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A SQUARE ROOT APPROXIMATION OF TRANSITION RATES
FOR A MARKOV STATE MODEL*
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Abstract. Trajectory- or mesh-based methods for analyzing the dynamical behavior of large
molecules tend to be impractical due to the curse of dimensionality—their computational cost in-
creases exponentially with the size of the molecule. We propose a method to break the curse by a
novel square root approximation of transition rates, Monte Carlo quadrature and a discretization
approach based on solving linear programs. With randomly sampled points on the molecular energy
landscape and randomly generated discretizations of the molecular configuration space as our initial
data, we construct a matrix describing the transition rates between adjacent discretization regions.
This transition rate matrix yields a Markov state model of the molecular dynamics. We use Perron
cluster analysis and coarse-graining techniques in order to identify metastable sets in configuration
space and approximate the transition rates between the metastable sets. Application of our method
to a simple energy landscape on a two-dimensional configuration space provides proof of concept and
an example for which we compare the performance of different discretizations. We show that the
computational cost of our method grows only polynomially with the size of the molecule. However,
finding discretizations of higher-dimensional configuration spaces in which metastable sets can be
identified remains a challenge.
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1. Introduction. In statistical mechanics, a molecule is described by a suitably
chosen ensemble of systems having the same equations of motion but different initial
conditions. The ensemble is specified by a probability density function which gives the
probability that a system lies in a certain subset of the phase space. If the dynamical
behavior of a system exhibits two or more time scales, then we can consider the
metastabilities of each system in the following way: in the fine scale (smaller time
scale) dynamics, the system fluctuates but relaxes for certain given initial conditions
to subsets which are almost stable; in the coarse scale (larger time scale) dynamics,
the system appears to be a Markovian process jumping between the almost stable
subsets, where the transition probability depends only on the current state. A subset
is almost stable if the expected exit time of a system from the subset is large, relative
to the fluctuations occurring at the short time scale. One sometimes uses the terms
metastabilities or conformations to refer to the almost stable subsets of the phase
space. In Figure 1.1 we see a trajectory of a system exhibiting the kind of multiscale
dynamics we have described. The identification of the metastabilities of a system and
the study of its coarse scale dynamics are among the primary goals of coarse-graining
and multiscale methods [3, 13, 16].

Methods based on Markov state models [24, 26, 15] seek to identify the metasta-
bilities and study the coarse scale dynamics by constructing a Markov chain on a finite
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Sample trajectory of metastable dynamical system
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F1c. 1.1. Sample trajectory of a metastable dynamical system. Metastable sets of the dynamical
system are the intervals (—1.7,0.2) and (0.2,1.5). In each metastable set, the dynamical system
evolves at a smaller time scale, i.e., the dynamical system exhibits very rapid fluctuations. On the
other hand, the dynamics between the metastable sets occurs at a larger time scale—the system
appears to be a Markovian process which jumps from one metastable set to another at a slower rate.

state space. These methods work by studying certain eigenfunctions of a semigroup
of transfer operators or the associated infinitesimal generator [6, 12, 38]. The Markov
chain is obtained by constructing a matrix which contains the transition probabilities
between the metastabilities [8, 10, 14, 28]. In order to assemble such a matrix, the op-
erators (or the generator) must be suitably discretized, or the transition probabilities
must somehow be approximated, e.g., via molecular dynamics simulations. For sys-
tems of practical interest, the high dimension of the phase space leads to difficulties for
either approach: if one wishes to discretize an operator, the number of basis functions
required (e.g., for an application of the finite element method) grows exponentially
with the dimension; if one wishes to simulate the molecular dynamics, one must apply
a grid or mesh to the phase space, and the computational cost of applying such a mesh
grows exponentially with the dimension of the phase space. The exponential increase
in computational cost is also known as the curse of dimensionality [2] and features
prominently in computational methods for studying molecular dynamical systems.

In this paper we propose a method to break the curse of dimensionality. We adopt
the operator approach, but construct a transition rate matrix instead of a transition
probability matrix. Starting from a theorem in [38], we compute the rates in terms of
quantities of the discretized energy landscape of the system—the Boltzmann weights
of discretization sets, the Boltzmann weights of the surfaces of intersection between
adjacent sets, and the instantaneous flux across intersections. We present and explain
this theorem in section 2.1.

In section 2.2 we assume that the flux between discretization sets is constant over
all pairs of discretization sets. Using a linear interpolation or averaging argument,
we then express the weights of the surfaces of intersection as square roots of the
products of the weights of adjacent discretization sets. This yields a square root
approximation of transition rates. We show the sequence of approximations leading
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from the continuous to the discretized dynamics below and italicize the novel steps in
the sequence:

{P(1) },~o semigroup of generalized transfer operators [38]

1

Q transition rate matrix from [38]
+ (assumption of constant fluz)
Q/

N (square root approzimation)
QI/

The novel steps in the approximation—the assumption of constant flux and the
square root approximation—are important in breaking the curse of dimensionality. By
the assumption of constant flux, we can avoid simulating the dynamics. By the square
root approximation, we only need to compute the Boltzmann weights of discretization
sets, and we approximate these weights by Monte Carlo quadrature.

It remains to choose a discretization method. We need to assign randomly sam-
pled points on the energy landscape to discretization regions for Monte Carlo quadra-
ture, and we need to determine when two regions are adjacent in order to apply the
square root approximation. In this article we will use Voronoi tesselations because
they are not mesh-based discretizations. In section 2.3 we present a formulation of
Voronoi tesselations in terms of convex polyhedra. This formulation provides us a
discretization method that does not incur the curse of dimensionality.

