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Markov state models (MSMs) have been successful in computing metastable states, slow relaxation
timescales and associated structural changes, and stationary or kinetic experimental observables of
complex molecules from large amounts of molecular dynamics simulation data. However, MSMs
approximate the true dynamics by assuming a Markov chain on a clusters discretization of the state
space. This approximation is difficult to make for high-dimensional biomolecular systems, and the
quality and reproducibility of MSMs has therefore been limited. Here, we discard the assumption
that dynamics are Markovian on the discrete clusters. Instead, we only assume that the full phase-
space molecular dynamics is Markovian, and a projection of this full dynamics is observed on the
discrete states, leading to the concept of Projected Markov Models (PMMs). Robust estimation
methods for PMMs are not yet available, but we derive a practically feasible approximation via
Hidden Markov Models (HMMs). It is shown how various molecular observables of interest that
are often computed from MSMs can be computed from HMMs / PMMs. The new framework is
applicable to both, simulation and single-molecule experimental data. We demonstrate its versatility
by applications to educative model systems, an 1 ms Anton MD simulation of the BPTI protein,
and an optical tweezer force probe trajectory of an RNA hairpin.

Conformational transitions are essential to the func-
tion of proteins and nucleic acids. With the ever in-
creasing time resolution of ensemble kinetics experi-
ments and the more recent maturation of sensitive single-
molecule techniques in biophysics, experimental evidence
supporting the near-universality of the existence of mul-
tiple metastable conformational substates and complex
kinetics in biomolecules has continued to accumulate
[12, 14, 15, 23, 25, 35, 46]. Markov (state) models
(MSMs) are a very successful approach to deal with such
a multitude of metastable states, that has emerged from
the simulation community [6, 7, 27, 29, 37, 41, 42]. A
MSM consists of a discretization of the molecular state
space into n clusters, and a n × n transition probabil-
ity matrix containing the conditional probabilities that
the system will, given that it is in one of its n dis-
crete substates, be found in any of these n discrete sub-
states a fixed lag time τ later. Because only conditional
transition probabilities are needed, an MSM can be es-
timated from ensembles of short trajectories, computed
distributedly on clusters or volunteer networks [5, 29, 43].
This circumvents the need for ultralong trajectories that
can only be computed by special-purpose supercomput-
ers [21, 40]. Additionally, MSMs have been so success-
ful because they permit many important thermodynamic,
kinetic and mechanistic molecular quantities to be com-
puted much more directly and unambiguously than with
conventional MD analyses.

However, a key approximation of MSMs is that they
assume a Markov chain on the discrete clusters — al-
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though these discrete dynamics are not Markovian. It
has been rigorously shown that the MSM approxima-
tion can be very precise if the molecular coordinates
relevant for the slow transitions are finely discretized
[32, 36]. In practice the discretization quality will de-
pend on the subset molecular coordinates and metric
used as input, and the method used to cluster this co-
ordinate space. The sheer high-dimensionality of sol-
vated biomolecular systems, and the necessity to neglect
many coordinates (velocities, solvent positions), limits
the practical ability to produce a very fine discretiza-
tion. Therefore, MSM results may significantly differ de-
pending on the choice of input coordinates and cluster-
ing methods [6, 7, 30, 32, 38]. Moreover, the assumption
that the dynamics of the clustered molecular observables
is Markovian prohibits the use of MSMs for the anal-
ysis of experimental single-molecule trajectories, where
the molecular coordinate traced is determined by what
is experimentally observable and cannot be arbitrarily
chosen.

Here, we introduce a new framework that altogether
discards the assumption that dynamics are Markovian
on the observed clusters. Instead we only make very
basic physical assumptions: The full phase-space dy-
namics are Markovian, and in thermodynamic equilib-
rium. This full-space dynamics becomes projected onto
the discrete clusters whose discrete dynamics is observed.
This leads to the concept of Projected Markov Models
(PMMs). We show that if the dynamics are metastable,
having a number m slow relaxation processes, and if
there is a separation of timescales to the next-faster re-
laxation processes, then PMMs can be approximated by
Hidden Markov Models (HMMs) with m hidden states.
We describe an MSM→HMM transformation that pro-
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vides a good starting point to estimate the HMM via
Baum-Welch Expectation Maximization algorithm. It is
shown how various molecular observables of interest that
are often computed from MSMs can be computed from
HMMs. The new method is applicable to both, simula-
tion and single-molecule experimental data. Moreover,
all important thermodynamic, kinetic and mechanistic
molecular quantities computable from MSMs can also be
computed from HMMs. We demonstrate the versatility
of our approach by applications to various systems —
including model systems that demonstrate the superior-
ity of PMM/HMM models over MSMs, an 1 ms Anton
MD simulation of the BPTI protein where a three-state
rate matrix with metastable sets of structures is readily
obtained, and an optical tweezer force probe trajectory
of an RNA hairpin, where a hidden and yet unreported
transition state is found.

I. PROJECTED MARKOV MODELS

We assume that there is a Markov process {zt} in
state space Ω (a state may consist of both positions and
velocities - depending on the model of the dynamics).
This Markov process is assumed to be ergodic and re-
versible with respect to a unique stationary distribution
µ(z). Often, a canonical ensemble is employed, and then
the stationary distribution is the Boltzmann distribu-
tion µ(z) = Z−1e−βH(z) with H(z) the total energy and
β = 1/kBT the inverse temperature. For such a process,
we can write the ensemble dynamics as follows: We con-
sider a probability distribution of states p0. At a later
time τ , the distribution will have evolved according to
the Markov propagator P:

pτ (zτ ) = P(τ) p0(z0) =

∫
z0

pτ (z0, zτ ) p0(z0).

where the conditional transition probability pτ (z0, zτ )
characterizes the dynamics of the system. With the er-
godicity, we can expand the propagation density into ba-
sis functions

pτ (z0, zτ ) = µ(zτ ) +

∞∑
i=2

e−κiτ
φi(z0)

µ(z0)
φi(zτ )

where κi is the relaxation rate of the ith-slowest process
and ti = κ−1i is the corresponding relaxation timescale.
We can also consider the corresponding correlation den-
sity, i.e. the joint probability density to observe the sys-
tem at position z0 at time 0 and at position zτ at time
τ :

cτ (z0, zτ ) = µ(z0)µ(zτ ) +

∞∑
i=2

e−κiτφi(z0)φi(zτ )

Note that for τ →∞, the joint probability density is sim-
ply given by the stationary probabilities: c∞(z0, z∞) =
µ(z0)µ(z∞). For the rest of the paper we assume that our

system of interest has m slow processes and a timescale
separation to the faster processes. Thus, at lag times sig-
nificantly larger than tm = κ−1m , the correlation density
is approximately given by:

cτ (z0, zτ ) ≈ µ(z0)µ(zτ ) +

m∑
i=2

e−κiτφi(z0)φi(zτ ) (1)

Now we assume that the molecular state space (typically
only configurations, not velocities) is completely parti-
tioned into a set of n clusters {Si}, which might be rather
coarse. What happens to the dynamics when we observe
it on the space of clusters? From Eq. (1) we can compute
the correlation matrix between clusters:

Cij =

∫
z0∈Si

dz0

∫
zτ∈Sj

dzτ cτ (z0, zτ )

= πiπj +

m∑
k=2

e−κkτqkiqkj

where πi =
∫
z∈Si dz µ(z) are the stationary probabilities

and qk is the kth discretized eigenfunction:

qki =

∫
z0∈Si

dz0 φk(z0).

We can also express the correlation matrix as

C = Q>Λ̃Q (2)

where Q ∈ Rm×n contains the discretized projected
eigenfunctions qk, and Λ̃ ∈ Rm×m contains the m dom-
inant eigenvalues. We will use the tilde in order to
annotate “small” matrices or vectors related to the m
metastable processes. If we write the stationary proba-
bility vector π on the diagonal of the matrix Π, we can
write the transition matrix between clusters as:

T(τ) = Π−1Q>Λ̃(τ)Q (3)

This is the transition matrix that is estimated when
building a Markov model at lag time τ . Now we can
easily illustrate the problem of MSMs: The dynamics
between clusters are not Markovian, i.e. the transition
matrix estimated at τ cannot be used to predict long-
timescale behavior:

T(2τ) = Π−1QΛ̃(2τ)QT = Π−1Q[Λ̃(τ)]2QT

6= Π−1QΛ̃(τ)QTΠ−1QΛ̃(τ)QT = T2(τ)

The first row is not equal to the second row because
projected eigenvectors Q of the full-space dynamics are
not eigenvectors of T, and are therefore not orthonor-
mal with respect to the observed stationary distribution:
QTΠ−1Q 6= Id. Therefore, in order to estimate the clus-
ter dynamics in a way that is unbiased, and that allows
the long-time dynamics to be predicted, one needs to es-
timate the PMM quantities

{Q, Λ̃}

separately.
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II. APPROXIMATING PMMS VIA HIDDEN
MARKOV MODELS

