, and β = ε−1. For a regular
d-dimensional lattice with lattice spacing h,

∆ij = β
m(hij)m(Ωi)

m(Sij)
= β

hhd

h(d−1)
= βh2.

Therefore, G as given by (25) simplifies to

Gij =
1

βh2
e−β(V (x̄ij)−V (xi)).

We introduce the function Ŵv(i) = −β−1 log v(i). Then, for neighbours i, j,

Gvij =
1

βh2
e−β(V (x̄ij)−V (xi)+Ŵv(j)−Ŵv(i)).

Now we specialise to the one-dimensional case, thus j = i± 1. We write V (x̄i,i±1)−
V (xi) = ±h2∇V (xi) +O(h2). Expanding the exponential gives

Gvi,i±1 =
1

βh2

(
1− βh

2
(±∇V (xi))− β(Ŵv(i± 1)− Ŵv(i)) +O(h2)

)
=

1

h2

(
β−1 − h

2

(
±∇V (xi) + 2

Ŵv(i± 1)− Ŵv(i)

h

)
+O(h2)

)

=
1

h2

(
β−1 ∓ h

2

(
∇V (xi)− α±v (i)

)
+O(h2)

)
with the definition

α±v (i) := ±

(
−2

Ŵv(i± 1)− Ŵv(i)

h

)
.

Now consider the difference between α+
v (i) and α−v (i):

α+
v (i)− α−v (i) = −2h

Ŵv(i+ 1)− 2Ŵv(i) + Ŵv(i− 1)

h2
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Assuming that Ŵv converges to a twice differentiable function, the difference be-
tween α+

v (i) and α−v (i) is of order h. In other words we may write α±v (i) = αv(i)+O(h)
where

αv(i) =
1

2
(α+
v (i) + α−v (i)) =

1

hβ
(log v(i+ 1)− log v(i− 1)) .

Then

Gvi,i±1 =
1

h2

(
β−1 ∓ h

2
(∇V (xi)− αv(i)) +O(h2)

)
which confirms (29). Now we show (30). We use the representation (18) for kv(i):

βkv(i) =
∑
j 6=i

Gij

{
v(j)

v(i)

[
log

v(j)

v(i)
− 1

]
+ 1

}

= Gi,i+1
v(i+ 1)

v(i)

(
log

v(i+ 1)

v(i)
− 1

)
+Gi,i−1

v(i− 1)

v(i)

(
log

v(i− 1)

v(i)
− 1

)
−Gii

Now we write this in terms of the shorthands α± := ±h−1 log v(i±1)
v(i) . Notice that

α± = β
2α
±
v (i) and use the formula for G above:

βkv(i) =
1

βh2

[
ehα

+

(hα+ − 1)− e−hα
−

(hα− + 1) + 2
]

−∇V (xi)

2h

[
ehα

+

(hα+ − 1) + e−hα
−

(hα− + 1)
]

+O(h)

=
1

βh2
[−1− 1 + 2] +

1

βh

[
α+ − α− − α+ + α−

]
+

1

2β

[
(α+)2 + (α−)2

]
−∇V (xi)

2h
[−1 + 1]− ∇V (i)

2

[
α+ − α+ + α− − α−

]
+O(h)

=
1

2β

[
(α+)2 + (α−)2

]
+O(h)

=
β

4
α2
v(i) +O(h) =

β

4
α2
v(i) +O(h).

This confirms (18). In the second step, we have used Taylor expansions of ehα
±

up
to second order. In the last step, we have used α±v (i) = αv(i) +O(h).

E. Sampling of the discretized running cost

We show the sampling formula (34) for F :

Fij = Eµ

[
f(Xt)χ{X̃+

t =j}

∣∣∣X̃−t = i
]
.
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Recall that since the dynamics is reversible, χi(x) = P(X̃±t = i|Xt = x) with X̃±t
being the forward and backward milestoning processes defined in Section 3.2. Then,

F̂ij =

∫
f(x)χj(x)χi(x)µ(x)dx =

∫
f(x)P(X̃+

t = j|Xt = x)P(X̃−t = i,Xt = x)dx

=

∫
f(x)P(X̃+

t = j, X̃−t = i,Xt = x)dx

=

∫
f(x)P(X̃+

t = j, X̃−t = i|Xt = x)P(Xt = x)dx

=

∫
f(x)E

(
χ{X̃+

t =j,X̃−t =i}

∣∣∣Xt = x
)
P(Xt = x)dx

= Eµ

[
f(Xt)χ{X̃+

t =j,X̃−t =i}

]
.

This completes the proof.
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[AK11] Erik Asplund and Thorsten Klüner. Optimal control of open quantum
systems applied to the photochemistry of surfaces. Phys. Rev. Lett.,
106:140404, 2011.

[AMP+12] Steffen Arnrich, Alexander Mielke, Mark A. Peletier, Giuseppe Savaré,
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