The method proceeds as follows: discretize the state space by Voronoi tesselations
and compute the adjacency relations; randomly sample points on the energy landscape
and compute the Boltzmann weights of the Voronoi regions by Monte Carlo quadra-
ture; use the adjacency relations and the square root approximation to compute the
transition rate matrix Q”; and apply Perron cluster analysis and coarse-graining tech-
niques to Q" in order to identify the metastabilities and coarse scale dynamics. We
describe the method in greater detail in section 3.

In section 4 we present the results of applying our method to a low-dimensional
model. In section 5 we critique the method, analyzing the computational cost in
section 5.1 and the performance of our method on higher-dimensional models in sec-
tion 5.2. We present our conclusions in section 6.

2. Theory. In this section we present the key theoretical ideas behind our
method. We discuss the sequence of approximations which leads from transfer oper-
ators to the transition rate matrix Q" of our method. We present a formulation of
Voronoi tesselations in terms of convex polyhedra and end with a brief overview of
the Perron cluster analysis and coarse-graining methods.

2.1. Transfer operators and transition matrices. Modeling molecular
dynamical systems according to Newton’s laws of motion gives rise to differential
equations. These differential equations in turn lead to operators which describe how
systems evolve in some state space. In order to study systems using computational
methods, one needs to first choose an operator which describes the continuous dynam-
ics. Discretizing this operator yields a matrix that describes the discretized dynamics.

Consider the transfer operator P(7) which describes how the configuration (the
vector of spatial coordinates of the atoms of a molecule) evolves over a time lag
7 > 0 [38, 34]. For computation purposes, one projects the operator, which acts
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on a high-dimensional continuous space, to a lower-dimensional space {2, which one
then discretizes using closed discretization sets {Qi}izl,...,n which overlap only at
their boundaries. We use Voronoi tesselations as our discretization method because
they are a meshless discretization method and because we can compute adjacencies
between the resulting discretization sets without incurring the curse of dimensionality,
as we will show in section 2.3. The projection of P(7) to the discretization yields a
transition probability matrix (P(7)i;); ;, associated with the discretization, where
P(r1);; gives the probability of a transition from Q; to €2; after 7 units of time.

In practice, one computes P(7);; by computing many molecular dynamics simu-
lation trajectories and counting the proportion of trajectory segments starting in ;
that are in €; after 7 units of time. As computing trajectories suffers from the curse
of dimensionality, we need a different approach for studying the transition behavior
over the discretization sets—one that does not need trajectory segments. The key
is to avoid estimating transition probabilities over 7 and to consider instantaneous
transition rates instead. We will need Theorem 4 from [38], which we abbreviate as
follows.

THEOREM 1. Given a Voronoi tesselation 2 = U, Q; and the associated matriz
P(1) € R™™ of a transfer operator P(7), the matriz Q := B%P(T)‘T:O satisfies

Qi) = / 2(@)mi(q)dS(q)

Q;NQ

for i # j, where dS(q) is the surface measure on ; N Q;, m + Q@ — [0,00) is the
normalized restriction to ; of the Boltzmann density over ), and z(q) denotes the
flux of configurations from Q; to Q; through the point q € §; N Q.

The quantity );; describes the instaneous rate of flux of molecular configurations
moving from §2; to Q; across the surface 2;N€);, given that states in §); are distributed
according to m;(-). To see how, we follow [38] and rewrite Q;; as Qi; = si;(2)i;/wi,
where w; = [, 1o, (q)7q(§)dq is the Boltzmann weight of Q;, s;; = meQj 74(q)dS(q)
is the Boltzmann weight of the surface Q; N €);, and

o) — 5 mq(q)
@s= [ RS ey R

is the flux per unit area from §; to Q; across Q; N ;. Thus, s;; (2);; quantifies the
flux of configurations from €; to §2; across €;N€2;, and we establish that @;; describes
the conditional transition rate of configurations from 2; to €2;.

2.2. Square root approximation. Now we present the novel idea of our method:
the construction of the square root approximation transition rate matrix. We assume
that the flux per unit area term (z);; from Theorem 1 is equal to a constant Z that
is independent of ¢ and j. This assumption is equivalent to assuming that the flux
per unit area across any surface €; N €2; is the same for all pairs i # j for any
given discretization of  and yields a matrix @’ with off-diagonal entries given By
Qéj =z sij/wi.

Let the Boltzmann density on configuration space mq : © — (0,00) be given by
mq(-) = Z7Yexp [-BV ()], where Z is the partition function or the normalizing con-
stant, 8 = (kgT)~! is the inverse of the product of temperature T with Boltzmann’s
constant kp, and V' : Q — R is the potential energy function of the molecule. Recall
that a Voronoi tesselation of R? generated by n distinct points {g:}!_, is a partition
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Potential energy function V(x)=(x2—1)2—0.2x+043
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Fic. 2.1. Potential energy function, with Voronoi regions Q1 = [—1.5,—0.5] and Q2 =

[—0.5,0.5] generated by g1 = —1 and g2 = 0, and the surface of intersection Q1 N 9Ny = {—0.5}.
The potential energy function between g1 = —1 and g2 = 0 is approzimated by the average of V(—1)
and V(0).

of R? into n closed Voronoi regions {€;};_,, where the Voronoi region ; generated
by g¢; is the set of points which are closer to g; than to other g; in the Euclidean
distance metric:

(2.1) Qi:={zeR" : |l —gill <llz —gjll, i # 5}

In particular, ©; N Q; = 9Q; N OQ; for ¢ # j. Now consider a simple one-dimensional
configuration space and a Voronoi tesselation of that space, as in Figure 2.1. The
intersection ¢ = €; N Q; of adjacent Voronoi regions 2; and ; is the midpoint
between their respective generators g; and g;. If we approximate the potential energy
function between g; and g; by a linear interpolant between g; and g;, we have that
V(q) = 0.5(V(gi) + V(g;)) and obtain

(22)  sy= e[~V = 5 /ew(4V(9) ep(~BV (9,))

What if we have the energy values of scattered points in 2; and £2; but do not wish
to create a Voronoi region for each point? One possible solution would be to let

(23) Sij ~2 \/@iﬂ}jNij,

where N;; = 1 if Q; and Q; are adjacent (i.e., if dim(€; N Q;) = dim(£;) — 1) and
N;; = 0 otherwise, and w; denotes the arithmetic mean of Boltzmann density values
of points in each Voronoi region,

M M -1 M
(2.4) w; =M, <Z Lo, (%)%(%)) = (Z Lo, (%)) (Z Lo, (%)M(%)) :
k=1 k=1 k=1

In (2.4), the {qk}g/il are the scattered data points in the configuration space 2, M
is their total number, M; denotes the number of data points in ;, and 1g,(z) =1
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if z € Q; and 0 otherwise. We will refer to the symmetric matrix (Ny;);',_; as the
matriz of adjacency relations.

The rationale for the approximation in (2.3) is as follows. Let ; and Q; be
adjacent and recall the definition of s;; given in section 2.1. In the limit of arbitrarily
small Voronoi regions, the Boltzmann density values of points on 9€; N 9€); will
be arbitrarily close to the Boltzmann density values of the generators g; and g; by
continuity of the energy function V'; the Boltzmann density values of g; and g; will
also be arbitrarily close to w; and w; for the same reason.

Now we apply the square root approximation. Replace s;; and w; in the expression
ng = Z s;;/w; from section 2.1 with /w;w;N;; and ;, respectively. The latter
replacement holds since w; converges in probability to the true Boltzmann weight w;
as M; — oo by the law of large numbers. We obtain

(2.5) QY = 2\/w;w;Nij Jw; = 2/ w;/w; Nij,

which is our square root approzimation for the transition rate of configurations from
Q; to Q; for ¢ # j. An immediate advantage of (2.5) is that by taking the ratio w;/w;
we no longer need to compute the partition function Z in (2.4). It also follows from
(2.5) that detailed balance between the transition rate matrix @” and the measure
w = (w1, ...,W,) holds:

The equation above implies time-reversibility of the associated Markov chain [27].
Interesting consequences follow from the interpretation of the off-diagonal entries

of Q" as transition rates. Since the total concentration of states leaving Q; for adjacent

regions must be deducted from the concentration of states in 2;, we must have

n
(27) Q= Qi

J#i
Furthermore, Q" must also describe the evolution of distributions x(¢) € [0,1]™ over
the {Q;}!; by £27(t) = 27Q". Since the Boltzmann distribution is an equilibrium
distribution of the continuous dynamics, we expect that its discretization w is an
equilibrium distribution of the discretized dynamics: 0 = w' Q.

LEMMA 1. Let v € R™ be a strictly positive vector and let R = R(v) € R"™™ be

the matriz whose entries are given by

ﬂ? 7: '7
R;; = { V. . 7&].
_Zk;éi Rk, i=7j.
Then the vector v satisfies 0 = v’ R.
Proof. Fix j € {1,...,n}.

(UTR)J' = ’UiRij +ov; | — Rjk = Vi % +v; | — \/E =0. a
Note that Lemma 1 also follows from detailed balance of v and R [27].
COROLLARY 1. The sample mean approximation w of the discrete Boltzmann

measure given in (2.4) is the invariant measure of the transition rate matriz Q" given

by (2.5), (2.7): 0=w'Q".
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2.3. Convex polyhedra formulation of Voronoi tesselations. In this sec-
tion we present the second important idea of our method: a formulation of Voronoi
tesselations in terms of convex polyhedra, which we use to avoid the curse of dimen-
sionality when we discretize the configuration space 2 and compute the matrix N of
adjacency relations. In (2.1) we defined a Voronoi region €; associated with a gener-
ator g; as the set of points which were closer to g; than any other generator. We will
present an alternative definition and show that these two definitions agree.

For the set of n distinct generating points {g;};_, C R?, let gi,; denote the jth
coordinate of g;, construct b € R” and A € R**(4+1) according to

291 ) =~ = da
(28) bi = ||ng2 and Aij = { 7 _

and use these to construct the (d + 1)-dimensional convex polyhedron P C R4+
(2.9) P:={%=(2,2441) ER* xR : b— Ai >0}.

Fori=1,...,n, define f*: R — R by fi(2) := b; — Z?ill Aie%. The supporting
hyperplane h; of P and the facet F; associated with g; are given by

hi={&eR" : fi(i)=0} and F;:=Pnh.

(Recall that a facet of a convex k-polyhedron has dimension k — 1, so that F; has
dimension d.) Let II; be the operator which projects subsets of R4t to the first d
coordinates. Consider the d-dimensional set €,

(2.10) Q= TI4F;.

LEMMA 2. Let Q; be as in (2.1) and Q; be as in (2.10). Then Q, = ;. Results
similar to Lemma 2 appear in [23, 1]. The proof below is our own.