In general, estimating the matrices {Q, Λ̃} is diffi-
cult, especially for large m and n. Therefore we con-
sider a slightly different model that we can efficiently
estimate: A hidden Markov model (HMM). A hidden
Markov model consists of a transition matrix between m
hidden (here metastable) states, T̃(τ), and an associated
stationary distribution π̃. This hidden dynamics has a
joint probability (correlation) matrix C̃ = Π̃T̃. Each
hidden state i will output to one of the observable states
j with a probability χij , such that the vector χi is the
output probability distribution of hidden state i. We can
write the correlation matrix on the observed states as:

C = χ>C̃χ = χ>Π̃T̃χ (4)

= χ>L̃>Λ̃L̃χ

= Q>Λ̃Q

By comparing the last row to (2), it is apparent that
a HMM has a similar structure like a PMM. Here, the
vectors in Q are given by the HMM eigenvectors L̃ pro-
jected onto the observable states via χ. However, we
want to use HMM estimation algorithms to estimate the
slow molecular kinetics of a Markov process observed on
a cluster space, which is a PMM (2) — and therefore
we must show that a PMM can also be represented as a
HMM. This is not ovbious: A given PMM, defined by the
slow process eigenfunctions and the chosen discretization
has a certain Q. It is not a priori clear whether this
Q-matrix can be represented by decomposition into the
two matrices χL̃, because these matrices have to fulfill
the constraints that the columns of χ are probability dis-
tributions and the rows of L̃ form a set of eigenvectors
which are orthonormal with respect to π̃−1. Appendix
A contains a proof that modeling a PMM with an HMM
is valid in a special, but interesting case. We summarize
it as follows:
Given a Markov process {xt} that is ergodic and re-

versible with respect to the unique stationary distribution
µ(x). Given that this process has m metastable states,
such that there is a gap in the relaxation timescales,
tm+1 � tm, and the stationary distribution µ(x) almost
decomposes into m modes, such that almost all station-
ary probability is in the metastable states and the inter-
vening transition states have vanishing populations. We
further consider an arbitrary discretization of the state
space x into n clusters. Then, the dynamics on the n
discrete states is described by a discrete hidden Markov
model with m hidden and n observed states.

This is an important result: in many applications,
especially in biomolecular dynamics, we have a few
metastable states with rarely populated transition re-
gions. The theorem above says, that even using a poor
discretization of the state space of such a system, we

can still describe its metastable dynamics exactly with
an HMM. Of course, our practical ability to find the true
HMM will depend on the amount of statistics at hand,
and may very well depend on the quality of the discretiza-
tion. However, we will show in the application section
that HMMs perform very well in this setting, and almost
exclusively better than MSMs.

A. Initializing a hidden Markov model from a
Markov model

Estimating hidden Markov models is more difficult
than estimating directly observed Markov models, be-
cause in constast to the MSM likelihood, the HMM
likelihood does not necessarily have a unique optimum.
Therefore, it is important to start the HMM estimation
“close” to the optimal result. How do we get a good ini-
tial guess for the hidden transition matrix T̃(τ) and the
output probability matrix χ?

Hence we propose an initial HMM based on a direct
Markov model. Given the simulation trajectories, dis-
cretized in n states, we estimate a Markov model transi-
tion matrix at some lag time τ , T(τ) ∈ Rn×n. In order
to ensure that this Matrix fulfills detailed balance, we
use the reversible transition matrix estimator described
in [32] and implemented in EMMA [39].

Next, we fix a number of hidden states, m, and obtain
an initial estimate of the output probability matrix χ.
For this, we first employ the PCCA+ method [9] imple-
mented in EMMA [39]. PCCA+ provides, for each ob-
served state i a degree of membership to a metastable
state j, mij . PCCA+ does this by first proposing
m observed states as representatives of the metastable
states, each obtaining membership 1 to the respective
metastable states and 0 to the others. This is an approxi-
mation that will later be lifted by the HMM optimization.
The full membership matrix M ∈ Rn×m is obtained by
solving a linear system of equations, as described in [9].
The membership matrix has the property that its rows
sum up to 1, but the implementation described in [9] has
the undesirable property that membership values could
be negative. We currently avoid this by setting nega-
tive memberships to 0 and then renormalizing all rows of
M. This intervention is avoided by PCCA++ [34] which
generates non-negative membership matrices and will be
used in the future.

Now, the membershipmij can be interpreted as a prob-
ability of being in a metastable state j, given that the
system is observed in discrete state i. We can use the
membership matrix to coarse-grain the stationary prob-
abilities to the hidden metastable states:

π̃ = M>π

and we can use Bayesian statistics in order to transform
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M to the desired output probabilities:

P[cluster j | hidden i] =
P[cluster j]

P[hidden i]
P[hidden i | cluster j]

χij =
πj
π̃i
mji.

In matrix form:

χ = Π̃
−1

M>Π. (5)

Finally, we need a hidden transition matrix T̃ which ful-
fills Eq. (4), i.e. which produces, together with χ, the
observable correlation matrix C. A method for comput-
ing such a matrix is given in [18]. Using their Eq. (12)
and performing some algebraic transformations given in
Appendix B.1, we obtain the result:

T̃ = M>TM(M>M)−1 (6)

which has a nice interpretation: M>TM performs a
coarse-graining of T, and M>M is an overlap matrix
needed for normalization. T̃ has the nice property that
it preserves the dominant kinetics of T: the eigenvalues
of T̃ are identical to the dominantm eigenvalues of T. In
some cases T̃ may have (usually only slightly) negative
elements. Moreover, for numerical reasons in computing
Eq. (6), T̃ may no longer exactly fulfill detailed balance.
We correct for this by computing the correlation matrix,
C̃ = Π̃T̃, symmetrizing it C̃← 1/2(C̃+C̃>), setting neg-
ative elements to 0, and then renormalizing the rows of
C̃ to obtain T̃. Note that this intervention is important
to make sure that the HMM optimization is seeded with
a T̃ matrix that has a meaningful structure, but should
not strongly affect the results as T̃ will be subsequently
optimized.

B. Hidden Markov model estimation

Consider the observed trajectory {st} and hidden tra-
jectory {ht}. The HMM likelihood is given by:

P({st} | T̃,χ) =
∏

all hidden paths
h0, ..., htmax

π̃h0
χs0h0

tmax∏
t=1

T̃ht−1htχstht

(7)
Obviously, the product over all possible hidden paths
cannot be directly computed due to a combinatorial ex-
plosion of possibilities. The likelihood (7) can be max-
imized by a Expectation-Maximization algorithm, more
precisely by the Baum-Welch method [19, 45]. See [33]
for a thorough and educative description of HMMs and
the Baum-Welch method.

Since the EM method is established, we give a brief
summary of our implemention in the appendix. EM it-
erates two steps, called expectation and maximization

step. While the expectation step is general, the max-
imization step must be designed for the specific HMM
implementation. Here, we use the Baum-Welch algo-
rithm to estimate a count matrix Z̃(τ) containing the
estimated numbers of transitions between the m hidden
states, and then estimate the maximum likelihood tran-
sition matrix T̃(τ) that fulfills detailed balance using the
algorithm described in [32] and implemented in EMMA
[39]. The HMM is assumed to be in equilibrium, i.e. it
uses the stationary probability distribution of T̃(τ) as
an initial distribution. The output probabilities χ are
estimated through straightforward histograms of the ex-
pected counts on the clusters

C. Implied timescale plot

A commonly used approach to assess the quality of
a MSM introduced by [42] is the implied timescale
plot. Here, one asks how much the dynamics on the
discretized state space deviates from a Markov chain.
For a Markov chain, the Chapman-Kolmogorow equality
[T(τ0)]n = T(nτ0) holds, and therefore for every eigen-
value [λi(τ0)]n = [λi(nτ0)]. This condition is equivalent
to the condition that the relaxation timescales (or im-
plied timescales)

ti(τ) = − τ

ln |λi(τ)|
(8)

are constant in τ = nτ0. Because the dynamics on the
discretized state space are not Markovian, the timescales
(8) are not constant in τ . In the limit of good statistics
they are guaranteed to be smaller than the true relax-
ation timescales [11, 28], and the error between the esti-
mated relaxation timescale ti(τ) and the true relaxation
timescale decays slowly, as τ−1 [31].

Here, we also conduct implied timescale plots in order
to get a first assessment of the quality and robustness
of the PMM estimation. However, instead of computing
λi(τ) from a diagonalization of the transition matrix on
the discretized state space, we use the eigenvalues of the
hidden transition matrix, i.e. the timescales:

t̃i(τ) = − τ

ln |λ̃i(τ)|
(9)

If we are in a setting valid for PMM’s, i.e. τ � tm+1

(all timescales that are not resolved by the PMM have
decayed, where ’�’ is already given by a factor of 2-
3), and we are in the limit of good statistics, then the
PMM/HMM estimate of t̃i(τ) should indeed be constant
in τ .

D. Hidden Markov Model validation

Finally, we estimate the HMM at a lag time τ0 that has
been selected such that the relaxation timescales t̃i(τ) are
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constant at lag times τ > τ0 or larger. Validation of the
model consists of using it to compute kinetic quantities
at a series of lag times τ and comparing them with the
directly computed quantities at these different lag times.
An example is the set-based Chapman-Kolmogorow test
suggested in [32]. Here, we suggest a very simple and
direct test based on the relaxation timescales. Given the
HMM estimated at τ0, we compute the predicted transi-
tion matrices for the discretized state space at lag times
τ = nτ0:

Tpred(τ) = Π−1χ>Π̃[T̃(τ0)]nχ

and compare their relaxation timescales with the relax-
ation timescales computed directly from MSM transition
matrices estimated at τ :

tpredi (τ) = ti(τ).

This test must succeed in order for the estimated HMM
to be a valid description of the metastable kinetics.

Note that a more general comparison is possible by
comparing appropriate norms of Tpred(τ) and T(τ), or,
alternatively, of the correlation matrices Cpred(τ) =

χΠ̃[T̃(τ0)]nχ> and C(τ) = ΠT(τ). A practically fea-
sible comparison could be constructed in a similar way
as the Chapman-Kolmogorow test in [32].

III. QUANTITATIVE ANALYSIS

One of the reasons for the great success of direct (non-
hidden) Markov models is that various quantities related
to the molecule’s thermodynamics, kinetics and mecha-
nisms can be calculated easily from an MSM transition
matrix. Therefore, although it will be shown in the ap-
plications section that HMMs can be much superior to
MSMs in modeling the kinetics, their use needs to be
motivated by showing that they are equally versatile as
MSM. This section goes through a number of commonly
used molecular observables and discusses how they can
be computed from the HMM quantities T̃ and χ. In-
terestingly, for some observables, the computation from
HMMs is even more straightforward than from MSMs.

Some important quantities can be directly accessed
through an eigenvalue decomposition of the hidden tran-
sition matrix T̃(τ). Such a decomposition provides the
eigenvalues λ̃i(τ), the right eigenvector matrix R̃, which
contains the right eigenvectors r̃i as columns, and the
left eigenvector matrix L̃ = R̃−1 which contains the left
eigenvectors l̃Ti as rows. The first left eigenvector can be
normalized to a sum of 1, yielding the stationary distri-
bution of hidden states, π̃.

The stationary distribution π̃ provides the probability
of observing one of the metastable states. The free energy
of state i with respect to an arbitrary reference state 0 is
given by

∆Fi = −kBT ln
π̃i
π̃0
.

Note that these free energy differences are associated to
the weights of the metastable states, even when the state
space discretization is poor. This is not the case when
computing the free energy of metastable states from an
MSM, where a poor discretization can lead to significant
confusion which microstate should be associated to what
degree to a metastable state. However, when the station-
ary distribution is sought on the microstates, it can be
easily computed by transforming the stationary distribu-
tions of metastable states through the output probabili-
ties:

π = χ>π̃.

A quantity of particular interest is the definition of the
metastable states themselves. In particular, which set of
molecular structures is metastable? This question has
been an important driving force in the development of
MSMs. The original contribution in this field was made
by Schütte, Deuflhard and co-workers by noticing that
for m most metastable states, the signs of the dominant
m MSM eigenvectors are indicative [10, 37]. Hence their
PCCA method defined their metastable states as the set
of microstates with equal signs in the first MSM eigen-
vectors. A few years later, Weber and Deuflhard have
invented PCCA+ [9], which is numerically and concep-
tually superior and assigns to each microstate i a mem-
bershipmij to each metastable state j based on the prox-
imity of microstate i to a representative state that is
representative for metastable state j in the space of the
dominant m eigenvectors of the MSM transition matrix.
While PCCA and PCCA+ have nice theoretical proper-
ties, they are both unsatisfactory from a statistical point
of view. As the PCCA(+) metastable states are defined
based on the transition matrix eigenvectors, any infor-
mation of the statistical significance is lost. Therefore,
other methods such as BACE [3] have taken a Bayesian
standpoint and defined metastability based on informa-
tion in the MSM transition count matrix. HMMs directly
provide information of the metastable states. The out-
put matrix χ = [χij ] directly provides the probability
that a given metastable state i is observed in a given mi-
crostate j. Its row vectors χi therefore are probability
distributions of metastable states on the space of clusters.
With the weight π̃i these probability distributions can be
weighted, such that these vectors sum up to the overall
probability distribution of microstates: πj =

∑
i π̃iχij .

Using Bayesian inversion, the χ matrix can be trans-
formed into a membership matrix M = [mij ] which con-
tains the information “how much” microstate i belongs
to metastable state j:

M = Π−1χT Π̃

where Π = diag(π) and Π̃ = diag(π̃). This ap-
proach of defining metastable states unifies the advan-
tages of PCCA+ and of statistically-driven methods such
as BACE: (1) As in PCCA+, the memberships M are
in the subspace of the slow dynamics, and are therefore
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a mathematically meaningful approach for characteriz-
ing metastability. (2) In contrast to PCCA+, one does
not need to define representative states. The member-
ship matrix M is a result of the HMM estimation itself.
(3) Since HMMs include χ as a direct parameter, the
quantity χ is directly amenable to statistical treatment.
When estimated via EM, χ is the result of a likelihood
(or posterior) maximization. When using Monte-Carlo
sampling of the HMM likelihood [8], the statistical un-
certainty of elements in χ can be directly assessed.

Let us turn to kinetic quantities. The m slowest relax-
ation rates, or phenomenological rates, of the molecule
are given by:

κ̃i = − ln |λ̃i(τ)|
τ

(10)

These rates, and their inverses, the relaxation timescales
t̃i = κ̃i are of central interest in kinetics, because they
can be probed by various experimental techniques. A
main advantage of PMMs is that - in stark contrast to
MSMs - the rates κ̃i can be estimated without system-
atic error. This is also true for HMMs, when they are
employed for metastable systems (see discussion in Sec.
II). From these relaxation rates, and the eigenvectors of
the hidden transition matrix, we can compute the rate
matrix between metastable states:

K̃ = Π̃
−1

L̃>


0
−κ̃2

. . .
−κ̃m

 L̃ (11)

In contrast to MSMs, the transformation to a rate matrix
is possible, because the first m processes are metastable,
and therefore λ1...λm are positive such that the rates (10)
exit.

Besides the decomposition into metastable states, and
the rate or transition matrix switching between them,
the eigenvectors themselves provide a quite direct under-
standing of the metastable dynamics: The sign changes
in r̃i and l̃i indicate structural changes that occur at the
associated rates κ̃i or timescales t̃i. On the discretized
state space, these eigenvectors occur as projections from
the hidden states through the output probability matrix:

si = Mr̃i

qi = χ> l̃i (12)

Note that these projected eigenvectors may significantly
differ from the right and left eigenvectors that are directly
computed from an MSM transition matrix on the clus-
ter space. The projected eigenvectors and the relaxation
rates are the key components for calculating kinetic ex-
perimental observables. In [17, 26], we have derived gen-
eral expressions for computing correlation and relaxation
experiments, that can be straightforwardly extended to
HMMs. In [20] we have extended this theory to scatter-
ing experiments.

An important source of kinetic information are time-
correlation experiments. These may be realized by tak-
ing trajectories from time-resolved single molecule ex-
periments, such as single molecule fluorescence or pulling
experiments, and computing time correlations from these
trajectories. Moreover, several ensemble kinetic experi-
ments effectively measure time-correlation functions, for
example dynamical neutron scattering. A general expres-
sion for modeling these experiments is that of the time
cross-correlation, of two experimentally observable quan-
tities. Given a partition into states Si, let us denote by ai
and bi the averages of the two experimentally observable
quantities over the discrete state Si. a, b are the vectors
with these averages as elements. The cross-correlation
for time τ can be expressed as:

E[a(t)b(t+ τ)] =

m∑
i=1

e−τκi〈a,qi〉〈b,qi〉

= 〈a,π〉〈b,π〉+

m∑
i=2

e−τκi〈a,qi〉〈b,qi〉

Autocorrelation experiments can be modeled by simply
setting a = b.

Alternatively, relaxation experiments can be used to
probe the molecules’ kinetics. In these experiments, the
system is allowed to relax from a nonequilibrium start-
ing state with probability distribution. Examples are
temperature-jump, pressure-jump, or pH-jump experi-
ments, rapid mixing experiments, or experiments where
measurement at t = 0 starts from a synchronized starting
state, such as in processes that are started by an external
trigger like a photoflash. We consider initial distributions
that are modeled on the metastable states, p̃(0). For
example, in an ideal two-state folder, the relaxation ex-
periment shifts probabilities between the two metastable
states, and a meaningful value of p̃(0) could be computed
from available experimental titration curves. The time
evolution of such an initial distribution can be computed
by propagating it with the transition or rate matrix that
describe the dynamics for the conditions after the trigger:

p>τ = p̃>0 [T̃(τ0)]nχ

= p̃>0 exp[τK̃]χ

with τ = nτ0. The ensemble average Ep(0)[a(τ)] of an
experimentally measurable quantity, a, is recorded while
the system relaxes from the initial distribution p̃(0) to
the new equilbrium distribution π̃. The expectation
value of the signal at time τ is then given by

Ep̃0
[a(τ)] =

m∑
i=1

e−τκi〈a,qli〉〈̃li, p̃∗0〉

where p̃∗0 is the excess probability distribution p̃∗0 =
Π−1p̃0. Ep̃0

[a(τ)] is again a multiexponential decay func-
tion with amplitudes 〈a,qli〉〈̃li, p̃∗0〉. Each of the ampli-
tudes is associated with an eigenvector of the transition
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matrix, and therefore readily interpretable in terms of
structural changes.