Proof. By definition of h;, b, and A, every & = (x,xq41) € h; satisfies xg41 =
2(gi, x) — ||gi||*>. Substitute & = (z,2(g;, z) — ||g;||?) into b; —>°, AjxZ) > 0 for j # i

lg; 11> = 2(g;, ) + 2(gs, z) — [|g:]|* > 0.
Since F; = PN h;, we have

O =1l {(a:,Z(gi,x> — ||gz||2) ERYxR :
g l1* = 2(g;, ) + 2(gi,w) = llgill* > 0 for j # i}
= {zeR? : |lg;* = 2gj, ) + 2{pi, x) — |lgil> > 0 for j # i}
= {zeR? ¢ ||gj* = 2gj, @) + [l«]> = |=[|* + 2{pi, z) — [|gill> > 0 for j # i}
:{a:ERd : ||a:—gj|\22|\x—gi||2 forj;éi}:Ql-. O

Recall from section 2.2 that two Voronoi regions were defined to be adjacent if
dim(Q; N Q;) = dim(€;) — 1. Now consider the following definition.

DEFINITION 1. Two d-dimensional Voronoi regions Q; = lgF; and Q; = 11 F;
are adjacent if their liftings F; and F; have the property that dim(F; N F;) =d — 1.
Equivalently, Q; and €; are adjacent if F; N F; is a facet of F;.

Together, Lemma 2 and Definition 1 lead to a method for computing the matrix
N of adjacency relations via linear programming. The linear programming approach
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allows us to discretize configuration spaces while avoiding the curse of dimensionality.
We first found the idea of using linear programs to compute N in [9].

Fix i€ {1,...,n} and j # i. Let {ex},_, C R™ be the set of canonical orthonor-
mal basis vectors and define the linear program

minimize  f%(%)
(2.11) LP(i,5): subject to  (b+e;) — AT >0,
(@) =0.
For v > 0, consider the closed half-spaces
Hi>_y:={Z e R™! ¢ f{(&) > —v} and H; <, = { e R : fi(%) < —v}.

The half-spaces are important because they define the polyhedron P via P = Ny H >0.
The idea from [9] behind the linear program LP (3, j) is that only the Voronoi regions
which are adjacent to €2; will change when £2; changes. We change 2; by trans-
lating the supporting hyperplane h; down along the x441-axis by unity to obtain
the parallel hyperplane h}. Translating h; to h} perturbs H; >0 to H; >_1 and P to
P’ := (Ng#iHi,>0) N H; >—1. The facets of P’ are given by Fj’ =P’ ' Nh;for j#1
and F] := P' N hj. In LP(i,j) above, we minimize over F}; adjacency of Fj to F;
implies that the image Fj’ of F; under the perturbation will properly contain Fj, in
which case fi(-) will attain strictly negative values. On the other hand, if fi(-) attains
strictly negative values, then we can also show that F; must be adjacent to F;. We
now make these arguments rigorous.

LemMmaA 3. If F; N Fj is not a facet of Fj, then Mi£i (Hk720 N hJ) - Hi)zo n hj.

Proof. We prove the contrapositive. Suppose Ngx; (Hi,>0 Nhj) D Hi >0 N hj.
Intersecting both sides with H; >o N h; yields F; = H; >¢ N h;, and intersecting both
sides of Fj = Hi720 n hj with hl yields Fj n hl = hz n hj. But Fj n hl = Fj n Fi and
dim(h; N h;) = d — 1 since h; and h; are hyperplanes in R4*1. 0O

LEMMA 4. It holds that F; C FJI If Nk (szoﬂhj) C H;>oN hj, then
Fy=FL

Proof. Since H; >0 C H; >_1, for j # ¢ we have

(2.12)  [Nii (Hi,>0 N RO (Hi >0 N hy) C [Nigzi (Hi,>0 N hy)] 0 (Hi>—1 0 hy) .

The second conclusion follows immediately from H; >0 N h; C H; >_1 N h;. O
LEMMA 5. The optimal value of fi(-) in LP(i,j) is strictly negative if and only
Zf Fj C FJ/
Proof.

< Since Fj C H; >y and F; C H; o, it holds that Fj C Fj implies () #
F{\F;j C Hi>_1\ H; >0. Thus there exists a Z in F for which fi(z) <o.

= Suppose that Fj’ = Fj. Then LP(, j) is a minimization problem over F; C
H; >o. Over H; >0, f(-) has only nonnegative values. 0

We now state and prove the main result of this section.

THEOREM 2. Let {4}, C R? be a Voronoi tesselation of R generated by
{9:}7_1. Fizi# j € {1,...,n} and define LP(i,j) as in (2.11). Then the optimal
value of fi(-) is strictly negative if and only if ; and §; are adjacent.

Proof of Theorem 2. Since the optimization problem in LP(4, ) is over the facet
Fj = P'Nh; # 0 and since P’ C H; > it holds that the objective function f*(-) is
bounded from below by —1, so the minimization problem is well-defined.
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< Suppose §2; and ); are adjacent. Then F; N F; = F; Nh; is a facet of F; by
Definition 1. Since Fj N h; # Fj N hy, it follows that a facet of F); changes
under the perturbation which sends P to P’. Changing a facet of a convex
polyhedron changes the polyhedron itself and Fj is a convex polyhedron, so
F J’ # F;. Applying the first part of Lemma 4 and then Lemma 5 yields the
desired conclusion.