The combination of Markov models and the spectral
theory given is useful to compare simulations and ex-
periments via the dynamical fingerprint representation
of the system kinetics [26]. Furthermore, this approach
permits to design experiments that are optimal to probe
individual relaxations [26].

Finally, detailed molecular mechanisms of a particular
process that transitions between two states A and B can
be calculated with transition path theory (TPT) [44].
Here, A and B may be associated to the unfolded and
folded ensembles in protein folding, or to the dissociated
and assocatied states in protein-ligand binding. TPT can
be straightforwardly applied on the level of metastable
states. This is done either by directly applying to the
transition matrix T̃ (see [29]), or by computing rate ma-
trix K̃ (see above) and conducting TPT as described in
[22].

IV. APPLICATIONS

Fig. 1 compares the performances of MSMs and HMMs
on a diffusion in a metastable two-well potential (model
details see SI of [32]). The spate space is discretized into
two clusters, comparing results for a good discretization
separating the two metastable states in the transition re-
gion (Fig. 1a) and a bad discretization that splits one of
the metastable states (Fig. 1c). For the good discretiza-
tion, the MSM estimate converges to the true timescale
when the lag time τ is increased, although slowly with an
error that vanishes as τ−1 — see [31] for derivation. For
the poor discretization, the convergence of the MSM is
so slow that it does not come close to the true timescale
before hitting the “forbidden” region τ > t at which
no numerically robust MSM estimate is possible [2]. In
contrast, the PMM/HMM converges quickly to the true
timescale, and the timescale estimate then stays constant
in τ . The speed of this convergence goes exponential with
the greatest neglected timescale, as exp(−τ/t3). Thus,
the HMM behaves as a multi-τ estimator analyzed in
[31]. Obtaining a good model for the slow kinetics for a
short lag time τ is very important for ensemble simula-
tions, because it allows to keep the length of the individ-
ual simulations short as well. Shorter trajectory lengths
also permit a more rapid turnover in adaptive sampling
simulations [4, 16, 41], thus allowing to get statistically
converged estimates of the slow kinetics with lesser total
sampling effort.

Fig. 2 compares the performances of MSMs and HMMs
when constructing the model on a subspace of conforma-
tion space that neglects important degrees of freedom.
For the diffusive dynamics in the two-dimensional three-
well potential shown in Fig. 2a, both dimensions are
needed in order to separate the three metastable states
from another. The projections of the probability den-
sity onto either the x or y coordinate (grey distributions)

Figure 1. Comparison of MSM and PMM/HMM for modeling
the diffusion in a bistable potential, using (a) good and (c)
poor discretization into two states. b,c): τ -dependence of
relaxation timescales computed with MSMs and HMMs. The
grey region is the τ > t region where no numerically robust
estimation of the relaxation timescale t is possible.

Figure 2. Comparison of MSM and PMM/HMM for mod-
eling the diffusion in a bistable potential (model details see
SI of [32]) from projections onto the x- and y-coordinate, re-
spectively. A fine (30-state) discretization in the respectively
observed coordinate is used in order to build the MSM or
PMM/HMM. a) Energy landscape and observed probability
densities in x and y. b,c) 1- and 2-timescale estimate for the
projection onto x. d) Timescale estimation for the projection
onto y.
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only exhibit two poorly separated modes. The slowest
relaxation timescale is associated to the transition be-
tween the two deep wells, and therefore mostly with the
x-axis, while the second-slowest relaxation timescale is
associated to the transition between the lower left mini-
mum and the shallow upper minimum. An MSM is able
to estimate the slowest relaxation timescale from the x-
projections (Fig. 2b,c), and the second-slowest relax-
ation timescale from the y-projection (Fig. 2d). How-
ever, an MSM is not able to estimate both slow processes
simultaneously. The HMM performs similarly on the x-
projection: When using a two-state HMM, the slowest
timescale is estimated very accurately, and with a shorter
lagtime than the MSM (Fig. 2a). When using a three-
state HMM, the result for the slowest timescale actually
gets worse (Fig. 2b), while still being unable to estimate
the second-slowest timescale. This shows a limitation of
the method in the worst-case scenario that a process is
completely hidden: For the x-projection, the stable lower
left state and the less stable upper state are projected to
exactly the same observable values. Since the upper state
only exchanges with the lower state and has much shorter
lifetimes, its presence does not even affect the kinetics
significantly. Therefore, the projection onto x really be-
haves like a system with two-state kinetics, and using in
a three-state HMM will compromise the estimation.

How can the estimate become worse when too many
hidden states are used? The answer lies in the structure
the hidden HMM transition matrix which has eigenvec-
tors l̃i associated with the slowest processes. When an-
alyzing a two-state system with two hidden states, the
HMM transition matrix will have be two two-element
vectors l̃1 = π̃ and l̃2, associated with the stationary dis-
tribution and the slowest relaxation process, respectively,
and these eigenvectors will fulfill the orthogonality condi-
tion 〈̃l2, π̃〉 = 0. When analyzing a two-state system with
three eigenvectors, the transition matrix will have a third
eigenvector l̃3, but there is no relaxation process in the
data associated to that. Therefore, the HMM estimate
will produce a random vector for l̃3. Unfortunately, this
also affects the quality of the other eigenvectors l̃1 = π̃
and l̃2, because these eigenvectors are linked by pairwise
orthogonality constraints. The MSM is less affected by
this problem, because it has many more (n) eigenvec-
tors, so errors in estimating the fast process eigenvectors
do not necessarily compromise the slow process eigenvec-
tors. This emphasizes that it is important to use HMMs
in the right setting: estimating an HMM with m states
requires m relaxation processes to be present in the data,
and having a timescale separation to the (m+ 1)th pro-
cess.

Fig. 2c shows that the three-state HMM is able to
accurately estimate both relaxation timescales from the
y-projection, and is therefore superior to the MSM in this
case.

Fig. 3 shows the analysis of a 1 ms MD simulation of
the bovine pancreatic trypsin inhibitor (BPTI) produced
on the Anton supercomputer [40] and kindly provided by

D.E. Shaw research. We again consider two and three
hidden states, because an MSM analysis suggested gaps
after the slowest and second-slowest timescale. To obtain
a cluster discretization, we first computed the slowest
independent components with time-lagged independent
component analysis (TICA) [24] as described in [30] us-
ing the EMMA1.4 implementation. The data was then
projected onto the two slowest components and we con-
sidered two cluster discretizations, into 13 and 191 clus-
ters. Fig. 3 shows a scatter plot of the 191 cluster
centers in the two dominant independent components.
The color code is a map of the logarithmized probabil-
ity map of the clusters, indicating a free energy surface.
Note that such free-energy surfaces generally suffer from
overlap of states in the directions not resolved in this
plot, and only serves to provide a qualitative impression
where the regions with most statistical weight are. Fig.
3b,c show that the MSMs slowly converge towards slow-
est timescale estimates of around 30 and 15 µs, while
the HMMs converge to robust and nearly τ -constant es-
timates of timescales around 40 and 20 µs - at lagtimes
of 0.7 µs for the 13-cluster partition and at a lagtime of
0.3 µs for the 191-cluster partition. The HMMs there-
fore estimate somewhat larger relaxation timescales and
do that robustly for shorter lag times. Fig. 3c.1 nicely
shows what happens when employing a two-state HMM
in a three-state kinetics system: for short lagtimes, the
HMM first finds the faster timescale, and after a lagtime
of about τ = 0.3 µs then jumps to the slower timescale.

Fig. 3d,e illustrate the two slow processes by plotting
the projected eigenvectors q1 and q2 (Eq. 12) on the two
dominant independent components. The slowest process
is associated with probability exchange along the first in-
dependent component (3d) and the second-slowest pro-
cess along the second independent component (3e). 3f
illustrates the structures associated with the three cor-
responding metastable states by plotting overlays of 10
structures each selected from the metastable state output
distributions {χ1,χ2,χ3} that are directly estimated by
the HMM. Here, the black state is associated with the
lower left minimum in Fig. 3a, and is the most ordered
structure. The red state is associated with the top left
minimum in Fig. 3a, and is a slightly less ordered struc-
ture, while the green state is associated with the right-
most minimum in Fig. 3a and exhibits a re-folded loop
on the N -terminal side of the backbone.

Fig. 3f also shows the 3 × 3 rate matrix between
metastable states computed from Eq. (3f). This shows
that the three metastable states are linearly connected,
with the black and red states exchanging on the faster
20 µs timescale, while the red state and the green state
exchange on the slower 40 µs timescale. Note that the
green state is rather unstable, and actually only one tran-
sition into and back out of the green state occurs in the 1
ms trajectory, while the red and black states interchange
more frequently. Therefore the 40 µs timescale is dom-
inated by the relatively short exit time from the green
state, and this process is statistically unreliable - thus
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0.001	  µs-‐1	  

0.021	  µs-‐1	  0.012	  µs-‐1	  

0.035	  µs-‐1	  

t2=45	  µs	  t3=21	  µs	  

π1=0.24	   π2=0.71	   π3=0.04	  
f)	  

Figure 3. Comparison of MSM and PMM/HMM for modeling the conformation dynamics of BPTI using a the 1 ms simulation
trajectory generated by the Anton supercomputer [40] and kindly provided by D.E. Shaw research. The discretization consisted
of either 13 or 191 clusters, approximately uniformly distributed on the data projected onto the space of the two dominant
independent components of a TICA analysis (see [30] for details), using the EMMA implementation [39]. a) 191 clusters and
a visualization of their free energy − lnπi. b,c) Comparison of the slowest MSM timescales with the timescales of the 2 and
3-state HMM, respectively, using 13 clusters (b.1,c.1) or 191 clusters (b.2,c.2) . d,e) Visualization of the second and third
eigenvectors, l2 and l3 for the 191 cluster discretization. f) Three-state rate matrix corresponding to the 3-state HMM. The
structures are overlays of 10 frames drawn from the state distributions χ1, χ2, and χ3.

the 40 µs timescale is a rough estimate. It is possible
to extend the present HMM estimations towards a fully
Bayesian approach (analogously to [8]). Thus, in the fu-
ture, it will be possible to compute error bars on the
HMM estimates.

As shown in the second example (Fig. 2), the HMM
estimation can also deal with projections of higher-
dimensional dynamical systems onto low-dimensional ob-

servables, provided these projections do not hide some
slow relaxation processes completely. Therefore, we also
illustrate the performance of our method on experi-
mental single-molecule data. We have chosen optical
tweezer measurements of the extension fluctuations of
two biomolecules examined in a recent optical force spec-
troscopy study: the p5ab RNA hairpin [13]. The p5ab
hairpin forms stem-loop structure with a bulge under na-
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tive conditions (Fig. 4a) and zips/unzips repeatedly un-
der the conditions used to collect data (Fig. 4b). Experi-
mental force trajectory data were generously provided by
the authors of Ref. [13]; experimental details are given
therein. The instrument used to collect both datasets
was a dual-beam counter-propagating optical trap. The
molecule of interest was tethered to polystyrene beads
by means of dsDNA handles, with one bead suctioned
onto a pipette and the other held in the optical trap.
A piezoactuator controlled the position of the trap and
allowed position resolution to within 0.5 nm, with the
instrument operated in passive (equilibrium) mode such
that the trap was stationary relative to the pipette during
data collection. The force on the bead held in the optical
trap was recorded at 50 kHz, with each recorded force
trajectory 60 s in duration. The trajectory shown in Fig.
4b that was chosen for analysis has a relative similar pop-
ulation in the open and closed states. This experimental
construct suffers from a slow drift in the recorded force
trajectory. Although the drift is very small for the se-
lected trajectory, it may interfere with an analysis of the
slow kinetics; and it will be seen below how the HMM
analysis deals with this.

For the analysis, we discretized the observed force coor-
dinate into 30 regularly spaced bins. Fig. 4c,d compares
the performances of 30-state MSMs with two- or three-
state HMMs, respectively. While the MSMs converge
only very slowly towards the ∼ 17 ms timescale associ-
ated with the exchange of open and closed states, both
HMMs estimate this timescale robustly after a lag time
of 0.7 ms. Interestingly, for the three-state HMM, there
is a switch of eigenvectors at lag times of 2 to 2.5 ms.
While the open/close transition is now estimated as the
second-slowest timescale, the slowest timescale vastly in-
creases to a timescale on the order of the entire trajectory
length. Inspection of the corresponding eigenvector has
confirmed that the process found by this second timescale
indeed corresponds to a slight shift of the output distri-
butions that captures the small drift that is present in the
trajectory and is associated to a slight shift of the open
and closed force distributions between the beginning and
the end of the trajectory.

Fig. 4d shows that the three-state HMM also finds
a faster process of less than 1 ms for short lag times.
Clearly, this fast process disappears at long lag times,
and therefore the blue curve in Fig. 4d leaves this ini-
tial plateau after τ > 0.7 ms. However, at τ = 0.7 ms
both processes are present in the data, and a three-state
HMM can be successfully constructed. Fig. 4e,f show the
corresponding HMM output distributions {χ1,χ2,χ3},
weighted by the stationary probabilities {π̃1, π̃2, π̃3}, thus
illustrating where the two or three metastable states are
located in the force coordinate. As expected, the most
stable black state (small forces) and the less stable green
state (higher forces) correspond to the open and closed
states of the hairpin. Interestingly, the three-state HMM
identifies a third (red) state that lies “in between” open
and closed. This state has so far not been reported.

a) p5ab RNA Hairpin
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0.42	  ms-‐1	  

0.098	  ms-‐1	  1.11	  ms-‐1	  

0.078	  ms-‐1	  

0.031	  ms-‐1	  

0.013	  ms-‐1	  
π1=0.77	   π2=0.23	  

t2=17.2	  ms	  

π1=0.73	   π3=0.22	  

t2=17.2	  ms	  

t3=0.62	  ms	  

π2=0.05	  
g)	   h)	  

Figure 4. Comparison of MSM and HMM for analyzing single-
molecule force-probe data of the RNA hairpin p5ab [13].
a) Sketch of the folded secondary structure, b) the optical
tweezer trace. c,d) Relaxation timescales computed by MSMs
compared with HMMs with 2 and 3 states, respectively. e,f)
HMM output distributions for the 2- and 3-state HMM, re-
spectively. g,h) rate matrices of the 2- and 3-state HMM,
respectively.

The rate matrix and stationary probabilities shown in
Fig. 4h, reveal that the three states are linearly con-
nected, and the low-populated red state is a transition
state. This rate matrix also indicates that the interme-
diate state has a lifetime of about 0.65 ms.

V. CONCLUSIONS

We have introduced the concept of projected Markov
models (PMMs) and established a connection between
conformation dynamics, PMMs, hidden Markov mod-
els (HMMs) and the widely used Markov state models
(MSMs). When observing the continuous and full-phase
space dynamics on some (possibly coarse) set of discrete
clusters, the true kinetics is described by PMMs, rather
than with MSMs, although MSMs are very widely used
on this discrete dynamics. MSMs are therefore just an
approximation of the discrete dynamics, which are not
actually Markovian.

Currently, no efficient approach for directly estimat-



11

ing PMMs is available. Here, we have shown that in the
important setting where the dynamics are metastable,
with rarely populated transition regions, and there is a
timescale separation after the first m− 1 slow relaxation
timescales (m could be any number, but is usually small),
PMMs can be approximated with HMMs. This is an
important result, because HMMs can be efficiently es-
timated by maximum-likelihood or Bayesian techniques,
and will in this setting give the correct estimate of the
slow molecular kinetics - without the systematic bias in-
duced by the Markovianity assumption of MSMs.

HMMs are then estimated with an m × m transi-
tion matrix describing the dynamics between the m hid-
den states, and each hidden state associated with an
n-element probability vector containing the probability
that the hidden state will appear in one of the n discrete
clusters. In order to successfully and reliably conduct the
HMM estimation for large values of n, it is important to
have a good starting guess of the transition matrix and
the output probability matrix. Here, we have also made
a new connection between MSMs and HMMs and shown
that the initial HMM transition matrix and output prob-
ability matrix can be computed from a set of established
algebraic transformations of an MSM transition matrix.

We have shown that a vast number of relevant ther-
modynamics, kinetic, and mechanistic quantities that are
commonly computed from MSMs can also be computed
from HMMs. Notably, this includes kinetic experimen-
tal observables such as time-correlation functions and
time-dependent expectation values of triggered dynam-

ics. These experimentally observable quantities occur in
a functional form that can be readily interpreted by as-
signing experimentally-measurable relaxation timescales
to the experimentally not directly measurable structural
changes.

Thereby, PMMs, and their HMM-approximations, are
invoked as a new modeling framework for slow molecular
kinetics, and a real alternative to MSMs. Future studies
will extend this framework, e.g. by addressing the com-
putation of the statistical error of the present HMMs via
a full Bayesian analysis.