= Suppose ); and €); are not adjacent. Then Fj; N h; is not a facet of F}, so
we can use Lemma 3, the second part of Lemma 4, and Lemma 5 (in that
order). O

Theorem 2 appears without proof in [9]. The proof we have shown above (in-
cluding Lemmas 3-5) is our own. Connections between linear programs and Voronoi
tesselations have been studied for other problems in [33, 11, 36].

In this section, we computed adjacency relations by solving a linear program that
was expressed in terms of (b, A). We can also use (b, A) to assign a randomly sampled
configuration ¢ € 2 to a Voronoi region. Let § := (g, ]|q||) € R? x R. The index i =
argming (b— Aq)y gives the index of the Voronoi region which contains ¢. In section 4,
we compute centroidal Voronoi tesselations (CVTs) [30] using uniformly distributed
generators, because such tesselations are simple to generate via an iterative method
and yield discretization regions which are close to uniform. We leave the question
of how to best choose the generators for future work. In section 5.1 we compare the
computational cost of different methods of discretizing via Voronoi tesselations and
show that the linear programming formulation we presented above enables us to break
the curse of dimensionality.

2.4. Identifying conformations. In this section we review some results from
[37] on identifying conformations from transition matrices. In the previous section we
used nonoverlapping, closed Voronoi regions to discretize the configuration space,

(2.13) Q=Up_ Q, int(Q;NQ,) =int(0Q; N9N,) =0 for i # j,

and we used indicator functions to assign configurations to Voronoi regions: 1g,(q) =1
if g € Q; and 1g,(q) = 0 otherwise. We wish to find a partitioning of configuration
space into n. overlapping conformations, {C; }?;1,

(2.14) Q=Uye,Cp, int(C; N Cy) # 0 for adjacent C; and Cj, i # j,

where the regions of overlap are the transition regions.

To describe the conformations, we use membership functions x; : @ — [0, 1],
which assign a degree of membership to each conformation C;. The y; generalize
indicator functions by permitting configurations to belong to more than one confor-
mation and form a partition of unity: Vq € €, Z?;l X;(q) = 1. Discretizing the set
of membership functions yields a matrix x’ € [0, 1]™*™<, where the ith column is the
discretization of the ith membership function and x;; gives the degree of membership
of the jth discretization region to the ith conformation. It follows from the nonnega-
tivity and partition of unity properties of the membership functions {x;};<, that x’
is nonnegative and row-stochastic, which is equivalent to the following property:

(P0) Each row (x'"); as a point in R™ must lie on or in the (n,)-standard simplex,
i.e., the simplex in R™ spanned by the canonical orthonormal basis vectors.

We want to compute x’ from the transition rate matrix Q" that we constructed in
section 2.2, which is an approximation of Q) = %P(T)|T:0 from Theorem 1. The ma-
trix P(7) is a discretization of the generalized transfer operator P(7) which describes
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the transfer of configurations ¢ over a lag time 7. We must have P(7)x;(q) =~ xi(q)
because configurations in C; tend to stay in C; over 7 units of time, i.e., since C} is a
metastable set. If {P(7)}, . is a semigroup with an infinitesimal generator Q, then

. Plrxilg) —xile) _ . xilg) — xil9)
(2.15) Qxilq) = Thg}) . ~ Thg}) —

=0.

Thus, the membership functions are close to eigenfunctions of Q associated with
eigenvalues near zero, and (2.15) implies the following property:
(P1) The columns of x’ are close to right eigenvectors of Q" corresponding to
eigenvalues {0;};, near zero:

(2.16) Q'Y = x'0, ©:=dag(t,...,0,.), 0;~0,i=1,..., n.

If © = 6 Id € R™ %" for some 6 near 0, then given an eigenvector matrix X satisfying
Q"X = 60X, any transformation T € GL(n..) yields another eigenvector matrix:

Q"(XT) = (Q"X)T = (0X)T = 0(XT).

We know by (P1) that © ~ 0 Id. Thus, for any matrix X computed from standard
eigenvector algorithms satisfying Q"X = XO, we have ¥’ ~ XT. Combining this
fact with (P0) implies that the rows of X are close to a simplex. In order to obtain
a membership vector matrix x’ from an eigenvector matrix X, it suffices to map the
vertices of the simplex formed by the rows of X to the canonical orthonormal basis
vectors in R™e. The idea behind the inner simplex algorithm is to construct 7" from

X(p1,1) ... X(p1,nc)
(2.17) T = ; : ,
X(pn.,1) .. X(pn..ne)

where the {p;};-<, are indices of the rows of the eigenvector matrix X that are furthest
away from each other (i.e., indices of the rows which form the vertices of a simplex)
[37]. If the resulting matrix x’ := X T has negative entries, one may use robust Perron
cluster analysis to turn X’ into a nonnegative matrix [7, 20].

In the discussion above, we assumed that we knew the number of conformations
ne. If one does not know the value of n., one identifies a cluster of eigenvalues of Q"
which are close together near zero (of smallest magnitude) and separated from the
rest of the spectrum of Q" by a spectral gap, and then one sets n. equal to the number
of eigenvalues in the cluster. The smallest eigenvalues are related to the time scales
of the slow dynamics [24], and in order to obtain a spectral gap, one must identify
a configuration space in which one can distinguish between fine scale dynamics and
coarse scale dynamics [15]. One calls the eigenvalues in the cluster Perron eigenvalues
and the corresponding right eigenvectors Perron eigenvectors.