ACKNOWLEGDEMENTS

We are grateful to the authors of [13] for providing us
with the force-probe optical tweezer data and D.E. Shaw
research (especially the authors of [40]) for publishing
the 1 ms BPTI trajectory. We would also like to thank
Gerhard Hummer (MPI Frankfurt, Germany) for having
asked the question whether a PMM isn’t exactly the same
like a HMM, during the Cecam protein folding meeting
in Zürich 2012 — this has been one of the triggers for the
present study. We are grateful for the continuous support
of our work by Christof Schütte (FU Berlin). This work
was funded by Deutsche Forschungsgemeinschaft grants
WU 744/1-1, the international postdoctoral fellow pro-
gram of the Einstein foundation Berlin, and ERC starting
grant “pcCell”.

[1] 08, 1.
[2] K.A. Beauchamp, R. McGibbon, Y.-S. Lin, and V.S.

Pande. Simple few-state models reveal hidden complexity
in protein folding. Proc Natl. Acad. Sci. USA, 109:17807–
17813, 2012.

[3] G.R. Bowman. Improved coarse-graining of markov state
models via explicit consideration of statistical uncer-
tainty. J. Chem. Phys., 137:134111, 2012.

[4] G.R. Bowman, D.L. Ensign, and V.S. Pande. En-
hanced Modeling via Network Theory: Adaptive Sam-
pling of Markov State Models. J. Chem. Theory Com-
put., 6(3):787–794, March 2010.

[5] G.R. Bowman and P.L. Geissler. Equilibrium fluctu-
ations of a single folded protein reveal a multitude of
potential cryptic allosteric sites. Proc. Natl. Acad. Sci.
USA, 109:11681–11686, 2012.

[6] N.V. Buchete and G. Hummer. Coarse Master Equa-
tions for Peptide Folding Dynamics. J. Phys. Chem. B,
112:6057–6069, 2008.

[7] J. D. Chodera, K. A. Dill, N. Singhal, V. S. Pande,
W. C. Swope, and J. W. Pitera. Automatic discovery of
metastable states for the construction of Markov models
of macromolecular conformational dynamics. J. Chem.
Phys., 126:155101, 2007.

[8] J.D. Chodera, P. Elms, F. Noé, B. Keller, C.M.
Kaiser, A. Ewall-Wice, S. Marqusee, C. Bustamante,
and N. Singhal Hinrichs. Bayesian hidden markov

model analysis of single-molecule force spectroscopy:
Characterizing kinetics under measurement uncertainty.
http://arxiv.org/abs/1108.1430, 2011.

[9] P. Deuflhard and M. Weber. Robust Perron cluster anal-
ysis in conformation dynamics. ZIB Report, 03-09, 2003.

[10] P. Deulfhard, W. Huisinga, A. Fischer, and C. Schütte.
Identification of almost invariant aggregates in reversibly
nearly uncoupled Markov chains. Lin. Alg. Appl., 315:39–
59, 2000.

[11] N. Djurdjevac, M. Sarich, and C. Schütte. Estimating
the eigenvalue error of Markov State Models. Multiscale
Model. Simul., 10:61–81, 2012.

[12] E.Z. Eisenmesser, O. Millet, W. Labeikovsky, D.M. Ko-
rzhnev, M. Wolf-Watz, D.A. Bosco, J.J. Skalicky, L.E.
Kay, and D. Kern. Intrinsic dynamics of an enzyme un-
derlies catalysis. Nature, 438(7064):117–121, November
2005.

[13] P.J. Elms, J.D. Chodera, C. Bustamante, and S. Mar-
qusee. The limitations of constant-force-feedback exper-
iments. Biophys. J., 103:1490, 2012.

[14] A. Gansen, A. Valeri, F. Hauger, S. Felekyan, S. Kalinin,
K. Tóth, J. Langowski, and C.A.M. Seidel. Nu-
cleosome disassembly intermediates characterized by
single-molecule FRET. Proc. Natl. Acad. Sci. USA,
106(36):15308–15313, September 2009.

[15] J.C. Gebhardt, T. Bornschlögl, and M. Rief. Full
distance-resolved folding energy landscape of one sin-



12

gle protein molecule. Proc. Natl. Acad. Sci. USA,
107(5):2013–2018, February 2010.

[16] N.S. Hinrichs and V.S. Pande. Calculation of the dis-
tribution of eigenvalues and eigenvectors in Markovian
state models for molecular dynamics. J. Chem. Phys.,
126:244101, 2007.

[17] B. Keller, J.-H. Prinz, and F. Noé. Markov models
and dynamical fingerprints: Unraveling the complexity
of molecular kinetics. Chem. Phys., 396:92–107, 2012.

[18] S. Kube and M. Weber. A coarse graining method for
the identification of transition rates between molecular
conformations. J. Chem. Phys., 126(2):024103+, 2007.

[19] G. Soules L. E. Baum, T. Petrie and N. Weiss. A max-
imization technique occurring in the statistical analysis
of probabilistic functions of markov chains. Ann. Math.
Statist., 41:164–171, 1970.

[20] B. Lindner, Z. Yi, J.-H. Prinz, J.C. Smith, and F. Noé.
Dynamic Neutron Scattering from Conformational Dy-
namics I: Theory and Markov models. J. Chem. Phys,
2013 (submitted).

[21] K. Lindorff-Larsen, S. Piana, R.O. Dror, and D.E. Shaw.
How fast-folding proteins fold. Science, 334:517–520,
2011.

[22] P. Metzner, C. Schütte, and E. Vanden-Eijnden. Illus-
tration of transition path theory on a collection of simple
examples. The Journal of chemical physics, 125(8), Au-
gust 2006.

[23] W. Min, G. Luo, B. J. Cherayil, S. C. Kou, and X. S. Xie.
Observation of a Power-Law Memory Kernel for Fluctua-
tions within a Single Protein Molecule. Phys. Rev. Lett.,
94:198302+, 2005.

[24] L. Molgedey and H. G. Schuster. Separation of a mixture
of independent signals using time delayed correlations.
Phys. Rev. Lett., 72:3634–3637, 1994.

[25] H. Neubauer, N. Gaiko, S. Berger, J. Schaffer,
C. Eggeling, J. Tuma, L. Verdier, C.A.M. Seidel,
C. Griesinger, and A. Volkmer. Orientational and dy-
namical heterogeneity of rhodamine 6G terminally at-
tached to a DNA helix revealed by NMR and single-
molecule fluorescence spectroscopy. J. Am. Chem. Soc.,
129(42):12746–12755, October 2007.

[26] F. Noé, S. Doose, I. Daidone, M. Löllmann, J.D.
Chodera, M. Sauer, and J.C. Smith. Dynamical fin-
gerprints for probing individual relaxation processes in
biomolecular dynamics with simulations and kinetic ex-
periments. Proc. Natl. Acad. Sci. USA, 108:4822–4827,
2011.

[27] F. Noé, I. Horenko, C. Schütte, and J.C. Smith.
Hierarchical Analysis of Conformational Dynamics in
Biomolecules: Transition Networks of Metastable States.
J. Chem. Phys., 126:155102, 2007.

[28] F. Noé and F. Nüske. A variational approach to modeling
slow processes in stochastic dynamical systems. SIAM
Multiscale Model. Simul., 11:635–655, 2013.

[29] F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich, and
T.R. Weikl. Constructing the full ensemble of folding
pathways from short off-equilibrium simulations. Proc.
Natl. Acad. Sci. USA, 106:19011–19016, 2009.

[30] G. Perez-Hernandez, F. Paul, T. Giorgino, G. de Fabri-
tiis, and Frank Noé. Identification of slow molecular or-
der parameters for markov model construction. J. Chem.
Phys. (in press), 2013.

[31] J.-H. Prinz, J.D. Chodera, and F. Noé. Spectral rate the-
ory for two-state kinetics. Phys. Rev. X, 2013 (in revision.

Available at: http://arxiv.org/abs/1302.6614v1).
[32] J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne,

M. Held, J.D. Chodera, C. Schütte, and F. Noé. Markov
models of molecular kinetics: Generation and validation.
J. Chem. Phys., 134:174105, 2011.

[33] L.R. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. In Proceed-
ings of the IEEE, pages 257–286, 1989.

[34] S. Röblitz. Statistical Error Estimation and Grid-free Hi-
erarchical Refinement in Conformation Dynamics. PhD
thesis, 2009.

[35] Y. Santoso, C.M. Joyce, O. Potapova, L. Le Reste,
J. Hohlbein, J.P. Torella, N.D.F. Grindley, and A.N. Ka-
panidis. Conformational transitions in DNA polymerase
I revealed by single-molecule FRET. Proc. Natl. Acad.
Sci. USA, 107(2):715–720, January 2010.

[36] M. Sarich, F. Noé, and C. Schütte. On the approximation
error of markov state models. SIAM Multiscale Model.
Simul., 8:1154–1177, 2010.

[37] C. Schütte, A. Fischer, W. Huisinga, and P. Deuflhard.
A Direct Approach to Conformational Dynamics based
on Hybrid Monte Carlo. J. Comput. Phys., 151:146–168,
1999.

[38] C.R. Schwantes and V.S. Pande. Improvements in
markov state model construction reveal many non-native
interactions in the folding of ntl9. J. Chem. Theory Com-
put., 9:2000–2009, 2013.

[39] M. Senne, B. Trendelkamp-Schroer, A.S.J.S. Mey,
C. Schütte, and F. Noé. EMMA - A software package
for Markov model building and analysis. J. Chem. The-
ory Comput., 8:2223–2238, 2012.

[40] D.E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana,
R.O. Dror, M.P. Eastwood, J.A. Bank, J.M. Jumper,
J.K. Salmon, Y. Shan, and W. Wriggers. Atomic-Level
Characterization of the Structural Dynamics of Proteins.
Science, 330(6002):341–346, October 2010.

[41] N. Singhal and V. S. Pande. Error analysis and efficient
sampling in Markovian state models for molecular dy-
namics. J. Chem. Phys., 123:204909, 2005.

[42] W. C. Swope, J. W. Pitera, F. Suits, M. Pitman,
and M. Eleftheriou. Describing protein folding kinetics
by molecular dynamics simulations: 2. Example appli-
cations to alanine dipeptide and beta-hairpin peptide.
Journal of Physical Chemistry B, 108:6582–6594, 2004.

[43] V.A. Voelz, G.R. Bowman, K.A. Beauchamp, and V.S.
Pande. Molecular Simulation of ab Initio Protein Fold-
ing for a Millisecond Folder NTL9. J. Am. Chem. Soc.,
132(5):1526–1528, February 2010.

[44] W. E and E. Vanden-Eijnden. Towards a Theory of Tran-
sition Paths. Journal of Statistical Physics, 123(3):503–
523, May 2006.

[45] L.R. Welch. Hidden markov models and the baum-welch
algorithm. IEEE Inf. Theory Soc. Newsletter, 53:1–13,
2003.

[46] B.G. Wensley, S. Batey, F.A.C. Bone, Z.M. Chan, N.R.
Tumelty, A. Steward, L.G. Kwa, A. Borgia, A. Garrido,
and J. Clarke. Experimental evidence for a frustrated
energy landscape in a three-helix-bundle protein family.
Nature, 463(7281):685–688, February 2010.



13

APPENDIX A: PROOF THAT AN OBSERVED
METASTABLE MARKOV PROCESS WITH m

SLOW RELAXATION PROCESSES IS
EQUIVALENT TO A m-STATE HMM

We consider the dynamics of the Markov process zt ∈
Ω, in the full-dimensional phase space. In this section
we do not yet consider any projection to an observation
space. The purpose of this section is to investigate if the
following two processes are equivalent:
Definition: m-timescale Markov process: A re-

versible and ergodic Markov process with m dominant
slow processes. We assume that we work at a lag time
τ , at which the all other processes have decayed. Thus
the spectrum is assumed to be 1, λ2..., λm, 0, ..., 0).
Definition: m-state hybrid process: A m × m

Markov chain where each state has a fixed output dis-
tribution ρk(z), z ∈ Ω. The process consists of propagat-
ing the Markov chain in time. At every time instant, we
draw an independent random number from ρk(z) where k
is the current discrete state.

These two are equivalent if their transition kernels are
identical:

p(1)τ (z0, zτ ) = p(2)τ (z0, zτ )

or, equivalently, if their correlation densities are identical:

µ(1)(z0)p(1)τ (z0, zτ ) = µ(2)(z0)p(2)τ (z0, zτ )

c(1)τ (z0, zτ ) = c(2)τ (z0, zτ )

where µ is the stationary distribution of the respective
process. We write down the corresponding correlation
densities:

1. m-timescale Markov process: see [28]

cτ (z0, zτ ) = µ(z0)µ(zτ ) +

m∑
k=2

e−κkτφk(z0)φk(zτ )(13)

2. m-state hybrid process: We use the m×m tran-
sition matrix T̃(τ) that is reversible with respect to
its stationary distribution π̃, and the correspond-
ing correlation matrix C̃(τ) = Π̃T̃(τ). At every
time step, the process generates output by drawing
independent random variables from the continuous
output functions ρi associated to the current state
i:

cτ (z0, zτ ) =
∑
i,j

ρi(z0)c̃ij(τ)ρj(zτ )

=
∑
k

∑
i,j

ρi(z0)l̃kiλk(τ)l̃kjρj(zτ )

=
∑
i,j

πiρi(z0)πjρj(zτ ) (14)

+
∑
k

e−κkτ
∑
i,j

l̃kiρi(z0)l̃kjρj(zτ ) (15)

In order to show (1)≡(2), we must show that the expan-
sion of eigenfunctions into a basis of state output func-
tions

φk(z) =
∑
i

l̃kiρi(z) (16)

is feasible. We immediately see that this implies a nec-
essary condition: in the expansion above, the normal-
ization conditions of eigenfunctions imply:

〈φk | φo〉µ−1 = 〈
∑
i

l̃kiρi(z) |
∑
j

l̃ojρj(z)〉µ−1

=
∑
i,j

l̃ki l̃oj〈ρi | ρj〉µ−1

=
∑
i,j

l̃ki l̃ojsij

= l̃Tk Sl̃o (17)

where

sij := 〈ρi | ρj〉µ−1

is the overlap matrix of basis functions. We have to
fulfill

LSLT = Id

S = L−1L−T = (LTL)−1 = (LTRTΠ)−1 = Π−1.

but that means that S has to be a diagonal matrix. Since
the output distributions ρi are non-negative, S can only
be diagonal if the sets on which the ρi are non-zero do not
overlap in the full state space. This condition is necessary
for both directions of the proof.

This observation suggests that the two processes m-
timescale Markov process and m-state hybrid pro-
cess are generally not equivalent, but equivalance is pos-
sible when the nonoverlap condition 〈ρi | ρj〉 = 0 for
i 6= j is used as a condition. Additionally, it has been
observed that the weighted eigenfunction ψi = µ−1φi are
approximately constant on the metastable sets, a prop-
erty that will be required later. Therefore, we define a
variation of the m-process Markov
Definition: m-metastable Markov process: is a

m-timescale Markov process with the following additional
properties: Let {ρi}mi=1 be a set of non-overlapping prob-
ability density functions, and let {A1, . . . , Am} be a par-
tition of Ω defined as

z ∈ Ai ⇔ ρi (z) > 0 (18)

and

z ∈ Ai ⇔
φi(z)

µ(z)
= const. (19)

In this definition, the sets A1, ..., Am are metastable
sets and the boundaries between them are the transition
states. The definition represents an idealized metastable
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Markov process: The decomposability of µ into m dis-
tinct modes implies that transition states between the
metastable sets have no probability density: µ(z) = 0.
Furthermore, the assumption that the weighted eigen-
functions φiµ−1 are constant on the sets A1, ..., Am is
an idealization of the fact that these eigenfunctions have
been observed to be almost constant on metastable sets
[37].

Therefore, no classical physical system can be an m-
metastable Markov process - whenever transitions be-
tween the sets A1, ..., Am are possible, the dynamical
process must travel through the transition regions, and
therefore, µ(z) will not be exactly zero in these regions.
However, a real metastable system may have transition
states that are rarely populated, and thereby approxi-
mate the idealized m-metastable Markov process.

Below, we will show the following:

1. m-hybrid process ⇒ m-metastable Markov process

2. m-metastable Markov process ⇒ m-hybrid process

3. m-metastable PMM ⇔ m-state HMM

From 1 and 2 it is obvious that m-metastable Markov
process ⇔ m-hybrid process. The third step follows from
a projection of these full phase-space processes on the
observed discrete clusters.

A.1 A m-hybrid process is a m-metastable Markov
process

Suppose that the stochastic process {zt} in the state
space Ω is generated by a m-hybrid dynamics with tran-
sition matrix T̃ (τ) and output distribution functions
{ρi}mi=1, where T̃ (τ) is reversible with respect to its in-
variant distribution π̃ which can be decomposed as

T̃ (τ) = Π̃
−1

m∑
i=1

e−κiτ l̃i l̃
T
i (20)

where Π̃ = diag (π), l̃i denotes the i-th left eigenvector
of T̃ (τ). The eigenvectors are normalized such that they
satisfy l̃1 = π̃ and l̃Ti Π̃

−1
l̃j = δij . We now prove that

{z(t)} is also a m-metastable Markov process. Note that
for any t1 > t2 ≥ 0 and B ⊂ Ω,

P
(
zt1 ∈ B | {zt}

t2
t=0

)
=
∑
i

P
(
zt1 ∈ B, st2 = i | {zt}t2t=0

)
=
∑
i

P
(
zt1 ∈ B | st2 = i, {zt}t2t=0

)
×P
(
s (t2) = i | {zt}t2t=0

)
(21)

=
∑
i

P (zt1 ∈ B | st2 = i)

×P (st2 = i | zt2) (22)
= P (zt1 ∈ B | zt2) (23)

where st denotes the state of the HMM at time t. There-
fore, {zt} is a Markov process.