2.5. Conformation dynamics. So far, we have seen that with Q" we can
describe the evolution of distributions of configurations over the Voronoi regions and
identify the conformations of the system. In this section, we identify the equilibrium
distribution on the conformations and compute conformational transition rates by
coarse-graining [22, 21].

We obtain distributions x. over conformations from distributions x over discretiza-
tion sets by projection. Let R : R™ — R™ be given by Rz := x'"z € [0, 1] and set



748 H. C. LIE, K. FACKELDEY, AND M. WEBER

T, := Rx; it holds that x. is nonnegative and its elements sum to one. We obtain the
equilibrium distribution over conformations

(2.18) W, := Rw.

Define D := diag(w), D, := diag(w.), the interpolation operator I : R™ — R™ by
Iy := DX'D 'y, and the reduction Q” of Q" by Q" := (R(Q”)TI(RI)_l)T. Using
the definitions of R and I and using x’ = XT one can show that

(2.19) Ql=T"Ter".

Note that the entries of QY are not true transition rates, because the conformations
overlap. We can mitigate, but not fully eliminate, this problem by reducing the overlap
between conformations [18]. However, the matrix Q7 that we obtain from the coarse-
graining procedure is correct in the sense that one obtains the same coarse-grained
distributions, regardless of whether one first evolves x(t) forward in time using Q" and
then coarse-grains using R, or first coarse-grains z(t), and then evolves the resulting
xc(t) forward in time using QY (see Theorem IV.2 of [22]). Equation (2.19) is useful
if one wishes to compute P.(7) = exp(7Q”)—the matrix of transition probabilities
between conformations over a lag time 7—since then one only needs to compute
exp(7O).

Note also that since we obtain the rate matrix Q" after the assumption of constant
flux (see section 2.2) QY is a scalar multiple of the true coarse-grained propagator.
Thus, one can only use the entries of Q7 to compute ratios between transition rates.
For example, the ratio Qi : @¢,ij—the ratio of the kth entry of the ith row of Q.
to the jth entry in the ith row of Q.—is the ratio of the absolute rate of transition
from the ith to the kth metastable set, relative to the absolute rate of transition from
the i¢th to the jth metastable set. The diagonal entries are related to the average or
expected time that a molecule stays in the conformation [22].

The idea of coarse-graining—that some Markov chains can be simplified by parti-
tioning their state spaces into groups—has been studied before under different names,
e.g., lumping [4] or aggregation [35], and chains which can be simplified this way are
sometimes called nearly completely decomposable.

3. Method. We now provide a more detailed description of our method to sup-
plement that given in section 1. We assume that one has a potential energy function
V : Q — R described over a configuration space 2 and has fixed the value of the
inverse temperature 5. We ignore the computation of the partition function Z in
steps 1 and 3 below.

1. Generate a collection {qj}j:17m7M C Q of M configurations. Compute the
Boltzmann densities {p; := exp(—=BV(¢;))},=1 -

2. Using n random generators drawn from the uniform distribution on a subset
of the configuration space, compute a CVT [30] such that every Voronoi region
contains at least one configuration.

3. Compute the {w;},_; , as given in (2.4). Normalize the resulting vector to
get a discretized distribution.

4. Compute the matrix of adjacency relations N € {0,1}

Construct the matrix Q" as described in (2.5) and (2.7).

6. Given n., compute the Perron eigenvector matrix X € R™*" for Q”. If n.
is not known, identify a cluster of Perron eigenvalues in the spectrum of Q"
near zero and set n,. to the number of elements in this cluster.

X .
"™ using Theorem 2.

ot
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7. Transform the Perron eigenvector matrix X into a matrix x’ of membership
vectors using the inner simplex method or robust Perron cluster analysis.

8. Compute the vector w, of weights of conformations using (2.18) and the
matrix Q7 of relative conformational transition rates using (2.19).

4. Examples. In this section we investigate the performance of the method on
some examples.

4.1. A simple model of an energy landscape. We applied the method to a
model of a molecule with the potential energy function

V(g) =3exp (—Qf — (g2 — 1/3)2) —3exp (—Qf — (g2 — 5/3)2)
(4.1) — Sexp (— (@1 —1)° - q%) — 5exp (— (@1 +1)° - q%)
+0.2¢1 +0.2 (g2 — 1/3)*.

This energy landscape has been studied before, e.g., in [32, 29]. This system has
three metastable sets: Cy and Cs, centered at (—1,0) and (1,0), respectively, and C
centered at (0,5/3). The basins of low energy at Cy and C3 are deeper than the basin
at C1. A small bump centered at (0,1/3) gives an energy barrier between the basins
at Cy and C3. The configuration space is = R2.

We applied the method to the above model. We used the value § = 3.34 for the
inverse temperature, and we used n = 100 generators and M = 2000 configurations
drawn from the uniform distribution on [—2, 2] x [—1, 2]. We show some of our results
in Figures 4.1 to 4.6.

In Figure 4.1, a Voronoi region has a darker shade if its Boltzmann measure is
higher. Two clusters of dark regions correspond to the basins at Cy and Cs. The
regions clustered around (0,5/3) are not as dark because the basin at C; is shallower
than the basins at Co and C3, so the Voronoi regions in C; have smaller Boltzmann
measure. In the plot of the smallest nine eigenvalues of Q" (Figure 4.2) a spectral gap
separates the three smallest eigenvalues from the rest of the spectrum, indicating that
this application of our method has resolved three conformations, i.e., that n, = 3.
In Figure 4.3, the rows of the reduced Perron eigenvector matrix X € R'99%2 almost
perfectly span a simplex in R2. (By the reduced Perron eigenvector matrix, we refer to
the Perron eigenvector matrix without the constant right eigenvector corresponding
to the zero eigenvalue of Q”.) We map this simplex to the standard simplex in R?
to obtain the membership vectors for each conformation. We show the membership
vectors in Figures 4.4, 4.5, and 4.6, where a Voronoi region is darker if its membership
to the conformation is higher (closer to unity).

We evaluated the method by comparing the statistical weights and ratios of tran-
sition rates to the reference values obtained by Gauss—Legendre quadrature on a
regular 9 x 9 grid as given in [38]. We used a regular 201 x 151 mesh of data points
in [-2,2] x [—1,2] as our set of data on the energy landscape. On this data set we
applied four different discretizations: 9 x 9 and 18 x 18 mesh-based discretizations
and random CVTs consisting of 81 and 324 centers computed after 500 iterations.

In Table 4.1 we present the results from mesh-based discretizations and from
CVTs. Refining the discretization led to better approximations of weights and
transition rates for both the mesh-based and CVT discretizations. However, mesh-
based discretizations yielded better approximations of statistical weights, while CV'Ts
yielded better approximations of ratios of transition rates.
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matriz X are close to a simplex. Dark regions belong strongly to Cs.

The spectral gap |04] — |03] of the transition rate matrix Q" decreased when the
discretization was refined for both discretization methods, from 1.5249 to 0.6984 for
mesh-based discretizations and from 1.7700 to 0.6107 for CVTs. This observation
suggests that refining discretizations uniformly need not lead to a better description
of the slow dynamics.

4.2. Entropic effects. To illustrate that our method can also resolve the en-
tropic effects as mentioned in [29], we applied a CVT to [—2,2] x [—1, 2] while using
the same mesh-based data sites as in Table 4.1. We used two different values of the
inverse temperature, § = 1.67 and 5 = 6.67. We summarize our results in Table 4.2.



A SQUARE ROOT APPROXIMATION OF TRANSITION RATES 751

TABLE 4.1
Comparison for discretizations. Data set: points on 201 x 151 mesh. Inverse temperature
B =3.34.

Gauss—Legendre 9 x 9 Mesh 81 centers CVT 18 x 18 Mesh 324 centers CVT

we(1) 0.0024 0.0023 0.0028 0.0025 0.0025

we(2) 0.4987 0.4990 0.5360 0.4988 0.5157

we(3) 0.4987 0.4987 0.4612 0.4987 0.4819

1—-2:1—3 1:1 0.8728:1 0.5647:1 1.1130:1 0.9059:1

2—>51:2—>3 1.7647:1 0.4211:1 0.4118:1 1.0028:1 1.6754:1

3—41:3—2 1.7647:1 0.2857:1 0.75:1 0.9146:1 1.3967:1
TABLE 4.2

Entropic effects due to different temperatures f = 1.67 and 8 = 6.67, based on results using
324-center CVT and 202 x 151 mesh-based data set as in Table 4.1. Decreasing the temperature
(changing from B = 1.67 to B = 6.67) leads to increases in the ratios in the last two rows because
molecules have on average less energy at lower temperatures, so fewer molecules can overcome the
high energy barrier between Ca and C3 and as a result prefer to transition into Ci.

B=167 [=6.67

we(1) 0.0500 _ 0.0000
we(2) 0.4894  0.4826
we(3) 0.4606  0.5174

1—-2:1—=3 0.8790:1 0.9674:1
2—1:2—=3 1.4969:1 3.1027:1
3—1:3—=2 1.0757:1 2.6857:1

In Table 4.2 the ratio 2 — 1 : 2 — 3 is 1.4969:1 when § = 1.67 and is 3.1027:1
when 8 = 6.67. That is, at both temperatures, more molecules in Cs transition to C
than to C3, because they need less energy to move from Cy and Cy. Decreasing the
temperature (changing from g = 1.67 to 8 = 6.67) reduced the transition rate from
C5 to (5, because at lower temperatures the molecules have less energy on average
to overcome the energy barrier between Cy and Cs.

We observed that increasing the temperature reduced the spectral gap |04 — |03]
from 1.0330 at 5 = 6.67 to 0.3354 at 8 = 1.67. That is, increasing the temperature
reduces the separation between the short and large time scales. This agrees with the
physical intuition that at higher temperatures, molecules have more energy on average
and thus are able to leave the metastable sets sooner.

5. Critique. In this section we analyze our method. We discuss the compu-
tational cost of the method and study the performance of the method when the
dimension of the problem increases.

5.1. Computational cost. The bottleneck in our method lies in the computa-
tion of the matrix N of adjacency relations given the generators of a tesselation. A
straightforward approach would be to compute the full Voronoi tesselation in order
to find all the vertices of the Voronoi regions and compare vertices of each Voronoi
region. However, algorithms for computing full Voronoi tesselatons suffer from re-
strictions due to dimensionality. For example, the quickhull algorithm does not a
priori suffer from the curse of dimensionality but works only for spaces of dimension
d < 9 [5]. An incremental algorithm for computing a full Voronoi tesselation of R?
into n regions runs in O(n!%/21) [17]. Methods for finding all the vertices in Voronoi
tesselations of spaces of any dimension seem to lead to the curse of dimensionality,
given the tight upper bound for the number of vertices of O(nl(4+1)/2]) [31].
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The discretization method we presented in section 2.3 has an important advantage
in that we need not find any vertices at all in order to find the adjacency relations.
The cost of the linear program used to solve LP(i,7) in Theorem 2 depends on the
choice of linear program solver. A straightforward, practical choice would be the
simplex algorithm, which is known to have at worst exponential computational cost
but on average polynomial computational cost [25]. Furthermore, it was shown in
[19] that linear programs can be solved in polynomial time. We conclude that the
discretization method shown in section 2.3 does not lead to the curse of dimensionality.