Furthermore we have the correlation density given in
(14) with the eigenfunction representation (16). Using
the non-overlap condition (17), these eigenfunctions have
the correct normalization:

〈φi | φj〉µ−1 = lTi Slj = δij

Therefore {zt} is a m-metastable Markov process.

A.2 A m-metastable Markov process is a m-hybrid
process

Suppose that the stochastic process {zt} is a m-
metastable Markov process in state space Ω. Then its
correlation density is given by (13) and the propagator
eigenfunctions {φi}mi=1, where φ1 = µ is the stationary
distribution of {z(t)}, satisfy the orthogonality condi-
tions 〈φi | φj〉µ−1 = δij . From (18), we can directly follow

〈ρi | ρj〉µ−1 = 0 ∀i 6= j

and thus, every density can be described as a linear com-
bination of basis functions:

µ(z) ∈ span (ρ1, . . . , ρm)

Combining this result with (19), it follows that the entire
set of propagator eigenfunctions must be expressable in
terms of such linear combinations:

φ1, . . . , φm ∈ span (ρ1, . . . , ρm) (24)

We call the coefficients required to represent the eigen-
functions {φi}mi=1 in the basis {ρj}mj=1, l̃ij :

φi =
∑
j

l̃ijρj

and define:

π̃ = [π̃i] := l̃1 (25)

T̃ (τ) =
[
T̃ij (τ)

]
:= Π̃

−1
·
m∑
k=1

e−κkτ l̃k l̃
T
k (26)

with Π̃ = diag (π̃). From these definitions, it follows that

π̃i =

∫
Ai

∑
j

π̃jρj (z) dz

= P (zt ∈ Ai) (27)

and
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π̃iT̃ij (τ) =

m∑
k=1

exp (−κkτ) l̃ki l̃kj

=

m∑
k=1

exp (−κkτ)

∫
Ai

l̃kiρi (z0) dz0

×
∫
Aj

l̃kjρj (zτ ) dzτ (28)

=

m∑
k=1

exp (−κkτ)

∫
Ai

(∑
a

l̃kaρa (z0)

)
dz0

×
∫
Aj

(∑
b

l̃kbρb (zτ )

)
dzτ (29)

=

m∑
k=1

exp (−κkτ)

∫
Ai

∫
Aj

φk (z0)φk (zτ ) dzτdz0

=

∫
Ai

∫
Aj

c (z0, zτ ) dzτdz0

= P (z0 ∈ Ai, zτ ∈ Aj) (30)

Therefore π̃ is a discrete distribution and T̃ is a reversible
transition matrix with respect to π̃, and we can construct
a m-state hybrid Markov process with transition matrix
T̃ and output distributions {ρi}mi=1. Noting that〈

l̃i |̃lj
〉
π̃−1

=

∫ (∑
a l̃iaρa (z)

)(∑
b l̃jbρb (z)

)
∑
c π̃cχc (z)

dz

= 〈φi | φj〉µ−1

= δij (31)
and according to the conclusion in the above section, we
can conclude that the dynamics of {zt} can be exactly
described by a m-state hybrid Markov process.

A.3 m-metastable PMM ≡ m-state HMM

We now consider that the dynamics are observed on a
set of n discrete states {S1, ..., Sn}.

It is straightforward to classify the processes after pro-
jecting them onto an observable y:

1. When projecting a m-timescale Markov process
onto the discrete partition {S1, ..., Sn}, we obtain
a PMM with m relaxation timescales (2). There-
fore, when m-metastable Markov process onto
the partition {S1, ..., Sn}, we also obtain a PMM.
We call this specific PMM a m-metastable PMM.

2. When projecting a m-hybrid process onto sets
{Si}, we obtain a m-state HMM with m hidden
states, them×m transition matrix of them-hybrid
process as a hidden transition matrix, and the out-
put probability matrix

χki =

∫
z∈Si

ρk(z) dz.

In the sections above we have shown that for the
metastable case, we have the equality

m-metastable Markov dynamics ≡ m-hybrid
dynamics

and thus we have shown

m-metastable PMM≡m-state HMM

APPENDIX B. ALGORITHMS AND
DERIVATIONS

B.1 Estimation algorithm

We summarize by sketching the PMM/HMM estima-
tion algorithm

Algorithm 1: PMM/HMM estimation
Input:
- N trajectories, discretized into n clusters:
S = {{s(1)t }, ...., {s

(N)
t }}

- lag time: τ
- number of slow relaxation processes considered: m
Algorithm:

1. Estimate reversible Markov transition matrix
T(τ) ∈ Rn×n from the discrete trajectory S

2. Decompose T(τ) into an initial guess for the
HMM matrices: χ ∈ Rn×m and T̃(τ) ∈ Rm×m

using PCCA and Equations (5-6).

3. Optimize χ and T̃(τ) using the EM algorithm.

4. Validate model by comparing correlation matrices
Cpred(τ) = χΠ̃[T̃(τ0)]

nχ> and C(τ) = ΠT(τ), or
the apparent relaxation timescales computed from
Tpred(τ) = Π−1χΠ̃[T̃(τ0)]

nχ> and the direct
MSM T(τ).

B.2 computing the HMM transition matrix from
PCCA memberships

We use the definition of the coarse-grained transition
matrix derived in [18]

T̃ = (RI)−>I>PR>

with restriction and interpolation operators:

R = M>

I = ΠMΠ̃
−1
.
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By a series of algebraic transformations we obtain:

T̃ = (RI)−>I>PR>

= (MTΠMΠ̃
−1

)−T (ΠMΠ̃
−1

)TPM

= MTPTΠMΠ̃
−1

(MTΠMΠ̃
−1

)−1

= MTCMΠ̃
−1

(MTΠMΠ̃
−1

)−1

= MTCM(MTΠMΠ̃
−1

Π̃)−1

= MTCM(MTΠM)−1

MT̃MTΠMMT = MMTCMMT

T̃MT = (TM)T

T̃ = MTTM(MTM)−1

B.3 EM implementation

In order to estimate a discrete HMM using the Baum-
Welch EM method, we iterate the following two steps

1. Expectation step: Estimate the hidden path prob-
abilities {αt}(k) and {βt}(k):

{{αt}(k), {βt}(k)} = arg max
{αt},{βt}

P({st} | {αt}, {βt}, T̃(k),χ(k))

and compute the log-likelihood L = logP({st} |
T̃,χ).

2. Maximization step: Estimate T̃(k+1) and χ(k+1).

{T̃(k+1),χ(k+1)} = arg max
T̃,χ

P(T̃,χ | {st}, {αt}(k), {βt}(k))

until the increase of the likelihood (7) falls below a user-
defined threshold. While the expectation step is general,
the maximization step must be designed for the specific
HMM implementation. Here, we estimate the quantities
T̃,χ as follows:

1. From the expectation step, we compute the Baum-
Welch count matrix between hidden states [19, 45]:

Z̃t = g−1αtT̃
(k)βt+1χst

g = 1TαtT̃
(k)βt+1χst1

where S is a normalization factor ensuring that we
only count 1 transition per time step. The total
count matrix is given by the sum over all single-
step count matrices:

Z̃ =
∑
t

Z̃t

which may run over multiple trajectories. Given
the count matrix Z̃, we estimate the maximum like-
lihood transition matrix that fulfills detailed bal-
ance using the algorithm described in [32] and im-
plemented in EMMA [39]:

T̃ = arg max
T̃

P(Z̃ | T̃)

such that Π̃T̃ = T̃>Π̃

2. The stationary probability is computed from the
hidden transition matrix

π̃> = π̃>T̃

3. The output probability distributions are computed
by first estimating histograms:

yij = y0ij +
∑
t

αt,iβt,i1(st = j)∑
k αt,kβt,k

where yij is the estimated number of times that
hidden state i has produced cluster j as an output.
1(st = j) is an indicator function that is 1 if the
cluster trajectory is at state j at time t, and 0 oth-
erwise. y0ij is a prior count, here uniformly set to
n−1. Then, the histograms are normalized to:

χij =
yij∑
k ykj

.

B.4 Derivation of experimental observables

Correlation function between observables a and b for
lag time τ = nτ0

E[a(t)b(t+ τ)] = a>χ>Π̃[T̃(τ0)]nχb

= a>χ>
m∑
i=1

λi(τ )̃li l̃
>
i χb

=

m∑
i=1

e−τκi〈a,qli〉〈b,qli〉.

Relaxation function of observable a, starting from the
hidden-state probability distribution p̃0:

Ep̃0
[a(τ)] = a>(p̃>0 [T̃(τ0)]nχ)>

= a>χ>(p̃>0 [T̃(τ0)]n)>

= a>χ>(p̃>0 Π̃
−1

m∑
i=1

λi(τ )̃li l̃
>
i )>

=

m∑
i=1

λi(τ)a>χ> l̃i l̃
>
i Π̃
−1

p̃0

=

m∑
i=1

e−τκi〈a,qli〉〈̃l>i , p̃∗0〉.

where p̃∗0 is the excess probability distribution p̃∗0 =
Π−1p̃0.