The most expensive part of computing the transition rate matrix Q" after comput-
ing N is the computation of w. For a Voronoi region €2;, the Monte Carlo quadrature
approximation w; converges in probability with order O(1/v/M;) to the true Boltz-
mann weight w; as the number M; of configurations belonging to €2; goes to infinity.
Note that approximating the potential energy V'(g¢;) of a configuration ¢; may be very
expensive for large molecules, given that such potential energies are often computed
using pairwise atomic interactions and given that the number of pairwise interactions
increases exponentially with the number of atoms.

In section 2 we showed how we obtained Q" from the rate matrix @ defined in
Theorem 1. In [38], the complexity of this approach is O(n(f, + 1)) (see Table 4.1 of
[38]). The quantity f, is the average number of nonzero entries in N € {0,1}"*"  i.e.,
the average number of neighbours of a Voronoi region. Compared to the complexity
of O(1/(1—A2)) of thermostated molecular dynamics simulations from the same table
(where A2 € (0,1) is the eigenvalue of the transfer operator P(7) closest to unity),
the approach we use is more favorable in terms of complexity.

We conclude our critique by observing that our method is robust with respect
to the dimension of the configuration space of the molecule, since the computational
cost is effectively polynomial in the dimension d and the number of Voronoi regions
n. Furthermore, the computational complexity of our method is smaller than using
thermostated molecular dynamics simulations.

5.2. Higher-dimensional models. Now we investigate how our method per-
forms when we consider higher-dimensional models. Rewrite the potential energy
function in (4.1) as the sum of Gaussian and polynomial terms,

d

(5.1) V(q) :ZaieXp [—llg — wil?] +ij(qj — ),

i=1 j=1

where d = 2 is the dimension of the configuration space and s = 4 is the number of
Gaussian terms. The coefficient vectors are a = (3, -3, -5, —5)T, b= (0.2,0.2) T, and
the centering terms are ¢ = (0,1/3)T and W € R, where

0 0o 1 -1
W= <1/3 5/3 0 o)’
We call ¢ and W the centering terms because they provide the centers for the poly-
nomial and Gaussian terms.
We investigated the effect of increasing the dimension of the simple model given
by (4.1) by appropriately augmenting the centering terms ¢ and W with zero rows.

For example, if we consider the model into R* by adding two extra dimensions, we
obtain the parameter set
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Rows of reduced Perron eigenvector matrix, 2-dimensional toy model
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Ford = 2,...,7 we applied our method by using a CVT with 324 regions and 3000 data
sites drawn from the uniform distribution on [-2,2] x [—1,2] x []*"?[—0.005, 0.005)
and specifying § = 3.34. In Figures 5.1-5.6 we plot the rows of the corresponding
Perron eigenvector matrices. We observe that the simplex structure persists for d = 2
and d = 3, but for 4 < d < 7 there is very little simplex structure to the rows. Recall
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that the simplex structure of the Perron eigenvector matrix is important in identifying
the matrix x’ of membership vectors (see section 2.4). When the eigenvector matrix
lacks a clear simplex structure, it becomes difficult to identify the conformations.

The examples above emphasize that working with high-dimensional energy land-
scapes is difficult, because it is difficult to find a discretization in which conformations
can be identified when the dimension of the landscape is high.

5.3. Voronoi tesselations with other metrics. An important aspect of
Voronoi tesselations which we have not investigated in this article is the application
of Voronoi tesselations to spaces other than R%. Given that some molecules may have
configuration spaces with torsion angle coordinates, the choice of metric for comput-
ing distances to generators may lead to difficulties. For example, if the configuration
space of a molecule is given in terms of two torsion angles, then this configuration
space corresponds to the 2-torus, R?/Z2, and the metric on the 2-torus is different
from the Euclidean metric we have used in this article.

6. Conclusion. In this paper we presented a method for constructing a Markov
state model of a molecular system. The novel ideas in our method are the assump-
tion of constant flux and the square root approximation of transition rates between
two adjacent discretization regions. These ideas enabled us to avoid trajectories and
reduce the computation of transition rates between discretization sets to the compu-
tation of Boltzmann weights of discretization sets and the computation of adjacency
relations. We approximate the Boltzmann weights by Monte Carlo quadrature, which
gives dimension-independent but only probabilistic convergence. We obtain the adja-
cency relations using a linear programming formulation of Voronoi tesselations, which
allows us to break the curse of dimensionality when discretizing the configuration
space. Finding discretizations of high-dimensional configuration spaces in which con-
formations can be identified remains a challenge.

The key idea in our method is that the equilibrium dynamics of a molecular system
are determined completely by its energy landscape. In particular, if one only wishes to
approximate the conformation statistical weights and relative conformation transition
rates, then it is not necessary to simulate trajectories; simulations are necessary only
if one wishes to obtain dynamic quantities. It suffices to randomly sample the energy
landscape at points and to construct a Markov state model using these point data
on the energy landscape. By avoiding trajectory-based methods (and more generally,
mesh-based methods) one can break the curse of dimensionality and in principle study
large molecules which are too large to be simulated.
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